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ASPECTS OF THE TOPOLOGY AND COMBINATORICS OF HIGGS BUNDLE

MODULI SPACES

STEVEN RAYAN

Abstract. Based on a mini-course given by the author at the University of Illinois at
Chicago in October 2016, these notes provide an introduction to basic questions and
techniques surrounding the topology of the moduli space of stable Higgs bundles on
a Riemann surface. Through examples, we demonstrate how the structure of the co-
homology ring of the moduli space leads to interesting questions of a combinatorial
nature.
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1. INTRODUCTION

Nonabelian Hodge theory realizes an equivalence between three types of objects in
geometry and topology: representations of the fundamental group of a complex projec-
tive manifold, flat connections on that manifold, and Higgs bundles on that same man-
ifold. The first type of object is topological, the second records the smooth geometry
of the manifold, and the third is holomorphic. The nonabelian Hodge correspondence
can be formulated into a diffeomorphism of appropriately-defined moduli spaces of
these objects. One of the nice features of working on the “Higgs” side is the existence of
a Hamiltonian U(1)-action — equivalently, an algebraic C⋆-action, depending on how
exactly one constructs the moduli space. By localization, one can at least in principle
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2 STEVEN RAYAN

compute numerical topological invariants of the Higgs bundle moduli space using this
action and then possess, by virtue of nonabelian Hodge theory, these invariants for all
three moduli spaces.

While the U(1)-action provides a place to get started, the localization calculation
does not scale easily, with explicit results revealing themselves readily only in low rank,
even when we restrict to Riemann surfaces. That being said, the structure of the fixed-
point locus hints at interesting combinatorics lurking in the cohomology ring of the
moduli space, some of which we see below. The fact that the structure of the cohomol-
ogy ring lies at the centre of a number of conjectures in mirror symmetry [34] (some of
which have been recently addressed [27, 26]) makes these combinatorial questions even
more intriguing.

In this article, we present some basic concepts and examples surrounding the prob-
lem of computing topological invariants of Higgs bundle moduli spaces. For simplicity,
we restrict to the Betti numbers of the rational cohomology ring. The article is based
more or less on a mini-course given by the author at the first “Workshop on the Geom-
etry and Physics of Higgs Bundles”, held in October 2016 at the University of Illinois at
Chicago. The mini-course consisted of three lectures and three problem sessions. The
presentation in the article, much as in the mini-course, is somewhat bare bones and in-
volves only traditional Morse-Bott theory. For Higgs bundles this is by now “old hat”,
having been supplanted by a number of refinements or wholly different techniques,
including arithmetic harmonic analysis; wall-crossing techniques; and motivic and p-
adic integration. These techniques have led to explicit results about the cohomology
that once seemed quite far away. It is difficult to provide a complete list of references on
these developments, although here are some that reflect the evolution of these develop-
ments: [32, 47, 30, 31, 21, 48, 57, 49, 46, 27].

The mini-course had been delivered for an audience of mostly beginning graduate
students. These notes have been written with similar considerations in mind. We imag-
ine that the reader possessing some basic Riemann surface theory — including Jaco-
bians, Čech cohomology, Serre duality, and the Riemann-Roch theorem for holomor-
phic vector bundles — will get the most from these notes.

Acknowledgements. I thank Laura Schaposnik for organizing the series of workshops
in which the mini-course took place, and both her and Lara Anderson for encouraging
the preparation of these notes. With regards to the workshops, I acknowledge support
from UIC NSF RTG Grant DMS-1246844, the UIC Start-Up Fund of L. Schaposnik, and
the grants NSF DMS 1107452, 1107263, 1107367 RNMS: GEometric structures And Rep-
resentation varieties (the GEAR Network). I am grateful to Marina Logares, who gave a
mini-course in parallel to mine, for insightful discussions as well as to Laura Fredrickson
for useful comments on the manuscript during its prepration.

2. BACKGROUND ON HIGGS BUNDLES

Higgs bundles originated in mathematical inquiries into gauge theories in the 1970s
and 1980s but can also be understood in a mostly algebraic way. We briefly examine
both points of view here, with an aim to understanding roughly the geometric features
of the moduli space of Higgs bundles.
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2.1. Gauge theory. From this point forward, X is a smooth compact Riemann surface.
For now, the genus g of X is at least 2. We use the symbols OX and ωX for the trivial
line bundle and cotangent bundle of X , respectively. Higgs bundles originally arose
as solutions of the Hitchin equations or “self-duality equations” on X [37]. These are
self-dual, dimensionally-reduced Yang-Mills equations written on a smooth Hermitian
bundle of rank r ≥ 1 and degree 0 on X . We will use E for this bundle and h for the
metric. The equations take the form

F (A)+φ∧φ∗ = 0(1)

∂Aφ = 0.(2)

In the equations, A is a connection on the bundle (unitary with regards to h), F is its
curvature, and φ is a smooth bundle map from E to E ⊗ωX , called a Higgs field. The
equations are trivially satisfied by a flat connection A with φ= 0. Equation (1) says that,
whenever A is not flat, its curvature (1,1)-form should be expressible in terms of φ and
its Hermitian adjoint. Equation (2) says that φ should be holomorphic with respect to
the holomorphic structure on E induced by A. The equations can be altered appropri-
ately, involving a constant central curvature term on the right side of (1), in order to
accommodate an arbitrary degree d ∈ Z. Throughout, we will assume that r and d are
coprime.

Now, assume that E is a holomorphic bundle on X together with a holomorphic sec-
tion φ ∈ H 0(X ,End(E )⊗ωX ). We refer to such a pair as a Higgs bundle. One can ask:
when does the data (E ,φ) arise from a solution to the Hitchin equations? In other words,
when does there exist a Hermitian metric h on the underlying smooth bundle and a uni-
tary connection A such that the holomorphic structure on E is induced by (h, A) and
(A,φ) is a solution of the Hitchin equations for h? The answer is a numerical condi-
tion on the pair (E ,φ), asking that the following inequality holds: for each subbundle
0(U ( E for which φ(U )⊆U ⊗ωX , we must have

deg(U )

rank(U )
<

deg(E )

rank(E )
.

