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Abstract

We provide several asymptotic expansions of the prime counting function π(x). We
define an asymptotic continued fraction expansion of a complex-valued function of a
real or complex variable to be a possibly divergent continued fraction whose approx-
imants provide an asymptotic expansion of the given function. We show that, for
each positive integer n, two well known continued fraction expansions of the exponen-
tial integral function En(z), in the regions where they diverge, correspondingly yield
two asymptotic continued fraction expansions of π(x)/x. We prove this by first using
Stieltjes’ theory of moments to establish some general results about Stieljtes and Ja-
cobi continued fractions and then applying the theory specifically to the probability
measure on [0,∞) with density function tn

n! e
−t. We show generally that the “best”

rational function approximations of a function possessing an asymptotic Jacobi contin-
ued fraction expansion are precisely the approximants of the continued fraction, and
as a corollary we determine all of the “best” rational function approximations of the
function π(ex)/ex.

Keywords: prime counting function, prime number theorem, exponential integral,
asymptotic expansion, continued fraction, Stieltjes transform, Cauchy transform.
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1 Introduction

This paper concerns the asymptotic behavior of the function π : R>0 −→ R that for any
x > 0 counts the number of primes less than or equal to x:

π(x) = #{p ≤ x : p is prime}, x > 0.

The function π(x) is known as the prime counting function, and the related function p :
R>0 −→ R defined by

p(x) =
π(x)

x
, x > 0,
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is called the prime density function. The number p(n) for any positive integer n represents
the probability that a randomly selected integer from 1 to n is prime.

The celebrated prime number theorem, proved independently by de la Vallée Poussin [5]
and Hadamard [10] in 1896, states that

π(x) ∼ x

log x
(x→∞),

where log x is the natural logarithm. The theorem can be expressed in the form

lim
x→∞

xp(x) = e,

which shows that the number e, like many other mathematical constants, encodes informa-
tion about the distribution of the primes. Further well known examples of this phenomenon
include the Mertens’ theorems, proved by Mertens in 1874, over two decades before the first
proofs of the prime number theorem. The third of Mertens’ theorems states that

eγ
∏
p≤x

(
1− 1

p

)
∼ 1

log x
(x→∞),

where γ ≈ 0.57721 is the Euler-Mascheroni constant and eγ ≈ 1.78107. From this remarkable
theorem it follows that the prime number theorem is equivalent to

p(x) ∼ eγ
∏
p≤x

(
1− 1

p

)
(x→∞).

The prime number theorem was first conjectured by Gauss in 1792 or 1793, according to
Gauss’ own recollection in his famous letter to Encke in 1849 [7]. The first actual published
statement of something close to the conjecture was made by Legendre in 1798, which he
refined further in 1808. Following Gauss and Legendre, we let A denote the unique function
R>0 −→ R such that

π(x) =
x

log x− A(x)

for all x > 0, so that

A(x) = log x− 1

p(x)

for all x > 0. Legendre’s 1808 conjecture was that the limit

L = lim
x→∞

A(x)

exists and is approximately equal to 1.08366. The limit L is now often referred to as Legen-
dre’s constant. In 1849 Chebyshev further refined Legendre’s conjecture by proving that if
Legendre’s constant exists then it must equal 1.

A graph of the function A(x) is provided in Figure 1. As can be seen in Figure 2,
the function A(x) is exhibited more suggestively on a lin-log scale as the function A(ex) =
x− 1

p(ex)
.

Regarding the function A(x), Gauss made in his 1849 letter to Encke some very prescient
remarks (English translation):
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Figure 1: Graph of A(x) = log x− 1
p(x)

Figure 2: Graph of A(ex) = x− 1
p(ex)

It appears that, with increasing n, the (average) value of A decreases; however,
I dare not conjecture whether the limit as n approaches infinity is 1 or a number
different from 1. I cannot say that there is any justification for expecting a very
simple limiting value; on the other hand, the excess of A over 1 might well be a
quantity of the order of 1

logn
.

Gauss speculates here that, if in fact limx→∞A(x) = 1, then it would make further sense,

given his extensive calculations, that A(x) = 1 +O
(

1
log x

)
. This speculation turns out to be

the truth, and indeed one has

A(x)− 1 ∼ 1

log x
(x→∞). (1.1)

A consequence of (1.1) is that Legendre’s constant exists and is equal to 1, which in turn
implies the prime number theorem.

It is known that (1.1) is itself a consequence of an infinite “asymptotic expansion” of the
prime counting function, namely,

p(x) ∼
∞∑
k=1

(k − 1)!

(log x)k
(x→∞). (1.2)
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Since the series above is divergent for all x, this is to be interpreted as

p(x)−
n−1∑
k=1

(k − 1)!

