Generalized Beatty sequences and complementary triples

J.-P. Allouche
CNRS, IMJ-PRG, Sorbonne Université
4 Place Jussieu
F-75252 Paris Cedex 05 France
jean-paul.allouche@imj-prg.fr

F. M. Dekking
Delft University of Technology
Faculty EEMCS, P.O. Box 5031
2600 GA Delft, The Netherlands
F.M.Dekking@math.tudelft.nl

September 11, 2018

Abstract

A generalized Beatty sequence is a sequence V defined by $V(n)=p\lfloor n \alpha\rfloor+q n+r$, for $n=1,2, \ldots$, where α, p, q, r are real numbers. These occur in several problems, as for instance in homomorphic embeddings of Sturmian languages in the integers. Our results are for the case that α is the golden mean, but some would generalise to arbitrary quadratic irrationals. We mainly consider the following question: For which sixtuples of integers p, q, r, s, t, u are the two sequences $V=(p\lfloor n \alpha\rfloor+q n+r)$ and $W=(s\lfloor n \alpha\rfloor+t n+u)$ complementary sequences?

We also study complementary triples, i.e., three sequences $V_{i}=\left(p_{i}\lfloor n \alpha\rfloor+q_{i} n+r_{i}\right), i=1,2,3$, with the property that the sets they determine are disjoint with union the positive integers.

1 Introduction

A Beatty sequence is the sequence $A=(A(n))_{n \geq 1}$, with $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$, where α is a positive real number. What Beatty observed is that when $B=(B(n))_{n \geq 1}$ is the sequence defined by $B(n)=\lfloor n \beta\rfloor$, with α and β satisfying

$$
\begin{equation*}
\frac{1}{\alpha}+\frac{1}{\beta}=1 \tag{1}
\end{equation*}
$$

then A and B are complementary sequences, that is, the sets $\{A(n): n \geq 1\}$ and $\{B(n): n \geq 1\}$ are disjoint and their union is the set of positive integers. In particular if $\alpha=\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio, this gives that the sequences $(\lfloor n \varphi\rfloor)_{n \geq 1}$ and $\left(\left\lfloor n \varphi^{2}\right\rfloor\right)_{n \geq 1}$ are complementary.

Among the numerous results on Beatty sequences, a paper of Carlitz, Scoville and Hoggatt 3, Theorem 13, p. 20] studies the monoid generated by $A=(A(n))_{n \geq 1}$ and $B=(B(n))_{n \geq 1}$ for the composition of sequences in the case where α is equal to $\varphi=\frac{1+\sqrt{5}}{2}$, the golden ratio.

Theorem 1 (Carlitz-Scoville-Hoggatt) Let $U=(U(n))_{n \geq 1}$ be a composition of the sequences $A=$ $(\lfloor n \varphi\rfloor)_{n \geq 1}$ and $B=\left(\left\lfloor n \varphi^{2}\right\rfloor\right)_{n \geq 1}$, containing i occurrences of A and j occurrences of B, then for all $n \geq 1$

$$
U(n)=F_{i+2 j} A(n)+F_{i+2 j-1} n-\lambda_{U},
$$

where F_{k} are the Fibonacci numbers ($F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$) and λ_{U} is a constant.
The sequences U are examples of what we call generalized Beatty sequences, and as an extension of Beatty's observation the following natural questions can be asked.

Question 1 Let α be an irrational number, and let A defined by $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$ be the Beatty sequence of α. Let Id defined by $\operatorname{Id}(n)=n$ be the identity map on the integers. For which sixtuples of integers p, q, r, s, t, u are the two sequences

$$
V=p A+q \operatorname{Id}+r \text { and } W=s A+t \mathrm{Id}+u
$$

complementary sequences?
Question 2 For which nonuples of integers ($p_{1}, q_{1}, r_{1}, p_{2}, q_{2}, r_{2}, p_{3}, q_{3}, r_{3}$) the three sequences

$$
V_{i}=p_{i} A+q_{i} \operatorname{Id}+r_{i}, i=1,2,3
$$

are a complementary triple, i.e., the sets they determine are disjoint with union the positive integer $\sqrt{1}$.
Remark 2 The theorem of Carlitz, Scoville and Hoggatt above was rediscovered by Kimberling 15, Theorem 5, p. 3]: it is thus attributed to Kimberling in, e.g., [11, p. 575], [12, p. 647], [17, p. 20-21]. This was corrected in [2, Theorem 2, p. 2].

Remark 3 One can ask whether the monoid generated by other complementary sequences by composition can be written as a subset of the set of linear combinations of a finite number of elements. Some answers for Beatty sequences can be found in the rich paper of Fraenkel [10 (see, e.g., p. 645). Another, possibly unexpected, example is given by the Thue-Morse sequence. Namely call odious (resp. evil) the integers whose binary expansion contains an odd (resp. even) number of 1's, then it was proved in [1, Corollaries 1 and 3] that the sequences $(A(n))_{n \geq 0}$ and $(B(n))_{n \geq 0}$ of odious and evil numbers satisfy for all n

$$
\begin{array}{lll}
A(n)=2 n+1-t(n), & B(n)=2 n+t(n), & A(n)-B(n)=1-2 t(n) \\
A(A(n))=2 A(n), & B(B(n))=2 B(n), & A(B(n))=2 B(n)+1,
\end{array} \quad B(A(n))=2 A(n)+1 .
$$

where $(t(n))_{n \geq 0}$ is the Thue-Morse sequence, i.e., the characteristic function of odious integers. (This sequence can be defined by $t(0)=0$ and for all $n \geq 0, t(2 n)=t(n)$ and $t(2 n+1)=1-t(n)$.) This easily implies that any finite composition of $(A(n))_{n \geq 0}$ and $(B(n))_{n \geq 0}$ can be written as $(\alpha A(n)+\beta B(n)+\gamma)_{n \geq 0}$, since $t(A(n))=1$ and $t(B(n))=0$ for all n.

2 Complementary pairs

Let α be an irrational number, and let A defined by $A(n)=\lfloor n \alpha\rfloor$ for $n \geq 1$ be the Beatty sequence of α. Let Id defined by $\operatorname{Id}(n)=n$ be the identity map on \mathbb{N}. Here we consider the question:
Complementary pair problem: for which sixtuples of integers (p, q, r, s, t, u) the two sequences $V=$ $(V(n))_{n \geq 1}$ and $W=(W(n))_{n \geq 1}$ defined by

$$
\begin{equation*}
V=p A+q \operatorname{Id}+r \text { and } W=s A+t \mathrm{Id}+u \tag{2}
\end{equation*}
$$

are a complementary pair-meaning that as subsets of \mathbb{N}, V and W are disjoint and their union is \mathbb{N} ?
In the sequel we will require that as a function $A: \mathbb{N} \rightarrow \mathbb{N}$ is injective, since we then have a 1 -to-1 correspondence between sequences and subsets of \mathbb{N}. (See 14 for non-injective Beatty sequences.)

In the case that V and W are increasing, we will also require, without loss of generality, that $V(1)=1$.
The homogeneous Sturmian sequence generated by a real number α is the sequence $(\lfloor(n+1) \alpha\rfloor-\lfloor n \alpha\rfloor)_{n \geq 1}$. It is well known that the homogeneous Sturmian sequence generated by the golden mean φ is

$$
x_{\mathrm{F}}=21221212212212122121 \ldots,
$$

obtained by replacing 0 by 2 in the unique fixed point of the Fibonacci morphism $0 \rightarrow 01,1 \rightarrow 0$. The following lemma is thus implied trivially by

$$
V=p A+q \operatorname{Id}+r \Rightarrow V(n+1)-V(n)=p(A(n+1)-A(n))+q .
$$

Lemma 4 Let $V=(V(n))_{n \geq 1}$ be the generalized Beatty sequence defined by $V(n)=p(\lfloor n \varphi\rfloor)+q n+r$, and let ΔV be the sequence of its first differences. Then ΔV is the Fibonacci sequence on the alphabet $\{2 p+q, p+q\}$.