Such U are said to be φ-invariant and the ratio in question is referred to as the slope
of U . If the inequality is satisfied for all such U , we say that the Higgs bundle (E ,φ) is
stable. (The edge case where equality is permitted, known as semistability, is eliminated
by the earlier coprime assumption.)

This correspondence is an example of what are now generally referred to as Kobayashi-
Hitchin correspondences, relating bundles with special metrics to ones with algebro-
geometric restrictions. As an equivalence of moduli spaces, on one side we have the
space of solutions (A,φ) of (1) and (2) for (E ,h) taken up to gauge equivalence, which
are orbits of the conjugation action of the group of smooth unitary diffeomorphisms of
E . This quotient has the structure of a smooth, non-compact manifold. On the Higgs
bundle side, we have the space of all stable pairs (E ,φ) with underlying smooth bundle
E taken up to isomorphism, which is given by the conjugation action of the group of
holomorphic automorphisms of E . This quotient has the structure of a non-singular,
quasiprojective variety.

The gauge-theoretic side can be interpreted as an infinite-dimensional hyperkähler
quotient, in the sense of [39]. Here, the hyperkähler moment maps are the left side of (1)
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and the real and imaginary parts of the left side of (2). The quotient inherits a hyperkäh-
ler metric, compatible with three quaterionically-commuting complex structures. It is
an immediate consequence that the moduli space is Calabi-Yau, although it is not com-
pact. The moduli variety on the other side of the correspondence, which we denote by
MX (r,d), can be interpreted as a geometric-invariant theory quotient, with its stability
condition given by our notion of “stable” above. Indeed, this is exactly the condition
required to form a Hausdorff moduli space here.

This correspondence generalizes the earlier one of Narasimhan-Seshadri [50], which
relates flat bundles to stable holomorphic bundles. At the same time, the Kobayashi-
Hitchin correspondence can be viewed as a “fourth corner” in nonabelian Hodge theory,
extending the equivalence to one between flat connections, representations of π1(X ),
Higgs bundles, and solutions of Hitchin’s equations.

For our purposes (and until we introduce some tools from differential topology in
Section 3), we will lean in an algebro-goemetric direction and concentrate on Higgs
bundles and MX (r,d). For a deeper discussion of the gauge theory, including an ex-
ploration of recent results concerning the global properties of the hyperkähler metric,
we refer the reader to [20] in the same collection of mini-course articles — as well as of
course Hitchin’s original article [37]. Regarding nonabelian Hodge theory in particular,
we refer the reader to works of Simpson [60, 61] and to recent surveys such as [64, 22].

One common preference is to fix the determinant of the Higgs bundle, which means
taking ∧r

E to be some fixed degree-d line bundle. This takes us from the vector bundle
(i.e. GL(r,C)) situation to principal SL(r,C)-Higgs bundles. Accordingly, the Higgs field
should be taken to be trace-free, which we denote by φ ∈ H 0(X ,End0(E )⊗ωX ). We will
use M

0
X (r,d) to denote this moduli space, i.e. that of stable SL(r,C)-Higgs bundles with

fixed determinant of degree d .

2.2. Deformation theory. The first piece of topological information to compute about
MX (r,d) is its dimension. For this, we can use deformation theory. Let us assume, to
begin with, that we are working with SL(r,C)-Higgs bundles. To such a Higgs bundle
(E ,φ), we can associate a deformation complex determined by the Čech co-differential
δ on E and the Higgs field itself. We can view the Higgs field as a map that acts on Lie-
algebra-valued forms by the Lie bracket on the Lie algebra part and by the wedge prod-
uct on the form part. In our situation, where the Higgs field is a section of ad(E )⊗ωX

∼=
End0(E )⊗ωX , the fact that ωX ∧ωX = 0 on a curve means that the map (∧φ)2 is always
zero and hence is a co-differential for our purposes. (For X of higher dimension, this is
one motivation for including an extra condition on Higgs bundles, namely that φ satis-
fies φ∧φ= 0.)

The tangent space to the moduli space at a stable pair (E ,φ) is the hypercohomology
H1 of a double complex associated to the two co-differentials. One gets that dimCH

1 is
a sum of two numbers. The first is the dimension of

ker H 1(X ,End 0(E ))
∧φ
−→ H 1(X ,End 0(E )⊗ωX ),

which is a subspace of the usual tangent space to the moduli space of stable bundles.
Here, we only want deformations of the holomorphic structure on the bundle for which
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φ is still holomorphic itself. The second number is the dimension of

H 0(X ,End0(E )⊗ωX )

im H 0(X ,End0(E ))
∧φ
−→ H 0(X ,End0(E )⊗ωX )

,

which captures deformations of the Higgs field. (See [9], for example, for how to obtain
these.)

It is a consequence of stability that the map

∧φ : H 0(X ,End0(E ))−→H 0(X ,End0(E )⊗ωX )

is injective. (See, for instance, Remark 2.8 in [64].) It then follows by duality that the map

∧φ : H 1(X ,End 0(E ))−→H 1(X ,End 0(E )⊗ωX )

is surjective.

Exercise1 1. Show that dimCM
0
X (r,d) = 2(r 2 −1)(g −1).

With this in place, it is easy to reason in a number of ways that dimCMX (r,d) =
2r 2(g − 1) + 2. (The difference between the two dimensions is 2g , which is the sum
of the dimension of the Jacobian of X and number of linearly independent 1-forms on
X — the latter accounts for removing the trace from φ.)

2.3. Examples. The Kobayashi-Hitchin correspondence allows us to construct exam-
ples of solutions to Hitchin’s equations as Higgs bundles, simply by combining a holo-
morphic bundle with a Higgs field φ that fails to preserve “bad” subbundles with excess
slope. One can achieve this by constructing a Higgs field that leaves no proper subbun-
dle invariant whatsoever. In fact, if E = L is a holomorphic line bundle on X , then
any φ has this property, and so a line bundle with a section φ ∈ H 0(X ,L ⊗L

∗⊗ωX ) =
H 0(X ,ωX ), which is nothing more than a holomorphic one-form, is an example of a
Higgs bundle.

Exercise 2. Show that MX (1,d) is homeomorphic to R2g × (S1)2g and that M
0
X (1,d) is

just a point.