(log x)k
∼ (n− 1)!

(log x)n
(x→∞), for all n ≥ 1,

which for n = 3 can easily be shown to yield (1.1). The expansion (1.2) is also equivalent to

p(ex)−
n−1∑
k=1

(k − 1)!

xk
∼ (n− 1)!

xn
(x→∞), for all n ≥ 1,

which explains why a lin-log scale is appropriate for studying prime asymptotics. In Section
2 we provide some basic results on general asymptotic expansions, and in Section 3 we
use them to explain how the asymptotic expansion (1.2) above and a related asymptotic
expansion proved by Panaitopol in 2000 [16] follow from de la Vallée Poussin’s theorem.
Although these two sections are elementary and can be skipped by the expert, they provide
the necessary context and background for the remainder of the paper.

Our primary goal is to derive various asymptotic expansions of the prime density function,
all of which either generalize or are in some sense equivalent to (1.2). The most important of
these are “asymptotic continued fraction expansions.” We say that an asymptotic continued
fraction expansion of a real or complex function f(x) is a possibly divergent continued fraction
whose approximants wn(x) provide an asymptotic expansion

f(x) ∼ w0(x) + (w1(x)− w0(x)) + (w2(x)− w1(x)) + · · · (x→∞)

of f(x) with respect to the sequence {wn(x) − wn−1(x)}∞n=0, where w−1(x) = 0. A more
complete definition is given in Section 4, where we use Stieltjes’ theory of moments and
continued fractions to establish a few results about Stieljtes and Jacobi continued fractions.
We show, for example, that the “best” rational approximations of a function possessing
an asymptotic Jacobi continued fraction expansion are precisely the approximants of the
continued fraction.

By applying Stieltjes’ theory to the probability measure on [0,∞) with probablity density
function e−t, which has nth moment given by

∫∞
0
tndµ = n!, we show that (1.2) can be

reinterpreted as an asymptotic Jacobi continued fraction expansion of p(ex). Specifically, a
function f(x) has the asymptotic expansion f(x) ∼

∑∞
n=0

n!
xn+1 (x→∞) if and only if it has

the asymptotic continued fraction expansion

f(x) ∼
1

x− 1−
1

x− 3−
4

x− 5−
9

x− 7−
16

x− 9− · · ·

(x→∞).

This, along with (1.2), yields the following result.
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Theorem 1.1. One has the asymptotic continued fraction expansions

p(x) ∼
1

log x− 1−
1

log x− 3−
4

log x− 5−
9

log x− 7−
16

log x− 9− · · ·

(x→∞)

and

p(x) ∼
1

log x−
1

1−
1

log x−
2

1−
2

log x−
3

1−
3

log x− · · ·

(x→∞).

To be more explicit, let wn(x) denote the nth approximant of the first continued fraction
in the theorem (which in fact coincides with the 2nth approximant of the second continued
fraction). By standard results on continued fractions one has

wn+1(x)− wn(x) ∼ (n!)2

(log x)2n+1
(x→∞)

for all n ≥ 0 and therefore {wn+1(x) − wn(x)} is an asymptotic sequence of rational func-
tions of log x. The second asymptotic continued fraction expansion of the theorem is to be
interpreted as saying that p(x) has the asymptotic expansion

p(x) ∼ w0(x) + (w1(x)− w0(x)) + (w2(x)− w1(x)) + · · · (x→∞),

or equivalently,

p(x)− wn(x) ∼ wn+1(x)− wn(x) (x→∞), for all n ≥ 0.

Thus, one has

p(x) ∼ 1

log x
(x→∞),

p(x)−
1

log x− 1
∼ 1

(log x)3
(x→∞),

p(x)−
1

log x− 1−
1

log x− 3

∼ 4

(log x)5
(x→∞),
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and so on. As a corollary of the theorem, it follows that these approximants wn(x) are
precisely the “best” approximations of p(x) that are rational functions of log x, or, in other
words, the functions wn(ex) are precisely the “best” rational function approximations of
p(ex), in the following sense: the functions wn(ex) are precisely those rational functions
w(x) ∈ R(x) such that v(x) = w(x) for every rational function v(x) ∈ R(x) of degree at
most degw such that p(ex) − v(x) = O(p(ex) − w(x)) (x → ∞). Equivalently, wn(ex)
for all n is the Padé approximant of p(ex) at ∞ of order [n − 1, n]. Figure 3 provides
a graph of the function p(ex) and the approximants wn(ex) for n = 1, 2, 3, 4. Note that
the numerator Qn(x) and denominator Pn(x) of wn(ex) are monic integer polynomials of
degree n− 1 and n, respectively, and it is known that the denominator of wn(ex) is given by
Qn(x) = (−1)nn!Ln(x), where

Ln(x) =
n∑
k=0

(−1)k

k!