[^0]Another observation is that the $q \mathrm{Id}+r$ part in the generalized Beatty sequence generates arithmetic sequences. The following lemma, which will be useful in proving Theorem 7, shows that in some weak sense the Wythoff part $p A$ of a generalized Beatty sequence is orthogonal to this arithmetic sequence part.

Lemma 5 Let $V=(V(n))_{n \geq 1}$ be the generalized Beatty sequence defined by $V(n)=p(\lfloor n \varphi\rfloor)+q n+r$ with $p \neq 0$, then neither $(V(1), V(2), V(3))$, no $n^{2}(V(2), V(3), V(4))$ can be an arithmetic sequence of length 3 .

Proof: We have by Lemma 1

$$
(V(2)-V(1))(V(3)-V(2)) \quad(V(4)-V(3)) \ldots=\Delta V=(2 p+q) \quad(p+q) \quad(2 p+q) \ldots
$$

Since $p \neq 0$ we thus have $V(2)-V(1) \neq V(3)-V(2)$ and $V(3)-V(2) \neq V(4)-V(3)$.
Remark 6 We note for further use that the proof of Lemma 5 yields

$$
\left\{\begin{aligned}
p & =-V(1)+2 V(2)-V(3) \\
q & =V(1)-3 V(2)+2 V(3) \\
r & =V(1)+V(2)-V(3)
\end{aligned}\right.
$$

Let $\alpha=\varphi$, the golden mean. Then the classical solution is $(p, q, r)=(1,0,0)$ and $(s, t, u)=(1,1,0)$, which corresponds to the Beatty pair $([n \varphi]),\left(\left[n \varphi^{2}\right]\right)$. Another solution is given by

$$
(p, q, r)=(-1,3,-1), \quad(s, t, u)=(1,2,0),
$$

which corresponds to the Beatty pair $([n(5-\sqrt{5}) / 2]),([n(5+\sqrt{5}) / 2])$, which is equal to

$$
([n(3-\varphi)]),([n(\varphi+2)])
$$

Theorem 7 Let $\alpha=\varphi$. Then there are no more than two increasing solutions to the complementary pair problem: $(p, q, r, s, t, u)=(1,0,0,1,1,0)$ and $(p, q, r, s, t, u)=(-1,3,-1,1,2,0)$.

Proof: Recall that $V(1)=1$. We first note that $V(2)<5$, since otherwise $(W(1), W(2), W(3))=(2,3,4)$, which is not allowed by Lemma 5. There are therefore three cases to consider, according to the value of $V(2)$.

- I. $V(1)=1, V(2)=2$. Then by Lemma $5 V(3)=3$ is not possible.
- If $V(3)=4$, then, by Remark 6] $p=-1, q=3, r=-1$, which is one of the two solutions.
- If $V(3)=5$, then, by Remark 6. $p=-2, q=5, r=-2$, which implies that $V(4)=6, V(5)=7$, $V(6)=10$. So $W(1)=3, W(2)=4, W(3)=8$, which gives $s=-3, t=7, u=-1$ (Remark 6 applied to W), implying $W(5)=10$, which contradicts complementarity.
- If $V(3)=m$ with $m>5$, then $W(1)=3, W(2)=4, W(3)=5$, which contradicts Lemma 5 .
- II. $V(1)=1, V(2)=3$.
- If $V(3)=4$, then, by Remark 6] $p=1, q=0, r=0$, which is one of the two solutions.
- If $V(3)=5$, then we obtain a contradiction with Lemma 5 ,
- If $V(3)=6$, then, by Remark 6] $p=-1, q=4, r=-2$, which implies $V(5)=10$. But we must then have $W(1)=2, W(2)=4, W(3)=5$, so (Remark 6 applied to W), $s=1, t=0, u=1$, which implies $W(6)=10$, a contradiction with complementarity.
- If $V(3)=m$ with $m>6$, then we obtain a contradiction with Lemma 5 since then $W(2)=4$, $W(3)=5, W(4)=6$.
- III. $V(1)=1, V(2)=4$.

[^1]- If $V(3)=5$, then, by Remark 6] $p=2, q=-1, r=0$, thus $V(4)=8$; hence $W(1)=2, W(2)=3$, $W(3)=6$. Hence, by Remark 6 applied to $W, s=-2, t=5, u=-1$, so that $W(5)=8=V(4)$, which contradicts complementarity.
- If $V(3)=6$, then $W(1)=2, W(2)=3, W(3)=5$. Thus, by Remark 6 applied to $W, s=-1$, $t=3, u=0$. Hence $W(4)=6=V(3)$, which contradicts complementarity.
- If $V(3)=7$, then we obtain a contradiction with Lemma 5 .
- If $V(3)=m$ with $m>7$, then it follows that $V(3)=8$, since we have $W(1)=2, W(2)=3, W(3)=$ 5 , yielding, by Remark 6 applied to $W, W(n)=(-A(n)+3 n)=2,3,5,6,7,9,10,12,13,14, \ldots$ With $V(3)=8$, one obtains (by Remark (6) that $V(n)=-A(n)+5 n-3$, but then $V(5)=14=$ $W(10)$, i.e., V and W are not complementary.

2.1 Generalized Pell equations

If V and W are not increasing, then an analysis as in the proof of Theorem 7 is still possible, but very lengthy. We therefore consider another approach in this subsection. Considering the densities of V and W in \mathbb{N}, one sees that a necessary condition for $(p A+q \mathrm{Id}+r, s A+t \mathrm{Id}+u)$ to be a complementary pair is that

$$
\begin{equation*}
\frac{1}{p \alpha+q}+\frac{1}{s \alpha+t}=1 \tag{3}
\end{equation*}
$$

In the sequel we concentrate on the case $\alpha=: \varphi=(1+\sqrt{5}) / 2$, but our arguments would easily generalise to the case of arbitrary quadratic irrationals.

Proposition $8 A$ necessary condition for the pair $v=p A+q \operatorname{Id}+r$ and $w=s A+t \mathrm{Id}+u$ to be a complementary pair is that $p \neq 0$ is a solution to the generalized Pell equation

$$
5 p^{2} x^{2}-4 x=y^{2}, \quad x, y \in \mathbb{Z}
$$

Proof: Using $\varphi^{2}=1+\varphi$, a straightforward manipulation shows that (3) implies

$$
(p s+p t+q s-p-s) \varphi=q+t-p s-q t
$$

But since φ is irrational, this can only hold if

$$
\begin{equation*}
p s+p t+q s-p-s=0, \quad q+t-p s-q t=0 \tag{4}
\end{equation*}
$$

The first equation gives $p t=p-(p+q-1) s$. Eliminating $p t$ from $p^{2} s+(q-1) p t-p q=0$, we obtain $p^{2} s+(p-(p+q-1) s)(q-1)-p q=0$. This gives the quadratic equation

$$
s q^{2}+(p-2) s q-\left(p^{2}+p-1\right) s+p=0
$$

Since q is an integer, $\Delta:=(p-2)^{2} s^{2}+4 s\left(\left(p^{2}+p-1\right) s-p\right)$ has to be an integer squared. Trivial manipulations yield that

$$
\begin{equation*}
\Delta=5 p^{2} s^{2}-4 p s \tag{5}
\end{equation*}
$$

Since p divides the square $\Delta, 5 p^{2} s^{2}-4 p s=p^{2} y^{2}$ for some integer y, and hence p also divides s. If we put $s=p x$, we obtain $5 p^{3} x^{2}-4 p^{2} x=p^{2} y^{2}$, which finishes the proof of the proposition.