A more interesting example comes from considering the rank-2, degree-0 split bun-
dle E ∼= ω1/2

X ⊕ω−1/2
X , where ω1/2

X is a choice of holomorphic square root of ωX . (There
are 22g such line bundles on X .) The anti-diagonal Higgs field

φ=
(

0 α

1 0

)

preserves neither summand of E , and so is stable. Here, 1 is interpreted as the identity
endomorphism for ω1/2

X . The section α is a quadratic differential on X . Hence, we have
injective maps from H 0(X ,ω⊗2

X ) into M
0
X (2,0) and MX (2,0). Through the Hitchin equa-

tions, the existence of this particular family of Higgs bundles induces a uniformizing
metric on X , as in Hitchin’s paper [37].

1Hint: Each of the two numbers that must be summed to give dimCH1 can be expressed as a difference,
owing to the injectivity and surjectivity properties. These differences can be rearranged in such a way that
Riemann-Roch can be applied.
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2.4. Hitchin fibration. The principal tool for understanding the structure of MX (r,d) is
the Hitchin map, which is nothing more than the map that assigns to each Higgs bundle
the characteristic polynomial (interpreted correctly) of its Higgs field. We write

Θ : MX (r,d) −→Ar :=
r

⊕

i=1
H 0(X ,ω⊗i

X )

defined by sending the isomorphism classs of (E ,φ) to the r -tuple of coefficients of the
characteristic polynomial, each of which is a section of a respective tensor power of ωX .
The codomain Ar is an affine space called the Hitchin base. The map Θ is proper and
thus fibres MX (r,d) by compact subvarieties, the Hitchin fibres. This properness result
was established for the space MX (2,d) by Hitchin [37]. In general, see [51].

This gives us a very coarse idea of how the moduli space “looks”: it is an affine space
populated by compact fibres, the generic ones certainly being smooth. Can we sharpen
this? To do so, we take a closer look at the characteristic polynomial of a given φ —
namely, we want to understand the geometry of its roots. Denote by |ωX | the total space
of ωX ; by (x, y(x)), a local coordinate on |ωX | (x is “horizontal” and y is “vertical”); and
by p, the bundle projection ωX → X . The bundle ρ∗ωX on |ωX | has a natural section
w given by w(x, y(x)) = y(x), where the output value is seen as living in the copy of the
fibre (ωX )x attached to itself at y(x) in the pullback bundle. This is the so-called Seiberg-
Witten differential. These objects allow us to define:

Definition 2.1. The spectral curve determined by a = (a1, . . . , ar )∈Ar is the 1-dimensional
subvariety Xa ⊂ |ωX | given by the zero locus of the polynomial

w r (y)+a1(p(y))w r−1(y)+·· ·+ar (p(y)).

For a sufficiently general choice of a, Xa is a non-singular curve ramified over X with
order r . In other words, it is an r : 1 branched cover and so we have fashioned a new
Riemann surface, related to X , from data in the Hitchin base Ar . Now, consider any line
bundle L on Xa . The direct image p∗L is a locally-free sheaf of rank r and hence can be
identified as the sheaf of sections of a holomorphic bundle E → X . The Seiberg-Witten
differential, thought of as acting by

w |Xa : L−→L ⊗p∗ωX

: s 7−→ s · y

on the line bundle, pushes forward to a linear map between the sheaves E and E ⊗ωX .
In other words, we have constructed a Higgs field φ for the bundle E , and so the data of
a line bundle on Xa leads to a Higgs bundle on X . In the opposite direction, a Higgs bun-
dle (E ,φ) on X determines a tuple a ∈Ar through the Hitchin map. This tuple generates
a spectral curve Xa , which is exactly the spectrum of φ, producing distinct eigenvalues
at most points x ∈ X (corresponding to the r sheets of Xa , branching wherever there
are repeated eigenvalues). The eigenspaces of φ, which are generically 1-dimensional,
form a sheaf L on Xa , which can be shown to be a line bundle. (See Proposition 4.2 (2)
in Chapter 2 of [40].)

Essentially, we have that an isomorphism class of holomorphic line bundles [L] on X
is equivalent to the data of an isomorphism class of Higgs bundles [(E ,φ)] on X . This
is the spectral correspondence as developed in [38, 6, 16, 15]. It follows from it that the
generic fibre Θ

−1(a) is isomorphic to the Jacobian variety of Xa . This Jacobian, however,
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is not typically the space of degree 0 line bundles on Xa . Rather, their degree is shifted
by the ramification. The actual degree e is given by

e = d − (1− g ′)+ r (1− g ),

where g ′ is the genus of Xa . We denote this Jacobian by Jace (Xa) — it has the same di-
mension regardless of the value of e.

Exercise2 3. Derive the above formula for e.

Since the genus g ′ of Xa is equal to the complex dimension of its Jacobian and since
Θ
−1(a) ∼= Jace (Xa) for generic a ∈ Ar , we can obtain the genus of the generic spectral

curve by subtracting the dimension of Ar from the dimension of the moduli space. For
each power of ωX , Riemann-Roch reads as

h0(X ,ω⊗i
X )−h0(X ,ω⊗1−i

X ) = (2i −1)(g −1).

For each i > 1, ω⊗1−i
X has degree (1− i )(2g −2) > 0 and so h0(X ,ω⊗1−i

X ) vanishes, leaving
us with

h0(X ,ω⊗i
X ) =

{

g if i = 1
(2i −1)(g −1) if i > 1

It follows that
dimCAr = r 2(g −1)+1.

We observe that this is exactly half the dimension of MX (r,d), and so g ′ is also r 2(g −
1)+1. In the SL(r,C) case, we subtract h0(X ,ωX ) = g from the dimension of Ar (to re-
move the trace). We denote this reduced based by A

0
r . At the same time, we recall that

we subtract 2g from the dimension of MX (r,d) to get that of M
0
X (r,d), and so the half-

dimensionality of the base persists here. (The spectral curve has the same genus as in
the GL(r,C) case, but the Jacobian is replaced with a smaller-dimensional Prym variety.)

