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Abstract

A generalized Beatty sequence is a sequence V defined by V(n) = plna| +qgn+r, forn =1,2,...,
where a,p,q,r are real numbers. These occur in several problems, as for instance in homomorphic
embeddings of Sturmian languages in the integers. Our results are for the case that « is the golden
mean, but some would generalise to arbitrary quadratic irrationals. We mainly consider the following
question: For which sixtuples of integers p, q,r, s, t,u are the two sequences V = (p|na| + gn + r) and
W = (s|na] + tn + u) complementary sequences?

We also study complementary triples, i.e., three sequences V; = (p;|na + ¢in + i), i = 1,2, 3, with
the property that the sets they determine are disjoint with union the positive integers.

1 Introduction

A Beatty sequence is the sequence A = (A(n)),>1, with A(n) = |na| for n > 1, where « is a positive real
number. What Beatty observed is that when B = (B(n)),>1 is the sequence defined by B(n) = [nfg], with
« and f satistying

1 1

=1 1

atg=t (1)
then A and B are complementary sequences, that is, the sets {A(n) : n > 1} and {B(n) : n > 1} are disjoint

1+5
2

and their union is the set of positive integers. In particular if « = ¢ =
that the sequences (|n¢])n>1 and (|np?]),>1 are complementary.

is the golden ratio, this gives

Among the numerous results on Beatty sequences, a paper of Carlitz, Scoville and Hoggatt [3, Theorem 13,
p. 20] studies the monoid generated by A = (A(n)),>1 and B = (B(n)),>1 for the composition of sequences
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in the case where « is equal to ¢ = , the golden ratio.

Theorem 1 (Carlitz-Scoville-Hoggatt) Let U = (U(n)),>1 be a composition of the sequences A =
(ln¢])n>1 and B = ([n¢?|)n>1, containing i occurrences of A and j occurrences of B, then for all n > 1

U(n) = Fi-i—2jA(n) + Fifoj—1n — Ay,
where Fy, are the Fibonacci numbers (Fy =0, Fy =1, Fy0 = F,,41 + F,,) and \y is a constant.

The sequences U are examples of what we call generalized Beatty sequences, and as an extension of
Beatty’s observation the following natural questions can be asked.

Question 1 Let « be an irrational number, and let A defined by A(n) = |[na] for n > 1 be the Beatty
sequence of «. Let Id defined by Id(n) = n be the identity map on the integers. For which sixtuples of
integers p, q,r, s, t,u are the two sequences

V=pA+qld+r and W =sA+tld+u
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complementary sequences?

Question 2 For which nonuples of integers (p1,q1,71, P2, g2, 2, P3, g3, T3) the three sequences
Vi=piA+qld+r;,i=1,2,3
are a complementary triple, i.e., the sets they determine are disjoint with union the positive integerﬂ.

Remark 2 The theorem of Carlitz, Scoville and Hoggatt above was rediscovered by Kimberling [I5 Theorem
5, p. 3]: it is thus attributed to Kimberling in, e.g., [I1 p. 575], [12 p. 647], [I7, p. 20-21]. This was corrected
in [2 Theorem 2, p. 2] .

Remark 3 One can ask whether the monoid generated by other complementary sequences by composition
can be written as a subset of the set of linear combinations of a finite number of elements. Some answers
for Beatty sequences can be found in the rich paper of Fraenkel [I0] (see, e.g., p. 645). Another, possibly
unexpected, example is given by the Thue-Morse sequence. Namely call odious (resp. evil) the integers
whose binary expansion contains an odd (resp. even) number of 1’s, then it was proved in [I, Corollaries 1
and 3] that the sequences (A(n)),>0 and (B(n)),>o of odious and evil numbers satisfy for all n

A(n) =2n+1—t(n), B(n) =2n+t(n), A(n)— B(n)=1-2t(n)

A(A(n)) = 24(n), B(B(n) = 2B(n), A(B(n)) =2B(n) +1, B(A(n)) = 2A(n) + 1.
where (t(n))n>0 is the Thue-Morse sequence, i.e., the characteristic function of odious integers. (This
sequence can be defined by ¢(0) = 0 and for all n > 0, ¢(2n) = t(n) and ¢(2n + 1) = 1 — ¢(n).) This easily

implies that any finite composition of (A(n)),>o and (B(n)),>o can be written as (aA(n) + 8B(n) +v)n>o0,
since t(A(n)) =1 and ¢(B(n)) = 0 for all n.

2 Complementary pairs

Let o be an irrational number, and let A defined by A(n) = [na] for n > 1 be the Beatty sequence of a.
Let Id defined by Id(n) = n be the identity map on N. Here we consider the question:

Complementary pair problem: for which siztuples of integers (p,q,r,s,t,u) the two sequences V =
(V(n))p>1 and W = (W (n)),>1 defined by

V=pA+qgld+r and W=sA+tld+u (2)

are a complementary pair—meaning that as subsets of N, V- and W are disjoint and their union is N?

In the sequel we will require that as a function A : N — N is injective, since we then have a 1-to-1
correspondence between sequences and subsets of N. (See [I4] for non-injective Beatty sequences.)
In the case that V and W are increasing, we will also require, without loss of generality, that V(1) = 1.