Actually there is a simple characterization of the integers p such that the Diophantine equation above has a solution.

Proposition 9 The generalized Pell equation

$$
5 p^{2} x^{2}-4 x=y^{2}, \quad x, y \in \mathbb{Z}
$$

has a solution for $p>0$ if and only if p divides some Fibonacci number of odd index, i.e., if and only p divides some number in the set $\{1,2,5,13,34, \ldots\}$.

Proof: First suppose that there are integers $p>0$ and $x, y \in \mathbb{Z}$ such that $5 p^{2} x^{2}-4 x=y^{2}$. Let $d:=\operatorname{gcd}(x, y)$ and $x^{\prime}=x / d, y^{\prime}=y / d$, so that $\operatorname{gcd}\left(x^{\prime}, y^{\prime}\right)=1$. We thus have

$$
5 p^{2} d x^{\prime 2}-4 x^{\prime}=d y^{\prime 2}
$$

Thus x^{\prime} divides $d y^{\prime 2}$, but it is prime to y^{\prime}, hence x^{\prime} divides d. Since clearly d divides $4 x^{\prime}$, we have $d=\alpha x^{\prime}$ for some α dividing 4, hence α belongs to $\{1,2,4\}$. This yields $\alpha\left(5 p^{2} x^{\prime 2}-y^{\prime 2}\right)=4$. We distinguish three cases.

- If $\alpha=1$, then we have $5 p^{2} x^{\prime 2}-y^{\prime 2}=4$. But the equation $5 X^{2}-4=Y^{2}$ has an integer solution if and only if X is a Fibonacci number with odd index [18, p. 91]. Hence $p x^{\prime}$ must be a Fibonacci number with odd index, thus p divides a Fibonacci number with odd index.
- If $\alpha=2$, then we have $5 p^{2} x^{\prime 2}-y^{\prime 2}=2$. Note that x^{\prime} must be odd, otherwise x^{\prime} and y^{\prime} would be even, which contradicts $\operatorname{gcd}\left(x^{\prime}, y^{\prime}\right)=1$. Thus $5 p^{2} x^{\prime 2} \equiv p^{2} \bmod 4$, hence $p^{2}-2 \equiv y^{\prime 2} \bmod 4$. If p is even, this yields $y^{\prime 2} \equiv 2 \bmod 4$, while if p is odd, this gives $y^{\prime 2} \equiv 3 \bmod 4$. There is no such y^{\prime} in both cases.
- If $\alpha=4$, then we have $5 p^{2} x^{\prime 2}-y^{\prime 2}=1$, thus $5\left(2 p x^{\prime}\right)^{2}-\left(2 y^{\prime}\right)^{2}=4$, then $2 p x^{\prime}$ must be a Fibonacci number with odd index, thus p divides a Fibonacci number with odd index.

Now suppose that p divides some Fibonacci number with odd index, say there exists a k with $F_{2 k+1}=p \beta$. We will construct an integer solutions in (x, y) to the equation $5 p^{2} x^{2}-4 x=y^{2}$. We know (again [18, p. 91]) that there exists some integer γ with $5 F_{2 k+1}^{2}-4=\gamma^{2}$ thus $5 p^{2} \beta^{2}-4=\gamma^{2}$. Let $x=\beta^{2}$ and $y=\beta \gamma$. Then

$$
5 p^{2} x^{2}-4 x=5 p^{2} \beta^{4}-4 \beta^{2}=\beta^{2}\left(5 p^{2} \beta^{2}-4\right)=\beta^{2} \gamma^{2}=y^{2}
$$

Corollary 10 There are no solutions to the complementary pair problem if -1 is not a square modulo p, i.e., if p does not belong to the sequence $1,2,5,10,13,17,25,26,29,34,37,41, \ldots$ (sequence $A 008784$ in [20]]). This is in particular the case if p has a prime divisor congruent to 3 modulo 4.

Proof: We will prove that if there are solutions to the complementary problem for p, thus if p divides an odd-indexed Fibonacci number (Propositions 8 and 9), then -1 is a square modulo p. Using again the characterization in [18, p. 91], there exist two integers x, y with $5 p^{2} x^{2}-4=y^{2}$. We distinguish two cases.

- If p is odd, we have $y^{2} \equiv-4 \bmod p$ and $2^{2} \equiv 4 \bmod p$. But 2 is invertible modulo p, hence, by taking the quotient of the two relations, we obtain that -1 is a square modulo p.
- If p is even, remembering that $p x=F_{2 k+1}$ for some k, we claim that p must be congruent to 2 modulo 4 and that x must be odd. Namely the sequence of odd-indexed Fibonacci numbers, reduced modulo 4 , is easily seen to be the periodic sequence $\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)^{\infty}$. Hence it never takes the value 0 modulo 4 . The equality $5 p^{2} x^{2}-4=y^{2}$ implies that y must be even, thus we have $5(p / 2)^{2} x^{2}-1=(y / 2)^{2}$, say $(y / 2)^{2}=-1+z(p / 2)$. Up to replacing $(y / 2)$ with $(y+p) / 2$, we may suppose that $(y / 2)$ is even (recall that $p / 2$ is odd). Thus $z(p / 2)$ is even, hence z is even, say $z=2 z^{\prime}$. This gives $(y / 2)^{2}=-1+z^{\prime} p$, thus -1 is a square modulo p.

Remark 11 We have just seen that if the integer p divides some odd-indexed Fibonacci number then -1 is a square modulo p (sequence A008784 in [20]). A natural question is then whether it is true that if -1 is a square modulo p, then p must divide some odd-indexed Fibonacci number. The answer is negative, since on one hand $12^{2} \equiv-1 \bmod 29$, and, on the other hand, the sequence of odd-indexed Fibonacci numbers modulo 29 is the periodic sequence $(1,2,5,13,5,2,1)^{\infty}$ which is never zero.

Let us look at examples of solutions to the Diophantine equation for values of p that divide some Fibonacci number with odd index. Consider, for example, the case where $p=s$. Then Equation (15) becomes $\Delta=$ $5 p^{4}-4 p^{2}$, so the Diophantine equation is

$$
5 x^{2}-4=y^{2}, \quad x, y \in \mathbb{Z}
$$

For $p=F_{1}=1$ we obtain the two sequences $V=A+r$ and $W=A+\mathrm{Id}+u$. These are complementary only when $r=u=0$, and we obtain the classical Beatty pair ($A, A+\mathrm{Id}$).

For $p=F_{3}=2$ we obtain the two sequences $V=2 A+2 \mathrm{Id}+r$ and $W=2 A-2 \mathrm{Id}+u$. These cannot be complementary for any r and u, since for $u=0$ we have $W(n)=2(\lfloor n \varphi\rfloor)-2 n=2(\lfloor n(\varphi-1)\rfloor$, which gives all even numbers, since $\varphi-1<1$. This an example where Equation (3) does not apply, since W as a function is not injective.

For $p=F_{5}=5$ we obtain the two sequences $V=5 A+4 \mathrm{Id}+r$ and $W=5 A-7 \mathrm{Id}+u$. To make these complementary we are forced to choose $r=u=3$, and we obtain
$V=(12,26,35,49,63,72,86,95,109,123,132,146,160,169,183,192,206,220,229,243,252,266, \ldots)$,
$W=(1,4,2,5,8,6,9,7,10,13,11,14,17,15,18,16,19,22,20,23,21,24,27,25,28,31,29,32,30, \ldots)$.
Now a proof that V and W form a complementary pair is much harder, when we let V start with $V(0)=3$, to include 3 in the union. We can perform the following trick. We split W into $(W(A(n)))_{n \geq 1}$, and $(W(B(n)))_{n \geq 1}$ (cf. Proposition 12). The two sequences $W A$ and $W B$ are increasing, and we can prove that $(V(n))_{n \geq 0},(W(A(n)))_{n \geq 1}$, and $(W(B(n)))_{n \geq 1}$ form a partition of the positive integers by exhibiting a three-letter sequence such that the preimages of the letters are precisely these three sequences.

