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Abstract

We show how to generate random derangements with the expected distribution of cycle lengths by two different tech-
niques: random restricted transpositions and sequential importance sampling. The algorithms are simple to understand
and implement and possess a performance comparable with those of currently known methods. We measure the mix-
ing time (in the chi-square distance) of the randomized algorithm and our data indicate that τmix ∼ O(n logn), where
n is the size of the derangement. The sequential importance sampling algorithm generates random derangements
uniformly in O(n) time but with a small probability O(1/n) of failing.
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1. Introduction

Derangements are permutations σ = σ1 · · ·σn on n ≥ 2 labels such that σi 6= i for all i = 1, . . . ,n. Besides being
useful as permutations, derangements are important per se in a number of applications like in the testing of software
branch instructions and random paths and data randomization and experimental design (Edgington & Onghena, 2007;
Sedgewick & Flajolet, 2013). A recent review on the generation of random permutations appeared in Bacher et al.
(2017). A well known algorithm to generate random derangements is Sattolo’s algorithm, that outputs a random
cyclic derangement on n labels in O(n) time (Gries & Xue, 1988; Prodinger, 2002; Sattolo, 1986). An explicit O(2n)
algorithm to generate random derangements in general (not only cyclic derangements) has been given in Panholzer et
al. (2004) and Martı́nez et al. (2008). Algorithms to generate all n-derangements are also known (Baril & Vajnovszki,
2004; Korsh & LaFollette, 2004; Wilson, 2009).

In this letter we propose and test two procedures to generate random derangements with the expected distribu-
tion of cycle lengths: one based on the randomization of derangements and the other based on a simple sequential
importance sampling scheme. Simulations show that the randomized algorithm samples a derangement uniformly in
O(n logn) time while the sequential importance sampling algorithm does it in O(n) time but with a small probability
∼ O(1/n) of failing. The proposed algorithms do not use pre-calculated quantities or auxiliary data structures, being
straighforward to understand and implement.

2. Mathematical preliminaries

Let us briefly review some notation and terminology on permutations; for details see Charalambides (2002) and
James & Kerber (1981).

We denote the set (that forms a group under the operation of composition) of all permutations on n ≥ 2 labels
{1, . . . ,n} by Sn. We write an n-permutation in one-line notation as σ = σ1 · · ·σn, where σi = σ(i). A cycle of
length k ≤ n in a n-permutation σ is a sequence of indices i1, . . . , ik such that σi1 = i2, . . . , σik−1 = ik, and σik = i1,
completing the cycle. Fixed points are 1-cycles, while transpositions are 2-cycles. An n-permutation with ak cycles of
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length k, 1≤ k ≤ n, is said to be of type (a1, . . . ,an), with ∑k kak = n. For example, the 9-permutation 174326985 =
(8)(6)(34)(2795)(1) has 5 cycles and is of type (3,1,0,1), where we have omitted the trailing a5 = a6 = · · ·= a9 = 0.

The number of n-permutations with k cycles is given by the unsigned Stirling number of the first kind
[n

k

]
. We

have
[n

n

]
= 1, counting just the identity permutation (1)(2) · · ·(n),

[ n
n−1

]
=
(n

2

)
, counting n-permutations of n− 2

fixed points, that can be taken in
( n

n−2

)
=
(n

2

)
different ways, plus a transposition of the remaining two labels, and[n

1

]
= (n−1)!, the number of 1-cycle (or cyclic) n-derangements. It can be shown that

[n
2

]
= (n−1)!Hn−1, where Hn

is the n-th harmonic number. Other useful formulae involving Stirling numbers of the first kind are
[0

0

]
= 1,

[n
0

]
= 0,

and the recursion relation [
n
k

]
= (n−1)

[
n−1

k

]
+

[
n−1
k−1

]
. (1)

Obviously,
[n

1

]
+ · · ·+

[n
n

]
= n!.

Let us denote the set (that does not form a group) of all n-derangements by Dn. It is well known that

|Dn|= n!
(

1− 1
1!

+ · · ·+ (−1)n

n!

