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ON THE CARMICHAEL RINGS, CARMICHAEL

IDEALS AND CARMICHAEL POLYNOMIALS

SUNGHAN BAE, SU HU, AND MIN SHA

Abstract. Motivated by Carmichael numbers, we say that a fi-
nite ring R is a Carmichael ring if a|R| = a for any a ∈ R. We
then call an ideal I of a ring R as a Carmichael ideal if R/I is a
Carmichael ring, and a Carmichael element of R means it gener-
ates a Carmichael ideal. In this paper, we determine the structure
of Carmichael rings and prove a generalization of Korselt’s crite-
rion for Carmichael ideals in Dedekind domains. We also study
Carmichael elements of polynomial rings over finite fields (called
Carmichael polynomials) by generalizing various classical results.
For example, we show that there are infinitely many Carmichael
polynomials but they have zero density.

1. Introduction

1.1. Background and motivation. By Fermat’s Little Theorem, we

know that if p is a prime number, then ap ≡ a (mod p) for any integer

a. Thus, if an 6≡ a (mod n) for some integers n > 0 and a, then n must

be a composite integer. A composite integer n is called a Carmichael

number if an ≡ a (mod n) for any integer a ∈ Z. For example, the first

ten Carmichael numbers are (see the sequence A002997 in the OEIS

[18]):

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341.

One can completely characterize all Carmichael numbers using Ko-

rselt’s criterion.

Theorem 1.1 (Korselt’s criterion). A composite integer n is Carmichael

if and only if n is square-free and p− 1 | n− 1 for any prime p | n.
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In 1953, Knödel [11] gave an upper bound for the number of Carmichael

numbers up to x, which was improved by Erdös [5] later on. In 1994,

Alford, Granville and Pomerance [1] proved that there exist infinitely

many Carmichael numbers by providing a lower bound; see [6, 7] for

some further improvements. Moreover, Wright [21] showed that there

are infinitely many Carmichael numbers in each arithmetic progression

a modulo d for positive integers a, d with gcd(a, d) = 1; see [3, 12] for

some previous results. Recently, Wright [22] proved that for some fixed

integer m, there are infinitely many Carmichael numbers with exactly

m prime factors; in fact, there are infinitely many such m.

Recently, Steele [19] generalized Carmichael numbers to ideals in

number fields and proved a generalization of Korselt’s criterion for these

Carmichael ideals. He also showed that for any composite integer n,

there are infinitely many abelian number fields K with discriminant

relatively prime to n such that n does not generate a Carmichael ideal in

K. Besides, Schettler [16] generalized Carmichael numbers to elements

in a principal ideal domain.

In this paper, we want to generalize Carmichael numbers in a more

general setting including the generalizations of Steele and Schettler as

special cases, and then extend various classical or recent results about

Carmichael numbers.

1.2. Our considerations. We first introduce Carmichael order of an

element in a ring, which can be viewed as a generalization of the mul-

tiplicative order of a root of unity in a field.

Definition 1.2. Given a ring R, we define the Carmichael order of

an element a ∈ R to be the least integer n > 1 such that an = a if it

exists, and ∞ otherwise. We also define the Carmichael order of R to

be the least integer n > 1 such that an = a for any a ∈ R if such an n

exists, and ∞ otherwise.

By definition, all the idempotent elements of R are of Carmichael

order 2. If R is a field, then its elements of finite Carmichael order are

exactly the roots of unity in R.



3

We obtain a basic property of Carmichael order about its divisibility

in Theorem 2.1 and determine the structure of rings of finite Carmichael

order in Theorem 2.4.

We now introduce Carmichael rings.

Definition 1.3. A finite ring R is called a Carmichael ring if it is not

a field and a|R| = a for any a ∈ R.

According to a classical result of Jacobson (see [10, Theorem 11]), a

ring consisting of elements of finite Carmichael order is automatically

a commutative ring. So, Carmichael rings are also commutative rings.

If n is a Carmichael number, then the residue class ring Z/nZ is a

Carmichael ring, and its Carmichael order is λ(n) + 1, where λ is the

Carmichael function.

We determine the structure of Carmichael rings in Theorem 2.6,

which can be viewed as a generalization of Korselt’s criterion.

We also define Carmichael ideals of a ring.

Definition 1.4. An ideal I of a ring R is said to be a Carmichael ideal

if R/I is a Carmichael ring. An element of R is called a Carmichael

element if it generates a Carmichael ideal.

By definition, a Carmichael ideal of a commutative ring with identity

is not a maximal ideal.

We prove a generalization of Korselt’s criterion for Carmichael ideals

for Dedekind domains in Theorem 3.1 and also study the Carmichael

behaviour of ideals in the extensions of Dedekind domains.

We then consider Carmichael elements in polynomial rings over finite

fields and in function fields in Sections 4 and 5 respectively.

Throughout the paper, let Fq be the finite field of q elements, and

Fq[t] the polynomial ring of one variable over Fq. Following Defini-

tion 1.4, a polynomial g in Fq[t] is called a Carmichael polynomial if g

generates a Carmichael ideal in Fq[t].

We remark here that Hsu [9] introduced another concept of Carmichael

polynomials by using Carlitz modules, which is also a generalization of

Carmichael numbers. The difference is that when analogizing “an ≡
a (mod n)” for Fq[t], Hsu views the n in an as an element of the integer
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ring Z and an as “n acts on a”, but we view it as the cardinality of the

residue class ring Z/nZ.