For $p=F_{2 m+1} \geq 13$ it seems that we can always choose r and u for in such a way that we get almost complementary sequences: namely, e.g., for $p=13$ we find $q=9$ and $t=-20$. If we take $r=$ $u=9$, then we almost get a complementary pair. One finds $V=9,31,66,88,123,158,180,215, \ldots$ and $W=2,8,1,7,13,6,12,5,11,17,10 \ldots$ So 3 and 4 are missing. It might be that for all $F_{2 m+1}>5$ the two sequences are complementary, excluding finitely many values. Possibly this can be proved using the Lambek-Moser Theorem ([16).

3 Complementary triples

Here we will find several complementary triples consisting of sequences

$$
V_{i}=p_{i} A+q_{i} \mathrm{Id}+r_{i}, \quad i=1,2,3
$$

It is interesting that the case $p_{1}=p_{2}=p_{3}=1$ cannot be realized. This was proved by Uspensky in 1927, see [9]. Also see [23] for the inhomogeneous Beatty case $\left(V_{i}(n)\right)_{n}=\left(\left[n \alpha_{i}+\beta_{i}\right]\right)_{n}, i=1,2,3$.
There is one triple in which we will be particularly interested (see Theorem 19):

$$
\left(\left(p_{1}, q_{1}, r_{1}\right),\left(p_{2}, q_{2}, r_{2}\right),\left(p_{3}, q_{3}, r_{3}\right)\right)=((2,-1,0),(4,3,2),(2,-1,2))
$$

We will allow that the sequences $\left(V_{i}\right)$ are each indexed either by $\{0,1,2, \ldots\}$ or by $\{1,2, \ldots\}$.

3.1 Two classical triples

Once more let $A(n)=\lfloor n \varphi\rfloor$ for $n \geq 1$ be the terms of the lower Wythoff sequence, and let B given by $B(n)=\left\lfloor n \varphi^{2}\right\rfloor$ for $n \geq 1$ be the upper Wythoff sequence. Then we have the disjoint union

$$
\begin{equation*}
A(\mathbb{N}) \cup B(\mathbb{N})=\mathbb{N} \tag{6}
\end{equation*}
$$

Since $B=A+\mathrm{Id}$, this is the classical complementary pair $((1,0,0),(1,1,0))$.
Here is a way to create complementary triples from complementary pairs.
Proposition 12 Let (V, W) be a complementary pair $V=p A+q \mathrm{Id}+r$ and $W=s A+t \mathrm{Id}+u$. Then $\left(V_{1}, V_{2}, V_{3}\right)$ is a complementary triple, where the three parameters of V_{1} are $(p+q, p, r-p)$, those of V_{2} are $(2 p+q, p+q, r)$, and $V_{3}=W$.

Proof: From Theorem 1 we obtain that for $n=1,2, \ldots$

$$
\begin{equation*}
A A(n)=A(n)+n-1, A B(n)=2 A(n)+n \tag{7}
\end{equation*}
$$

Substituting Equation (6) in $V(\mathbb{N}) \cup W(\mathbb{N})=\mathbb{N}$ we obtain the disjoint union

$$
\begin{equation*}
V(A(\mathbb{N})) \cup V(B(\mathbb{N})) \cup W(\mathbb{N})=\mathbb{N} \tag{8}
\end{equation*}
$$

For $n=1,2, \ldots$ we have by Equation (7)

$$
\begin{aligned}
V(A(n)) & =p A(A(n))+q A(n)+r=p[A(n)+n-1]+q A(n)+r=(p+q) A(n)+p n+r-p \\
V(B(n)) & =p A(B(n))+q B(n)+r=p[2 A(n)+n]+q[A(n)+n]+r=(2 p+q) A(n)+(p+q) n+r .
\end{aligned}
$$

This, combined with Equation (8) implies the statement of the proposition.
Applying Proposition 12 to the basic complementary pair $((1,0,0),(1,1,0))$ gives that $((1,1,-1),(2,1,0),(1,1,0))$ and $((1,0,0),(2,1,-1),(3,2,0))$ are complementary triples $\sqrt[3]{ }$, which we will call classical triples.

Let $w=1231212312312 \ldots$ be the fixed point of the morphism

$$
1 \rightarrow 12,2 \rightarrow 3,3 \rightarrow 12
$$

Then $w^{-1}(1)=A A, w^{-1}(2)=B$ and $w^{-1}(3)=A B$ give the three sequences V_{1}, V_{3} and V_{2} of the first classical triple (see [6]).

The question arises: is there also a morphism generating the second triple? The answer is positive.
Proposition 13 Let $\left(V_{1}, V_{2}, V_{3}\right)=(A, 2 A+\mathrm{Id}-1,3 A+2 \mathrm{Id})=(A, B A, B B)$. Then $\left(V_{1}, V_{2}, V_{3}\right)$ is a complementary triple. Let μ be the morphism on $\{1,2,3\}$ given by

$$
1 \rightarrow 121,2 \rightarrow 13,3 \rightarrow 13
$$

with fixed point z. Then $z^{-1}(1)=V_{1}, z^{-1}(2)=V_{2}$ and $z^{-1}(3)=V_{3}$.
Proof: The four words of length 4 occurring in the infinite Fibonacci word x_{F} are $010,100,001,101$. Coding these with the alphabet $\{1,2,3,4\}$ in the given order, they generate the 3 -block morphism \hat{f}_{3} that describes the successive occurrences of the words of length 3 in x_{F} (cf. [6]). It is given by

$$
\hat{f}_{3}(1)=12, \quad \hat{f}_{3}(2)=3, \quad \hat{f}_{3}(3)=14, \quad \hat{f}_{3}(4)=3
$$

It has just one fixed point, which is

$$
z^{\prime}:=1,2,3,1,4,1,2,3,1,2,3,1,4,1,2,3, \ldots
$$

It is not difficult to see, applying Equation (6) at various levels, that

$$
z^{\prime-1}(1)=A A, z^{\prime-1}(2)=B A, \quad z^{\prime-1}(3)=A B, \quad z^{\prime-1}(4)=B B
$$

Again by Equation (6), we see that we have to merge the letters 1 and 3 to obtain the sequence A. This is not possible with \hat{f}_{3}. However the square of this 3 -block substitution is given by

$$
1 \rightarrow 123,2 \rightarrow 14,3 \rightarrow 123,4 \rightarrow 14
$$

and now we can consistently merge 1 and 3 to the single letter 1 , obtaining the substitution μ, after mapping 4 to 3 . Under this projection the sequence z^{\prime} maps to z.

[^2]
3.2 Non-classical triples

Let \mathcal{L} be a language, i.e., a sub-semigroup of the free semigroup generated by a finite alphabet under the concatenation operation. A homomorphism of \mathcal{L} into the natural numbers is a map $S: \mathcal{L} \rightarrow \mathbb{N}$ satisfying $\mathrm{S}(v w)=\mathrm{S}(v)+\mathrm{S}(w)$, for all $v, w \in \mathcal{L}$.

Let $\mathrm{S}\left(\mathcal{L}_{\mathrm{F}}\right)$ be the Fibonacci language, i.e., the set of all words occurring in x_{F}. The following result is proved in 7.

Theorem 14 ([7]) Let $\mathrm{S}: \mathcal{L}_{\mathrm{F}} \rightarrow \mathbb{N}$ be a homomorphism. Define $a=\mathrm{S}(0), b=\mathrm{S}(1)$. Then $\mathrm{S}\left(\mathcal{L}_{\mathrm{F}}\right)$ is the union of the two generalized Beatty sequences $((a-b)\lfloor n \varphi\rfloor+(2 b-a) n)$ and $((a-b)\lfloor n \varphi\rfloor+(2 b-a) n+a-b)$.