The homogeneous Sturmian sequence generated by a real number « is the sequence (| (n+1)a]—|na])n>1.
It is well known that the homogeneous Sturmian sequence generated by the golden mean ¢ is

rp=21221212212212122121 ...,

obtained by replacing 0 by 2 in the unique fixed point of the Fibonacci morphism 0 — 01, 1 — 0. The
following lemma is thus implied trivially by

V=pA+qld+r = V(n+1)—-V(n) =pAn+1)—AMn))+q.

Lemma 4 LetV = (V(n)),>1 be the generalized Beatty sequence defined by V(n) = p(|ne])+gn+r, and let
AV be the sequence of its first differences. Then AV is the Fibonacci sequence on the alphabet {2p+q,p+q}.

LAnd when is this partition “nice”? (in Fraenkel’s terminology [I0] we look for a “nice” integer DCS —Disjoint Covering
System).



Another observation is that the gId + r part in the generalized Beatty sequence generates arithmetic
sequences. The following lemma, which will be useful in proving Theorem [, shows that in some weak sense
the Wythoff part pA of a generalized Beatty sequence is orthogonal to this arithmetic sequence part.

Lemma 5 Let V = (V(n)),>1 be the generalized Beatty sequence defined by V(n) = p(|ne]) + gn + r with
p # 0, then neither (V(1),V(2),V(3)), nod (V(2),V(3),V(4)) can be an arithmetic sequence of length 3.

Proof: We have by Lemma 1
(V(2)-v(@) (V3)-V(2) (VE)-V@3)) ...=AV=2p+q) (p+4q) 2p+aq) -..
Since p # 0 we thus have V(2) — V(1) # V(3) — V(2) and V(3) — V(2) # V(4) — V(3). 0
Remark 6 We note for further use that the proof of Lemma [ yields
=-V(1)+2V(2)-V(3)
(3

= V(1) = 3V(2) +2V(3)
V(1) +V(2) - V(3).

TR

Let a@ = ¢, the golden mean. Then the classical solution is (p,q,r) = (1,0,0) and (s,t,u) = (1,1,0),
which corresponds to the Beatty pair ([n)]), ([n¢?]). Another solution is given by

(p7QaT) = (_173a _1)a (Svtau) = (172a0)7

which corresponds to the Beatty pair ([n(5 —v/5)/2]), ([n(5 + v/5)/2]), which is equal to
([InB = ©))), (In(e + 2)]).

Theorem 7 Let aw = . Then there are no more than two increasing solutions to the complementary pair
pTOblem" (p7 q’ T, S, t7 u) = (1’ 07 O’ 17 ]" O) and (p7 q7 T? S? t7 u) = (_17 37 _]" 17 27 O)'

Proof: Recall that V(1) = 1. We first note that V(2) < 5, since otherwise (W (1), W(2),W(3)) = (2, 3,4),
which is not allowed by Lemma There are therefore three cases to consider, according to the value of
V(2).

e I. V(1) =1,V(2) = 2. Then by Lemma[5 V(3) = 3 is not possible.

— If V(3) = 4, then, by Remark[dl p = —1, ¢ = 3, » = —1, which is one of the two solutions.

— If V(3) = 5, then, by Remark[6l p = —2, ¢ = 5, »r = —2, which implies that V(4) =6, V(5) =7,
V(6) = 10. So W (1) =3, W(2) =4, W(3) = 8, which gives s = =3, t =7, u = —1 (Remark [@
applied to W), implying W (5) = 10, which contradicts complementarity.

— If V(3) = m with m > 5, then W (1) =3, W(2) =4, W(3) = 5, which contradicts Lemma [0l
o ILV(1)=1,V(2) =3.

— If V(3) = 4, then, by Remark[dl p =1, ¢ = 0, »r = 0, which is one of the two solutions.
— If V(3) = 5, then we obtain a contradiction with Lemma [0l

— If V(3) = 6, then, by Remark[@ p = —1, ¢ = 4, » = —2, which implies V(5) = 10. But we must
then have W (1) = 2,W(2) = 4,W(3) = 5, so (Remark [@ applied to W), s =1, ¢t =0, u = 1,
which implies W (6) = 10, a contradiction with complementarity.

— If V(3) = m with m > 6, then we obtain a contradiction with Lemma [l since then W (2) = 4,
W(3) =5, W(4) =6.

o IIL V(1) =1, V(2) = 4.

2This does not hold for (V(3), V (4), V(5))!



— If V(3) = 5, then, by Remark[6l p = 2, ¢ = —1, » = 0, thus V(4) = 8; hence W(1) = 2, W(2) = 3,
W (3) = 6. Hence, by Remark [@ applied to W, s = =2, t =5, u = —1, so that W(5) =8 = V(4),
which contradicts complementarity.

— If V(3) = 6, then W(1) =2, W(2) = 3, W(3) = 5. Thus, by Remark [f] applied to W, s = —1,
t =3, u=0. Hence W(4) = 6 = V(3), which contradicts complementarity.