In this paper, we have extended various results about Carmichael

numbers to Carmichael polynomials. For example, we establish the

Korselt criterion for these polynomials (see Theorem 4.1), and we ob-

tain lower and upper bounds for the number of monic Carmichael poly-

nomials of fixed degree (see Theorems 4.5 and 4.6). Then, one can see

that they have zero density.

Especially, we find two properties which do not hold for Carmichael

numbers. The first one is that any square-free polynomial in Fq[t] is

a factor of infinitely many Carmichael polynomials (see Theorem 4.2).

The other is that any Carmichael polynomial g remains Carmichael

in any finite Galois extension over Fq(t) with discriminant relatively

prime to g (see Theorem 5.1).

2. Carmichael order and Carmichael rings

In this section, we study Carmichael order and determine the struc-

ture of Carmichael rings.

We begin with a basic property of Carmichael order.

Theorem 2.1. Given a ring R, if a ∈ R is of finite Carmichael order

n, then for any integer m > 1, am = a if and only if n− 1 | m− 1.

Proof. For the necessity, we assume am = a. By definition, we have

m ≥ n. So, we can assume m > n without loss of generality. Write

m = k1n+r1 with k1 ≥ 1 and 0 ≤ r1 < n. Then, noticing an = am = a,

we have

a = am = ak1n+r1 = ak1+r1.

By definition, we have k1 + r1 ≥ n. If k1 + r1 > n, we write k1 + r1 =

k2n + r2 with k2 ≥ 1 and 0 ≤ r2 < n, then similarly we also have

ak2+r2 = a. If k2 + r2 > n, then we proceed the above process again

and again until we obtain integers kj , rj such that akj+rj = a and

kj + rj = n. Then, since kj + rj ≡ 1 (mod n − 1), we have for any

1 ≤ i ≤ j,

ki + ri ≡ 1 (mod n− 1).
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Thus, we obtain m ≡ 1 (mod n− 1), that is, n− 1 | m− 1.

We are now going to prove the sufficiency. Since n − 1 | m − 1, we

write m = k(n − 1) + 1 for some positive integer k. We further write

k = kjn
j + · · · + k1n + k0 with j ≥ 0, kj ≥ 1 and 0 ≤ ki ≤ n − 1 for

each 0 ≤ i ≤ j. Noticing an = a, we have

am = ak(n−1)+1 = a(kjn
j+···+k1n+k0)(n−1)+1

= a((kj−1)nj+···+k1n+k0)n+1+nj+1−(kjn
j+···+k1n+k0)

= a((kj−1)nj+···+k1n+k0)n+1 · anj+1−(kjn
j+···+k1n+k0)

= a(kj−1)nj+···+k1n+k0+1 · anj+1−(kjn
j+···+k1n+k0)

= an
j+1+1−nj

= a(n−1)nj+1 = a(n−1)+1 = an = a,

where we also use the inequalities: (kj − 1)nj + · · ·+ k1n+ k0 + 1 ≥ 1

and nj+1 − (kjn
j + · · ·+ k1n+ k0) ≥ 1. This completes the proof. �

From Theorem 2.1, we know that the Carmichael order of a ring

is equal to the maximum of the Carmichael orders of its elements.

However, a ring R, consisting of elements having finite Carmichael

order, might have infinite Carmichael order. For example, choosing R

to be the algebraic closure of the finite field Fq.

Corollary 2.2. Assume that R is a ring of finite Carmichael order n.

Then, for any integer m > 1, am = a for any a ∈ R if and only if

n− 1 | m− 1.

From Corollary 2.2, one can see that if a finite ring R is not a field,

then it is a Carmichael ring if and only if it is of finite Carmichael order

n for some integer n > 1 such that n− 1 | |R| − 1.

The Carmichael order of a ring also has connection with its character.

Theorem 2.3. Assume that R is a ring of finite Carmichael order n.

Then, the character of R is a square-free integer, and for each of its

prime factors p, we have p− 1 | n− 1.

Proof. Let c be the character of R. Since R is of finite Carmichael

order n, for any integer k ≥ 1 and any a ∈ R, we have

ka = (ka)n = knan = kna,
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and so (kn − k)a = 0. This means that the character c is a positive

integer, and c | kn − k for any integer k ≥ 1. In particular, for any

prime factor p of c, we have c | pn−p. Thus, c is square-free. Moreover,

for any prime factor p of c, since p | kn − k for any integer k ≥ 1, we

must have p− 1 | n− 1. �

We now want to characterize rings of finite Carmichael order.

Theorem 2.4. Let R be a ring with identity. Then, R is of finite

Carmichael order n if and only if the natural homomorphism

σ : R →
∏

M

R/M, a 7→ (a, . . . , a),

is injective, where M runs through all the maximal ideals of R, each

R/M is a finite field, and |R/M| − 1 divides n − 1 (n is the smallest

integer greater than 1 and satisfying this property).

Proof. For the necessity, R is of finite Carmichael order n. For a ∈ R,

if σ(a) = 0, then a ∈ M for each maximal ideal M of R. Besides,

since an = a, we have (1 − an−1)a = 0. If 1 − an−1 is not a unit,

then there eixsts a maximal ideal, say M0, such that 1 − an−1 ∈ M0,

and so 1 ∈ M0 (because a ∈ M0), which leads to a contradiction. So,

we must have that 1 − an−1 is a unit, and thus a = 0. Hence, σ is

injective. Moreover, since R/M is a field and each of its elements has

finite multiplicaitve order (by assumption), we must have that R/M

is a finite field. In addition, due to an = a for any a ∈ R/M, we

see that |R/M| − 1 divides n − 1. The minimality of n follows from

Corollary 2.2.