For a few choices of a and b, the two sequences in $S\left(\mathcal{L}_{F}\right)$ and the sequence $\mathbb{N} \backslash \mathrm{S}(\mathcal{L})$ form a complementary triple of generalized Beatty sequences. The goal of this section is to prove this for $a=3, b=1$. It turns out that the three sequences

$$
(2\lfloor n \varphi\rfloor-n)_{n \geq 1},(2\lfloor n \varphi\rfloor-n+2)_{n \geq 1}, \quad(4\lfloor n \varphi\rfloor+3 n+2)_{n \geq 0},
$$

form a complementary triple.
Remark 15 Note that the indices for $(4\lfloor n \varphi\rfloor)+3 n+2)_{n \geq 0}$ are $(n \geq 0)$, not $(n \geq 1)$

Recall that the binary Fibonacci sequence is defined as the iterative fixed point of the morphism f defined on $\{0,1\}^{*}$ by $f(0)=01, f(1)=0$. We let $x_{F}=\left(x_{F}(n)\right)_{n \geq 1}$ denote this sequence. It is easy to see that x_{F} can be obtained as an infinite concatenation of two kinds of blocks, namely 01 and 001 (part (i) of Lemma 16 below). Kimberling introduced in the OEIS [20] the sequence A284749 obtained by replacing in this concatenation every block 001 by 2 . We let $x_{\mathrm{K}}=A 284749$ denote this sequence.

Lemma 16 Let g, h, k be the morphisms defined on $\{0,1\}^{*}$ by

$$
g(0)=01, g(1)=011 ; \quad h(0)=01, \quad h(1)=001 ; \quad k(0)=01, k(1)=2
$$

Let furthermore i be the morphism defined on $\{0,1,2\}^{*}$ by

$$
i(0)=01, \quad i(1)=2, \quad i(2)=0122
$$

Then (i) $x_{\mathrm{F}}=f^{\infty}(0)=h g^{\infty}(0)$, (ii) $x_{\mathrm{K}}=k\left(g^{\infty}(0)\right)$, (iii) $x_{\mathrm{K}}=i^{\infty}(0)$.
Proof:
(i) An easy induction proves that for all $n \geq 0$ one has $h g^{k}=f^{2 k} h$. (Note that it suffices to prove that the values of both sides are equal when applied to 0 and to 1.) By letting n tend to infinity this implies $h g^{\infty}(0)=f^{\infty}(0)$.
(ii) Assertion (i) clearly implies that x_{F} is an infinite concatenation of blocks $h(0)$ and $h(1)$, thus of blocks 01 and 001 , thus that $k g^{\infty}(0)=x_{\mathrm{K}}$.
(iii) An easy induction shows that $k g^{n}=i^{n+1}$. Hence the result by letting n tend to infinity.

Lemma 17 Define the morphism ℓ from $\{0,1\}^{*}$ to $\{0,1,2\}^{*}$ by $\ell(0)=012, \ell(1)=0022$. Then the sequence $v=\left(v_{n}\right)_{n \geq 1}=\ell g^{\infty}(0)$ is obtained from $x_{\mathrm{K}}=i^{\infty}(0)$ by replacing 1 by 0 in all blocks 0122 (but not in 0120). The positions of 2 in v are obtained by adding 2 to the positions of 0.
Proof: The relation $x_{\mathrm{K}}=i^{\infty}(0)=k\left(g^{\infty}(0)\right)$ shows that x_{K} is the concatenation of two types of blocks, the blocks 012 and the blocks 0122. The two assertions follow.

Lemma 18 Let w be the sequence obtained from v by replacing all 2 's by 1 's. Let m be the morphism defined on $\{0,1\}^{*}$ by $m(0)=011, m(1)=0011$. Then $w=m\left(g^{\infty}(0)\right)$.

Proof: Letting q the morphism defined by $q(0)=0, q(1)=1, q(2)=1$, one has $w=q(v)=q\left(\ell\left(g^{\infty}(0)\right)\right)=$ $m\left(g^{\infty}(0)\right)$ since, clearly, $q \ell=m$.

Theorem 19 Let v be the sequence defined above, i.e., $v=\ell\left(g^{\infty}(0)\right)$, where $g(0)=01, g(1)=011$ and $\ell(0)=012, \ell(1)=0022$. Then the increasing sequences of integers defined by $v^{-1}(0), v^{-1}(1), v^{-1}(2)$ form a partition of the set of positive integers \mathbb{N}^{*}. Furthermore

- $v^{-1}(0)=\{1,4,5,8,11,12,15,16,19,22, \ldots\}$ is equal to the sequence of integers $(2\lfloor n \varphi\rfloor-n)_{n \geq 1}$, where φ is the golden ratio $\frac{1+\sqrt{5}}{2}$ (sequence A050140 in [20]),
- $v^{-1}(1)=\{2,9,20,27, \ldots\}$ is equal to the sequence of integers $(4\lfloor n \varphi\rfloor+3 n+2)_{n \geq 0}$.
- $v^{-1}(2)=\{3,6,7,10,13,14,17,18,21,24, \ldots\}$ is equal to the sequence of integers $\left((2\lfloor n \varphi\rfloor-n+2)_{n \geq 1}\right)$ (i.e., 2+A050140).

Proof: Since $v^{-1}(0)=w^{-1}(0)$, by the definition of w, in order to prove the assertion on $v^{-1}(0)$ it suffices to prove that $w^{-1}(0)$ is the sequence $(2\lfloor n \varphi\rfloor-n)_{n \geq 1}$. According to Lemma 4 the first difference of the latter is the Fibonacci binary sequence on the alphabet $\{3,1\}$. It thus suffices to prove that the first difference of $w^{-1}(0)$ is equal to Δ. Recall that $w=m g^{\infty}(0)$ from Lemma 18 Define the words $a_{k}=m g^{k}(0)$ and $b_{k}=m g^{k}(1)$. Then $a_{k+1}=m g^{k}(g(0))=m g^{k}(01)=a_{k} b_{k}$ and $b_{k+1}=m g^{k}(g(1))=m g^{k}(011)=a_{k} b_{k} b_{k}$. Note that x_{k} is a prefix of x_{k+1} and of y_{k+1}, and that x_{k} and y_{k} both converge to w. Since the runlengths of 0's and 1's in a_{k} and b_{k} are equal to 1 or 2 , we can write each a_{k} under the form $01^{x_{0}} 01^{x_{1}} 01^{x_{2}} \ldots$ with $x_{i} \in\{0,2\}$ where no two consecutive x_{i} 's can be equal to 0 , and each b_{k} under the form $01^{y_{0}} 01^{y_{1}} 01^{y_{2}} \ldots$ with $y_{i} \in\{0,2\}$ where no two consecutive y_{j} 's can be equal to 0 . We associate with a_{k} the word $A_{k}=x_{0} x_{1} \ldots$ and with b_{k} the word $B_{k}=y_{0} y_{1} \ldots: a_{0}=011, b_{0}=0011$ hence $A_{0}=2$ and $B_{0}=02$; the recurrence relations for a_{k} and b_{k} give easily $A_{k+1}=A_{k} B_{k}$ and $B_{k+1}=A_{k} B_{k} B_{k}$. Defining the morphism r on $\{0,2\}^{*}$ by $r(2)=20$, $r(0)=200$, a straightforward induction shows that $A_{k}=r^{k}(0)$ and $B_{k}=r^{k}(1)$. Hence A_{k} and B_{k} both converge to the iterative fixed point of r. It is well known and easy to prove that this iterative fixed point deprived of its first symbol, i.e., $020020200200 \ldots$ is the binary Fibonacci sequence on $\{2,0\}$. To finish the proof of the fist assertion of our theorem, we note that the first differences of the indexes of occurrences of 0 in w (i.e., the first differences of the terms of $\left.w^{-1}(0)\right)$ are exactly $1+$ the number of 1 's separating these occurrences in w.