(
n

k

)
xk = 1F1(−n; 1;x)

is the nth Laguerre polynomial. It then follows from the theory of orthogonal polynomials
(specifically, [1, [1.14]]) that the numerator of wn(ex) is given by

Pn(x) = (−1)nn!
n∑
k=1

an,kx
k−1,

where

an,k =
n∑
j=k

(−1)j

j!

(
n

j

)
(j − k)! =

(−1)k

k!

(
n

k

)
3F2(1, 1,−(n− k); k + 1, k + 1; 1)

for all n ≥ 1 and 1 ≤ k ≤ n, with explicit values an,1 = −Hn and an,2 = (n + 1)Hn − 2n,
where Hn =

∑n
k=1

1
k

is the nth harmonic number.

Figure 3: The first four “best” nonconstant rational approximations of p(ex)

Theorem 5.2 of Section 5 generalizes Theorem 1.1 by showing that, for each positive
integer n, two known continued fraction expansions of the exponential integral function En(z)
correspondingly yield two asymptotic continued fraction expansions of the prime density
function. The proof employs de la Vallée Poussin’s prime number theorem with error term,
along with Stieltjes’ theory of moments applied to the probability measure on [0,∞) with
density function tn

n!
e−t.

6



In the final section we provide some simple methods for deriving further asymptotic
expansions of the prime density function and related functions. Many of these results are
based on relationships between the generating functions of various combinatorially defined
sequences to the generating function

∑∞
k=0 n!Xn of the sequence {n!}. Other results, for

example, use the asymptotic Hn − γ − log n ∼ 1
2n

(n → ∞) to re-express the asymptotic
expansions derived in Sections 3 and 5 in terms of the harmonic numbers. At the most basic
level, it is clear that the prime number theorem is equivalent to

π(n) ∼ n

Hn

(x→∞),

where n
Hn

is also the harmonic mean of the integers 1, 2, 3, . . . , n. Using a famous result of
von Koch [11], we also show that the Riemann hypothesis is equivalent to

π(n) =
n∑
k=1

1

Hk − γ
+O(

√
nHn) (n→∞)

and also, using more recent results by Y. Lamzouri [12], to

eγ
∏
p≤n

(
1− 1

p

)
=

1

Hn − γ
+O

(
1√
n

)
(n→∞).

The author is extremely grateful to Kevin McGown, Hendrik W. Lenstra, Jr., and Roger
Roybal for reading and providing comments on various early drafts of this paper. All graphs
provided in the paper were made using the free online version of WolframAlpha.

2 General asymptotic expansions

In this section we provide some background on the theory of asymptotic expansions.
Let a be a limit point of a topological space X. (It suffices for our purposes to assume

that X is a subspace of either R ∪ {±∞} or C ∪ {∞}, but we treat the general case here.)
Let f and g be complex-valued functions whose domains are subsets of X. One writes

f(x) = O(g(x)) (x→ a)X

if for some M > 0 there exists a punctured neighborhood U ⊆ X of a such that |f(x)| ≤
M |g(x)| for all x ∈ U . One also writes

f(x) = o(g(x)) (x→ a)X

if for every M > 0 there exists a punctured neighborhood U ⊆ X of a such that |f(x)| ≤
M |g(x)| for all x ∈ U . We also write

f(x) ∼ g(x) (x→ a)X

if f(x) − g(x) = o(g(x)) (x → a)X and g(x) − f(x) = o(f(x)) (x → a)X. If g(x) is nonzero
in a punctured neighborhood of a, then

f(x) = o(g(x)) (x→ a)X if and only if lim
x→a

f(x)

g(x)
= 0
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and

f(x) ∼ g(x) (x→ a)X if and only if lim
x→a

f(x)

g(x)
= 1.

Note that all of the above conditions implicitly require that f and g both have domains
containing a punctured neighborhood of a. An asymptotic sequence (over X) at x = a is a
sequence {ϕn(x)}∞n=1 of complex-valued functions ϕn, each defined on a subset of X, such
that ϕn+1(x) = o(ϕn(x)) (x→ a)X for all n ≥ 1. Let {ϕn(x)}∞n=1 be an asymptotic sequence
at x = a, let f be a complex-valued function defined on a subset of X, let {an} be a sequence
of complex numbers, and N a positive integer. The function f is said to have an asymptotic
expansion

f(x) ∼
N∑
n=1

anϕn(x) (x→ a)X (2.1)

(over X of order N at x = a with respect to {ϕn(x)}) if

f(x)−
n∑
k=1

akϕk(x) = o(ϕn(x)) (x→ a)X (2.2)

for all positive integers n ≤ N , or equivalently for n = N . The function f is said to have an
asymptotic expansion

f(x) ∼
∞∑
n=1

anϕn(x) (x→ a)X

(over X of infinite order at x = a with respect to {ϕn(x)}) if (2.2) holds for all positive
integers n. In all of the above definitions, we replace “(x→ a)X” with “(x→ a)” when X is
R ∪ {±∞} or C ∪ {∞}. We also occasionally replace “(x→ a)X” with “(x→ a)X\{a}.”