Conversely, by assumption the ring
∏

MR/M has Carmichael order

n. Note that σ is injective. So, R is also of Carmichael order n. �

We remark that in Theorem 2.4 since |R/M|−1 divides n−1, there

are only finitely many distinct finite fields among all the finite fields

R/M.

Corollary 2.5. Let R be a ring with identity. If R is a ring of finite

Carmichael order n, then the exponent of its unit group is equal to

n− 1.
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Furthermore, in Theorem 2.4 if R has only finitely many maximal

ideals, then by the Chinese remainder theorem σ is in fact an isomor-

phism. Note that a finite ring has only finitely many maximal ideals.

We now can easily determine the structure of Carmichael rings follow-

ing from Theorem 2.4.

Theorem 2.6. Let R be a finite ring with identity. Then, R is a

Carmichael ring if and only if

R ∼= Fq1 × · · · × Fqk

for some integer k ≥ 2, and for each 1 ≤ i ≤ k, Fqi is a finite field

of qi elements and qi − 1 | |R| − 1 (the Carmichael order of R is the

smallest integer n > 1 such that qi − 1 | n− 1 for each 1 ≤ i ≤ k).

The following corollary suggests that there exist rings R such that

any non-trivial ideal of R is not a Carmichael ideal.

Corollary 2.7. Let Fq1,Fq2,Fq3 be three distinct finite fields, and let

R = Fq1×Fq2×Fq3. Then, any non-trivial ideal of R is not a Carmichael

ideal.

Proof. Note that a field has only trivial ideals, and a Carmichael ring

is not a field. We only need to consider the ideals of R isomorphic

to Fq1,Fq2,Fq3. So, it suffices to show that the following rings are not

Carmichael rings:

Fq1 × Fq2, Fq1 × Fq3, Fq2 × Fq3.

For example, consider the ring Fq1 ×Fq2, if it is a Carmichael ring, then

by Theorem 2.6 we have

q1 − 1 | q1q2 − 1, q2 − 1 | q1q2 − 1,

which implies q1 = q2. This contradicts with the assumption that Fq1

and Fq2 are two distinct finite fields. �

3. Carmichael ideals in Dedekind domains

In this section, we consider Carmichael ideals in Dedekind domains.
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Suppose that OK is a Dedekind ring, and K is the fraction field of

OK . For any ideal n of OK , denote

NK(n) = |OK/n|.

From Definition 1.4, an ideal n of OK is a Carmichael ideal if and only

if n is a composite ideal, NK(n) is finite, and for all α in OK , we have

αNK(n) ≡ α (mod n).

Using Theorem 2.6, it is easy to get a necessary and sufficient con-

dition for an ideal to be a Carmichael ideal in OK , generalizing The-

orem 1.1 and also Korselt’s criterion in number field case (see [19,

Theorem 2.2]).

Theorem 3.1 (Korselt’s criterion for Dedekind rings). A composite

ideal n is a Carmichael ideal of OK if and only if

(1) n is square-free,

(2) NK(n) is finite,

(3) NK(p)− 1 divides NK(n)− 1 for any prime ideal p | n.

Proof. Suppose that n has the prime factorization:

n = pe11 pe22 · · ·pess ,

where each pi, 1 ≤ i ≤ s, is a prime ideal of OK . By the Chinese

Reminder Theorem, we have

OK/n = OK/p
e1
1 ×OK/p

e2
2 × · · · × OK/p

es
s .

From Theorem 2.6, we get what we want. �

We now consider Carmichael ideals in the extensions of Dedekind

domains. By Theorem 3.1 we only need to consider square-free ideals.

Theorem 3.2. Suppose that L is a finite separable extension over K

of degree d, n is a square-free ideal of OK, and NK(n) is finite. Let OL

be the integral closure of OK in L. Then, nOL is Carmichael in OL if

and only if

(1) nOL is a composite ideal,

(2) n is relatively prime to the discriminant Disc(L/K),
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(3) for each prime ideal p | n and any prime ideal P of OL lying

above p, we have NK(p)
f(P)−1 | NK(n)

d−1, where f(P) is the

residue class degree of P in L/K.

Proof. We first prove the necessity by using some basic properties of

Dedekind domains. Since nOL is Carmichael in OL, by Theorem 3.1

we have that nOL is a composite and square-free ideal. That is, all

the prime factors of n are unramified in L/K, which means that n is

relatively prime to the discriminant Disc(L/K). Besides, for each prime

ideal p | n and any prime ideal P of OL lying above p, by Theorem 3.1

we have that NL(P)− 1 divides NL(nOL)− 1. We complete the proof

of this part by noticing NL(P) = NK(p)
f(P) and NL(nOL) = NK(n)

d.

Conversely, one can prove the sufficiency directly by using Theo-

rem 3.1. �

As in [19, Theorem 2.3], the following is a generalization of Fermat’s

Little Theorem to the case of Dedekind domains.

Corollary 3.3. Let L be a finite Galois extension of K . Suppose that

p is a non-zero prime ideal of OK, NK(p) is finite, and p does not

divide the discriminant Disc(L/K). Then, we have

αNL(pOL) ≡ α (mod pOL)

for all α ∈ OL. That is, the ideal pOL is either prime or Carmichael.

Proof. Since L is a finite Galois extension of K, for any prime ideal P

of OL we have f(P) | d, where d = [L : K]. So, automatically we have

NK(p)
f(P)− 1 | NK(p)

d− 1 for any prime ideal p of OK lying below P.