)
=
⌊n!+1

e

⌋
, n≥ 1, (2)

the so-called rencontres numbers (OEIS A000166). Let us also denote the set of k-cycle n-derangements, irrespective
of their type, by D

(k)
n . Note that D

(k)
n = ∅ for k > bn/2c. If we want to generate random n-derangements uniformly

over Dn = D
(1)
n ∪·· ·∪D

(bn/2c)
n , we must be able to generate k-cycle random n-derangements with probabilities

P(σ ∈D
(k)
n ) =

|D (k)
n |
|Dn|

. (3)

To calculate these probabilities we need to determine |D (k)
n |. Perusal of the inclusion-exclusion principle furnishes

|D (k)
n |=

k

∑
j=0

(−1) j
(

n
j

)[
n− j
k− j

]
. (4)

Equation (4) recovers |D (1)
n |=

[n
1

]
= (n−1)!, while we find that |D (2)

n |= (n−1)!(Hn−2−1) for n≥ 2. Accordingly,

already for small n (say, n≥ 8) we have P(σ ∈D
(1)
n )' e/n and P(σ ∈D

(2)
n )' (Hn−2−1)e/n.

3. Generating random derangements by random transpositions

Our first approach to generate random n-derangements correctly distributed over Dn consists in taking an initial
cyclic n-derangement and to scramble it by random restricted transpositions enough to obtain the required distribution.
By restricted transpositions we mean swaps σi↔ σ j avoiding pairs for which σi = j or σ j = i. Algorithm 1 describes
the generation of random n-derangements according to this idea, where mix ≥ n/2 is a constant establishing the
amount of restricted transpositions to be attempted and rnd is a computer generated pseudorandom uniform deviate
in (0,1).

The initial derangement in Algorithm 1 does not need to be cyclic, but this minimizes the risk of a careless imple-
mentation botching up the algorithm. We always start with the cycle 23 · · ·n1. The minimum number of transpositions
necessary to turn a cyclic n-derangement into a k-cycle n-derangement is k−1, 1≤ k≤ bn/2c, since transpositions of
labels that belong to the same cycle split it into two cycles,

(ab)(i1 · · · ia−1iaia+1 · · · ib−1ibib+1 · · · ik) = (i1 · · · ia−1ibib+1 · · · ik)(ia+1 · · · ib−1ia), (5)

and, conversely, transpositions involving labels of different cycles join them into a single one.

Remark 1. Algorithm 1 is applicable only for n ≥ 4, as it is not possible to connect the even permutations 231 and
312 by a single transposition.
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Algorithm 1 Random derangements by random restricted transpositions
Require: Cyclic n-derangement σ1 · · ·σn

1: mix← number of restricted transpositions to attempt
2: for s = 1 to mix do
3: i← drnd ·ne, j← drnd ·ne
4: if (σi 6= j)∧ (σ j 6= i) then
5: swap σi↔ σ j
6: end if
7: end for

Table 1: Proportion of n-derangements in D
(k)
n observed in 1010 samples generated by Algorithms 1 and 2 for n = 64. Data for Algorithm 2 are

based on a run that performed with a ratio of completed/attempted derangements of 0.985471. The notation n−a reads n×10−a. The last line of
the table gives runtimes for comparison.

Cycles Algorithm 1, nr. restricted transpositions attempted Algorithm 2 Exact
k n/2 n 2n n logn — Eqs. (2)–(4)
1 0.048055 0.042933 0.042479 0.042473 0.042475 0.042473
2 0.160153 0.158395 0.157691 0.157679 0.157684 0.157677
3 0.278164 0.260129 0.258787 0.258765 0.258788 0.258772
4 0.241317 0.252739 0.253304 0.253305 0.253306 0.253301
5 0.167413 0.167189 0.167621 0.167639 0.167622 0.167635
6 0.070203 0.079498 0.080390 0.080402 0.080389 0.080400
7 0.026470 0.028825 0.029192 0.029195 0.029196 0.029200
8 0.006457 0.008087 0.008269 0.008274 0.008272 0.008274
9 0.001498 0.001821 0.001868 0.001869 0.001868 0.001869

