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Abstract
Gordon and McMahon defined a two-variable greedoid polynomial f(G; t, z)

for any greedoid G. They studied greedoid polynomials for greedoids associated
with rooted graphs and rooted digraphs. They proved that greedoid polyno-
mials of rooted digraphs have the multiplicative direct sum property. In ad-
dition, these polynomials are divisible by 1 + z under certain conditions. We
compute the greedoid polynomials for all rooted digraphs up to order six. A
greedoid polynomial f(D) of a rooted digraph D of order n GM-factorises if
f(D) = f(G) · f(H) such that G and H are rooted digraphs of order at most n
and f(G), f(H) 6= 1. We study the GM-factorability of greedoid polynomials
of rooted digraphs, particularly those that are not divisible by 1 + z. We give
some examples and an infinite family of rooted digraphs that are not direct
sums but their greedoid polynomials GM-factorise.

Keywords: factorisation, greedoid polynomial, greedoid, directed branching gree-
doid, rooted digraph, arborescence

1 Introduction

Greedoids were introduced by Korte and Lovász as collections of sets that generalise
matroids [11]. Korte and Lovász observed that the optimality of some “greedy” algo-
rithms including breadth-first search could be traced back to an underlying combina-
torial structure that satisfies the greedoid, but not the matroid, framework. Björner
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and Ziegler [1] used two algorithmic constructions of a minimum spanning tree of a
connected graph, i.e., Kruskal’s and Prim’s algorithms, to distinguish between gree-
doids and matroids. For each step in both algorithms, an edge with the minimum
weight is added into the minimum spanning tree. The edge sets of the trees/forests
that are obtained in each step form the feasible sets of a greedoid. Feasible sets
obtained via Kruskal’s algorithm remain feasible when removing any edge from the
sets. However, this is not always true for feasible sets that are obtained via Prim’s
algorithm. Therefore, the greedoid that is obtained by using Kruskal’s algorithm (but
not Prim’s algorithm) is in fact a matroid.

There are two equivalent ways to define greedoids, using set systems or hereditary
languages [13, 14]. We define greedoids based on set systems. A greedoid over a finite
ground set E is a pair (E,F ) where F ⊆ 2E is a collection of subsets of E (called the
feasible sets) satisfying:

(G1) For every non-empty X ∈ F , there is an element x ∈ X such that X−{x} ∈ F .

(G2) For X, Y ∈ F with |X| < |Y |, there is an element y ∈ Y − X such that
X ∪ {y} ∈ F .

The rank r(A) of a subset A ⊆ E in a greedoid (E,F ) is defined as r(A) =
max{|X| : X ⊆ A,X ∈ F}. Any greedoid is uniquely determined by its rank function.

Theorem 1.1. [12] A function r : 2E 7→ N ∪ {0} is the rank function of a greedoid
(E,F ) if and only if for all X, Y ⊆ E and for all x, y ∈ E the following conditions
hold:

(R1) r(X) ≤ |X|.

(R2) If X ⊆ Y , then r(X) ≤ r(Y ).

(R3) If r(X) = r(X ∪ {x}) = r(X ∪ {y}), then r(X) = r(X ∪ {x} ∪ {y}).

Important classes of greedoids are those associated with rooted graphs and rooted
digraphs. These are called branching greedoids and directed branching greedoids, re-
spectively. We focus on directed branching greedoids. Hence, all our digraphs are
rooted.

An arborescence [20] is a directed tree rooted at a vertex v such that every edge
that is incident with v is an outgoing edge, and exactly one edge is directed into each
of the other vertices. For every non-root vertex in an arborescence, there exists a
unique directed path in the arborescence that leads from the root vertex to the non-
root vertex. Occasionally, to highlight this property, people describe the root vertex
as Rome1 [20]. Some authors define arborescences by reversing the direction of each
edge in our definition, giving a set of arborescences that is different to ours. In this
scenario, each unique directed path in the arborescence directs into rather than away
from the root vertex. In both definitions, the number of arborescences rooted at each

1From the proverb: All roads lead to Rome.
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vertex is identical. To change from one definition to the other, simply reverse the
direction for all the edges.

Let D be a rooted digraph. A subdigraph F of D is feasible if F is an arborescence.
We call the edge set of F a feasbile set. If the edge set of F is maximal, then it is
a basis. A spanning arborescence of D is a subdigraph of D that is an arborescence
which includes every vertex of D. The rank of a subset X ⊆ E(D) is defined as
r(X) = max{|A| : A ⊆ X,A is feasible}.

A directed branching greedoid over a finite set E of directed edges of a rooted
digraph is a pair (E,F ) where F is the set of feasible subsets of E. This was defined
and shown to be a greedoid by Korte and Lovász [12].

Let G be a greedoid. Gordon and McMahon [8] defined a two-variable greedoid
polynomial of G

f(G; t, z) =
∑

A⊆E(G)

tr(G)−r(A)z|A|−r(A)

which generalises the one-variable greedoid polynomial λ(G; t) given by Björner and
Ziegler in [1]. We call the two-variable greedoid polynomial f(G; t, z) the greedoid
polynomial. The greedoid polynomial is motivated by the Tutte polynomial of a ma-
troid [19], and is an analogue of the Whitney rank generating function [21]. This
polynomial is one of the digraph polynomials that is analogous of the Tutte polyno-
mial. A survey of such polynomials for directed graphs can be found in [4].

Gordon and McMahon studied greedoid polynomials for branching greedoids and
directed branching greedoids. They showed that f(D; t, z) can be used to determine
if a rooted digraph D is a rooted arborescence [8]. However, this result does not hold
when D is an unrooted tree [6].

Suppose D, D1 and D2 are rooted digraphs, and E(D1), E(D2) ⊆ E(D). The
digraph D is the direct sum of D1 and D2, if E(D1)∪E(D2) = E(D), E(D1)∩E(D2) =
∅ and the feasible sets of D are precisely the unions of feasible sets of D1 and D2.
Gordon and McMahon proved that the greedoid polynomials of rooted digraphs have
the multiplicative direct sum property, that is, if D is the direct sum of D1 and D2,
then f(D; t, z) = f(D1; t, z)·f(D2; t, z). This raises the question of whether this is the
only circumstance in which this polynomial can be factorised. The Tutte polynomial
of a graph G factorises if and only if G is a direct sum [16], but the situation for the
chromatic polynomial is more complex [17].

Gordon and McMahon showed that the greedoid polynomial of a rooted digraph
that is not necessarily a direct sum has 1+z among its factors under certain conditions
(see Theorem 1.3 and 1.4). We address more general types of factorisation in this
article.

Gordon and McMahon gave a recurrence formula to compute f(D; t, z) where D
is a rooted digraph. The following proposition gives the formula, which involves the
usual deletion-contraction operations.

Proposition 1.2. [8] Let D be a digraph rooted at a vertex v, and e be an outgoing
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edge of v. Then

f(D; t, z) = f(D/e; t, z) + tr(D)−r(D\e)f(D \ e; t, z).

A greedoid loop [15] in a rooted graph, or a rooted digraph, is an edge that is in
no feasible set. It is either an ordinary (directed) loop, or an edge that belongs to no
(directed) path from the root vertex.