The rest follows from Theorem 3.2 and definition. �

4. Carmichael polynomials over finite fields

In this section, we study Carmichael polynomials in Fq[t].

A Korselt’s type criterion for Carmichael polynomials follows directly

from Theorem 3.1.

Theorem 4.1 (Korselt’s criterion for polynomials). A composite poly-

nomial g ∈ Fq[t] is a Carmichael polynomial if and only if
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(1) g is square-free,

(2) for any irreducible factor P of g, deg P | deg g.

Proof. We only need to mention the second condition. When g is a

Carmichael polynomial, then by Theorem 3.1, for any irreducible factor

P of g we have that qdegP − 1 divides qdeg g − 1, which is equivalent to

degP | deg g. �

From Theorem 4.1, we know that any polynomial of prime degree

greater than q is not a Carmichael polynomial. It is also easy to see that

there are infinitely many Carmichael polynomials in Fq[t]. Besides, for

any integer m ≥ 2, there are infinitely many Carmichael polynomials

having exactlym irreducible monic factors; for example, one can choose

polynomials having exactly m irreducible monic factors of the same

degree.

In fact, we can construct Carmichael polynomials starting from any

square-free polynomial. However, the analogue is not true for Carmichael

numbers (because all Carmichael numbers are odd).

Theorem 4.2. Let u ∈ Fq[t] be a square-free polynomial. Let g, h ∈
Fq[t] satisfy g 6= 0 and gcd(g, h) = 1. Then, there are infinitely many

square-free monic polynomials w whose irreducible monic factors are

all congruent to h modulo g such that uw are Carmichael polynomials.

Proof. Let m be the least common multiple of deg u and the degrees

of all the irreducible factors of u. By Dirichlet’s theorem on primes

in arithmetic progressions in Fq[t] (see [15, Theorem 4.8]), we know

that for any sufficiently large integer d, in the arithmetic progression

h modulo g there exist dm− deg u − 1 irreducible monic polynomials

P1, . . . , Pk (k = dm−deg u−1) of degree dm and an irreducible monic

polynomial Q of degree dm− deg u. Then, we obtain square-free poly-

nomials uP1 · · ·PkQ of degree dm(dm − deg u), which are Carmichael

polynomials by Theorem 4.1. �

As a consequence, we can confirm the infinitude of Carmichael poly-

nomials in arithmetic progressions.
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Corollary 4.3. Given two polynomials g, h ∈ Fq[t] with g 6= 0, as-

sume that gcd(g, h) is either equal to 1 or square-free. Then, there are

infinitely many Carmichael monic polynomials congruent to h modulo

g.

Proof. By assumption and using Dirichlet’s theorem on primes in arith-

metic progressions in Fq[t], we have that for any sufficiently large in-

teger d, there are square-free monic polynomials u ∈ Fq[t] of degree d

such that u ≡ h (mod g). Fix such a polynomial u. By Theorem 4.2,

we see that there are infinitely many square-free monic polynomials

w whose irreducible monic factors are all congruent to 1 modulo g

such that uw are Carmichael polynomials. By construction, we have

uw ≡ h (mod g). This completes the proof. �

We remark that in Corollary 4.3, if gcd(g, h) = 1, then for any suffi-

ciently large integer d, we can construct such Carmichael polynomials

of the form P1P2, where P1, P2 are irreducible monic polynomials of the

same degree satisfying P1 ≡ h (mod g) and P2 ≡ 1 (mod g).

However, it is not true that for any composite integer n, there exist

Carmichael polynomials of degree n. We can confirm this explicitly

and further obtain some quantitative results.

We first make some preparations.

For any integer n ≥ 1, let πq(n) be the number of monic irreducible

polynomials of degree n in Fq[t]. It is well-known that (for instance,

see [15, Corollary of Proposition 2.1])

(4.1) πq(n) =
1

n

∑

d|n

µ(d)qn/d,

where µ is the Möbius function. By [13, Lemma 4], we have

(4.2)
qn

n
− 2

qn/2

n
≤ πq(n) ≤

qn

n
, πq(n) ≥

qn

2n
.

Moreover, we have:

Lemma 4.4. If q ≥ 4, πq(n) is strictly increasing with respect to n ≥ 1.

Besides, both π2(n) and π3(n) are strictly increasing with respect to

n ≥ 2.
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Proof. If q ≥ 5, then for any n ≥ 1, using (4.2) we have

πq(n) ≤
qn

n
<

qn+1

2(n+ 1)
≤ πq(n+ 1).

If q = 4, we similarly have for any n ≥ 2,

π4(n) ≤
4n

n
<

4n+1

2(n+ 1)
≤ π4(n+ 1).

From (4.1) we directly have π4(1) = 4 and π4(2) = 6, and so π4(1) <

π4(2).

If q = 3, we again have for any n ≥ 3,

π3(n) ≤
3n

n
<

3n+1

2(n+ 1)
≤ π3(n+ 1).

Using (4.1), we get π3(1) = 3, π3(2) = 3 and π3(3) = 8, and thus

π3(2) < π3(3).

If q = 2, using (4.2) we also have for any n ≥ 4,

π2(n) ≤
2n

n
<

2n+1

n+ 1
− 2

2(n+1)/2

n+ 1
≤ π2(n + 1).