— If V(3) = 7, then we obtain a contradiction with Lemma [l

— IfV(3) = mwith m > 7, then it follows that V'(3) = 8, since we have W (1) = 2, W(2) = 3, W (3) =
5, yielding, by Remark [@ applied to W, W(n) = (—A(n) + 3n) = 2,3,5,6,7,9,10,12,13,14, ...
With V(3) = 8, one obtains (by Remark [6) that V(n) = —A(n) + 5n — 3, but then V(5) = 14 =
W(10), i.e., V and W are not complementary. [J

2.1 Generalized Pell equations

If V and W are not increasing, then an analysis as in the proof of Theorem [7 is still possible, but very
lengthy. We therefore consider another approach in this subsection. Considering the densities of V and W
in N, one sees that a necessary condition for (pA+¢gId+r,sA+tId+u) to be a complementary pair is that
1 1
+ =1
pa+q sa+t

(3)

In the sequel we concentrate on the case a =: ¢ = (1++/5)/2, but our arguments would easily generalise
to the case of arbitrary quadratic irrationals.

Proposition 8 A necessary condition for the pair v = pA+ qld+r and w = sA+tld + u to be a
complementary pair is that p # 0 is a solution to the generalized Pell equation

5p2a? —dx =%, x,y e
Proof: Using ¢? = 1 + ¢, a straightforward manipulation shows that ([B]) implies
(ps+pt+gs—p—s)p=qg+t—ps—qt.
But since ¢ is irrational, this can only hold if
ps+pt+qs—p—s=0, q+t—ps—qt=0. (4)

The first equation gives pt = p — (p + ¢ — 1)s. Eliminating pt from p?s + (¢ — 1)pt — pg = 0, we obtain
p?s+(p— (p+q—1)s)(qg—1) — pg = 0. This gives the quadratic equation

s¢>+(p—2)sq—(p*+p—1)s+p=0.

Since ¢ is an integer, A := (p—2)2s%2+4s((p*+p—1)s—p) has to be an integer squared. Trivial manipulations
yield that
A = 5p*s? — 4ps. (5)

Since p divides the square A, 5p?s? — 4ps = p?y? for some integer y, and hence p also divides s. If we put
s = px, we obtain 5p3x? — 4p?x = p?y?, which finishes the proof of the proposition. O

Actually there is a simple characterization of the integers p such that the Diophantine equation above
has a solution.

Proposition 9 The generalized Pell equation
sp2a? —dx =%, x,y el

has a solution for p > 0 if and only if p divides some Fibonacci number of odd index, i.e., if and only p
divides some number in the set {1,2,5,13,34,...}.



Proof: First suppose that there are integers p > 0 and z,y € Z such that 5p?z% —4x = y2. Let d := ged(z, y)
and 2’ = x/d, y' = y/d, so that ged(2’,y’) = 1. We thus have

5p2dx’? — 42’ = dy'%.

Thus 2’ divides dy'?, but it is prime to y’, hence z’ divides d. Since clearly d divides 4z, we have d = oz’
for some «a dividing 4, hence o belongs to {1,2,4}. This yields a(5p?z"? — y'?) = 4. We distinguish three
cases.

o If a = 1, then we have 5p?z’? — y’2 = 4. But the equation 5X2 — 4 = Y2 has an integer solution if and
only if X is a Fibonacci number with odd index [I8] p. 91]. Hence pz’ must be a Fibonacci number
with odd index, thus p divides a Fibonacci number with odd index.

o If o =2, then we have 5p22’? — 2 = 2. Note that 2’ must be odd, otherwise 2’ and 3’ would be even,

which contradicts ged(z’,y’) = 1. Thus 5p?z’? = p? mod 4, hence p? — 2 = 32 mod 4. If p is even, this

yields y'? = 2 mod 4, while if p is odd, this gives 4’2 = 3 mod 4. There is no such 3’ in both cases.
o If o = 4, then we have 5p?z'? — y/? = 1, thus 5(2px’)? — (2y/)? = 4, then 2pz’ must be a Fibonacci
number with odd index, thus p divides a Fibonacci number with odd index.

Now suppose that p divides some Fibonacci number with odd index, say there exists a k with Fay1 = pp.
We will construct an integer solutions in (x,%) to the equation 5p%x? — 42 = y?. We know (again [18, p. 91])
that there exists some integer v with 5F3, | —4 = 7? thus 5p?% —4 = 42, Let « = 8 and y = 7. Then

5p*a”® — 4w = 5p° Bt — 4p% = B2 (5p*B% —4) = 27 =7, O

Corollary 10 There are no solutions to the complementary pair problem if —1 is not a square modulo p,
i.e., if p does not belong to the sequence 1,2,5,10,13,17,25,26,29,34,37,41, ... (sequence A008784 in [20)]).
This is in particular the case if p has a prime divisor congruent to 3 modulo 4.

Proof: We will prove that if there are solutions to the complementary problem for p, thus if p divides an
odd-indexed Fibonacci number (Propositions [§ and [@)), then —1 is a square modulo p. Using again the
characterization in [I8 p. 91], there exist two integers z,y with 5p22z? — 4 = y2. We distinguish two cases.

e If p is odd, we have y> = —4 mod p and 22 = 4 mod p. But 2 is invertible modulo p, hence, by taking
the quotient of the two relations, we obtain that —1 is a square modulo p.

e If p is even, remembering that pz = Fyi41 for some k, we claim that p must be congruent to 2 modulo
4 and that x must be odd. Namely the sequence of odd-indexed Fibonacci numbers, reduced modulo
4, is easily seen to be the periodic sequence (1 2 1)>°. Hence it never takes the value 0 modulo 4.
The equality 5p?2z? — 4 = y? implies that y must be even, thus we have 5(p/2)%z% — 1 = (y/2)?, say
(y/2)? = =1+ 2(p/2). Up to replacing (y/2) with (y + p)/2, we may suppose that (y/2) is even (recall
that p/2 is odd). Thus z(p/2) is even, hence z is even, say z = 22’. This gives (y/2)? = —1+ 2p, thus
—1 is a square modulo p.