For an example, let us examine the moduli space M
0
X (2,0). According to the for-

mulas derived above, it has dimension 6g − 6; the generic spectral curve has genus
g ′ = 4g −3, which is also the dimension of the base A

0
2 ; and the degree of the relevant

line bundles on the spectral curve is e = 3g −6. The Hitchin base is just H 0(X ,ω2
X ), the

space of quadratic differentials, which are the possible determinants of φ. If we take
X of genus g = 2 specifically, then the moduli space is 6-dimensional, fibering over a
3-dimensional base, with X covered 2 : 1 by a smooth genus g ′ = 5 curve Xa for each
generic a ∈ H 0(X ,ω2

X ). By the spectral correspondence, line bundles of degree e = 0
push forward from Xa to produce stable Higgs bundles on X . Recall now the family of
Higgs bundles E ∼=ω1/2

X ⊕ω−1/2
X with

φ=
(

0 α

1 0

)

that live in this moduli space. The map Θ sends φ=
(

0 α

1 0

)

to −α ∈ H 0(X ,ω2
X ). These

Higgs fields form the Hitchin section, intersecting each Hitchin fibre in exactly one point.
From the spectral point of view, there is a special line bundle on each Xa that pushes for-
ward to produce an element of this family.

2Hint: Use the Riemann-Roch Theorem in combination with properties of the pushforward operation
between two smooth curves, one a branched cover of the other.
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2.5. Integrable system. The moduli space is a fibration in a different way. If NX (r,d) is
the moduli space of stable bundles of rank r and degree d (stable here means that all
proper subbundles must satisfy the slope condition), then the tangent space TE (NX (r,d))
at some bundle E is

H 1(X ,End(E ))
Serre∼= H 0(X ,End(E )⊗ωX )∗

and so the cotangent bundle to NX (r,d) is contained inside the moduli space of Higgs
bundles. It is important to note there are stable Higgs bundles (E ,φ) for which the vec-
tor bundle E alone is unstable and so the projection MX (r,d) −→ NX (r,d) is only de-
fined above those Higgs bundles with stable underlying bundle. The symplectic form on
T ∗

NX (r,d) can, however, be canonically extended to one on MX (r,d). (The complex
structure on T ∗

NX (r,d) also extends to MX (r,d) in a compatible way, producing one
of the complex structures making up the hyperkähler structure on the moduli space.)

Hitchin proved in [38] that this symplectic structure on MX (r,d) is an algebraically
completely integrable Hamiltonian system. In particular, the real and imaginary parts of
the components of the Hitchin mapΘ are functionally-independent, Poisson-commuting
functions, of which there are sufficiently-many due to the half-dimensionality of Ar ,
thereby providing a complete set of Hamiltonians. The Hitchin fibres are the Liouville
tori of the dynamical system. Many known integrable systems can be realized as Hitchin
systems, with flows linearizing on the Hitchin fibres. (It is often necessary to allow the
genus to be 0 or 1 and to puncture X so that φ develops poles at the punctures. This
leads naturally to the parabolic Higgs bundle story, cf. [1, 10]. See also for [44] for
Hitchin-type integrable systems in which ωX is replaced with other line bundles.)

3. U(1)-ACTION

The coarse description above is not enough to tell us the global topology of the Hitchin
fibration. The fibration is nontrivial, due to the presence of special degenerate fibres,
and so the global topology is not simply that of a generic torus fibre (unless r = 1 — see
Exercise 2). It turns out that only one special fibre really matters: this is the one that we
call the “nilpotent cone”, as we will see below.

To study the topology, we could regard the moduli space as the gauge-theoretic mod-
uli space of solutions to Hitchin’s equations, in which case we would employ Morse the-
ory for a suitable height function. For us, this would be the L2-norm on MX (r,d), which
is a multiple of f (E ,φ) = ‖φ‖2 coming from the Kähler metric associated to the complex
structure extended from T ∗

NX (r,d) (cf. [37, 23]). Here, we are concerned with critical
points of f . If we regard the moduli space as the quasiprojective variety MX (r,d), as we
have been doing up until now, then we can employ Białynicki-Birula theory [7] for an
algebraic group action. For us, this is the action

λ · (E ,φ) = (E ,λ ·φ)

of C⋆. Here, we are concerned with fixed points of the action. A compromise of sorts is
to take the compact group U(1) ⊂C⋆, for which the height function is a moment map.

We denote by MX (r,d)U(1) the fixed points of the action. A stable Higgs bundle
(E ,φ) belongs to MX (r,d)U(1) if and only if there exists a automorphism Aλ of E so that
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AλφA−1
λ

= eiθφ for each λ ∈ [0,2π). In other words, a Higgs bundle is fixed if and only
there is a change of basis that undoes the action of U(1). We would like to have a useful
description of these fixed points.

3.1. Holomorphic chains. Now, suppose that (E ,φ) ∈ MX (r,d)U(1). If Aλ is the one-
parameter family of transformations that corrects for the action, then there is a limiting
endomorphism Λ that generates this family infinitesimally, i.e.

Λ := Dλ(Aλ)|λ=0 ,

where Dλ is a suitably-defined derivative.

Exercise3 4. Show that
[

Λ,φ
]

= iφ.

It is also possible to argue that, if ∂A is a C-linear operator that determines the holo-
morphic structure on E , e.g. an operator induced by the unitary connection A satisfy-
ing Hitchin’s equations, then ∂A and Λ must be simultaneously diagonalizable. (This
comes from the fact that automorphisms Aλ act trivially by conjugation on the holo-
morphic structure, by definition of the U(1)-action.) It follows that E decomposes into
eigenspaces of Λ.

We will call these eigenspaces B1, . . . ,Bn . Geometrically speaking, these are holo-
morphic subbundles of E . Likewise, the eigenvalues of Λ are global holomorphic func-
tions on X : s1, . . . , sn , respectively. Now, we take some Bk and apply both sides of the
identity from Exercise 4 to it. We find

Λ(φBk ) = (sk + i )(φBk),

where i =
p
−1. This indicates that the image of Bk under the Higgs field is a subbun-

dle of the eigen-bundle for eigenvalue sk + i . In turn, this implies that the eigenspaces
are grouped into sequences, with their eigenvalues ordered as sk , sk + i , sk + 2i , and
so on. These sequences terminate when the image of an eigen-bundle under φ is zero
(or when we reach the last eigen-bundle). It can be shown that the existence of mul-
tiple, disconnected sequences for a fixed point would violate stability, as stable Higgs
bundles are irreducible in the sense that they cannot decompose into proper, nonzero
Higgs subbundles. Hence, it follows that for a rank-r Higgs bundle (E ,φ) ∈MX (r,d)U(1),
there exists a number n such that E =

⊕n
k=1 Bk and

B1
φ1−→B2 ⊗ωX

φ2−→ ···
φn−1−→ Bn ⊗ (ωX )⊗(n−1) φn−→ 0,

where φk =φ|Bk and φk is not identically zero for k < n.