Theorem 1.3. [15] Let D be a rooted digraph that has no greedoid loops. Then D
has a directed cycle if and only if 1 + z divides f(D).

Let G be a greedoid. A subset S ⊆ E(G) is spanning if S contains a basis. Gordon
and McMahon gave a graph-theoretic interpretation for the highest power of 1 + z
which divides f(G) in the following theorem.

Theorem 1.4. [9] Let G be the directed branching greedoid associated with a rooted
digraph D with no greedoid loops or isolated vertices. If f(G; t, z) = (1 + z)kh(t, z),
where 1 + z does not divide h(t, z), then k is the minimum number of edges that need
to be removed from D to leave a spanning acyclic directed graph.

Tedford [18] defined a three-variable greedoid polynomial f(G; t, p, q) for any finite
rooted graph G, which generalises the two-variable greedoid polynomial. He showed
that f(G; t, p, q) obeys a recursive formula. He also proved that f(G; t, p, q) deter-
mines the number of greedoid loops in any rooted graph G. His main result shows
that f(G; t, p, q) distinguishes connected rooted graphs G that are loopless and have
at most one cycle. He extended f(G; t, p, q) from rooted graphs to general greedoids,
and proved that the polynomial determines the number of loops for a larger class of
greedoids.

In this article, we compute the greedoid polynomials for all rooted digraphs (up to
isomorphism unless otherwise stated) up to order six. All the labelled rooted digraphs
(without loops and multiple edges, but cycles of size two are allowed) up to order six
were provided by Brendan McKay2 on 28 March 2018 (personal communication from
McKay to Farr). We then study the factorability of these polynomials, particularly
those that are not divisible by 1 + z.

Two rooted digraphs are GM-equivalent if they both have the same greedoid
polynomial. If a rooted digraph is a direct sum, then it is separable. Otherwise, it is
non-separable.

A greedoid polynomial f(D) of a rooted digraph D of order n GM-factorises if
f(D) = f(G) · f(H) such that G and H are rooted digraphs of order at most n
and f(G), f(H) 6= 1. Note that f(G) and f(H) are not necessarily distinct. The
polynomials f(G) and f(H) are GM-factors of f(D). We also say a rooted digraph
D GM-factorises if its greedoid polynomial GM-factorises. Every rooted digraph that
is a direct sum has a GM-factorisation.

An irreducible GM-factor is basic if the GM-factor is either 1+t or 1+z. Otherwise,
the irreducible GM-factor is nonbasic. We are most interested in nonbasic GM-factors.

2More combinatorial data can be found at https://users.cecs.anu.edu.au/˜bdm/data/.
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A GM-factor is primary if it is irreducible, nonbasic and is not a GM-factor of any
greedoid polynomial of rooted digraphs of smaller order. Such a factor appears as
a GM-factor only in rooted digraphs with at least as many vertices as the current
one. For k ≥ 1, a non-separable digraph is k-nonbasic if its greedoid polynomial has k
nonbasic GM-factors. A non-separable digraph is totally k-nonbasic if it is k-nonbasic
and contains no basic GM-factors. Likewise, a non-separable digraph is k-primary if
its greedoid polynomial has k primary GM-factors. A non-separable digraph is totally
k-primary if it is k-primary and contains no basic GM-factors. It follows that if a
non-separable digraph is (totally) k-primary, then the digraph is (totally) k-nonbasic.

Our results show that there exist non-separable digraphs that GM-factorise and
their polynomials have neither 1 + t nor 1 + z as factors. In some cases (but not all),
these non-separable digraphs of order n are GM-equivalent to a separable digraph of
order at most n. We give the numbers of polynomials of this type of non-separable
digraph. For rooted digraphs up to order six and k ≥ 2, we found that there exist no
(k + 1)-nonbasic digraphs and no k-primary digraphs. We also provide the numbers
of 2-nonbasic digraphs, totally 2-nonbasic digraphs, 1-primary digraphs and totally
1-primary digraphs. We then give the first examples of totally 2-nonbasic and totally
1-primary digraphs. Lastly, we give an infinite family of non-separable digraphs where
their greedoid polynomials factorise into at least two non-basic GM-factors.

2 Results

The greedoid polynomials of all rooted digraphs up to order six were computed by us-
ing Algorithm 1 (see Appendix). This algorithm is based on the deletion-contraction
recurrence in Proposition 1.2 that was introduced by Gordon and McMahon [8]. We
then simplified and factorised all these greedoid polynomials using Wolfram Mathe-
matica.

Throughout, rooted digraphs are up to isomorphism unless stated otherwise.

2.1 Separability and Non-separability

For each order, we determined the numbers of rooted digraphs, separable digraphs,
non-separable digraphs, and non-separable digraphs of order n that are GM-equivalent
to some separable digraph of order at most n (see Table 2, and the list of abbreviations
in Table 1).

Note that the sequences of numbers of labelled rooted digraphs (T) and rooted
digraphs (T-ISO) are not listed in The On-Line Encyclopedia of Integer Sequences
(OEIS).

We observe that the ratio of T-ISO to T shows an increasing trend. The ratio of
NS to T-ISO is also increasing (for n ≥ 3), as expected.
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Abbreviation Description

T Number of labelled rooted digraphs
T-ISO Number of rooted digraphs
S Number of separable digraphs
NS Number of non-separable digraphs
NSE Number of non-separable digraphs of order n that are GM-

equivalent to some separable digraph of order at most n

Table 1: Abbreviations for Table 2

n T T-ISO S NS NSE

1 1 1 0 1 0
2 6 4 0 4 0
3 48 36 6 30 7
4 872 752 88 664 200
5 48040 45960 2404 43556 10641
6 9245664 9133760 150066 8983694 1453437

Table 2: Numbers of various types of rooted digraphs (up to order six)

For each order, we also provide the number PU of unique greedoid polynomials
and the ratio of PU to T-ISO, in Table 3.

n T-ISO PU PU/T-ISO

1 1 1 1.0000
2 4 4 1.0000
3 36 22 0.6111
4 752 201 0.2673
5 45960 6136 0.1335
6 9133760 849430 0.0930

Table 3: Numbers PU of unique greedoid polynomials of rooted digraphs (up to order
six) and the ratio of PU to T-ISO

Bollobás, Pebody and Riordan conjectured that almost all graphs are determined by
their chromatic or Tutte polynomials [2]. However, this conjecture does not hold
for matroids. The ratio of the number of unique Tutte polynomials of matroids to
the number of non-isomorphic matroids approaches 0 as the cardinality of matroids
increases, which can be shown using the bounds given in Exercise 6.9 in [3]. We
believe that greedoid polynomials of rooted digraphs behave in a similar manner as
matroids. According to our findings, the ratio of PU to T-ISO shows a decreasing
trend. We expect that as n increases, this ratio continues to decrease. The question

6



is, does this ratio eventually approach 0 or is it bounded away from 0? Further
computation should give more insight on this question.

2.2 Factorability

For n ∈ {1, . . . , 5}, we identified the numbers of greedoid polynomials that GM-
factorise for rooted digraphs of order n. Details are given in Table 5 (see Table 4 for
the list of abbreviations and Figure 1 for the corresponding Venn diagram).