The proof of the second assertion in the theorem is similar to the proof of the first one. Namely define z to be the sequence obtained from v by replacing all 2 's by 0 's. It is clear that the positions of 1 in v and z are the same. It is also clear that $z=\ell^{\prime}\left(g^{\infty}(0)\right)$, where ℓ^{\prime} is the morphism defined on $\{0,1\}^{*}$ by $\ell^{\prime}(0)=010$, $\ell^{\prime}(1)=0000$. Reasoning as in the proof of the first assertion above, it suffices to prove that $1+$ the lengths of runs of 0 's in z is the first difference of the sequence $(4\lfloor n \varphi\rfloor)+3 n+2)_{n \geq 0}$. But this last sequence is the binary Fibonacci sequence on the alphabet $\{7,11\}$. Define $x_{n}=\ell^{\prime}\left(g^{n}(0)\right)$ and $y_{n}=\ell^{\prime}\left(g^{n}(1)\right)$. Then one obtains easily that $x_{n+1}=x_{n} y_{n}$ and $y_{n+1}=x_{n} y_{n} y_{n}$. Now note that x_{n} and y_{n} begin with 0 , and define $x_{n}^{\prime}, y_{n}^{\prime}$ by $x_{n} 0=0 x_{n}^{\prime}$ and $y_{n} 0=0 y_{n}^{\prime}$ so that $x_{n+1}^{\prime}=x_{n}^{\prime} y_{n}^{\prime}$ and $y_{n+1}^{\prime}=x_{n}^{\prime} y_{n}^{\prime} y_{n}^{\prime}$. Note that both x_{n}^{\prime} and y_{n}^{\prime} begin with 1 . Write as above $x_{n}^{\prime}=10^{c_{1}} 10^{c_{2}} \ldots$ and $y_{n}^{\prime}=10^{d_{1}} 10^{d_{2}} \ldots$ Associate with x_{k} and y_{k} respectively the words $X_{k}=c_{1} c_{2} \ldots$ and $Y_{k}=d_{1} d_{2} \ldots$. We obtain $X_{1}=6, Y_{1}=10$, and $X_{k+1}=X_{k} Y_{k}, Y_{k+1}=X_{k} Y_{k} Y_{k}$. We conclude as above.

The third assertion of our theorem is a consequence of the last assertion of Lemma 17

Remark 20 Some of the sequences above are images of Sturmian sequences by a morphism. Namely $v=\ell\left(g^{\infty}(0)\right), w=m\left(g^{\infty}(0)\right), x_{\mathrm{K}}=k\left(g^{\infty}(0)\right)$. Such sequences are examples of sequences called quasiSturmian in [4. Their block complexity is of the form $n+C$ for n large enough $(C=1$ for Sturmian sequences). This was studied in [21], [5], and [4].

4 Generalized Beatty sequences and return words

In this section we show that generalized Beatty sequences are closely related to return words.
Theorem 21 Let x_{F} be the Fibonacci word, and let w be any word in the Fibonacci language \mathcal{L}_{F}. Let Y be the sequence of positions of the occurrences of w in x_{F}. Then Y is a generalized Beatty sequence, i.e., for all $n \geq 0 Y(n+1)=p\lfloor n \varphi\rfloor+q n+r$ with parameters p, q, r, which can be explicitly computed.

Proof: Let $x_{\mathrm{F}}=r_{0}(w) r_{1}(w) r_{2}(w) r_{3}(w) \ldots$, written as a concatenation of return words of the word w (cf. [13], Lemma 1.2). According to Theorem 2.11 in [13], if we skip $r_{0}(w)$, then the return words occur as the Fibonacci word on the alphabet $\left\{r_{1}(w), r_{2}(w)\right\}$. Thus the distances between occurrences of w in x_{F} are equal to $l_{1}:=\left|r_{1}(w)\right|$ and $l_{2}:=\left|r_{2}(w)\right|$. We can apply the converse of Lemma 46 solving the equations

$$
2 p+q=l_{1}, \quad p+q=l_{2}
$$

gives $p=l_{1}-l_{2}, q=2 l_{2}-l_{1}$. Inserting $n=0$, we find that $r=\left|r_{0}(w)\right|+1$, as the first occurrence of w is at the beginning of $r_{1}(w)$.

4.1 The Kimberling transform

Here we will obtain non-classical triples appearing in another way, namely as the three indicator functions $x^{-1}(0), x^{-1}(1)$ and $x^{-1}(2)$, of a sequence x on an alphabet $\{0,1,2\}$ of three symbols. In our examples the sequence x is a 'transform' $\mathcal{T}\left(x_{F}\right)$ of the Fibonacci sequence $x_{F}=0,1,0,0,1,0,1, \ldots$ These transforms have been introduced by Kimberling in the OEIS [20. Our main example is: $\mathcal{T}:[001 \rightarrow 2]$. As a word, $x_{\mathrm{F}}=01001010010010100 \ldots$, and replacing each 001 by 2 gives $x_{\mathrm{K}}=01201220120 \ldots$.

For the transform method \mathcal{T} we can derive a 'general' result similar to Theorem 21. However, since Kimberling applies the StringReplace procedure from Mathematica, which replaces occurrences of w consecutively from left to right, we do not obtain a sequence of return words in the case that w has overlaps in x_{F}. This restricts the number of words w to which the following theorem applies considerably.

Theorem 22 Let x_{F} be the Fibonacci word, and let w be any overlap fre \mathbb{E}^{4} word in the Fibonacci language \mathcal{L}_{F}. Consider the transform $\mathcal{T}\left(x_{\mathrm{F}}\right)$, which replaces every occurrence of the word w in x_{F} by the letter 2 . Let Y be the sequence $\left(\mathcal{T}\left(x_{\mathrm{F}}\right)\right)^{-1}(2)$, i.e., the positions of 2 's in $\mathcal{T}\left(x_{\mathrm{F}}\right)$. Then Y is a generalized Beatty sequence (i.e., for all $n \geq 1 Y(n)=p\lfloor n \varphi\rfloor+q n+r$) with parameters p, q, r, which can be explicitly computed.

Proof: As in the proof of Theorem 21 let $x_{\mathrm{F}}=r_{0}(w) r_{1}(w) r_{2}(w) \ldots$, written as a concatenation of return words of the word w. Now the distances between 2's in $\mathcal{T}\left(x_{\mathrm{F}}\right)$ are equal to $l_{1}:=\left|r_{1}(w)\right|-|w|+1$ and $l_{2}:=\left|r_{2}(w)\right|-|w|+1$. We can apply the converse of Lemma 4 solving the equations

$$
2 p+q=l_{1}, \quad p+q=l_{2}
$$

gives $p=l_{1}-l_{2}, q=2 l_{2}-l_{1}$. Inserting $n=1$, we find that $r=\left|r_{0}(w)\right|-l_{2}+1$.

Example 23 We take $\mathcal{T}:[001 \rightarrow 2]$, with image $\mathcal{T}\left(x_{F}\right)=01201220120 \ldots$, so $Y=(3,6,7,10, \ldots)$. Here $r_{0}(w)=01, r_{1}(w)=00101, r_{2}(w)=001$. This gives $l_{1}=5-3+1=3, l_{2}=3-3+1=1$, so $p=2$ and $q=-1$ and $r=2+1-1=2$. So Y is the generalized Beatty sequence $\left(Y_{n}\right)_{n \geq 1}=(2\lfloor n \varphi\rfloor-n+2)_{n \geq 1}$.