A Higgs bundle admitting a description such as above is referred to as a holomorphic
chain, cf. [2, 12, 3, 21]. Equivalently, such Higgs bundles can be regarded as complex
variations of Hodge structure — see [60].

3Hint: Differentiate the fixed-point equation AλφA−1
λ

= eiθφ using the same derivative.
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This description says that we can write a fixed point in a basis of sections where φ

has the blocks φi arranged sub-diagonally:

φ=

















0 0 · · · 0 0
φ1 0 · · · 0 0
0 φ2 · · · 0 0

. . .
0 0 · · · φn−1 0

















Such a matrix is nilpotent and so every fixed point belongs to the Hitchin fibre Θ
−1(0),

which is what we refer to as the nilpotent cone. In general, not every point in the nilpo-
tent cone is fixed: only those admitting a strict block sub-diagonal (or super-diagonal)
description are fixed.

Exercise 5. Show that a Higgs bundle (E ,φ) with strict block sub-diagonal Higgs field
is necessarily fixed under the U(1)-action.

If (E ,φ) ∈ MX (r,d)U(1), then there is a well-defined n-tuple (r1, . . . ,rn) that encodes
the ranks of the Bk subbundles — this is the rank vector of the fixed point.

3.2. Localization. The key result for us is that the total space of the Hitchin fibration
MX (r,d) deformation retracts, via the gradient flow of the moment map of the U(1)-
action, onto Θ

−1(0) [29]. In terms of invariants, the cohomology ring localizes to the
fixed-point locus inside Θ

−1(0). The Poincaré series P[MX (r,d)] that generates the Betti
numbers of the rational cohomology H•(MX (r,d),Q) will be a weighted sum of the
Poincaré series P[Ci ] of the connected components Ci , i ∈ I , of the fixed-point locus.
Also, let

ι : MX (r,d)U(1) →N

be the function that assigns to each fixed point the number of negative eigenvalues of
the Hessian of f at that point, where f is again the moment map. This function ι is
constant on each Ci as per Lemma 9.2 in [34] and so the natural number ι(Ci ) is well-
defined. It is also worth noting that the rank vector (r1, . . . ,rn) is constant on connected
components of the fixed-point locus, as are the degrees of the Bk ’s.

Computing ιwill be an important ingredient in the weighted sum that yields P[MX (r,d)].
Thinking of ι as the dimension of the “downward” subbundle of the normal bundle to
MX (r,d)U(1) at a fixed point, we can obtain the value of ι by taking a deeper look at the
deformation theory from Section 2.2 in the case of a fixed point (cf. Section 2.1 of [54]).
When (E ,φ) is fixed, so that a decomposition into an ordered sequence of subbundles
Bk exists, the action of φ is with weight 1 with respect to this sequence, i.e.

φk : Bk −→Bk+1 ⊗ωX .

In other words, elements

θ ∈
H 0(X ,End0(E )⊗ωX )

im H 0(X ,End0(E ))
∧φ−→ H 0(X ,End0(E )⊗ωX )
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that act with weight ℓ= 1 with respect to the sequence form part of the tangent space at
(E ,φ) to MX (r,d)U(1). The other part comes from the elements

β ∈ ker H 1(X ,End 0(E ))
∧φ
−→ H 1(X ,End 0(E )⊗ωX )

that act with weight m = 0 on the sequence, preserving the holomorphic structure of
each Bk . (Since the Higgs field is nilpotent, we can use End 0 here regardless of whether
the group is GL(r,C) or SL(r,C).) The downward flow comes from weights (ℓ,m) with
ℓ≥ 2 and m ≥ 1. These weights shorten the holomorphic chain until its length is n = 1
and the Higgs field is zero, taking us to the “bottom” of the nilpotent cone. Out of this
comes something computational: ι(Ci ) is the sum of the (real) dimensions of the respec-
tive ℓ≥ 2 and m ≥ 1 subspaces of the tangent space.

With all of this in place, the localization identity takes the preceise form:

Theorem 3.1. (Hitchin [37]) P[MX (r,d)](t) =
∑

i∈I t ι(Ci )P[Ci ](t).

Were the moduli space compact, we would have P [Ci ](t) = 1 for each i ∈ I , as in
standard Morse theory, and so the Poincaré series would reduce to

∑

i∈I t e(Ci ). However,
in our case the Ci are generally positive-dimensional with nontrivial contributions to
the cohomology ring. For example, the downward flow of f terminates at the points
with ι = 0, which is also where ‖φ‖2 = 0. These global minimizers are precisely the sta-
ble Higgs bundles of the form (E ,0), which is the set of fixed points with rank vector
(r ). This component is in fact the moduli space of stable bundles, NX (r,d), which is
positive-dimensional for g ≥ 1. For example, if we consider the SL(2,C) case with fixed
determinant of odd degree d , then the Poincaré polynomial of this component is known
by [28, 4] to be

P[N 0
X (2,d)](t) =

(1+ t 3)2g − t 2g (1+ t)2g

(1− t 2)(1− t 4)
.

Like the presentation here, [4] also takes a Morse-theoretic approach. The Poincaré
series of NX (r,d) factors as the product of P[N 0

X (2,d)](t) and that of the Jacobian of X
(cf. [4]), and so we have

P[NX (2,d)](t) = (1+ t)2g (1+ t 3)2g − t 2g (1+ t)2g

(1− t 2)(1− t 4)
.