Abbreviation Description

Number of unique greedoid polynomials of rooted digraphs that . . .
PNF . . . cannot be GM-factorised
PF . . . can be GM-factorised
PFS . . . can be GM-factorised and the digraph is separable
PFNS . . . can be GM-factorised and the digraph is non-separable

PF PFS ∪ PFNS
COMM PFS ∩ PFNS
PFSU PFS − COMM
PFNSU PFNS − COMM

Table 4: Abbreviations for Figure 1 and Table 5

COMM

PFSU PFNSU

PFS PFNS

U

PNF

Figure 1: Venn diagram that represents the factorability of greedoid polynomials of
rooted digraphs where U = PF ∪ PNF and PF = PFS ∪ PFNS
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n PNF PF PFS PFNS COMM PFSU PFNSU

1 1 0 0 0 0 0 0
2 3 1 0 1 0 0 1
3 6 16 6 13 3 3 10
4 37 164 41 145 22 19 123
5 1044 5092 444 4867 219 225 4648

Table 5: Factorability of greedoid polynomials of rooted digraphs (up to order five)

We found that the ratio of PF to PU shows an upward trend, and the ratio stands
at 0.8299 when n = 5. It seems that most likely as n increases, the ratio will either
approach 1 in which case almost all greedoid polynomials of rooted digraphs GM-
factorise, or the ratio will approach a fixed α where 0.8299 ≤ α < 1. We ask, what is
the limiting proportion of greedoid polynomials of rooted digraphs that GM-factorise,
as n→∞?

We categorised these polynomials into two classes, according to whether they
are polynomials of separable or non-separable digraphs. Some of these polynomials
are polynomials of both separable and non-separable digraphs. The number of such
polynomials is given in column 6 (COMM) in Table 5. One such example for digraphs
of order three is shown in Figure 2, where the two digraphs have the same greedoid
polynomial (1 + t)(1 + z).

r

(a)

r

(b)

Figure 2: Digraphs that have the same greedoid polynomial where (a) is non-separable
and (b) is separable

We are interested in non-separable digraphs that can be GM-factorised, especially
those digraphs that have greedoid polynomials that are not the same as polynomials
of any separable digraph. The numbers of greedoid polynomials of these digraphs are
given in column PFNSU in Table 5, and examples of such rooted digraphs of order
two and three are given in Figure 3 and Figure 4, respectively. It is easy to verify
that the greedoid polynomial of the rooted digraph in Figure 3 is (1 + t)(1 + z). The
greedoid polynomials of rooted digraphs in Figure 4 are (from left to right starting
from the first row) given in Table 6.

r

Figure 3: The non-separable digraph of order two that GM-factorises
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r r r r r

r r r r r

Figure 4: Ten of the 16 non-separable digraphs (one for each of the ten different
greedoid polynomials) of order three that GM-factorise

Greedoid polynomials
Number of non-separable

rooted digraphs of order three

1. (1 + z)3 2
2. (1 + z)(1 + t+ t2 + t2z) 3
3. (1 + z)(2 + 2t+ t2 + z + tz + t2z) 2
4. (1 + z)4 1
5. (1 + z)2(1 + t+ t2 + t2z) 3
6. (1 + t)(1 + z)3 1
7. (1 + z)2(2 + 2t+ t2 + z + tz + t2z) 1
8. (1 + z)2(3 + 2t+ t2 + z + t2z) 1
9. (1 + z)3(1 + t+ t2 + t2z) 1

10. (1 + z)3(3 + 2t+ t2 + z + t2z) 1

Table 6: Greedoid polynomials of non-separable digraphs of order three that GM-
factorise and these polynomials are not the same as polynomials of any separable
digraph of order three, and the numbers of associated non-separable digraphs (making
16 non-separable rooted digraphs altogether)

2.3 2-nonbasic and 1-primary Digraphs

We investigate greedoid polynomials that contain nonbasic and primary GM-factors.
Details are given in Table 8 (see Table 7 for the list of abbreviations and Figure 5
for the corresponding Venn diagram). For rooted digraphs up to order six, each
1-primary digraph is a 2-nonbasic digraph, and each totally 1-primary digraph is a
totally 2-nonbasic digraph.
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Abbreviation Description

2-NB Number of 2-nonbasic digraphs
2-TNB Number of totally 2-nonbasic digraphs
1-P Number of 1-primary digraphs
1-TP Number of totally 1-primary digraphs

Table 7: Abbreviations for Figure 5 and Table 8

2-TNB

1-P

2-NB

U

1-TP

Figure 5: Venn diagram that represents four types of digraphs in Table 8 where U is
the set of digraphs (up to order six) that can be GM-factorised

n 2-NB 2-TNB 1-P 1-TP

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 120 0 0 0
6 12348 15 1252 9

Table 8: Numbers of the four types of non-separable digraphs (up to order six) that
can be GM-factorised

All rooted digraphs up to order four either have one nonbasic GM-factor or only
basic GM-factors in their polynomials. There are 120 rooted digraphs of order five
that have greedoid polynomials with at least two nonbasic GM-factors. The number of
distinct greedoid polynomials of these 120 rooted digraphs is 34. Further examination
showed that the number of nonbasic GM-factors in these polynomials is exactly two.
Nonetheless, 117 of the 120 rooted digraphs have greedoid polynomials that contain
at least one basic GM-factor, and the remaining three are separable digraphs (as
shown in Figure 6).
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r r r

Figure 6: Three separable digraphs of order five that have two nonbasic GM-factors

Hence, there exist no totally 2-nonbasic digraphs of order five. In addition, none of
the polynomials of these 120 rooted digraphs contains a primary GM-factor. This
implies that none of the rooted digraphs up to order five are k-primary, for k ≥ 1.
Each of the GM-factors of greedoid polynomials of rooted digraph up to order five
is either basic, or is a GM-factor of some greedoid polynomials of rooted digraphs of
smaller order.

There are 12348 rooted digraphs of order six that have greedoid polynomials with
at least two nonbasic GM-factors. The number of distinct greedoid polynomials of
these 12348 rooted digraphs is 837. A quick search showed that all these digraphs are
2-nonbasic. We found that 15 of these rooted digraphs are totally 2-nonbasic. One of
the totally 2-nonbasic digraphs D1 of order six is shown in Figure 7 and its greedoid
polynomial is as follows:

f(D1) = (1 + t+ t2 + t2z)(2 + 2t+ t2 + t3 + z + tz + t2z + 3t3z + 3t3z2 + t3z3).

r

Figure 7: A totally 2-nonbasic digraph of order six

Both of the nonbasic GM-factors of f(D1) are greedoid polynomials of rooted digraphs
G and H that have order three and four, respectively (see Figure 8). We have f(G) =
1+ t+ t2 + t2z and f(H) = 2+2t+ t2 + t3 +z+ tz+ t2z+3t3z+3t3z2 + t3z3. However,
D1 is a non-separable digraph and hence not the direct sum of G and H.

r

G

r

H

Figure 8: Rooted digraphs G and H
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There are also 1252 rooted digraphs of order six that have greedoid polynomials
with one primary GM-factor, and all these digraphs are non-separable. However, only
nine of them are totally 1-primary digraphs. One of the totally 1-primary digraphs
D2 of order six is shown in Figure 9 and it has the following greedoid polynomial:

f(D2) = (1+t+t2+t2z)(4+3t+t2+t3+4z+2tz+t2z+4t3z+z2+6t3z2+4t3z3+t3z4).

r

Figure 9: A totally 1-primary digraph of order six

The totally 1-primary digraph D2 GM-factorises into one nonbasic GM-factor 1 +
t + t2 + t2z and one primary GM-factor 4 + 3t + t2 + t3 + 4z + 2tz + t2z + 4t3z +
z2 + 6t3z2 + 4t3z3 + t3z4. The GM-factor 1 + t + t2 + t2z is not primary as it is the
greedoid polynomial of the rooted digraph G in Figure 8. Note that D2 is also a
totally 2-nonbasic digraph since every primary GM-factor is a nonbasic GM-factor.