The question arises whether not only $\mathcal{T}\left(x_{\mathrm{F}}\right)^{-1}(2)$, but also $\mathcal{T}\left(x_{\mathrm{F}}\right)^{-1}(0)$ and $\mathcal{T}\left(x_{\mathrm{F}}\right)^{-1}(1)$ are generalized Beatty sequences. In general this will not be true. However, this holds for \mathcal{T} : [001 $\rightarrow 2]$. Here it suffices to prove this for $\mathcal{T}\left(x_{\mathrm{F}}\right)^{-1}(1)$, since clearly $\mathcal{T}\left(x_{\mathrm{F}}\right)^{-1}(0)=\mathcal{T}\left(x_{\mathrm{F}}\right)^{-1}(1)-1$.

Theorem 24 Let $\mathcal{T}:[001 \rightarrow 2]$, and let $Z=(Z(n))_{n \geq 0}$ be the sequenc ${ }^{5} Z=\mathcal{T}\left(x_{\mathrm{F}}\right)^{-1}(1)=x_{\mathrm{K}}^{-1}(1)$. Then, for all $n \geq 0$, one has $Z(n)=\lfloor n \varphi\rfloor+2 n+2$.

[^3]Proof: Since $x_{\mathrm{K}}=01201220120 \ldots$ is the sequence obtained by replacing each word $w=001$ by 2 in x_{F}, we have by Theorem 21] that the positions of 2 in x_{K} are given by $V^{-1}(2)=(2\lfloor n \varphi\rfloor-n+2)_{n \geq 1}$. By Lemma (4) the difference sequence of $V^{-1}(2)$ equals the Fibonacci word on the alphabet $\{3,1\}$. The return word structure of $w=001$ is given by

$$
r_{0}(w)=01, \quad r_{1}(w)=00101, \quad r_{2}(w)=001
$$

Let $(Z(n))_{n \geq 0}$ be the sequence of positions of 1 in the transformed Fibonacci word. Note that $Z(0)=2$, the 1 coming from $r_{0}(w)$. This is exactly the reason why it is convenient to start Z from index 0 : the other 1 's are coming from the $r_{1}(w)$'s-note that $r_{2}(w)$ is mapped to 2 . Since the distance between occurrences of 2 in x_{K} are given by the Fibonacci word $3133131331 \ldots$, which codes the appearance of the words $r_{1}(w)$ and $r_{2}(w)$, we have to map the word $w^{\prime}=13$ to 4 to obtain the distances between occurrences of 1 in x_{K}, obtaining the word $u=343443 \ldots$ To obtain a description of u, we apply Theorem 21 a second time with $w^{\prime}=13$. We have $r_{0}\left(w^{\prime}\right)=3, r_{1}\left(w^{\prime}\right)=133, r_{2}\left(w^{\prime}\right)=13$. Solving $2 p+q=l_{1}=l_{1}:=$ $\left|r_{1}\left(w^{\prime}\right)\right|-\left|w^{\prime}\right|+1=2, p+q=l_{2}=\left|r_{2}\left(w^{\prime}\right)\right|-\left|w^{\prime}\right|+1=1$ yields $p=1, q=0$. The conclusion is that positions of 4 in u are given by the generalized Beatty sequence $(\lfloor n \varphi\rfloor+1)_{n \geq 1}$. This forces that u is nothing else than the Fibonacci word on $\{4,3\}$, preceded by 3 . But then Z is a generalized Beatty sequence with parameters p and q as solutions of $2 p+q=4, p+q=3$, which gives $p=1, q=2$. Since $Z(1)=5$, we must have $r=2$, which fits perfectly with the value $Z(0)=2$.

Here is an example where $\mathcal{T}\left(x_{\mathrm{F}}\right)^{-1}(0)$ and $\mathcal{T}\left(x_{\mathrm{F}}\right)^{-1}(1)$ are not generalized Beatty sequences.
Example 25 We take $\mathcal{T}:[00100 \rightarrow 2]$, with image $\mathcal{T}\left(x_{F}\right)=010010121010010121012 \ldots$, so $Y=(8,17,21 \ldots)$. Here $r_{0}(w)=0100101, r_{1}(w)=0010010100101, r_{2}(w)=00100101$. This gives $l_{1}=9, l_{2}=4$, so $p=5$ and $q=-1$ and $r=4$. So Y is the generalized Beatty sequence $\left(Y_{n}\right)_{n \geq 1}=(5\lfloor n \varphi\rfloor-n+4)_{n \geq 1}$. The positions of 0 are given by $\left(\mathcal{T}\left(x_{F}\right)\right)^{-1}(0)=1,3,4,6,10,12,13, \ldots$, with difference sequence $2,1,2,4,2,1, \ldots$, so by Lemma 4 this sequence is not a generalized Beatty sequence. However, it can be shown that $\left(\mathcal{T}\left(x_{\mathrm{F}}\right)\right)^{-1}(0)$ is a union of 4 generalized Beatty sequences, and the same holds for $\left(\mathcal{T}\left(x_{F}\right)\right)^{-1}(1)$.

Example 25 raises the question whether the sequences $\mathcal{T}\left(x_{F}\right)^{-1}(0)$ and $\mathcal{T}\left(x_{F}\right)^{-1}(1)$ are always finite unions of generalized Beatty sequences. This can be proved - generalizing the proof of Theorem [24-under the condition that

$$
\left|r_{0}(w)\right| \leq\left|r_{1}(w)\right|-|w| \quad(\operatorname{SR} 0)
$$

For this generalization one needs the following proposition.
Proposition 26 Let w be a word from the Fibonacci language, and let $r_{0}(w) r_{1}(w) r_{2}(w) \ldots$ be the return sequence of w in the Fibonacci word x_{F}. Then (1) $r_{0}(w)$ is a suffix of $r_{1}(w)$, and (2) if $r_{2}(w)=w t_{2}(w)$, then $t_{2}(w)$ is a suffix of $r_{1}(w)$.

Proof: Let $s_{0}=1, s_{1}=00, s_{2}=101, s_{3}=00100, \ldots$ be the singular words introduced in [25]. According to [13. Theorem 1.9.] there is a unique largest singular word s_{k} occurring in w, so we can write $w=\mu_{1} s_{k} \mu_{2}$, for two words μ_{1}, μ_{2} from the Fibonacci language. It is known - see [25] and the remarks after [13, Proposition 1.6.] - that the two return words of the singular word s_{k} are

$$
r_{1}\left(s_{k}\right)=s_{k} s_{k+1}, \quad r_{2}\left(s_{k}\right)=s_{k} s_{k-1}
$$

According to [13, Lemma 3.1], the two return words of w are given by

$$
r_{1}(w)=\mu_{1} r_{1}\left(s_{k}\right) \mu_{1}^{-1}, \quad r_{2}(w)=\mu_{1} r_{2}\left(s_{k}\right) \mu_{1}^{-1}
$$

Substituting the first equation in the second, we obtain the key equation

$$
\begin{equation*}
r_{1}(w)=\mu_{1} s_{k} s_{k+1} \mu_{1}^{-1}, \quad r_{2}(w)=\mu_{1} s_{k} s_{k-1} \mu_{1}^{-1} \tag{9}
\end{equation*}
$$

Proof of (1): We compare the return word decompositions of x_{F} by s_{k} and by w :

$$
r_{0}\left(s_{k}\right) r_{1}\left(s_{k}\right) r_{2}\left(s_{k}\right) r_{1}\left(s_{k}\right) \cdots=r_{0}(w) r_{1}(w) r_{2}(w) r_{1}(w) \cdots=r_{0}(w) \mu_{1} r_{1}\left(s_{k}\right) \mu_{1}^{-1} \mu_{1} r_{2}\left(s_{k}\right) \mu_{1}^{-1} \mu_{1} r_{1}\left(s_{k}\right) \mu_{1}^{-1} \cdots
$$