From (4.1) we obtain π2(1) = 2, π2(2) = 1, π2(3) = 2 and π2(4) = 3,

and so π2(2) < π2(3) < π2(4). �

For any integer n ≥ 1, let Cq(n) be the number of Carmichael monic

polynomials in Fq[t] of degree n. By Theorem 4.1, if n is a prime

number and n ≤ q, then considering the product of n distinct linear

monic polynomials, we have

Cq(n) =

(

q

n

)

;

otherwise if n is a prime and n > q, we have Cq(n) = 0.

Theorem 4.5. Let n be a composite integer and ℓ the smallest prime

factor of n. Then, Cq(n) = 0 if and only if (q, n) = (2, 9). If (q, n) 6=
(2, 9), then Cq(n) = 1 if and only if (q, n) = (2, 4); and moreover, we

have

Cq(n) ≥
qn

(2n)ℓ
.

Proof. Since π2(1) = 2, π2(2) = 1 and π2(3) = 2, by Theorem 4.1 we

have C2(4) = 1, C2(9) = 0.
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If πq(n/ℓ) > ℓ, then we can choose polynomials g to be the product of

ℓ distinct irreducible monic polynomials of degree n/ℓ. By Theorem 4.1,

they are Carmichael polynomials. Counting these polynomials, we have

(4.3) Cq(n) ≥
(

πq(n/ℓ)

ℓ

)

≥ πq(n/ℓ) > ℓ ≥ 2.

So, it remains to find the condition when πq(n/ℓ) > ℓ.

If q ≥ 3, using (4.2) and noticing qm > 2m2 for any integer m ≥ 1,

we obtain

πq(n/ℓ) ≥
qn/ℓ

2n/ℓ
>

2(n/ℓ)2

2n/ℓ
= n/ℓ ≥ ℓ.

Similarly, if q = 2, using (4.2) and noticing 2m > 2m2 for any integer

m ≥ 7, we obtain for n/ℓ ≥ 7,

π2(n/ℓ) ≥
2n/ℓ

2n/ℓ
>

2(n/ℓ)2

2n/ℓ
= n/ℓ ≥ ℓ.

If n/ℓ ≤ 6, then ℓ ≤ 6, and so n ≤ 36. Thus, we only need to consider

composite integers n ≤ 36. There are only three cases ℓ = 2, 3, or 5.

If ℓ = 2 and n ≥ 8, by Lemma 4.4 we have π2(n/2) ≥ π2(4) = 3 > 2.

If ℓ = 3 and n ≥ 15, by Lemma 4.4 we have π2(n/3) ≥ π2(5) = 6 > 3.

Now, if ℓ = 5, then n ≥ 25, and we have π2(n/5) ≥ π2(5) = 6 > 5.

So, it remains to consider n = 6 when q = 2. By (4.1), it is easy to

see that π2(6/2) = 2 and C2(6) = 5.

Hence, πq(n/ℓ) > ℓ (and so (4.3)) holds for q ≥ 3, or q = 2 and

composite n 6= 4, 6, 9.

Collecting the above considerations, if (q, n) 6= (2, 4), (2, 9), then

πq(n/ℓ) ≥ ℓ, and so, by (4.3) we have

Cq(n) ≥
(

πq(n/ℓ)

ℓ

)

,

which, together with (4.2), implies that

Cq(n) ≥
(

πq(n/ℓ)/ℓ
)ℓ ≥ qn/(2n)ℓ.

This inequality also covers the case (q, n) = (2, 4) since C2(4) = 1. �

Now, we want to get an upper bound for Cq(n), which implies that

the natural density of Carmichael polynomials is zero.
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Theorem 4.6. Let n be a composite number. Then, for any 0 < ε <

1/2, there exists a contant c(q, ε) such that if n > c, we have

Cq(n) ≤
qn

n1/2−ε
.

Proof. We first arrange all the proper factors d1, . . . , dr of n as follows:

1 = d1 < d2 < · · · < dr < n,

where r is the number of proper factors of n. We define a subset of

r-tuples of non-negative integers:

T (n) = {(k1, . . . , kr) : k1d1 + · · ·+ krdr = n, k1 ≤ q}.

Note that since d1 = 1, for each tuple (k1, . . . , kr) in T (n), k1 is fixed

when k2, . . . , kr are all fixed.

For any Carmichael monic polynomial of degree n, by definition the

degree of each of its irreducible monic factors divides n, and so it corre-

sponds to one tuple in T (n) by collecting the degrees of its irreducible

factors. Conversely, every tuple (k1, . . . , kr) in T (n) corresponds to
(

πq(d1)

k1

)

· · ·
(

πq(dr)

kr

)

distinct Carmichael monic polynomials of degree n.

Hence, using (4.2) we obtain

Cq(n) =
∑

(k1,...,kr)∈T (n)

(

πq(d1)

k1

)

· · ·
(

πq(dr)

kr

)

≤
∑

(k1,...,kr)∈T (n)

πq(d1)
k1 · · ·πq(dr)

kr

≤
∑

(k1,...,kr)∈T (n)

qk1d1

dk11
· · · q

krdr

dkrr
= qn

∑

(k1,...,kr)∈T (n)

1

dk22 · · ·dkrr
.

(4.4)

So, it remains to estimate the summation

S(n) =
∑

(k1,...,kr)∈T (n)

1

dk22 · · · dkrr
.

Note that for each tuple (k1, . . . , kr) ∈ T (n), we have ki ≤ n/di for

each 2 ≤ i ≤ r and

(4.5) n− q ≤ k2d2 + · · ·+ krdr ≤ n.
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Put

W (n) =
r
∏

i=2

(1 +
1

di
+

1

d2i
+ · · ·+ 1

d
n/di
i

).