The connected components with higher values of ι, for which less is immediately
known, are an obstruction to determining P[MX (r,d)] in high rank, although much re-
cent progress has been via other means as highlighted in the introduction. To shed some
light on the difficulty, we recognize that the fixed points can be thought of as represen-
tations of A-type quivers, with lengths and labels determined by partitions of r and d :

•r1 ,d1 −→•r2 ,d2 −→ ··· −→•rn ,dn

However, we are not looking at representations in the usual category of vector spaces;
rather, we are in the category of bundles on a fixed curve X with ωX -twisted morphisms.
These representations are also known as quiver bundles, cf. [24, 25, 58, 54, 55]. The
moduli space of stable bundles is the solution to the simplest version of this problem,
where the quiver has a single node:

•r,d
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Nevertheless, we wish to exhibit a couple of sample calculations in low rank where
we can determine this polynomial completely.

4. CALCULATIONS

4.1. Rank r = 1. We start off with the simplest possible example, just to have an instance
where the answer is readily seen to be correct. The only partition of r = 1 is the rank
vector (1). The entire fibre Θ

−1(0) of MX (1,d), which is the submanifold {(L ,0) : L ∈
Jacd (X )}, is fixed by the U(1)-action. Hence, there is a single connected component of
the fixed-point locus and the number ι is 0 — there are no further components to which
to flow down. It follows that

P[MX (1,d)](t) = P[Jacd (X )](t) = (1+ t)2g ,

agreeing exactly with Exercise 2. (Of course, for M
0
X (1,d) the moduli space is just a point

and the result is even more trivial.)

4.2. Rank r = 2. Now, we look at MX (2,d) for some odd d . For convenience, we take
d = 1. Here, we mostly follow Hitchin in [37], although there are a few notable differ-
ences: we do the GL(2,C) case rather than SL(2,C) and our calculation of ι will use the
approach outlined in the preceding section.

The elements of the fixed point set are of two types, (2) and (1,1). Those with rank
vector (2) correspond to the moduli space of stable bundles on X , as mentioned ear-
lier. These are the fixed points with ι = 0, as per the previous section. Therefore, the
contribution to the Poincaré series is

t 0(1+ t)2g (1+ t 3)2g − t 2g (1+ t)2g

(1− t 2)(1− t 4)
.

Now, each holomorphic chain of type (1,1) consists of two line bundles B1 and B2

together with a map φ1 : B1 → B2 ⊗ωX . Let b = degB1, in which case degB1 = 1−b.
Note that B2 is annihilated by the overall Higgs field, and so we must have 1−b strictly
less than the slope of E = B1 ⊕B2. Hence, b > 1. On the other hand, if φ1 = 0, then B1

would be invariant, which violates stability as b would exceed the slope of E . Having
φ 6= 0 requires that

deg(B∗
1 ⊗B2 ⊗ωX ) = 2g −2b −1

is nonnegative. Taking these together, we have 1 ≤ b ≤ g −1.

Certainly, two choices of B1 with different degrees cannot lie in the same connected
component of MX (2,1)U(1). Therefore, let us fix a value of b in the range above. The
data is thus a triple of a line bundle in Jacb(X ), another in Jac1−b(X ), and a map in
H 0(X ,B∗

1 ⊗B2 ⊗ωX ). The dimension of the third space depends on B1 and B2. To
clarify this, suppose B2 is fixed. Instead of keeping track of B1, we can instead deal
with D = B

∗
1 ⊗B2 ⊗ωX . The choice of B1 determines D and vice-versa. The relevant

data is now the pair (D,φ1) in which D is a line bundle of degree −2b+2g −1 and φ1 is a
holomorphic section of this line bundle. Since φ1 is not identically zero, this data deter-
mines a divisor of degree−2b+2g−1 on X , which is an element of the (−2b+2g−1)-fold
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symmetric product of X with itself: S−2b+2g−1(X ). Notice that for g ≥ 2 and 1 ≤ b ≤ g −1,
the order of this product is always positive — in other words, we are considering divisors
of at least 1 point. An element of this symmetric product determines a line bundle D to-
gether with a nonzero section φ1 vanishing on the divisor. This section is determined
only up to scale, i.e. φ1 ∈ PH 0(X ,D). However, since we are working inside the moduli
space MX (2,1), we are only considering holomorphic chains up to equivalence by auto-
morphisms of E = B1 ⊕B2 that preserve the structure of a (1,1) chain. In other words,
we are free to use the action of C∗×C∗ ⊂ Aut(E ) to put a given chain into a representa-
tive form. We can use either C∗ to identify any two φ1’s that differ only by scale, and so
the projective representatives given by the divisor coincide exactly with the equivalence
classes of pairs (D,φ1) in the moduli space.

Hence, for fixed b in the range 1 ≤ b ≤ g − 1, the space of chains in Jac1−b(X ) ×
S−2b+2g−1(X ) where the Jacobian accounts for the choice of B2. Hence, MX (r,d)U(1)

has g connected components: the g − 1 components coming from fixed points with
rank vector (1,1) together with the moduli space of bundles.

For each b, we need the Poincaré series of the corresponding symmetric product of
X . These generating functions are due to Macdonald [43]. The Poincaré polynomial, in
t , of Sn X is the coefficient of sn in the Taylor-Maclaurin series expansion of

(1+ st)2g

(1− s)(1− st 2)
.

Now, regarding the indices ι for the type (1,1) components, we note that the only
element θ in

H 0(X ,End0(E )⊗ωX )

im H 0(X ,End0(E ))
∧φ
−→ H 0(X ,End0(E )⊗ωX )

acting with weight 2 or higher on the sequence (B1,B2) is θ = 0 since there are only
two bundles in the decomposion of E . Hence, we need only account for elements β of
weight at least 1 in

ker H 1(X ,End 0(E ))
∧φ−→ H 1(X ,End 0(E )⊗ωX ).

For the same reasons, there are no elements of weight 2 or higher, and so we seek the
elements of weight exactly 1. Before the action of ∧φ, the weight 1 elements form
H 1(X ,B∗

1 ⊗B2). The map ∧φ sends these to weight 2 elements in H 1(X ,B∗
1 ⊗B2⊗ωX ).