The fact that a greedoid polynomial of a rooted digraph is not divisible by 1 + z
implies that the associated rooted digraph has neither a directed cycle nor a greedoid
loop. Our results show that there exist some non-separable digraphs (of order six)
that GM-factorise into only nonbasic GM-factors, or both nonbasic and primary GM-
factors. This implies that the multiplicative direct sum property, and the existence
of greedoid loops and directed cycles, are not the only characteristics that determine
if greedoid polynomials of rooted digraphs factorise.

2.4 An Infinite Family

Lastly, we show that there exists an infinite family of digraphs where their greedoid
polynomials factorise into at least two nonbasic GM-factors. We first characterise
greedoid polynomials of two classes of rooted digraphs.

Let Pm,v0 be a directed path v0v1 . . . vm of size m ≥ 0 rooted at v0, and Cm,v0 be a
directed cycle v0v1 . . . vm−1v0 of size m ≥ 1 rooted at v0. For convenience, we usually
write Pm for Pm,v0 and Cm for Cm,v0 .

Lemma 2.1.

f(Pm; t, z) = 1 +
t(1− (t(1 + z))m)

1− t(1 + z)
.

Proof. By induction on the number of edges.

12



Let G be a rooted undirected graph and X ⊆ E(G). The rank r(X) of X is
defined as r(X) = max{|A| : A ⊆ X,A is a rooted subtree}. Let F be the set of
subtrees of G containing the root vertex. Korte and Lovász [12] showed that (G,F )
is a greedoid called the undirected branching greedoid of G.

Suppose Qm is an undirected path v0v1 . . . vm of size m ≥ 0 rooted at either v0 or
vm. Then f(Pm; t, z) = f(Qm; t, z), since there is a rank-preserving bijection between
2E(Pm) and 2E(Qm).

Lemma 2.2.
f(Cm; t, z) = (1 + z)f(Pm−1; t, z).

Proof. By induction on the number of edges.

Gordon gave a formula for the greedoid polynomials of rooted undirected cycles
in [7]. Those polynomials are different to the ones given by Lemma 2.2.

We now give an infinite family of digraphs where their greedoid polynomials fac-
torise into at least two nonbasic GM-factors, extending the example in Figure 7.

Lemma 2.3. There exists an infinite family of non-separable digraphs D that have
at least two nonbasic GM-factors, where

f(D) = f(Pk+1)
(
f(Ck+1) + f(Pk+1) + tk+2(1 + z)k+2

)
, for k ≥ 1.

v0a0

ak

v1 b0

bk

e

Figure 10: The digraph D in the proof of Lemma 2.3

Proof. Let D be the non-separable digraph rooted at vertex v0 shown in Figure 10,
where a0 . . . ak and b0 . . . bk are two directed paths in D of length k ≥ 1 starting at
a0 and b0, respectively. To compute the greedoid polynomial of D by using Proposi-
tion 1.2, we first choose the edge e = v0v1. By deleting and contracting e, we obtain
the digraphs D1 = D/e and D2 = D \ e as shown in Figure 11.

Note that D1 is a separable digraph rooted at v0. Let R = {v0, a0, . . . , ak} ⊂
V (D1), S = {v0, b0, . . . , bk} ⊂ V (D1) and T = {v0, a0, . . . , ak} ⊂ V (D2). Suppose
A = D1[R] and B = D1[S] are the subdigraphs of D1 induced by R and S respectively,
and C = D2[T ] is the subdigraph of D2 induced by T . Clearly, B ∼= C ∼= Pk+1. Hence
we have f(B) = f(C) = f(Pk+1). Note that every edge g ∈ E(D2) \ E(C) is a
greedoid loop, and |E(D2)\E(C)| = k+ 2. By using the recurrence formula, we have

f(D) = f(D/e) + tr(D)−r(D\e)f(D \ e)

13



a0

ak

v0 b0

bk

(a) D1 = D/e

v0a0

ak

v1 b0

bk

(b) D2 = D \ e

Figure 11: Two minors D/e and D \ e of D

= f(A) · f(B) + t(2k+3)−(k+1)f(C) · (1 + z)k+2

= f(Pk+1)
(
f(A) + tk+2(1 + z)k+2

)
(since f(B) = f(C) = f(Pk+1) .)

It remains to show that f(A) can be expressed in terms of f(Pk) and f(Ck).
By taking h = v0ak ∈ E(A) (see Figure 12) as the outgoing edge in the recurrence
formula, we have

a0

ak

v0

h

Figure 12: The subdigraph A of D1 induced by R

f(A) = f(A/h) + tr(A)−r(A\h)f(A \ h)

= f(Ck+1) + t(k+1)−(k+1)f(Pk+1) (since A/h ∼= Ck+1 and A \ h ∼= Pk+1)

= f(Ck+1) + f(Pk+1).

Therefore,

f(D) = f(Pk+1)
(
f(Ck+1) + f(Pk+1) + tk+2(1 + z)k+2

)
.

Clearly, both factors of f(D) are nonbasic GM-factors. Since D is non-separable and
k ≥ 1, the proof is complete.

We extend the infinite family in Lemma 2.3, and characterise the greedoid poly-
nomials of a new infinite family, as follows.
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Theorem 2.4. There exists an infinite family of non-separable digraphs D that have
at least two nonbasic GM-factors, where

f(D) = f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

tk+2(1 + z)k+2(1− (t(1 + z))`)

1− t(1 + z)

)
, for k, ` ≥ 1.

v0 v1 v`

a0

ak

b0

bk

e

Figure 13: The digraph D in the proof of Theorem 2.4

Proof. Let D be the non-separable digraph rooted at vertex v0 shown in Figure 13,
where L = v0 . . . v` is a directed path in D of length ` ≥ 1 starting at v0. We proceed
by induction on the length ` of L.