10 2.317−4 3.292−4 3.416−4 3.418−4 3.412−4 3.417−4
11 3.523−5 4.914−5 5.109−5 5.120−5 5.103−5 5.116−5
12 3.619−6 5.997−6 6.322−6 6.301−6 6.354−6 6.326−6
13 3.639−7 6.215−7 6.493−7 6.301−7 6.507−7 6.499−7
14 2.53−8 4.83−8 5.40−8 5.57−8 5.44−8 5.569−8
15 1.2−9 4.6−9 3.1−9 3.0−9 4.1−9 3.989−9
16 2−10 4−10 1−10 3−10 1−10 2.390−10

runtime (sec) 9357 11298 15068 25238 18954 –

We run Algorithm 1 for different values of mix≥ n/2 and collect data. Our results appear in Table 1. We choose
n = 64 because the difference between 2n = 128 and n logn = 266 is significant in this case. From Table 1 we clearly
see that mix = n/2 random restricted transpositions are unable to lead the initial cyclic derangement into higher k-
cycle derangements—there is an excess of probability mass in the lower k-cycle sets with k = 1,2, and 3. The same
imbalance can be noted, although less clearly, with mix= n random restricted transpositions. Figures for derangements
of higher cycle number fluctuate more due to the finite size of the sample. However, while the difference between
trying to scramble the initial cyclic n-derrangement by n and 2n restricted transpositions is significant, the difference
between attempting 2n or n logn restricted transpositions is much less pronounced. Our data suggest that Algorithm 1
can efficiently generate a random n-derangement correctly distributed on Dn in O(2n) time employing of the order of
4n pseudorandom numbers in the process. This is further discussed in Section 5.

Remark 2. It is a classic result that O(n logn) transpositions are needed before a shuffle becomes “sufficiently random”
(Aldous & Fill, 2002; Diaconis, 1988; Levin & Peres, 2017). A similar analysis for random restricted transpositions
over derangements is complicated by the fact that derangements do not form a group. Recently, the analysis of the
spectral gap of the Markov transition kernel of the process of restricted transpositions over derangements provided the
bound mix >Cn+an logn2, with a > 0 and C≥ 0 a decreasing continuous function (Smith, 2015). This bound results
from involved estimations and approximations and may not be very accurate. Related results appear in the remarkable
(and difficult) paper by Hanlon (1996). We are not aware of other rigorous results on this particular problem.
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Algorithm 2 Random derangements by sequential importance sampling
1: J←{1, . . . ,n}, d← 0
2: for i = 1 to n−1 do
3: choose j ∈ J \{i} uniformly at random
4: σi← j
5: J← J \{ j}
6: d← d +11{ j = n}
7: end for
8: if d > 0 then
9: σn← the remaining label j ∈ J

10: else
11: fail
12: end if

4. Sequential importance sampling of derangements

Algorithm 2 describes a sequential importance sampling (SIS) algorithm to generate random derangements in-
spired by the analogous problem of sampling contingency tables with restrictions (Chen et al., 2005; Diaconis et
al., 2001) as well as the problem of estimating the permanent of a matrix (Jerrum et al., 2004; Kuznetsov, 1996;
Rasmussen, 1994)—namely, the permanent of the n×n matrix with 0 on the diagonal and 1 elsewhere.

In the i-th iteration of the loop in Algorithm 2 (lines 2–7), σi can pick (lines 3–4) one of

|Ji|= n− i+
i−1

∑
j=1

11{σ j = n} (6)

available labels, where the indicator function 11{P}= 1 if P is true and 0 otherwise—i. e., σi can choose among either
n− i or n− i+1 labels, depending on whether in the i-th iteration label i itself has already been picked. Note that Ji
is never empty during the execution of the algorithm. This guarantees the construction of the n-derangement till the
last but one element σn−1. The n-derangement will be completed only if the last remaining label j 6= n, such that σn
does not pick n. Variable d (line 6) monitors this event: if after n− 1 choices no one picked label n, d = 0 and the
derangement failed. The probability that Algorithm 2 fails is thus given by

P(σn = n) = P(σ1 6= n)P(σ2 6= n | σ1 6= n) · · ·P(σn−1 6= n | σ1 6= n, . . . ,σn−2 6= n). (7)

Now, P(σi 6= n | · · ·) = 1−P(σi = n | · · ·) with (Algorithm 2, line 3)