Since the only weight 2 element is the zero element, we have that all weight 1 elements
are in the kernel of ∧φ. Our calculation of ι thereby reduces to the real dimension of
H 1(X ,B∗

1 ⊗B2). Since deg(B∗
1 ⊗B2) = 1−2b < 0, we have that H 0(X ,B∗

1 ⊗B2) vanishes.
Then, by Riemann-Roch we have

ι(E ,φ) = 4b −4+2g .

Taking all of this together, we get that the Poincaré series of MX (2,1) is

P[MX (2,1)][t ] = (1+ t)2g

(

(1+ t 3)2g − t 2g (1+ t)2g

(1− t 2)(1− t 4)
+

g−1
∑

b=1
t 4b−4+2g P[S−2b+2g−1(X )](t)

)

,

where the Poincaré polnyomials for the symmetric products come from Macdonald’s
function.
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Exercise 6. Using the results above, check that when g = 2, we have that

P[MX (2,1)][t ] = (1+ t)4(1+ t 2 +4t 3 +2t 4 +4t 5 +2t 6).

Exercise 7. Using the results above, check that when g = 3, we have that

P[MX (2,1)][t ] = (1+t)6(1+t 2+6t 3+2t 4+6t 5+17t 6+12t 7+18t 8+32t 9+18t 10+12t 11+3t 12).

Notice that the Poincaré polynomials above are not palindromes, even though the
moduli spaces are smooth. This is of no concern, given that the moduli spaces are non-
compact. For example, in g = 3 the unequal Betti numbers in degrees 0 and 18 tell us
that, while MX (2,1) is topologically connected (b0 = 1), the space has a number of ir-
reducible or “algebraic” components (b18 = 3 of them). It is also worth noting that the
highest power of t in each case is equal to 2r 2(g − 1)+ 2, which is the real dimension
of the fibre of the Hitchin map. This is consistent with the fact that the Hitchin base is
contractible and the nontrivial topology lies in Θ

−1(0).

A reasonable question is whether P[MX (2,1)](t)/(1 + t)2g is the Poincaré series of
M

0
X (2,1), the SL(2,C) moduli space. In general, this is not the case. Rather, the quo-

tient is the generating function for the Betti numbers of the Langlands dual moduli
space; that is, the PGL(2,C) moduli space. The issue is that there is a nontrivial action
of the finite group Γ of 2-torsion line bundles — the line bundles P with P

⊗2 = OX —
on M

0
X (2,1). As a result, there is a variant cohomology and an invariant cohomology

with regards to this action. The quotient of M
0
X (2,1) by Γ, which has order 22g , is the

PGL(2,C) moduli space. It possesses only the invariant cohomology, whose ranks are
given by the coefficients of P[MX (2,1)](t)/(1+ t)2g . For genus g = 2, this invariant part
is

1+ t 2 +4t 3 +2t 4 +4t 5 +2t 6,

as in the exercise above. In contrast, the Poincaré series of M
0
X (2,1) for g = 2 is

1+ t 2 +4t 3 +2t 4 +34t 5 +2t 6

as computed by Hitchin in [37]. Here, we can see the Γ-variant cohomology concentrat-
ing in the degree 5 part of the cohomology ring. In terms of the calculations, the main
difference relative to above is that we are fixing the determinant of E to be some fixed
line bundle V , from which B1 and B2 are related by B2 = B

∗
1 ⊗ V . Then, to bring in

divisors, we need to define a line bundle D = (B∗
1 )2 ⊗ V ⊗ωX . It follows that instead

of symmetric products of X , we get 22g -fold covers of symmetric products, with fibres
consisting of the line bundles B1 whose squares are isomorphic to one another. Here,
we see the action of Γ working itself into the cohomology.

For further information on the variant versus invariant cohomology, we refer the
reader to [34, 32]. It is also perhaps crucial to point out that the appearance of Lang-
lands duality here is neither superficial nor a red herring. For how Langlands duality
manifests in Higgs bundle moduli spaces — and how it relates to mirror symmetry —
we refer the reader to the same reference in addition to [17, 18, 42].

The next logical step would be to try our hand at rank 3. The calculation using Morse
theory is noticeably more difficult, because of fixed points with rank vectors (1,2) and
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(2,1). The type (3) case remains the moduli space of bundles, whose topological con-
tribution we already know as per above, while the type (1,1,1) fixed points involve sym-
metric products of X in an analogous way to the preceding calculations. For (1,2) and
(2,1), the data of the fixed point can be converted into a pair (D,θ) in which D is a rank 2
bundle related to the bundles in the chain and θ is a section of D. The issue now is to un-
derstand the moduli space of such pairs on X . Gothen’s approach [23] uses Thaddeus’
strategy of varying a stability parameter and then constructing the moduli space in steps
by keeping track of birational transformations as the parameter is deformed [63]. This
stability parameter, which is natural in quiver bundle moduli problems, originates in
[11]. The rank 4 Poincaré series was computed in [21] using a method that is formally
similar to the Morse localization above, but which is rooted in motivic considerations.
Notably, the (2,2) case had not submitted readily to the variation-of-stability approach,
but was resolved via the motivic approach.

We can also ask about the exact structure of the ring H•(MX (r,d),Q) itself. For r = 2,
the generators and relations are worked out in [35, 36, 45]. For the status of this in higher
rank, we refer the reader to [14, 13]. For examples of Betti numbers over other fields, we
refer the reader to [5] where the Z2 Betti numbers are calculated for rank 2 Higgs bun-
dles.

5. COMBINATORIAL QUESTIONS

In the Morse-theoretic calculations of the preceding section, the degree d of the
Higgs bundles enters the calculations explicitly when we work with stable holomorphic
chains. However, nonabelian Hodge theory forces the Betti numbers of MX (r,d) to be
independent of d ∈ Z, at least when d is coprime to r as we have been assuming all
along. This is due to the independence of the Poincaré series of the GL(r,C) character
variety of X , where d is used to define twisted representations of π1(X ) [32]. This is com-
binatorially interesting because there is nothing at first glance to say that corresponding
connected components of MX (r,d)U(1) have identical Poincaré polynomials — or even
that there are the same number of components.