For the base case, suppose ` = 1. By Lemma 2.3, we have

f(D) = f(Pk+1)
(
f(Ck+1) + f(Pk+1) + tk+2(1 + z)k+2

)
= f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

tk+2(1 + z)k+2(1− (t(1 + z))`)

1− t(1 + z)

)
,

and the result for ` = 1 follows.
Assume that ` > 1 and the result holds for every r < `.
Let e = v0v1 ∈ E(D). By applying the deletion-contraction recurrence in Propo-

sition 1.2 on e, we obtain the digraphs D1 = D/e and D2 = D \ e as shown in
Figure 14.

v1 v`

a0

ak

b0

bk

(a) D1 = D/e

v0 v1 v`

a0

ak

b0

bk

(a) D2 = D \ e

Figure 14: Two minors D/e and D \ e of D
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Note that D1 is a non-separable digraph rooted at v1. Since the directed path
v1 . . . v` in D1 has length ` − 1, we use the inductive hypothesis to obtain f(D1).
Let R = {v0, a0, . . . , ak} ⊂ V (D2), and A = D2[R] be the subdigraph of D2 induced
by R. Clearly, A ∼= Pk+1. Hence, we have f(A) = f(Pk+1). Note that every edge
g ∈ E(D2) \ E(A) is a greedoid loop, and |E(D2) \ E(A)| = k + ` + 1. By using the
recurrence formula, we have

f(D) = f(D/e) + tr(D)−r(D\e)f(D \ e)

= f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

tk+2(1 + z)k+2(1− (t(1 + z))`−1)

1− t(1 + z)

)
+ t(2k+`+2)−(k+1)

(
f(Pk+1) · (1 + z)k+`+1

)
= f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

(
tk+2(1 + z)k+2(1− (t(1 + z))`−1)

1− t(1 + z)

)
+ tk+`+1(1 + z)k+`+1

)
= f(Pk+1)

(
f(Ck+1) + f(Pk+1) +

tk+2(1 + z)k+2(1− (t(1 + z))`)

1− t(1 + z)

)
.

We observe that if every directed path has length at most one in a digraph D
rooted at a vertex v, the greedoid polynomial of D is trivial. In this scenario, every
vertex in D is either a sink vertex or a source vertex. If v is a sink vertex, then every
edge in D is a greedoid loop. If v is a source vertex, every edge that is not incident
with v is a greedoid loop.

In the following theorem, we show that the greedoid polynomial of any digraph
that has a directed path of length at least two is a nonbasic GM-factor of the greedoid
polynomial of some non-separable digraph. The proof follows similar approaches as
in Lemma 2.3 and Theorem 2.4.

Theorem 2.5. For any digraph G that has a directed path of length at least two, there
exists a non-separable digraph D where f(D) has f(G) as a nonbasic GM-factor.

a0 v1 a′0a1

a2

ak

a′1

a′2

a′k

G G′

e

Figure 15: An illustration of the non-separable digraph D in Theorem 2.5
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Proof. Let G be a digraph that has a directed path K = a0a1 . . . ak of length k ≥ 2,
and G′ be a copy of G. The copy of K in G′ is denoted by K ′ = a′0a

′
1 . . . a

′
k.

We construct a non-separable digraph D` using G and G′, as follows. We first
create a directed path L = a0v1 . . . v`−1a

′
0 of length `. We add a directed edge a′0ak,

and assign v0 as the root vertex of D` (see Figure 15).
To show that f(G) is a nonbasic GM-factor of f(D`), we proceed by induction on

the length ` of L.
For the base case, suppose ` = 1. We apply the deletion-contraction recurrence in

Proposition 1.2 on e = a0a
′
0. We denote a0 the root vertex of the separable digraph

D1/e. We have

f(D1) = f(D1/e) + tr(D1)−r(D1\e)f(D1 \ e)
= f(G+ a0ak) · f(G) + t(2r(G)+1)−r(G)f(G) · (1 + z)|E(G)|+1

= f(G)
(
f(G+ a0ak) + tr(G)+1(1 + z)|E(G)|+1

)
.

Hence, the result for ` = 1 follows.
Assume that ` > 1 and the result holds for every r < `.
For the inductive steps, we apply the deletion-contraction recurrence on e = v0v1.

We have

f(D`) = f(D`/e) + tr(D`)−r(D`\e)f(D` \ e)
= f(D`/e) + t(2r(G)+`)−r(G)f(G) · (1 + z)|E(G)|+`

= f(D`/e) + tr(G)+`f(G) · (1 + z)|E(G)|+`.

Note that D`/e ∼= D`−1. By the inductive hypothesis, f(D`/e) has f(G) as a nonbasic
GM-factor. This implies that f(D`) has f(G) as a nonbasic GM-factor.

We now have the following corollary.

Corollary 2.6. Let D be a non-separable digraph that belongs to the infinite family
in Theorem 2.5. By replacing the edge a′0ak ∈ E(D) by any digraph R such that every
edge in E(R) that is incident with ak is an incoming edge of ak, then f(D) has f(G)
as a nonbasic GM-factor.

3 Computational Methods

All labelled rooted digraphs (without loops and multiple edges, but cycles of size two
are allowed) up to order six were provided by Brendan McKay on 28 March 2018
(personal communication from McKay to Farr). Each digraph is given as a list of
numbers on one line separated by a single space. The first number is the order of the
digraph, the second number is the size of the digraph, and each pair of subsequent
numbers represent a directed edge of the digraph. For instance, 3 2 2 0 2 1 represents
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a digraph of order 3 and size 2. The directed edges of the digraph are (2, 0) and (2, 1).
Details are as follows:

order︷︸︸︷
3 2︸︷︷︸

size

edge︷︸︸︷
2 0 2 1︸︷︷︸

edge

.

We use a set of numbers {0, 1, . . . , n − 1} to represent vertices for each digraph
of order n, and an edge list to represent the edge set of each digraph, e.g., [[0, 1]]
represents a digraph with a single edge directed from vertex 0 to vertex 1. As there
are 9,245,664 labelled rooted digraphs of order six, we split these digraphs into 52
files.

We use Python 3 (source code filename extension .py), Wolfram Mathematica 11
(source code filename extension .nb) and Bash Shell (Mac OS Version 10.13.4), in
computing results for greedoid polynomials of rooted digraphs up to order six.

Algorithms of our programs are given in Appendix. For brevity, we omit some ele-
mentary algorithms. Steps in obtaining our results are also summarised in Appendix.

4 Concluding Remarks

In this paper, we presented (i) the results from exhaustive computation of all small
rooted digraphs and (ii) the first results of the GM-factorability of greedoid polyno-
mials of rooted digraphs.

We computed the greedoid polynomials for all rooted digraphs up to order six.
From Table 3, the ratio of PU to T-ISO shows a decreasing trend. We expect that as
n increases, this ratio continues to decrease. Hence, we have the following conjecture.

Conjecture 4.1. Most rooted digraphs are not determined by their greedoid polyno-
mials.

We found that the multiplicative direct sum property, and the existence of greedoid
loops and directed cycles, are not the only characteristics that determine if greedoid
polynomials of rooted digraphs factorise. We showed that there exists an infinite
family of non-separable digraphs where their greedoid polynomials GM-factorise. We
also characterised the greedoid polynomials of rooted digraphs that belong to the
family.

We now suggest some problems for further research.