Remark 11 We have just seen that if the integer p divides some odd-indexed Fibonacci number then —1
is a square modulo p (sequence A008784 in [20]). A natural question is then whether it is true that if —1 is
a square modulo p, then p must divide some odd-indexed Fibonacci number. The answer is negative, since
on one hand 122 = —1 mod 29, and, on the other hand, the sequence of odd-indexed Fibonacci numbers
modulo 29 is the periodic sequence (1,2,5,13,5,2,1)> which is never zero.



Let us look at examples of solutions to the Diophantine equation for values of p that divide some Fibonacci
number with odd index. Consider, for example, the case where p = s. Then Equation (B) becomes A =
5p* — 4p?, so the Diophantine equation is

522 —4=19y% x,y€Ll.

For p = F; = 1 we obtain the two sequences V= A +r and W = A + Id + u. These are complementary
only when r = u = 0, and we obtain the classical Beatty pair (A, A 4 1d).

For p = F3 = 2 we obtain the two sequences V =24 4+ 2Id +r and W = 24 — 21d + u. These cannot
be complementary for any r and u, since for « = 0 we have W(n) = 2(|np]) — 2n = 2(|n(¢ — 1)], which
gives all even numbers, since ¢ — 1 < 1. This an example where Equation ([B)) does not apply, since W as a
function is not injective.

For p = F5 = 5 we obtain the two sequences V =54+ 41d+r and W = 5A — 71d 4+ u. To make these
complementary we are forced to choose r = u = 3, and we obtain

V = (12,26, 35,49, 63,72, 86,95, 109, 123, 132, 146, 160, 169, 183, 192, 206, 220, 229, 243, 252, 266, . . . ),

w=(1,4,2,5,8,6,9,7,10,13,11,14,17,15,18, 16, 19, 22, 20, 23, 21, 24, 27, 25,28, 31, 29, 32, 30, .. .).

Now a proof that V and W form a complementary pair is much harder, when we let V' start with V' (0) = 3,
to include 3 in the union. We can perform the following trick. We split W into (W(A(n)))n>1, and
(W(B(n)))n>1 (cf. Proposition [2). The two sequences WA and WB are increasing, and we can prove
that (V(n))n>0, (W(A(R)))n>1, and (W(B(n))),>1 form a partition of the positive integers by exhibiting a
three-letter sequence such that the preimages of the letters are precisely these three sequences.

For p = F541 > 13 it seems that we can always choose r and u for in such a way that we get
almost complementary sequences: namely, e.g., for p = 13 we find ¢ = 9 and ¢ = —20. If we take r =
u = 9, then we almost get a complementary pair. One finds V = 9,31,66, 88,123, 158,180,215,... and
W =2,8,1,7,13,6,12,5,11,17,10.... So 3 and 4 are missing. It might be that for all Fy,,;1 > 5 the
two sequences are complementary, excluding finitely many values. Possibly this can be proved using the
Lambek-Moser Theorem ([16]).

3 Complementary triples
Here we will find several complementary triples consisting of sequences
Vi=piA+qld+r;, i=1,2,3.

It is interesting that the case p; = p2 = ps = 1 cannot be realized. This was proved by Uspensky in
1927, see [9]. Also see [23] for the inhomogeneous Beatty case (Vi(n))n = ([nay + Bi])n, i =1,2,3.

There is one triple in which we will be particularly interested (see Theorem [T9)):

((pla (J1,T1)7 (p27 q2, T2)a (pg, g3, T3)) = ((Za -1, 0)7 (4a 3, 2)a (27 -1, 2))

We will allow that the sequences (V;) are each indexed either by {0,1,2,...} or by {1,2,...}.

3.1 Two classical triples

Once more let A(n) = [ne| for n > 1 be the terms of the lower Wythoff sequence, and let B given by
B(n) = |ng?| for n > 1 be the upper Wythoff sequence. Then we have the disjoint union

A(N)U B(N) = N. (6)

Since B = A + Id, this is the classical complementary pair ((1,0,0),(1,1,0)).
Here is a way to create complementary triples from complementary pairs.

Proposition 12 Let (V,W) be a complementary pair V.= pA + qld +r and W = sA + tld + u. Then
(V1,Va, V3) is a complementary triple, where the three parameters of Vi are (p + q,p,v — p), those of Va are
2p+ap+aqr), and Vs =W.



Proof: From Theorem [Il we obtain that for n =1,2,...
AA(n) = A(n) +n — 1, AB(n) = 2A(n) + n. (7)
Substituting Equation (@) in V(N) U W (N) = N we obtain the disjoint union
V(AN)) UV(B(N)) U W(N) =N. (8)
For n =1,2,... we have by Equation (7)

V(A(n)) = pA(A(n)) +qA(n) +r =plA(n) +n—1]+qAn) +r = (p+qAn) +pn+r—p,
V(B(n)) = pA(B(n))+q¢Bn)+r=p[2A(n)+n]+q[An)+n]+r=02p+q)AMn)+ (p+qn+r.