Clearly, S(n) is a part of the summation W (n) (after expanding the

products). In the sequel, we estimate S(n) by distinguishing the main

part of W (n).

To estimate W (n), we first have

logW (n) < log
r
∏

i=2

1

1− 1/di
= −

r
∑

i=2

log(1− 1/di)

=
r

∑

i=2

( 1

di
+

1

2d2i
+

1

3d3i
+ · · ·

)

<

r
∑

i=2

( 1

di
+

1

d2i

)

≤ σ(n)

n
− 1− 1

n
+

∫ n

1

x−2 dx < σ(n)/n,

where σ(n) as usual is the sum of all the factors of n. Using a classical

result of Robin [14, Théorème 2] that

σ(n)

n
< exp(γ) log log n+

0.6483

log log n
, n ≥ 3,

where γ is the Euler-Mascheroni constant (γ = 0.577215664901532 . . .),

we directly have for n ≥ 268

σ(n)

n
< 2 log log n− 0.2189 log logn +

0.6483

log log n
< 2 log log n.

Hence, we obtain

(4.6) W (n) < (logn)2, n ≥ 268.

Now, we want to find the main part ofW (n). For a fixed 0 < ε < 1/2,

let j ≥ 1 be the unique index satisfying

1 = d1 < d2 < · · · < dj < (n− q)(1−ε)/2 ≤ dj+1 < · · · < dr.

For each 2 ≤ i ≤ r, let

mi = ⌊((n− q)/di)
2ε/(1+ε)⌋.
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Then, since

j
∑

i=2

midi ≤ (n− q)2ε/(1+ε)

j
∑

i=2

d
(1−ε)/(1+ε)
i

< (n− q)2ε/(1+ε)

∫ (n−q)(1−ε)/2

1

x(1−ε)/(1+ε) dx

< (n− q)2ε/(1+ε) · (n− q)(1−ε)/(1+ε) = n− q,

in view of (4.5) we know that any summation term of

V (n) =

j
∏

i=2

(1 +
1

di
+

1

d2i
+ · · ·+ 1

dmi
i

)

(after expanding the products) does not appear in S(n). Thus, we have

(4.7) S(n) ≤ W (n)− V (n).

It suffices to estimate W (n)− V (n).

For each 2 ≤ i ≤ j, we have

1

dmi+1
i

+
1

dmi+2
i

+ · · ·+ 1

d
n/di
i

<
1/dmi+1

i

1− 1/di
=

1

(di − 1)dmi
i

≤ 2−mi ≤ 21−(n−q)ε .

(4.8)

On the other hand, for each j + 1 ≤ i ≤ r we have

1

di
+

1

d2i
+ · · ·+ 1

d
n/di
i

<
1/di

1− 1/di
=

1

di − 1

≤ 1

(n− q)(1−ε)/2 − 1
.

(4.9)

Therefore, combining (4.8), (4.9) with (4.6), we deduce that

W (n)− V (n) ≤
j

∑

i=2

( 1

dmi+1
i

+
1

dmi+2
i

+ · · ·+ 1

d
n/di
i

)

W (n)

+

r
∑

i=j+1

( 1

di
+

1

d2i
+ · · ·+ 1

d
n/di
i

)

W (n)

≤
(

21−(n−q)ε + ((n− q)(1−ε)/2 − 1)−1
)

(log n)2τ(n),

(4.10)
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where τ(n) is the number of factors of n. For τ(n), a classical result of

Wigert says that (see, for instance, [2, Theorem 13.12])

τ(n) = nO(1/ log logn).

Hence, for sufficiently large n (depending on q, ε), (4.10) becomes

(4.11) W (n)− V (n) ≤ n−1/2+ε.

Finally, the desired result follows from (4.4), (4.7) and (4.11). �

Corollary 4.7. The natural density of Carmichael monic polynomials

in Fq[t] is zero. That is, we have

lim
n→∞

Cq(1) + Cq(2) + · · ·+ Cq(n)

qn
= 0.

Finally, we extend the concept of Carmichael polynomials as the

integer case.

Recall that for any integer d ≥ 1, a rigid Carmicahel number of

order d is a composite square-free integer n satisfying pi − 1 | nd − 1

for all primes p | n and all 1 ≤ i ≤ d (see [8] or the comments after

Theorem 2.7 in [19]). It is conjectured that there are infinitely many

rigid Carmichael numbers of order d for any d ≥ 2.

Similarly, we define a rigid Carmichael polynomial of order d in Fq[t]

to be a reducibe square-free polynomial g ∈ Fq[t] satisfying i degP |
d deg g for any irreducible polynomial P dividing g and any i = 1, . . . d.

For example, let g = P1P2 with degPi = 3 and d = 3, then g is a

Carmichael polynomial of order 3 in Fq[t].

Theorem 4.8. For any positive integer d, there exist infinitely many

rigid Carmichael monic polynomials of order d in Fq[t].

Proof. We only need to consider the case when d ≥ 2. Fix a positive

integer d ≥ 2. Let m be the least common multiple of 1, 2, . . . , d. For

any positive integer n satisfying πq(n) ≥ m, we can construct polyno-

mials g = P1 · · ·Pm, where P1, . . . , Pm are distinct monic irreducible

polynomials of degree n. Then, deg g = mn. Thus, for any 1 ≤ j ≤ m

and 1 ≤ i ≤ d, we have i degPj = in | d deg g = dmn, and so g is

a rigid Carmichael polynomial of order d. Letting n go to ∞, we get

infinity many such polynomials g. This completes the proof. �
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5. Carmichael elements in function fields

Let K be a function field (that is, a finite extension over Fq(t)), and

let OK be the ring of integers of K. We say that an element α ∈ OK is

Carmichael inK if α is a Carmichael element ofOK (see Definition 1.4).