P(σi = n | · · ·) = E
( 1
|Ji|

)
=

1
E(|Ji|)

, (8)

and since

E(|Ji|) = E
(

n− i+
i−1

∑
j=1

11{σ j = n}
)
= n− i+

i−1
n

(9)

we deduce that Algorithm 2 fails with probability

P(σn = n | · · ·) =
n−1

∏
i=1

(n−1)(n− i)−1
n(n− i)+ i−1

∼ O
(1

n

)
. (10)

According to (10), for n = 64 Algorithm 2 fails with probability 0.014492; compare this figure with the observed
failure rate 1−0.985471 = 0.014529 given in Table 1.
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5. Mixing times of the restricted transpositions shuffle

To shed some light on the question of how many random restricted transpositions are necessary to generate random
derangements uniformly over Dn, we investigate the convergence of Algorithm 1 numerically. This can be done by
monitoring the evolution of the empirical probabilities observed along the run of the algorithm towards the exact
probabilities given by (3)–(4).

Let ν be the measure that puts mass |D (k)
n |/|Dn| on the set D

(k)
n and µt be the empirical measure

µt(k) =
1
t

t

∑
s=1

11{σs ∈D
(k)
n }, (11)

where σs is the derangement obtained after attempting s restricted transpositions by Algorithm 1 on a given initial
derangement σ0. The chi-square distance between ν and µt is given by

d(t) = ‖µt −ν‖2,ν =
bn/2c

∑
k=1

[
µt(k)−ν(k)

]2
ν(k)

. (12)

Distance d(t) allows us to define τmix(ε) of the process as the time it takes for µt to fall within distance ε of ν ,

τmix(ε) = min{t ≥ 0 : d(t)< ε}. (13)

It is usual to define the mixing time τmix by setting ε = 1
4 or ε = e−1, a figure reminiscent of the spectral analysis of

Markov chains. In what follows we set ε = 1
4 .

Starting with a cyclic derangement, i. e., with µ0(1) = 1 and all other µ0(k) = 0, we run Algorithm 1 and measure
d(t) for some time. Figure 1 displays the average 〈d(t)〉 over 106 runs for n = 128. The behavior of 〈d(t)〉 does
not show any sign of the cutoff phenomenon (Aldous & Fill, 2002; Diaconis, 1988; Levin & Peres, 2017). Our data
indicate that

τmix ∼ O(n logn), (14)

which roughly agrees with the bound given in Smith (2015). Table 2 lists data for derangements of larger sizes; all
seem to behave like O(n logn) to leading order.

6. Summary

While a simple acception-rejection algorithm generates random derangements in O(n) with an acceptance rate
of ∼ e−1 ' 0.367, thus being O(e·n) (the cost of verifying if the permutation generated is a derangement is negligi-
ble), Sattolo’s O(n) algorithm only generates cyclic derangements, and Martı́nez-Panholzer-Prodinger algorithm, with

1 10 100 1000

0
1

2
3

4
5

6
7

t

〈d
(t

)〉

Figure 1: Chi-square distance 〈d(t)〉 (averaged over 106 runs) between the empirical measure µt and the stationary measure ν of the process defined
by Algorithm 1 for n = 128 with µ0(1) = 1. The dotted line indicates the level 1

4 , that meets 〈d(t)〉 at t = τmix = 861.
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Table 2: Measured mixing time τmix compared to n logn.
n τmix n logn τmix/n logn
64 543 266 2.04

128 861 621 1.39
256 1396 1420 0.98
512 2085 3194 0.65

1024 3347 7098 0.47

guaranteed uniformity, is 2n+O(log2 n), we described two procedures that are competitive for the efficient genera-
tion of random derangements. We found, empirically (Tables 1 and 2), that O(n logn) random restricted transpositions
suffice to spread an initial n-derangement correctly over Dn with the expected distribution of cycle lengths. In terms
of the amount of pseudorandom numbers employed, Algorithm 1 employs of the order of 2n logn pseudorandom
numbers and Algorithm 2 (SIS) employs n+O(1) pseudorandom numbers to generate an n-derangement uniformly
distributed over Dn. The advantage of the SIS algorithm is obvious.
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