This, combined with Equation (8) implies the statement of the proposition. [

Applying Proposition[I2lto the basic complementary pair ((1,0,0), (1,1, 0)) gives that ((1,1,-1),(2,1,0),(1,1,0))
and ((1,0,0),(2,1,—1),(3,2,0)) are complementary triplesﬁ, which we will call classical triples.

Let w = 1231212312312. .. be the fixed point of the morphism
1—-12,2— 3,3 — 12.

Then w=1(1) = AA,w™'(2) = B and w™!(3) = AB give the three sequences V;,V3 and V, of the first
classical triple (see [6]).
The question arises: is there also a morphism generating the second triple? The answer is positive.

Proposition 13 Let (V1,V2,V3) = (A, 2A +1d—1,3A4 + 2Id) = (A, BA, BB). Then (V1,V2,V3) is a
complementary triple. Let p be the morphism on {1,2,3} given by

1121, 2 — 13, 3 — 13,
with fized point z. Then 2~ (1) = Vi, 271(2) = Vo and 271(3) = V3.

Proof: The four words of length 4 occurring in the infinite Fibonacci word zp are 010,100,001, 101. Coding
these with the alphabet {1,2,3,4} in the given order, they generate the 3-block morphism f5 that describes
the successive occurrences of the words of length 3 in zp (cf. [6]). It is given by

fs(1) =12, fs(2)=3, f3(3)=14, fs(4)=3.
It has just one fixed point, which is
2=1,2,3,1,4,1,2,3,1,2,3,1,4,1,2,3, ....
It is not difficult to see, applying Equation (@) at various levels, that
27N 1) = AA, 271 (2) = BA, 2 '(3)=AB, 2 '(4)=BB.

Again by Equation (@), we see that we have to merge the letters 1 and 3 to obtain the sequence A. This is
not possible with fs. However the square of this 3-block substitution is given by

1-5123,2 14, 3 — 123, 4 — 14,

and now we can consistently merge 1 and 3 to the single letter 1, obtaining the substitution pu, after mapping
4 to 3. Under this projection the sequence z’ maps to z. 0

3In [20] these are (A003623, A003622, A001950) and (A000201, A035336, A101864).



3.2 Non-classical triples

Let £ be a language, i.e., a sub-semigroup of the free semigroup generated by a finite alphabet under the
concatenation operation. A homomorphism of £ into the natural numbers is a map S : £ — N satisfying
S(vw) = S(v) + S(w), for all v,w € L.

Let S(Lr) be the Fibonacci language, i.e., the set of all words occurring in zr. The following result is
proved in [1].

Theorem 14 ([7]) Let S : Lr — N be a homomorphism. Define a = S(0),b = S(1). Then S(Lr) is the
union of the two generalized Beatty sequences ((a—b)|ng] + (2b—a)n) and ((a—"b)|[ne|+(2b—a)n+a—0b).

For a few choices of a and b, the two sequences in S(Lr) and the sequence N\ S(£) form a complementary
triple of generalized Beatty sequences. The goal of this section is to prove this for a = 3, b = 1. It turns out
that the three sequences

2[ne] = n)nx1, 2lne] = n+2)n>1, (4lne] + 31+ 2)n>o0,

form a complementary triple.

Remark 15 Note that the indices for (4|np]) + 3n + 2),>0 are (n > 0), not (n > 1)

Recall that the binary Fibonacci sequence is defined as the iterative fixed point of the morphism f defined
on {0,1}* by f(0) = 01, f(1) = 0. We let zp = (zr(n))n>1 denote this sequence. It is easy to see that
xp can be obtained as an infinite concatenation of two kinds of blocks, namely 01 and 001 (part (i) of
Lemma [I0] below). Kimberling introduced in the OEIS [20] the sequence A284749 obtained by replacing in
this concatenation every block 001 by 2. We let xx = A284749 denote this sequence.

Lemma 16 Let g, h, k be the morphisms defined on {0,1}* by
g(0) =01, ¢g(1) =011; h(0) =01, h(1) =001; Kk(0) =01, k(1) =2.
Let furthermore i be the morphism defined on {0,1,2}* by
i(0) = 01, i(1) = 2, i(2) = 0122.
Then (i) wp = f>(0) = hg>(0), (i) zx = k(g>(0)), (i) zx =i>(0).

Proof:

(i) An easy induction proves that for all n > 0 one has hg*® = f?*h. (Note that it suffices to prove that
the values of both sides are equal when applied to 0 and to 1.) By letting n tend to infinity this implies
hg(0) = £(0).

(ii) Assertion (i) clearly implies that x is an infinite concatenation of blocks h(0) and h(1), thus of blocks
01 and 001, thus that kg>°(0) = k.

(iii) An easy induction shows that kg™ = i"*1. Hence the result by letting n tend to infinity. [

Lemma 17 Define the morphism £ from {0,1}* to {0,1,2}* by £(0) = 012, £(1) = 0022. Then the sequence
v = (Un)n>1 = £g™(0) is obtained from xx =i°°(0) by replacing 1 by 0 in all blocks 0122 (but not in 0120).
The positions of 2 in v are obtained by adding 2 to the positions of 0.