In this section, as the number field case [19], we consider the following

questions:

(1) For any function fieldK, does it have infinitely many Carmichael

elements?

(2) For any square-free polynomial g in Fq[t], is it Carmichael in in-

finitely many function fields with discriminant relatively prime

to g?

(3) For any square-free polynomial g in Fq[t], is it not Carmichael

in infinitely many function fields with discriminant relatively

prime to g?

We give a definite answer to the first question (see Corollary 5.4 below)

and some partial answers to the second and third questions whose

answers we conjecture are both positive.

First, we consider the case of Carmichael polynomials in Fq[t].

Theorem 5.1. Let g be a Carmichael polynomial in Fq[t]. Then, g is

Carmichael in any finite Galois extension over Fq(t) with discriminant

relatively prime to g.

Proof. Suppose that K is a finite Galois extension over Fq(t) with de-

gree d and discriminant Disc(K). For any irreducible factor P of g,

let f(P ) be the residue class degree of P in K/Fq(t). Due to the

choice of K, we have f(P ) | d. Since g is relatively prime to Disc(K),

each irreducible factor of g is unramified in K/Fq(t). Note that g is

a Carmichael polynomial in Fq[t]. Then, the ideal gOK is square-free,

and for any irreducible factor P of g, we have degP | deg g. Given a

prime ideal p of K lying above P , we have

NK(p) = NFq(t)(P )f(P ) = qf(P ) deg P .

Then, noticing NK(gOK) = qddeg g and f(P ) degP | d deg g, we have

NK(p)− 1 | NK(gOK)− 1.
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Hence, from Theorem 3.1, g is Carmichael in K. �

We remark that the number field case does not have a similar result

as the above theorem; see [19, Theorem 3.1].

However, a Carmichael polynomial might not be Carmichael in in-

finitely many function fields. More generally, we have:

Theorem 5.2. Let g be a square-free polynomial in Fq[t] of odd degree.

Assume that 3 ∤ q and 3 ∤ q−1. Then, g is not Carmichael in infinitely

many cubic function fields over Fq(t) with discriminant relatively prime

to g.

Proof. By assumption, we can choose an irreducible factor, say P , of

g such that the degree degP is odd. Noticing that 3 ∤ q and 3 ∤ q − 1,

we have 3 | qdegP + 1. We choose two distinct irreducible polynomials

G,H ∈ Fq[t] not dividing g such that

G ≡ H (mod P ).

Let D = GH2. So, D is a cube modulo P . Let K be the cubic function

field generated by 3
√
D, which is a cubic root of D over Fq(t). Then,

the discriminant of K/Fq(t) is −27G2H2 (see [16, page 610]), which

is indeed relatively prime to g. Then, by [16, Theorem 3.1], we have

that POK is a product of two distinct prime ideals in OK , say p1 and

p2. So, for the residue class degrees f(p1) and f(p2), one of them is

equal to 2, say f(p1). Clearly, NK(p1) = qf(p1) degP = q2 degP , and

NK(gOK) = q3 deg g. Noticing 2 ∤ 3 deg g, we have

NK(p1)− 1 ∤ NK(gOK)− 1,

which implies that g is not Carmichael in K by Theorem 3.1. We

conclude the proof by noticing that there are infinitely many choices

of polynomials G,H . �

Similar as Theorem 5.1, we have:

Theorem 5.3. Let g be a rigid Carmichael polynomial of order d in

Fq[t]. Then, g is Carmichael in any finite extension over Fq(t) with

degree d whose discriminant is relatively prime to g.
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We now answer the question about the infinitude of Carmichael ele-

ments in any function field.

Corollary 5.4. For any finite extension K over Fq(t), there are infin-

itely many Carmichael elements in K.

Proof. Fix a positive integer d ≥ 2. Let K be an arbitrary finite ex-

tension over Fq(t) of degree d. Let m be the least common multiple of

1, . . . , d. Denote by S(m) the set of polynomials which are the product

of m distinct irreducible polynomials of the same degree. As in the

proof of Theorem 4.8, each polynomial in S(m) is a rigid Carmichael

polynomial of order d in Fq[t]. Obviously, there are infinitely many

polynomials in S(m) relatively prime to Disc(K). We conclude the

proof by using Theorem 5.3. �

From now on, we consider the case of non-Carmichael square-free

polynomials in Fq[t].

The following result suggests that a non-Carmichael square-free poly-

nomial can be Carmichael in infinitely many functions fields.

Theorem 5.5. Let g ∈ Fq[t] be a square-free polynomial. Let ℓ be any

prime factor of q − 1 (it requires q ≥ 3). Let Pi (1 ≤ i ≤ s) be all the

monic irreducible factors of g whose degrees do not divide the degree

of g, and we further assume that degPi = ℓ (1 ≤ i ≤ s). Then, there

exist infinitely many cyclic extensions of degree ℓ whose discriminants

are relatively prime to g such that g is Carmichael in them.

