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ABSTRACT. In this paper we study practical numbers of some special
forms. For any integers b > 0 and ¢ > 0, we show that if n? + bn +
¢ is practical for some integer n > 1, then there are infinitely many
nonnegative integers n with n? + bn 4 ¢ practical. We also prove that
there are infinitely many practical numbers of the form ¢ + 2 with
q practical, and that there are infinitely many practical Pythagorean
triples (a,b,c¢) with ged(a, b, ¢) =6 (or ged(a, b, c) = 4).

1. INTRODUCTION

A positive integer m is called a practical number if each n = 1,...,m
can be written as the sum of some distinct divisors of n. This concept was
introduced by Srinivasan [3] who noted that any practical number greater
than 2 must be divisible by 4 or 6. In 1954, B. M. Stewart [4] obtained the
following structure theorem for practical numbers.

Theorem 1.1. Let p; < ... < pip be distinct primes and let ay,...,ar €
Zt ={1,2,3,...}. Then m = pi'p3*---pi* is practical if and only if p; = 2
and

p;— 1 <oa(pi'ps?---p;y') forall1l <j <k,

where o(n) denotes the sum of the positive divisors of n.

It is interesting to compare practical numbers with primes. All practical
numbers are even except 1 while all primes are odd except 2. Moreover, if
P(x) denotes the number of practical numbers not exceeding x, then there
is a positive constant ¢ such that

P(x) ~

which was established by Weingartner [7]. This is quite similar to the Prime
Number Theorem.

Inspired by the famous Goldbach’s conjecture and twin prime conjecture,
Margenstern [1] conjectured that every positive even integer is the sum of
two practical numbers and that there are infinitely many practical numbers
m with m — 2 and m + 2 also practical. Both conjectures were confirmed
by Melfi [2] in 1996.
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Whether there are infinitely many primes of the form z? + 1 with x € Z
is a famous unsolved problem in number theory. Motivated by this, in 2017
the second author [6, A294225] conjectured that there are infinitely many
positive integers ¢ such that ¢, ¢+ 2 and ¢® +2 are all practical, which looks
quite challenging. Thus, it is natural to study for what a,b,c € Z" there
are infinitely many practical numbers of the form an? + bn + c. Note that
if a =0 (mod 2) and 2 1 ¢ then an? +bn + ¢ is odd for any n € N and hence
an? + bn + ¢ cannot take practical values for infinitely many n € N.

Based on our computation we formulate the following conjecture.

Conjecture 1.1. Let a, b, ¢ be positive integers with 21 ab and 2 | ¢. Then
there are infinitely many n € N with an® + bn + ¢ practical. Moreover, in
the case a = 1, there is an integer n with 1 < n < max{b,c} such that
n? + bn + c is practical.

Though we are unable to prove this conjecture fully, we make the following
progress.

Theorem 1.2. Let b € N and ¢ € Z*. If n® + bn + ¢ is practical for some
integer n. > 1, then there are infinitely many n € N with n?+bn+c practical.

If 1 <b< 100 and 1 < ¢ < 100 with 216 and 2 | ¢, then we can easily
find 1 < n < max{b,c} with n? 4+ bn + ¢ practical. For example, n* + n + 2
with n = 2 is practical. For each positive even number b < 20 we make the
set

Sy :={1 < ¢ <100 : n®+ bn + cis practical for some n = 2,...,20000}

explicit:

So={1<c¢<100: ¢# 1,10 (mod 12) and ¢ # 43,67, 93},
So={1<e<100: ¢# 2,11 (mod 12) and ¢ # 44, 68,94},
Sy ={1<e<100: ¢# 2,5 (mod 12) and ¢ # 47,71,97},
Se={1<ec<100: ¢#7,10 (mod 12) and ¢ # 52,76},

Sg ={1 <e<100: ¢# 2,5 (mod 12) and ¢ # 59,83},
S10={1<¢e¢<100: ¢# 2,11 (mod 12) and ¢ # 68,92},
S1o ={1 < ¢ <100: ¢# 1,10 (mod 12) and ¢ # 79},
S1y={1<ec<100: ¢#2,11 (mod 12) and ¢ # 92},

Sie ={1 <c<100: ¢#2,5 (mod 12)},
Sis ={1<c¢<100: ¢# 7,10 (mod 12)},
Soo ={1 << 100: ¢#2,5 (mod 12)}.

For example, applying Theorem 1.2 with b = 20, we see that for any ¢ =
1,...,100 with ¢ # 2,5 (mod 12) there are infinitely many n € N with
n? + 20n + c practical. It is easy to see that if ¢ is congruent to 2 or 5
modulo 12 then n? + 20n + ¢ is not practical for any integer n > 2.
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By Theorem 1.2 and the fact 2 € Sy, there are infinitely many n € N
with n? + 2 practical. Moreover, we have the following stronger result.

Theorem 1.3. 2353+ L 2 s practical for every k = 0,1,2,.... Hence
there are infinitely many practical numbers g with ¢* + 2 also practical.

We prove Theorem 1.3 by modifying Melfi’s cyclotomic method in [2].

We now turn to Pythagorean triples involving practical numbers, and call
a Pythagorean triple (a, b, ¢) with a, b, ¢ all practical a practical Pythagorean
triple. Obviously, there are infinitely many practical Pythagorean triples. In
fact, if a®+b% = ¢* with a, b, ¢ positive integers then (2%a)? + (2%b)? = (2%¢)?
for all k = 0,1,2,.... By Theorem 1.1, 2%a, 2¥b and 2*c are all practical if
k is large enough.