It follows that we must have $r_{0}\left(s_{k}\right)=r_{0}(w) \mu_{1}$, and so $r_{0}(w)=r_{0}\left(s_{k}\right) \mu_{1}^{-1}$. By [13, Lemma 2.3], $r_{0}\left(s_{k}\right)$ equals s_{k+1}, with the first letter deleted. Thus we obtain from Equation (9) that $r_{0}(w)$ is a suffix of $r_{1}(w)$.
Proof of (2): Since $s_{k+1}=s_{k-1} s_{k-3} s_{k-1}$, by [25, Property 2], we can do the following computation, starting from Equation (9):

$$
r_{1}(w)=\mu_{1} s_{k} s_{k+1} \mu_{1}^{-1}=w \mu_{2}^{-1} s_{k+1} \mu_{1}^{-1}=w \mu_{2}^{-1} s_{k-1} s_{k-3} s_{k-1} \mu_{1}^{-1}=w \mu_{2}^{-1} s_{k-1} s_{k-3} \mu_{2} \mu_{2}^{-1} s_{k-1} \mu_{1}^{-1}
$$

For $r_{2}(w)$ we have

$$
r_{2}(w)=\mu_{1} s_{k} s_{k-1} \mu_{1}^{-1}=w \mu_{2}^{-1} s_{k-1} \mu_{1}^{-1}
$$

Now note that in this concatenation μ_{2}^{-1} cancels against a suffix of w. We claim that it also cancels against a prefix of s_{k-1}. This follows, since by [13, Proposition 2.5] any occurrence of s_{k} in x_{F} is directly followed by a $s_{k+1}=s_{k-1} s_{k-3} s_{k-1}$ with the last letter deleted. It now follows that $t_{2}(w)=\mu_{2}^{-1} s_{k-1} \mu_{1}^{-1}$, and we see that this word is a suffix of $r_{1}(w)$.

Here is an example where the (SR0) condition is not satisfied.

Example 27 We take $\mathcal{T}:[10100 \rightarrow 2]$, with image $\mathcal{T}\left(x_{\mathrm{F}}\right)=01002100221002 \ldots$, so $Y=(5,9,10 \ldots)$. Here $r_{0}(w)=0100, r_{1}(w)=10100100, r_{2}(w)=10100$. The positions of 0 are given by $\left(\mathcal{T}\left(x_{F}\right)\right)^{-1}(0)=$ $1,3,4,7,8 \ldots$, which can be written as a union of two generalized Beatty sequences, except that the 1 from the first 0 will not be in this union.

With Equation (9) we can deduce an equivalent simple formulation of condition (SR0). If $w=\mu_{1} s_{k} \mu_{2}$, then $r_{0}(w)$ equals $s_{k+1} \mu_{1}^{-1}$ with the first letter removed, and $r_{1}(w)=\mu_{1} s_{k} s_{k+1} \mu_{1}^{-1}$, so

$$
|w|=\left|\mu_{1}\right|+F_{k}+\left|\mu_{2}\right|, \quad\left|r_{0}(w)\right|=F_{k+1}-\left|\mu_{1}\right|-1, \quad\left|r_{1}(w)\right|=F_{k+1}+F_{k}
$$

Filling this into condition (SR0) we obtain

$$
\left|\mu_{2}\right| \leq 1 \quad\left(\mathrm{SR}^{\prime}\right)
$$

Using ($\mathrm{SR} 0^{\prime}$), together with Theorem 6 in [25], one can show that the generalization of Theorem 24 does apply to at most 3 words w of length m, for all $m \geq 2$ (in fact, only 2 , if m is not a Fibonacci number).

References

[1] J.-P. Allouche, B. Cloitre, V. Shevelev, Beyond odious and evil, Aequationes Math. 90 (2016), 341-353.
[2] C. Ballot, On functions expressible as words on a pair of Beatty sequences, J. Integer Seq. 20 (2017), Art. 17.4.2.
[3] L. Carlitz, R. Scoville, V. E. Hoggatt, Jr., Fibonacci representations, Fibonacci Quart. 10 (1972), 1-28. [Also see L. Carlitz, R. Scoville, V. E. Hoggatt, Jr., Addendum to the paper: "Fibonacci representations", Fibonacci Quart. 10 (1972), 527-530.]
[4] J. Cassaigne, Sequences with grouped factors, in DLT'97, Developments in Language Theory III, Thessaloniki, Aristotle University of Thessaloniki, 1998, pp. 211-222.
[5] E. M. Coven, Sequences with minimal block growth, II, Math. Syst. Theory 8 (1975), 376-382.
[6] F. M. Dekking, Morphisms, symbolic sequences, and their standard forms, J. Integer Seq. 19 (2016), Article 16.1.1.
[7] M. Dekking, The Frobenius problem for homomorphic embeddings of languages into the integers, Theoret. Comput. Sci. 732 (2018), 73-79.
[8] M. Dekking, Substitution invariant Sturmian words and binary trees, Integers 18A (2018), \#A7, 1-14.
[9] A. S. Fraenkel, Complementary systems of integers, Amer. Math. Monthly 84 (1977), 114-115.
[10] A. S. Fraenkel, Iterated floor function, algebraic numbers, discrete chaos, Beatty subsequences, semigroups, Trans. Amer. Math. Soc. 341 (1994), 639-664.
[11] A. S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math. 24 (2010), 570-588.
[12] A. S. Fraenkel, From enmity to amity, Amer. Math. Monthly 117 (2010), 646-648.
[13] Y. Huang, Z.-Y. Wen, The sequence of return words of the Fibonacci sequence Theoret. Comput. Sci. 593 (2015), 106--116.
[14] C. Kimberling, K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly 123 (2016), 267-273.
[15] C. Kimberling, Complementary equations and Wythoff sequences, J. Integer Seq. 11 (2008), Art. 08.3.3.
[16] J. Lambek, L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly 61 (1954), 454-458.
[17] U. Larsson, N. A. McKay, R. J. Nowakowski, A. A. Siegel, Finding golden nuggets by reduction, Preprint (2015), https://arxiv.org/abs/1510.07155
[18] D. A. Lind, The quadratic field $Q(\sqrt{5})$ and a certain Diophantine equation, Fibonacci Quart. 6 (1968), 86-93.
[19] A. McD. Mercer, Generalized Beatty sequences, Int. J. Math. Math. Sci., 1 (1978), 525-528.
[20] On-Line Encyclopedia of Integer Sequences, founded by N. J. A. Sloane, electronically available at http://oeis.org.
[21] M. E. Paul, Minimal symbolic flows having minimal block growth, Math. Systems Theory 8 (1975), 309-315.
[22] R. Tijdeman, On complementary triples of Sturmian bisequences, Indag. Math. 7 (1996), 419-424.
[23] R. Tijdeman, Exact covers of balanced sequences and Fraenkel's conjecture. in Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, Berlin, 2000, pp. 467-483.
[24] J. V. Uspensky, On a problem arising out of the theory of a certain game, Amer. Math. Monthly 34 (1927), 516-521.
[25] Z.-X. Wen, Z.-Y. Wen, Some properties of the singular words of the Fibonacci word, European J. Combin. 15 (1994) 587598.

[^0]: ${ }^{1}$ And when is this partition "nice"? (in Fraenkel's terminology 10 we look for a "nice" integer DCS -Disjoint Covering System).

[^1]: ${ }^{2}$ This does not hold for $(V(3), V(4), V(5))!$

[^2]: ${ }^{3}$ In [20] these are (A003623, A003622, A001950) and (A000201, A035336, A101864).

[^3]: ${ }^{4}$ This means that there are no 'overlapping' occurrences of w in x_{F}, as, e.g., for $w=010$
 ${ }^{5} Z$ is the sequence $A 284624$ with offset 0