The d-independence of Betti numbers leads to a number of combinatorial observa-
tions. We offer a small sample. For our purposes, these are easier to see if we permit X
to have genus g = 0 and if permit Higgs fields twisted by a line bundle other than ωX .
Namely, we wish to consider “twisted” Higgs bundles of the form (E ,φ) with E a vector
bundle on the projective line P1 and

φ : E −→ E ⊗O(q),

where O(q) is the unique (up to isomorphism) line bundle on P1 of degree q > 0. (The
cotangent bundle ωP1 is unsuitable here, as we will then have q =−2 and all Higgs bun-
dles of rank r > 1 and coprime degree d will be unstable.) These Higgs bundles do not
rise in the same natural way in gauge theory, but they are nonetheless useful as a test
case here. In particular, these moduli spaces, which are constructed using slope stabil-
ity in exactly the same way as MX (r,d), have the same natural U(1)-action [54, 55].

Interestingly, this moduli space does not fit in a natural way into nonabelian Hodge
theory — one would have to puncture P1 along a divisor D and then regard φ as being
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valued in O(q) =ωX ⊗O(D) with poles along D, with certain conditions on the residues
of φ at the poles [59, 8]. However, this changes the topology of the moduli space in a sig-
nificant way and reintroduces the bundle moduli (as we are now keeping track of data
in the fibres of E at the poles). Keeping our definition the way it is, i.e. holomorphic
bundles with holomorphic O(q)-valued Higgs fields, there is no immediate relationship
to a character variety and, as such, no obvious reason for degree independence of the
Betti numbers. Yet, it seems to hold in direct calculations of the Betti numbers in low
rank, as in [47, 53, 59, 8].

In this setting, because of the relative lack of vector bundle moduli, we attain fairly
clear combinatorial descriptions for certain Betti numbers. It is possible for this moduli
space to establish via Morse theory that the top Betti number — that is, the coefficient of
the highest power of t appearing in the Poincaré series — is precisely the number of con-
nected components of the fixed-point locus coming from fixed points of type (1, . . . ,1).
This can be shown in turn to be the number of solutions (d1, . . . ,dr ) ∈Zr to the equation

d1 +·· ·+dr = d

subject to di −di−1 ≤ q and, if r > 1, (d j +·· ·+dr )/(r − j +1) < d/r for all 2 ≤ j ≤ r . Be-
cause the d j ’s are degrees of line bundles, they are permitted to be negative, and so the
equation d1+·· ·+dr = d alone is an unbounded integer partition problem. The problem
becomes well-posed precisely because of stability.

Degree independence would make the solution of this partition problem is indepen-
dent of d , again assuming the coprimality. If we fix, say, q = 1 and then compute the so-
lutions of the above partition problem for increasing r , we find the following sequence
regardless of which (coprime) d we choose:

1,1,1,2,5,13,35, 100, 300, 925, 2915,9386,30771,102347, 344705, . . .

Interestingly, this sequence appears in the OEIS database as A131868 [41]. The entry
gives the following function that yields these numbers for each r :

Ω(r ) =
1

2r 2

∑

e|r
µ(r /e)

(

2e
e

)

(−1)e+1.

By examining type (1, . . . ,1) fixed points for other values of q and experimenting with
the function Ω, it is not hard to make an educated guess as to a more general version of
this function for any q :

Ω(r, q) =
1

(q +1)r 2

∑

e|r
µ(r /e)

(

(q +1)e
e

)

(−1)qe+1.

That this is the correct function for all r > 0, q > 0 for our counting problem is actually
established by Reineke in [56]. This also establishes the d independence.

The OEIS entry provides a combinatorial interpretation for the top Betti numbers
of the q = 1 moduli spaces that, while similar in spirit, is not exactly the same as the
ours: r ·Ω(r,1) is the number of size r subsets of {1, . . . ,2r −1} that sum to 1 modulo r .
Right away, the degree independence means that these we can replace 1mod r in this
problem with d mod r without changing the solutions. This problem falls into a set of
related combinatorial problems studied by Erdös-Ginzburg-Ziv [19]; in some of these,
it is known that one can shift the interval {1, . . . ,2r −1} freely to any consecutive 2r −1

https://oeis.org/A131868
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numbers (cf. the related entry, A145855 [52]). That being said, the partition problem of
type (1, . . . ,1) fixed points is one in which the differences between consecutive parts of
the partition are bounded, rather than overall interval in which the parts are allowed to
lie.

We can also examine the Poincaré series itself as r and q grow. With r fixed and
q allowed to grow indefinitely, the Poincaré series can be seen to tend to that of the
classifying space of the gauge group of the underlying smooth bundle. If we fix q and
drive r to larger values — or drive both to infinity — the series tends to

1+ t 2 +3t 4 +5t 6 +10t 8 +16t 10 +29t 12 +45t 14 +75t 16 +115t 18 +·· · ,

whose coefficients are captured in A000990 [62]. If the equivalence of counting prob-
lems is correct, this would say that the coefficient of t 2n is the number of plane parti-
tions of n with at most 2 rows. This is especially interesting because it provides a com-
binatorial interpretation for each Betti number individually, while Morse theory builds
each coefficient from potentially many separate combinatorial problems as data from
different components of the fixed-point locus contribute to the same coefficient.

Finally, it is worth commenting that in all of these cases — the ordinary Higgs bundles
of the preceding sections and the twisted ones on P1 here — that the lack of palindromy
in the Poincaré series is skewed in such a way that the largest Betti number lies to the
“right” of the middle coefficients, i.e. between the middle and the top Betti number. This
phenomenon is studied in [33] in the context of non-compact, hyperkähler semiprojec-
tive moduli spaces X . Here, “semiprojective” refers to the property of the having an
algebraic C⋆-action with projective fixed-point set with the limit limλ→0λx existing for
all x ∈ X . The fact that this persists for the twisted Higgs bundle moduli spaces on P1,
which are semiprojective but have no hyperkähler structure, suggests there could be a
combinatorial explanation for the phenomenon, independent of the geometry.

In general, we see that for Higgs-bundle-type moduli spaces there is a complicated
dance between geometry and combinatorics playing out within the cohomology ring,
with geometric phenomena forcing combinatorial identities to emerge and with combi-
natorial identities expressing themselves geometrically in surprising ways. Throughout,
topology is the conduit.
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