Proof. From Dirichlet’s theorem on primes in arithmetic progressions

in Fq[t] (see [15, Theorem 4.8]), there exist infinitely many irreducible

monic polynomials Q of even degree such that Q is relatively prime to

g and
(

Pi

Q

)

ℓ

= 1 (1 ≤ i ≤ s),

where
(

·
·

)

ℓ
be the ℓ-th power residue symbol in Fq[t] (see [15, page

24]). From the ℓ-th power reciprocity law in Fq[t] (see [15, Theorem

3.3]), we have
(

Q
Pi

)

ℓ
= 1 (1 ≤ i ≤ s) by noticing degQ is even.

Using [15, Proposition 10.5], each Pi (1 ≤ i ≤ s) splits completely in
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K = Fq(t)(
ℓ
√
Q). Thus, if p is any prime factor of gOK lying above

some Pi (1 ≤ i ≤ s), we have f(Pi) = 1 and

NK(p)− 1 = qdegPi − 1 = qℓ − 1 | qℓdeg g − 1 = NK(gOK)− 1.

If p is any prime factor of gOK lying above a monic irreducible factor

P of g such that P 6= Pi (1 ≤ i ≤ s). Then, we have degP | deg g by

assumption, and so

NK(p)− 1 = qf(P ) deg P − 1 | qℓ deg g − 1 = NK(gOK)− 1,

where f(P ) is the residue class degree of P in K/Fq(t) and f(P ) | ℓ.
Hence, by Theorem 3.1, g is Carmichael in K. �

As one can imagine, a non-Carmichael square-free polynomial in Fq[t]

is more likely not to be Carmichael in infinitely many function fields.

We confirm this by constructing two kinds of function fields: Kummer

function fields and cyclotomic function fields.

Theorem 5.6. Let g ∈ Fq[t] be a non-Carmichael square-free polyno-

mial. Let ℓ be any prime factor of q − 1. Then, there exists infinitely

many cyclic extensions of degree ℓ whose discriminants are relatively

prime to g such that g is not Carmichael in them.

Proof. Since g ∈ Fq[t] is a non-Carmichael square-free polynomial, by

Theorem 4.1 g has a monic irreducible factor, say P , such that deg P ∤

deg g.

Let η be a primitive ℓ-th root of unity in F∗
q. As before, there exist

infinitely many irreducible monic polynomials Q of even degree such

that Q is relatively prime to g and
(

P
Q

)

ℓ
= η. From the ℓ-th power

reciprocity law of Fq[t] and noticing degQ is even, we have
(

Q
P

)

ℓ
= η.

Using [15, Proposition 10.5] and noticing η 6= 1, we know that P is

inert in K = Fq(t)(
ℓ
√
Q). For the prime ideal p in K lying above P ,

noticing degP ∤ deg g we have

NK(p)− 1 = qℓdeg P − 1 ∤ qℓ deg g − 1 = NK(gOK)− 1.

Hence, from Theorem 3.1, g is not Carmichael in K. �
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Note that Theorem 5.6 does not cover the case when q = 2. We

supplement this by using cyclotomic function fields. First we recall

briefly the definition of cyclotomic function fields.

Let Fq(t) be the algebraic closure of Fq(t). Let End(Fq(t)) be the

ring of Fq-algebra endomorphism of Fq(t). Let

ρ : Fq[t] → End(Fq(t)), M 7→ ρM

be the ring homomorphism defined by

ρa(α) = aα, ρt(α) = tα + αq,

where a ∈ Fq and α ∈ Fq(t). For any non-constant polynomial M ∈
Fq[t], define

ΛM = {α ∈ Fq(t) : ρM (α) = 0}.
Then, the function field generated by ΛM over Fq(t) is called the M-th

cyclotomic function field, denoted by Fq(t)(ΛM). Note that the degree

of Fq(t)(ΛM) over Fq(t) is equal to Φ(M) = |(Fq[t]/MFq[t])
∗|, where

Φ is the Euler φ-function in Fq[t] (see [15, page 5]). In [15, Chapter

12] and [20, Chapter 12] there are nice expositions to the arithmetic of

cyclotomic function fields.

We also need a result of Bilharz [4] on Artin’s primitive root conjec-

ture in function fields; see [15, Chapter 10] for more details.

Theorem 5.7 (Bilharz). Let K be a function field and α an element

of K∗. Then, there are infinitely many prime ideals p in K for which

α is a primitive root provided that there is no prime factor ℓ of q − 1

such that α is an ℓ-th power.

We are now ready to present our final result.

Theorem 5.8. Let g ∈ Fq[t] be a non-Carmichael square-free polyno-

mial. Then, there exist infinitely many cyclotomic function fields whose

discriminants are relatively prime to g such that g is not Carmichael

in them.

Proof. By assumption, g has an irreducible monic factor, say P , such

that degP ∤ deg g. By Theorem 5.7, there exist infinitely many irre-

ducible monic polynomials Q relatively prime to g such that P is a
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primitive root modulo Q. Fix any such Q, and let K = Fq(t)(ΛQ). By

[15, Theorem 12.10], the residue class degree f(P ) of P in K/Fq(t) is

the smallest integer such that P f(P ) ≡ 1 (mod Q). Note that P is a

primitive root modulo Q. So, f(P ) = Φ(Q) = [K : Fq(t)], and thus P

is inert in K/Fq(t). For the unique prime ideal p in K lying above P ,

noticing degP ∤ deg g we obtain

NK(p)− 1 = qΦ(Q) deg P − 1 ∤ qΦ(Q) deg g − 1 = NK(gOK)− 1.

Hence, by Theorem 3.1, g is not Carmichael in K. �
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