Proof: The relation xx = i*°(0) = k(g>°(0)) shows that zk is the concatenation of two types of blocks, the
blocks 012 and the blocks 0122. The two assertions follow. O

Lemma 18 Let w be the sequence obtained from v by replacing all 2’s by 1’s. Let m be the morphism defined
on {0,1}* by m(0) = 011, m(1) = 0011. Then w = m(g>(0)).

Proof: Letting g the morphism defined by ¢(0) = 0, ¢(1) = 1, ¢(2) = 1, one has w = ¢(v) = ¢(£(g>°(0))) =
m(g>(0)) since, clearly, ¢/ =m. O



Theorem 19 Let v be the sequence defined above, i.e., v = £(g>°(0)), where g(0) = 01, g(1) = 011 and
2(0) = 012, £(1) = 0022. Then the increasing sequences of integers defined by v=1(0), v=1(1), v=1(2) form
a partition of the set of positive integers N*. Furthermore
o v 1(0)={1,4,5,8,11,12,15,16,19,22,.. .} is equal to the sequence of integers (2|np| —n)n>1, where
© 1s the golden ratio 1+2\/5 (sequence A050140 n [20] ),

o v (1) ={2,9,20,27,...} is equal to the sequence of integers (4|np| + 3n + 2),>0.

o v 1(2)={3,6,7,10,13,14,17,18,21,24,.. .} is equal to the sequence of integers ((2|n¢] —n+2)p>1)
(i.e., 2+A050140).

Proof: Since v=1(0) = w=1(0), by the definition of w, in order to prove the assertion on v=1(0) it suffices to
prove that w™1(0) is the sequence (2|n¢| —n)p>1. According to Lemma H] the first difference of the latter
is the Fibonacci binary sequence on the alphabet {3,1}. It thus suffices to prove that the first difference
of w™1(0) is equal to A. Recall that w = mg®(0) from Lemma Define the words ay = mg*(0) and
by = mg*(1). Then apy1 = mg*(g(0)) = mg*(01) = apby and by = mgF(g(1)) = mg*(011) = apbyby.
Note that xy is a prefix of zpy1 and of yiy1, and that z; and yi both converge to w. Since the runlengths
of 0’s and 1’s in a, and b are equal to 1 or 2, we can write each a; under the form 017°01*101%2 ... with
x; € {0,2} where no two consecutive z;’s can be equal to 0, and each by, under the form 01¥°01¥101%2 ... with
y; € {0, 2} where no two consecutive y;’s can be equal to 0. We associate with ay, the word Ay = zoz1 ... and
with by the word By = yoy1...: ap = 011, bg = 0011 hence Ay = 2 and By = 02; the recurrence relations for
ay, and by, give easily A1 = AgBy and Byy1 = Ay By By. Defining the morphism r on {0, 2}* by r(2) = 20,
7(0) = 200, a straightforward induction shows that A, = r¥(0) and By = r*(1). Hence Aj and By both
converge to the iterative fixed point of r. It is well known and easy to prove that this iterative fixed point
deprived of its first symbol, i.e., 020020200200. .. is the binary Fibonacci sequence on {2,0}. To finish the
proof of the fist assertion of our theorem, we note that the first differences of the indexes of occurrences of
0 in w (i.e., the first differences of the terms of w~1(0)) are exactly 1+the number of 1’s separating these
occurrences in w.

The proof of the second assertion in the theorem is similar to the proof of the first one. Namely define z
to be the sequence obtained from v by replacing all 2’s by 0’s. It is clear that the positions of 1 in v and z
are the same. It is also clear that z = ¢/(¢°°(0)), where ¢ is the morphism defined on {0, 1}* by ¢(0) = 010,
¢’(1) = 0000. Reasoning as in the proof of the first assertion above, it suffices to prove that 1+the lengths
of runs of 0’s in z is the first difference of the sequence (4|ng]) + 3n + 2),>0. But this last sequence is the
binary Fibonacci sequence on the alphabet {7,11}. Define z,, = ¢'(¢™(0)) and y, = ¢/(¢"(1)). Then one
obtains easily that z,4+1 = z,y, and y,+1 = TnYnyn. Now note that z,, and y, begin with 0, and define
x,,y, by ,0 = 0z, and y,,0 = Oy;, so that x], , = x,y,, and y,, ., = x,,y,y,. Note that both z], and y,,
begin with 1. Write as above x/, = 10110 ... and y/, = 109110% .. .. Associate with x;, and y; respectively
the words Xk = C1C2 ... and Yk = dldg .... We obtain X1 = 6, }/1 = 10, and XkJrl = XkYk, Yk+1 = XkYkYk.
We conclude as above.

The third assertion of our theorem is a consequence of the last assertion of Lemma 7 O

Remark 20 Some of the sequences above are images of Sturmian sequences by a morphism. Namely
v = £(g°°(0)), w = m(g>(0)), xx = k(g>(0)). Such sequences are examples of sequences called quasi-
Sturmian in [4]. Their block complexity is of the form n + C for n large enough (C = 1 for Sturmian
sequences). This was studied in [21], [5], and [4].



4 Generalized Beatty sequences and return words
In this section we show that generalized Beatty sequences are closely related to return words.