1. Investigate the factorability of greedoid polynomials of rooted graphs, or even
greedoids in general.

Gordon and McMahon gave a graph-theoretic interpretation for the highest power
of 1 + z for greedoid polynomials of rooted digraphs. We could investigate a similar
problem for the other basic factor 1 + t.

2. Does there exist a graph-theoretic interpretation for the highest power of 1 + t
for greedoid polynomials of rooted digraphs?

18



By Theorem 2.5, we can see that there exist (totally) k-nonbasic rooted digraphs
for k ≥ 3.

3. For k ≥ 2, does there exist a (totally) k-primary rooted digraph?

For rooted digraphs of order six, there are 15 totally 2-nonbasic digraphs and nine
totally 1-primary digraphs.

4. For k ≥ 1, can we characterise greedoid polynomials of totally (k+ 1)-nonbasic
digraphs and totally k-primary digraphs?

5. Determine necessary and sufficient conditions for greedoid polynomials of rooted
digraphs to factorise.
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Appendix

We summarised commands and algorithms of our programs, as follows:

Part A

The relationships between files and programs in Part A is shown in Figure 16.

1. Program name: Greedoid polynomial.py (see Algorithms 1–9)
Input: dig n.txt that contains all digraphs of order n.
Output:

• dig n edgeList.txt : contains edge lists for each rooted digraph of order n.

• dig n poly.txt : contains greedoid polynomials (not in their simplest form)
for each rooted digraph of order n which are obtained by using the deletion-
contraction recurrence in Proposition 1.2.

• dig n isomorphism.txt : contains rooted digraphs of order n together with
a set of root vertices such that each digraph that has its root vertex in the
set is isomorphic to each other.

• dig n directSum.txt : summarises whether each rooted digraph of order n
is a direct sum (DS), not a direct sum (NDS), or is isomorphic (ISO) to
some other rooted digraphs.

• dig n info.txt : contains the number of rooted digraphs of order n that are
direct sums, and the number of rooted digraphs of order n that need to be
excluded so that all rooted digraphs of order n are non-isomorphic.

2. Program name: dig n factorise.nb
Input: dig n poly.txt.
Output: dig n poly factorised.txt that contains the greedoid polynomials for
rooted digraphs of order n in their factorised forms.

3. Program name: Numbering edgeList.py
Input: dig n edgeList.txt.
Output: dig n edgeList Numbering.txt that includes the following numbering
scheme for each line in the input file

n.z) edgeList
where n is the order of the digraph and z ≥ 1.

4. Program name: Numbering block poly factorised.py
Input: dig n poly factorised.txt.
Output: dig n poly factorised Numbering.txt that includes the following num-
bering scheme for each line in the input file

n.z.r) poly factorised
where n is the order of the digraph, z ≥ 1 corresponds to the zth rooted digraph
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in the dig n edgeList Numbering.txt, and 0 ≤ r ≤ n − 1 represents the root
vertex of the digraph.

5. Program name: Numbering block directSum.py
Input: dig n directSum.txt.
Output: dig n directSum Numbering.txt that includes the following numbering
scheme for each line in the input file:

n.z.r) DS/NDS/ISO
where n is the order of the digraph, z ≥ 1 corresponds to the zth rooted digraph
in the dig n edgeList Numbering.txt, and 0 ≤ r ≤ n − 1 represents the root
vertex of the digraph.

6. Program name: DirectSum vs notDirectSum.py (see Algorithm 10)
Input: dig n directSum Numbering.txt and dig n poly factorised Numbering.txt.
Output:

• dig n poly directSum.txt : contains greedoid polynomials for rooted digraphs
of order n that are direct sums, with the respective numbering.

• dig n poly notDirectSum.txt : contains greedoid polynomials for rooted di-
graphs of order n that are not direct sums, with the respective numbering.

7. Program name: DirectSum vs notDirectSum unique.py (similar to Algorithm 10)
Input: dig n directSum.txt and dig n poly factorised.txt.
Output:

• dig n poly directSum unique.txt : contains unique greedoid polynomials for
rooted digraphs of order n that are direct sums.

• dig n poly notDirectSum unique.txt : contains unique greedoid polynomials
for rooted digraphs of order n that are not direct sums.

8. Language: Bash Shell.
Input: dig n poly factorised.txt.
Output: dig n unique poly.txt that contains all unique greedoid polynomials of
rooted digraphs of order n.
Command:
tr -d "\r" < dig n poly factorised.txt | sort | uniq
> dig n unique poly.txt

Remark: If we replace uniq by uniq -c in the above command, the last line of
dig n unique poly.txt gives the number of occurrences of “isomorphic”, which is
also the number of rooted digraphs of order n that need to be excluded so that
all rooted digraphs of order n are non-isomorphic. This number should match
with the one in dig n info.txt.

22



9. Language: Bash Shell.
Input: Combined unique poly n-1.txt and dig n unique poly.txt.
Output: Combined unique poly n.txt that contains all unique greedoid polyno-
mials of rooted digraphs up to order n.
Command:
cat Combined unique poly n-1.txt dig n unique poly.txt | sort | uniq
> Combined unique poly n.txt

Remark: Since Combined unique poly 1.txt is literally dig 1 unique poly.txt, we
first use dig 1 unique poly.txt and dig 2 unique poly.txt as input files to obtain
Combined unique poly 2.txt. For brevity, we only show dig n unique poly.txt as
the input in Figure 16. A similar concept is used for both steps 13 and 18.

10. Program name: Factorability unique.py (see Algorithm 11)
Input: dig n unique poly.txt and Combined unique poly n.txt.
Output: dig n factorability unique.txt that contains the number of greedoid
polynomials of rooted digraphs of order n that can be GM-factorised, and out-
put each of these polynomials.

11. Program name: Factorability unique directSum.py (similar to Algorithm 11)
Input: dig n poly directSum unique.txt and Combined unique poly n.txt.
Output: dig n factorability directSum unique.txt that contains the number of
greedoid polynomials that can be GM-factorised for rooted digraphs of order n
that are direct sums, and output each of these polynomials.

12. Program name: Factorability unique notDirectSum.py (similar to Algorithm 11)
Input: dig n poly notDirectSum unique.txt and Combined unique poly n.txt.
Output: dig n factorability notDirectSum unique.txt that contains the number
of greedoid polynomials that can be GM-factorised for rooted digraphs of order
n that are not direct sums, and output each of these polynomials.