Our following theorem was originally conjectured by the second author
[5].
Theorem 1.4. Let d be 4 or 6. Then there are infinitely many practical
Pythagorean triples (a, b, c¢) with ged(a, b, c) = d.

We are going to show Theorems 1.2-1.4 in the next section.

2. PROOFS OF OUR THEOREMS

Lemma 2.1. Let m be any practical number. Then mn is practical for every
n=1,...,0(m)+ 1. In particular, mn is practical for every 1 < n < 2m.

This lemma follows easily from Theorem 1.1; see [2] for details. Note that
if m > 1 is practical then m — 1 can be written as the sum of some divisors
of m and hence (m — 1) +m < a(m).

Proof of Theorem 1.2. Set f(n) =n%+bn + c. It is easy to verify that
fn+ f(n)) = f(n)(f(n) +2n+b+1).
Note that
f(n)—2n+b+1)=nn—2)+bn—1)+c—12>0.
If n > 2 is an integer with f(n) practical, then f(n+ f(n)) = f(n)(f(n) +
2n + b+ 1) is also practical by Lemma 2.1 and the inequality
f(n)+2n+b+1<2f(n).

So the desired result follows. O
For a positive integer m, the cyclotomic polynomial ®,,(x) is defined by

D, (z) = H (z — e*mie/m) .
gcd((;,:nlm)ﬂ
Clearly,
x"—le(I)d(a:) foralln=1,2,3,.... (2.2)

din
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Proof of Theorem 1.3. Write my, = 233 +1 1 2 for k = 0,1,2,.... Note
that ma, = ¢f + 2 with g = 2659 +D/4 practical. So it suffices to prove
that my is practical for every £k =0,1,2,.. ..
Via a computer we find that
mo =242 my =242 my=2%042

are all practical.
Now assume that my is practical for a fixed integer k > 2. For conve-
nience, we write z for 23°. Then
x> 27 =512, my =2(z* + 1) and myyqy = 2(z'® +1).
In view of (2.2),
1'210 -1 1'70 -1
2105 1 35 _ 1
Since x > 512, we have
2

(I)ﬁ(.flf)q)go(I)q)42($)q)210($). (23)

% < Bg(x) =22 —z+1 <22 (2.4)
Clearly,
7 3x3—1 5 4 3
T > =" +x +x
z—1
and
22> > 2"+ + 1.
Thus
< Oyp(r) =2 +a2" -2 -t -2+ +1 <228 (2.5)

Similarly, for
Pp(r) =22+t —2® — 28+ 2b -2 — P41
and
Boro(x) =218 — 217 4 216 1 213 _ g2 4 optl _ 10 4 439 4 36
L5 g B4 334 082 81 98 26 24 22
NSNS L GRS (S E T E R E SR L RTRC S
+ 2" — a2+ — 41,

we can prove that

7' < Byp(x) < 22" and Pyo(z) < 2. (2.6)
Combining (2.4), (2.5) and (2.6), we get
22
7 < @6(1’)(1)30(1')@42(1') < 4!13'22 (27)

and hence @g(2)P30(2)Py2(r) < 4(2* + 1). Thus, by Lemma 2.1 and the
induction hypothesis we obtain that

2(1’35 + 1)(136(1')@30(1')(1)42 (ZL’)
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is practical.
By (2.7),

2(5(735 + 1)(1)6(25')(1)30(25')(1)42(5(7) > 27 > 8.
So, applying (2.6) and Lemma 2.1, we conclude that
2(2[‘35 + 1)(1)6(.]7)(1)30(56)(1)42 (I)(I)Qlo(l’)

is practical. In view of (2.3), this indicates that my.; is practical. This
completes the proof. O

Lemma 2.2. [2] For every k € N, both 2(3**7 — 1) and 2(3*" ™ + 1) are
practical numbers.

Proof of Theorem 1.4. (i) We first consider the case d = 4. For each
k=0,1,2,..., define

a, =234 —1), b, =4-3"% and ¢, = 2(3*" ™ + 1).

It is easy to see that ai + b2 = ci and ged(ay, by, cx) = 4. By Lemma 2.2,
aj and ¢ are both practical. Theorem 2.1 implies that by is practical. This
proves Theorem 1.4 for d = 4.

(ii) Now we handle the case d = 6. For any k£ =0,1,2, ..., define

2 =330 = 1), 4, =63 and 2, = 33" + 1).

Then 7 + y? = z; and ged (2, yr, 2) = 6. Note that y; is practical for any
k=0,1,2,... by Theorem 2.1.

Now it remains to show by induction that z, and z, are practical for
all k = 0,1,2,.... Via a computer, we see that o = 3™ — 3 and 2z, =
3™ 4 3 are practical numbers. Suppose that z;, and z, are practical for
some nonnegative integer k. Then

Ty = 3(37TT0 — 1) = g, (33770 — 3335 L) (330 4 337 1) (2.8)
and
Zier = 3(35T0 1 1) = 2,015(3% ) P (3% ) Psa (377 ) Puno (37). (2.9)

In view of (2.8), by applying Lemma 2.1 twice, we see that x; is practical.
It is easy to check that

(1312(33k) < 2z, (I)60(33k> < 2qu)12(33k)7
Dy (3%) < 22,012(3% ) Do (3%), Do (3%) < 22,012(3% ) Do (3% ) D5 (3%).

In light of these and (2.9), by applying Lemma 2.1 four times, we see that
211 is practical. This concludes the induction step.
The proof of Theorem 1.4 is now complete. U
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