Theorem 21 Let xzp be the Fibonacci word, and let w be any word in the Fibonacci language Lr. Let Y be
the sequence of positions of the occurrences of w in xw. Then Y is a generalized Bealty sequence, i.e., for
alln >0Y(n+1)=plne| + gn+ r with parameters p, q,r, which can be explicitly computed.

Proof: Let ap = ro(w)ry(w)re(w)rs(w) ..., written as a concatenation of return words of the word w (cf.
[13], Lemma 1.2). According to Theorem 2.11 in [13], if we skip r(w), then the return words occur as the
Fibonacci word on the alphabet {r1(w),r2(w)}. Thus the distances between occurrences of w in xp are equal
to Iy :=|ri(w)] and I3 := |r2(w)|. We can apply the converse of Lemma[dl solving the equations

2p+q=0L, p+tq=1I

gives p =l — la, ¢ = 2ly — ;. Inserting n = 0, we find that r = |ro(w)| + 1, as the first occurrence of w is
at the beginning of r1(w). O

4.1 The Kimberling transform

Here we will obtain non-classical triples appearing in another way, namely as the three indicator functions
271(0),271(1) and x71(2), of a sequence x on an alphabet {0,1,2} of three symbols. In our examples
the sequence z is a ‘transform’ T (zr) of the Fibonacci sequence zrp = 0,1,0,0,1,0,1,... These transforms
have been introduced by Kimberling in the OEIS [20]. Our main example is: 7 :[001 — 2]. As a word,
zr = 01001010010010100. . ., and replacing each 001 by 2 gives zx = 01201220120. . ..

For the transform method 7 we can derive a ‘general’ result similar to Theorem 21l However, since
Kimberling applies the StringReplace procedure from Mathematica, which replaces occurrences of w consec-
utively from left to right, we do not obtain a sequence of return words in the case that w has overlaps in zp.
This restricts the number of words w to which the following theorem applies considerably.

Theorem 22 Let xx be the Fibonacci word, and let w be any overlap frecﬁ word in the Fibonacci language
L. Consider the transform T (xw), which replaces every occurrence of the word w in xg by the letter 2. Let
Y be the sequence (T (zr))~1(2), i.e., the positions of 2°s in T (xr). Then'Y is a generalized Beatty sequence
(i.e., for alln > 1Y (n) = p|ne| + gn + r) with parameters p, q,r, which can be explicitly computed.

Proof: As in the proof of Theorem 1] let zp = ro(w)r1 (w)re(w) ..., written as a concatenation of return
words of the word w. Now the distances between 2’s in 7 (zp) are equal to Iy := |ri(w)| — |w| + 1 and
Iy := |rao(w)| — |w| + 1. We can apply the converse of Lemma[dt solving the equations

2p+q=0L, p+tqg=1I

gives p =11 — la, ¢ = 2lo — l1. Inserting n = 1, we find that r = |ro(w)| —lo +1. O

Example 23 We take T : [001 — 2], with image T (zr) = 01201220120..., so Y = (3,6,7,10,...). Here
ro(w) = 01,7 (w) = 00101, ro(w) = 001. This givesly =5—-3+1=3lb=3-3+1=1,s0 p =2 and
g=-landr=2+1-1=2. SoY is the generalized Beatty sequence (Y,)n,>1 = (2[ng@] —n + 2)p>1.

The question arises whether not only T (zr)~1(2), but also 7 (zr)~1(0) and T (zr) (1) are generalized
Beatty sequences. In general this will not be true. However, this holds for 7 : [001 — 2]. Here it suffices to
prove this for 7 (zp)~1(1), since clearly T (zp)~1(0) = T (zr) (1) — 1.

Theorem 24 Let T : [001 — 2], and let Z = (Z(n))n>0 be the sequencdd Z = T (xp)~1(1) = 2t (1). Then,
for alln >0, one has Z(n) = |np| +2n + 2.

4This means that there are no ‘overlapping’ occurrences of w in zp, as, e.g., for w = 010
57 is the sequence A284624 with offset 0
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Proof: Since zxk, =01201220120 ...is the sequence obtained by replacing each word w = 001 by 2
in 2, we have by Theorem 2] that the positions of 2 in zk are given by V~=1(2) = (2|n¢] —n + 2),>1. By
Lemma A the difference sequence of V~1(2) equals the Fibonacci word on the alphabet {3,1}. The return
word structure of w = 001 is given by

ro(w) =01, ri(w)=00101, ro(w) = 001.

Let (Z(n))n>0 be the sequence of positions of 1 in the transformed Fibonacci word. Note that Z(0) = 2,
the 1 coming from ro(w). This is exactly the reason why it is convenient to start Z from index 0: the other
1’s are coming from the 71 (w)’s—mnote that ro(w) is mapped to 2. Since the distance between occurrences
of 2 in xk are given by the Fibonacci word 3 133 131331 ..., which codes the appearance of the
words 71 (w) and r2(w), we have to map the word w’ = 13 to 4 to obtain the distances between occurrences
of 1 in zk, obtaining the word u = 3 4 3 4 4 3 ... To obtain a description of u, we apply Theorem 21] a
second time with w’ = 13. We have ro(w’) = 3, r(w’) = 133, ro(w’) = 13. Solving 2p+ ¢ =13 =1y :=
|r1(w")] = |w'|+1=2,p+q= 1y = |ra(w)| — |w'|+1 =1 yields p = 1,q = 0. The conclusion is that positions
of 4 in w are given by the generalized Beatty sequence (|ng]| +1),>1. This forces that u is nothing else than
the Fibonacci word on {4, 3}, preceded by 3. But then Z is a generalized Beatty sequence with parameters
p and ¢ as solutions of 2p + ¢ = 4,p + ¢ = 3, which gives p =1, ¢ = 2. Since Z(1) =5, we must have r = 2,
which fits perfectly with the value Z(0) =2. O

Here is an example where 7 (z¢)~'(0) and T (zr)~'(1) are not generalized Beatty sequences.