13. Language: Bash Shell.
Input: Combined poly directSum n-1.txt and dig n poly directSum.txt.
Output: Combined poly directSum n.txt that contains all unique greedoid poly-
nomials of rooted digraphs that are direct sums up to order n.
Command:
cat Combined poly directSum n-1.txt dig n poly directSum.txt | sort
| uniq > Combined poly directSum n.txt

14. Program name: DirectSum and GM-equivalent.py (see Algorithm 12)
Input: dig n poly notDirectSum.txt and Combined poly directSum n.txt.
Output: dig n poly ndsEquivalent.txt that contains the number of rooted di-
graphs of order n that are not direct sums, but they are GM-equivalent to some
rooted digraph up to order n that is a direct sum. Each such polynomial will
be printed out without duplicates in the output file.
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15. Language: Bash Shell.
Input: dig n poly factorised.txt.
Output: dig n nonbasic.txt that contains all unique polynomials that have at
least two nonbasic GM-factors (these nonbasic GM-factors might be identical)
for rooted digraphs of order n.
Command:
sed -e ‘s/(1 + t)[^(]∗//; s/(1 + z)[^(]∗//’ dig n poly factorised.txt

| sort | uniq | grep ")\∗(\|)\^\d\+\|([^+]∗ + [^+]∗)"
> dig n nonbasic.txt

16. Language: Bash Shell.
Input: dig n nonbasic.txt.
Output: dig n nonbasic split.txt that contains all unique nonbasic GM-factors
that are split into separate lines for rooted digraphs of order n.
Command:
sed -e ‘s/\∗(/‘$’\n/g; s/(//; s/).∗//’ dig n nonbasic.txt

| tr -d "\r" | sort | uniq > dig n nonbasic split.txt

17. Language: Bash Shell.
Input: dig n poly factorised.txt.
Output: dig n factors.txt that contains all unique GM-factors for greedoid poly-
nomials of rooted digraphs of order n.
Command:
sed -e ‘s/\∗(/‘$’\n/g; /isomorphic/d; s/(//; s/).∗//’
dig n poly factorised.txt | tr -d "\r" | sort | uniq
> dig n factors.txt

18. Language: Bash Shell.
Input: all factors up to order n-1.txt and dig n factors.txt.
Output: all factors up to order n.txt that contains all unique GM-factors for
greedoid polynomials of rooted digraphs up to order n.
Command:
cat all factors up to order n-1.txt dig n factors.txt | sort | uniq
> all factors up to order n.txt

19. Language: Bash Shell.
Input: dig n nonbasic split.txt and all factors up to order n-1.txt.
Output: dig n primary.txt that contains all primary GM-factors for greedoid
polynomials of rooted digraphs of order n.
Command:
comm -23 dig n nonbasic split.txt all factors up to order n-1

> dig n primary.txt

20. Language: Bash Shell.
Input: dig n primary.txt and dig n poly factorised Numbering.txt.
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Output: dig n primaryPoly.txt that contains all greedoid polynomials that have
primary GM-factors for rooted digraphs of order n.
Command:
fgrep -f dig n primary.txt dig n poly factorised Numbering.txt

> dig n primaryPoly.txt

21. Language: Bash Shell.
Input: dig n primaryPoly.txt.
Output: dig n primaryNumbers edgeList.txt that contains the (edge list) num-
berings for all rooted digraphs of order n that have primary GM-factors in their
greedoid polynomials.
Command:
awk ‘{print "^"$1}’ dig n primaryPoly.txt | sed ‘/s/...$/)/’

> dig n primaryNumbers edgeList.txt

22. Language: Bash Shell.
Input: dig n primaryPoly.txt.
Output: dig n primaryNumbers.txt that contains the numberings for all gree-
doid polynomials that have primary GM-factors for rooted digraphs of order n.
Command:
awk ‘{print "^"$1}’ dig n primaryPoly.txt > dig n primaryNumbers.txt

23. Language: Bash Shell.
Input: dig n primaryNumbers edgeList.txt and dig n edgeList Numbering.txt
Output: dig n primaryGraphs.txt that contains all edge lists for greedoid poly-
nomials that have primary GM-factors for rooted digraphs of order n.
Command:
grep -f dig n primaryNumbers edgeList.txt dig n edgeList Numbering.txt

> dig n primaryGraphs.txt

24. Language: Bash Shell.
Input: dig n primaryNumbers.txt and dig n directSum Numbering.txt
Output: dig n primaryVSdirectSum.txt summarises whether each rooted di-
graph in dig n primaryNumbers.txt a direct sum or not a direct sum.
Command:
grep -f dig n primaryNumbers.txt dig n directSum Numbering.txt

> dig n primaryVSdirectSum.txt

25. Language: Bash Shell.
Input: dig n primaryVSdirectSum.txt
Output: dig n primaryVSdirectSum summary.txt that contains rooted digraphs
that are direct sums in dig n primaryVSdirectSum.txt.
Command:
grep "\tDS" dig n primaryVSdirectSum.txt

> dig n primaryVSdirectSum summary.txt
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Part B

From Part A, we know that each rooted digraph (up to order six) that has k ≥ 1
primary GM-factor in its greedoid polynomial is not a direct sum. We can now
compute the number of greedoid polynomials of these digraphs that are not divisible
by 1 + t or 1 + z, which is also the number of totally k-primary digraphs.

26. Language: Bash Shell.
Input: dig n primaryPoly.txt
Output: dig n totally primaryPoly.txt that contains greedoid polynomials that
have primary GM-factors and are not divisible by 1 + t or 1 + z for rooted
digraphs of order n that are not direct sums.
Command:
grep -v "(1 + t)\|(1 + z)" dig n primaryPoly.txt

> dig n totally primaryPoly.txt

By using a similar method, we compute the number of greedoid polynomials that
contain at least two nonbasic GM-factors and are not divisible by 1 + t or 1 + z, for
rooted digraphs up to order six that are not direct sums.

27. Language: Bash Shell.
Input: dig n nonbasic.txt, dig n poly factorised Numbering.txt and
dig n directSum Numbering.txt
Output: dig n totally nonbasicPoly.txt that contains greedoid polynomials that
contain at least two nonbasic GM-factors and are not divisible by 1 + t or 1 + z
for rooted digraphs of order n that are not direct sums.
Command:
fgrep -f dig n nonbasic.txt dig n poly factorised Numbering.txt |
grep -v "(1 + t)\|(1 + z)" | awk ‘{print "^"$1}’ | grep -f /dev/stdin

dig n directSum Numbering.txt | grep "\tNDS"
> dig n totally nonbasicPoly.txt
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Figure 16: Relationships between files and programs



Algorithm 1 GreedoidPolynomial

Input: dig n.txt
Output: dig n edgeList.txt, dig n poly.txt, dig n isomorphism.txt, dig n info.txt and

dig n directSum.txt
1: digraphFile ← open the input file
2: edgeListTable ← create an empty list
3: for line in digraphFile do
4: order ← first number of line
5: aList ← create a list that excludes the first two numbers in line
6: edgeList ← create a list of lists that has baList/2c empty lists
7: for i in baList/2c do
8: j ← 2i
9: Append aList[j] followed by aList[j + 1] to edgeList[i]

10: Append edgeList to edgeListTable

11: Create output files: dig n edgeList.txt, dig n poly.txt, dig n isomorphism.txt,
dig n info.txt and dig n directSum.txt

12: vertexList ← generate a vertex list numbered from 0 to order − 1
13: a← 0
14: k ← 0
15: for item in edgeListTable do
16: Write item to dig n edgeList.txt
17: exclude ← create an empty list
18: isomorphicTable ← IsomorphismTest(item,vertexList)
19: if isomorphicTable is not empty then
20: for element in isomorphicTable do
21: `← length of element
22: k ← k + `− 1
23: Write item and element to dig n isomorphism.txt
24: for node in element do
25: Append each node except the first to exclude

26: cutVertexList ← CutVertices(item)
27: for node in exclude do
28: if node in cutVertexList then
29: Remove node from cutVertexList
30: c← length of cutVertexList
31: a← a+ c
32: for vertex in vertexList do
33: if vertex in cutVertexList then
34: Write ‘DS’ to dig n directSum.txt
35: else if vertex in exclude then
36: Write ‘ISO’ to dig n directSum.txt
37: else
38: Write ‘NDS’ to dig n directSum.txt
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Algorithm 2 GreedoidPolynomial (Cont.)