Example 25 We take 7 : [00100 — 2], with image 7 (zp) = 010010121010010121012. .., 50 Y = (8,17,21...).
Here ro(w) = 0100101, 71 (w) = 0010010100101, ro(w) = 00100101. This gives I3 = 9,l1o = 4, so p = 5 and
g=—1and r =4. So Y is the generalized Beatty sequence (Y;,)n>1 = (5|n¢| —n +4),>1. The positions
of 0 are given by (7 (zr))~1(0) = 1,3,4,6,10,12,13,..., with difference sequence 2,1,2,4,2,1,..., so by
Lemma M this sequence is not a generalized Beatty sequence. However, it can be shown that (7 (zr))~1(0)

is a union of 4 generalized Beatty sequences, and the same holds for (7 (zr))~1(1).

Example 25 raises the question whether the sequences T (zr)~1(0) and 7 (zr)~*(1) are always finite unions
of generalized Beatty sequences. This can be proved—generalizing the proof of Theorem 24—under the
condition that

[ro(w)] < Jri(w)| —w|  (SRO).

For this generalization one needs the following proposition.

Proposition 26 Let w be a word from the Fibonacci language, and let ro(w)ry (w)re(w) ... be the return
sequence of w in the Fibonacci word xy. Then (1) ro(w) is a suffiz of ri(w), and (2) if ra2(w) = wta(w),
then ta(w) is a suffiz of r1(w).

Proof: Let sg = 1,51 = 00,89 = 101, s3 = 00100, . .. be the singular words introduced in [25]. According to
[13] Theorem 1.9.] there is a unique largest singular word s, occurring in w, so we can write w = p g 2, for
two words 1, 2 from the Fibonacci language. It is known—see [25] and the remarks after [13] Proposition
1.6.]— that the two return words of the singular word s, are

r1(sk) = SkSk41, T2(SK) = SkSk—1.
According to [I3] Lemma 3.1], the two return words of w are given by
ri(w) = pry (se)pyt,  ra(w) = para(sg)py b
Substituting the first equation in the second, we obtain the key equation
ri(w) = pasksppapy s r2(w) = paskseoipy (9)
Proof of (1):  We compare the return word decompositions of zg by s, and by w:

ro(sk)r (se)ra(se)ri(sk) -+ = ro(w)ry (w)ra(w)ry (w) -+ = ro(w)pry (se)py  para(se)py  pary (si)py ' - ..
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It follows that we must have 7o(sx) = ro(w)p1, and so ro(w) = ro(s)py *- By [L3, Lemma 2.3], ro(sx) equals
Sk+1, with the first letter deleted. Thus we obtain from Equation (@) that ro(w) is a suffix of ri(w).

Proof of (2): Since Sgp41 = Sp—18k—3Sk—1, by [25, Property 2], we can do the following computation,
starting from Equation ([@)):

—1 —1 —1 —1 —1 —1 —1 —1
ri(w) = pSkSk41Hy = WHy Sk41fly = WHy  Sk—18k—3Sk—1/l] = W[y Sk—1Sk—3H2H5 Sk—1/l1 -

For ro(w) we have
ra(W) = pisksp—1py " = why tsp_1py

Now note that in this concatenation 5 ! cancels against a suffix of w. We claim that it also cancels against
a prefix of sx_1. This follows, since by |13 Proposition 2.5] any occurrence of si in zp is directly followed
by a sg4+1 = Sk—15k—35k—1 with the last letter deleted. It now follows that to(w) = u;lsk_lufl, and we see
that this word is a suffix of 7 (w). O

Here is an example where the (SR0) condition is not satisfied.

Example 27 We take 7 : [10100 — 2], with image 7 (zp) = 01002100221002..., so Y = (5,9,10...).
Here ro(w) = 0100, 71 (w) = 10100100, 72(w) = 10100. The positions of 0 are given by (7 (zr))~1(0) =
1,3,4,7,8..., which can be written as a union of two generalized Beatty sequences, except that the 1 from
the first 0 will not be in this union.

With Equation (@) we can deduce an equivalent simple formulation of condition (SRO). If w = pqSgu2,
then 7o (w) equals sk+1u1_1 with the first letter removed, and r (w) = 1 Sk;S]gJ,.l/,Ll_l, SO

w| = [p1| + Fi + p2|,  [ro(w)| = Fer =[] =1, |ri(w)| = Fyr + Fi.
Filling this into condition (SRO) we obtain
lu2| <1 (SRO).

Using (SR0’), together with Theorem 6 in [25], one can show that the generalization of Theorem 24] does
apply to at most 3 words w of length m, for all m > 2 (in fact, only 2, if m is not a Fibonacci number).
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