39: for vertex in vertexList do
40: if vertex in exclude then
41: Write isomorphic to dig n poly.txt
42: else
43: Write DeletionContraction(vertexList,item,vertex ) to dig n poly.txt

44: Write both a and k to dig n info.txt

Algorithm 3 IsomorphismTest(edgeList,vertexList)

Input: An edge list and a vertex list of a digraph
Output: Return a table where each list in the table contains vertices of the digraph

in which, when vertices in the list are assigned as the root vertex of the digraph,
these rooted digraphs are isomorphic to each other

1: rootList table ← create an empty list
2: isomorphic ← create an empty list
3: checked ← create an empty list
4: for v1 in vertexList do
5: if v1 is not in checked then
6: Append v1 to checked
7: rootList ← create a list that contains v1
8: vertexList new ← create a list that excludes the first element up to v1 in

vertexList
9: for v2 in vertexList new do

10: if Isomorphism(edgeList,v1,v2 ) is True then
11: Append v2 to both rootList and checked

12: if length of rootList > 1 then
13: Append rootList to rootList table
14: temp← 0
15: for element in rootList table do
16: if rootList is a subset of element then
17: temp← temp+ 1

18: if temp = 1 then
19: Append rootList to isomorphic

20: return isomorphic
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Algorithm 4 Isomorphism(edgeList,r1,r2)

Input: An edge list and two vertices of a digraph
Output: Return True if the digraph rooted at r1 is isomorphic to the digraph rooted

at r2, False otherwise
1: Import NetworkX package [10]
2: G1← append a loop incident with r1 in the digraph
3: G2← append a loop incident with r2 in the digraph
4: return nx.is isomorphic(G1,G2)

Algorithm 5 CutVertices(edgeList)

Input: An edge list of a digraph
Output: Return a list of cutvertices of the digraph

1: Import NetworkX package [10]
2: G← create an undirected multigraph using edgeList
3: return nx.articulation points(G)

Algorithm 6 DeletionContraction(vertexList,edgeList,root)

Input: A vertex list, an edge list and a root vertex of a digraph
Output: Return the greedoid polynomial of the digraph

1: if length of edgeList = 0 then
2: return 1
3: else if Outdegree(edgeList,root) = 0 then
4: r ← length of edgeList
5: return (1 + z)r

6: else
7: edgeList del ← create a copy of edgeList
8: edgeList con ← create a copy of edgeList
9: vertexList con ← create a copy of vertexList

10: feasbile ← FeasibleSet SizeOne(edgeList,root)
11: randomEdge ← choose a random edge from feasbile
12: edgeList del ← remove randomEdge from edgeList del
13: contractedGraph ← contract randomEdge in edgeList con
14: edgeList con ← edge list of contractedGraph
15: vertexList con ← vertex list of contractedGraph
16: rank ori ← RankFunction(vertexList,edgeList,root)
17: rank del ← RankFunction(vertexList,edgeList del,root)
18: k ← rank ori − rank del
19: d ← DeletionContraction(vertexList,edgeList del,root)
20: c ← DeletionContraction(vertexList con,edgeList con,root)
21: return d ∗ tk + c
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Algorithm 7 Outdegree(edgeList,root)

Input: An edge list and a root vertex of a digraph
Output: Return the outdegree of the root vertex (loops are excluded)

1: outdegree ← 0
2: for edge in edgeList do
3: if the initial vertex of edge is root and the endvertex of edge is not root then
4: outdegree ← outdegree+ 1

5: return outdegree

Algorithm 8 FeasibleSet SizeOne(edgeList,root)

Input: An edge list and a root vertex of a digraph
Output: Return the feasible set of size one of the digraph

1: feasible ← create an empty list
2: for edge in edgeList do
3: if the initial vertex of edge is root and the endvertex of edge is not root then
4: Append edge to feasible

5: return feasible

Algorithm 9 RankFunction(vertexList,edgeList,root)

Input: A vertex list, an edge list and a root vertex of a digraph
Output: Return the rank of the digraph

1: vertexList new ← create a copy of vertexList
2: edgeList new ← create a copy of edgeList
3: Remove root from vertexList new
4: rootList ← create a list that contains root
5: k ← length of edgeList
6: for root in rootList do
7: for edge in edgeList do
8: if the initial vertex of edge is root and the endvertex of edge is in ver-

texList new then
9: Append the endvertex of edge to rootList

10: Remove the endvertex of edge from vertexList new
11: Remove edge from edgeList new

12: `← length of edgeList new
13: return k − `
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Algorithm 10 DirectSum vs NotDirectSum

Input: dig n directSum Numbering.txt and dig n poly factorised Numbering.txt
Output: dig n poly directSum.txt and dig n poly notDirectSum.txt

1: dsFile ← open dig n directSum Numbering.txt
2: polyFile ← open dig n poly factorised Numbering.txt
3: dsPolyFile ← create an output file dig n poly directSum.txt
4: ndsPolyFile ← create an output file dig n poly notDirectSum.txt
5: k ← 1
6: while k ≤ number of lines in dsFile do
7: if kth line in dsFile contains ‘DS’ then
8: Write the kth line in polyList to dsPolyFile
9: else if kth line in dsFile contains ‘NDS’ then

10: Write the kth line in polyList to ndsPolyFile
11: k ← k + 1

Algorithm 11 Factorability Unique

Input: dig n unique poly.txt and Combined unique poly n.txt
Output: dig n factorability unique.txt

1: polyFile ← open dig n unique poly.txt
2: combinedFile ← open Combined unique poly n.txt
3: factorabilityFile ← create an output file dig n factorability unique.txt
4: k ← 0
5: for oriPoly that has more than one factor in polyFile do
6: for poly1 in combinedFile do
7: for poly2 in combinedFile that excludes the first element up to the element

before poly1 do
8: if poly1 ∗ poly2 = oriPoly then
9: Write oriPoly to factorabilityFile

10: k ← k + 1
11: Break and move to the next element in polyFile

12: Write k to factorabilityFile
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Algorithm 12 DirectSum and GM-equivalent

Input: dig n poly notDirectSum.txt and Combined poly directSum n.txt
Output: dig n poly ndsEquivalent.txt

1: ndsPolyFile ← open dig n poly notDirectSum.txt
2: combinedDsPolyFile ← open Combined poly directSum n.txt
3: equivalentFile ← create an output file dig n poly ndsEquivalent.txt
4: f ← 0
5: for ndsPoly in ndsPolyFile do
6: for dsPoly in combinedDsPolyFile do
7: if second column of ndsPoly = second column of dsPoly then
8: Write the second column of ndsPoly to equivalentFile
9: f ← f + 1

10: Break and move to the next element in ndsPolyFile

11: Write f to equivalentFile
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