An important special case is when each of the functions ϕn(x) is nonzero in a punctured
neighborhood of a. In that case, if an asymptotic expansion (2.1) of some function f(x) holds,
then the coefficients an for n ≤ N are uniquely determined by f and {ϕn(x)}, recursively
by the equations

an = lim
x→a

f(x)−
∑n−1

k=1 akϕk(x)

ϕn(x)
, (2.3)

for all n ≤ N . Note that (2.2) and (2.3) are equivalent for any positive integer n, and if also
an 6= 0 then both are equivalent to

f(x)−
n−1∑
k=1

akϕk(x) ∼ anϕn(x) (x→ a)X.

Moreover, (2.2) implies that

f(x)−
n−1∑
k=1

akϕk(x) = O(ϕn(x)) (x→ a)X, (2.4)
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which in turn implies that

f(x)−
n−1∑
k=1

akϕk(x) = o(ϕn−1(x)) (x→ a)X

if n ≥ 2. Thus the given asymptotic expansion is of infinite order if and only if (2.4) holds
for all n ≥ 1.

Over R one may also consider asymptotic expansions at x = a+ (to the right of a) and at
x = a− (to the left of a). Note that an asymptotic expansion f(x) ∼

∑N
n=1 anϕn(x) (x→ a+)

is equivalent to f(a + x2) ∼
∑N

n=1 anϕn(a + x2) (x → 0), and an asymptotic expansion

f(x) ∼
∑N

n=1 anϕn(x) (x→ a−) is equivalent to f(a− x2) ∼
∑N

n=1 anϕn(a− x2) (x→ 0).
An important example of asymptotic expansions over R and C follows from Taylor’s

theorem: if f(x) is a complex-valued function of a real or complex variable x defined in a
neighborhood of some number a, then one has an asymptotic expansion

f(x) ∼
N∑
n=0

an(x− a)n (x→ a)

of f(x) of order N + 1 at x = a with respect to the asymptotic sequence {(x − a)n} if and

only if f(x) is N times differentiable at x = a, in which case one has an = f (n)(a)
n!

for all
n ≤ N . Thus, the notion of an asymptotic expansion is a generalization of the notion of
a derivative. In particular, we may think of the coefficients an of an arbitrary asymptotic
expansion of a function f(x) at x = a as “generalized derivatives” at x = a with respect to
the sequence {ϕn(x)}, since this is true in the literal sense for the sequence

{
1
n!

(x− a)n
}

.
All of this also applies over C at x = ∞ (resp., over R at x = ∞, over R at x = −∞)
by considering the function g(x) = f(1/x) with respect to the asymptotic sequence

{
1
xk

}
at x = 0 (resp., x = 0+, x = 0−) and its derivatives g(n)(0) (resp., g(n)(0+), g(n)(0−)) at 0
(resp., at 0 from the right, at 0 from the left).

It is also useful to observe that two asymptotic expansions at x = a with respect to
{(x − a)k}, or alternatively at x = ∞ with respect to

{
1
xk

}
, can be added, subtracted,

multiplied, divided, and even composed, just like formal power series. Thus, for example, if
a function f(x) has an asymptotic expansion

f(x) ∼
∞∑
k=0

ak
xn

(x→∞)

at x =∞, where a0 6= 0, then one also has the “reciprocal” asymptotic expansion

1

f(x)
∼

∞∑
k=0

bk
xn

(x→∞),

where
∞∑
k=0

bkX
k =

1∑∞
k=0 akX

k
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as formal power series. Thus, an asymptotic expansion coming from a Taylor expansion can
treated formally as the generating function of its sequence of coefficients.

The following elementary result provides a necessary and sufficient condition for two func-
tions to have the same asymptotic expansion with respect to a given asymptotic sequence.

Proposition 2.1. Let a be a limit point of a topological space X, let {ϕn(x)} be an asymptotic
sequence over X at x = a, and let N be a positive integer. Let f(x) and g(x) be complex-valued
functions defined in a punctured neighborhood of a. Then a given asymptotic expansion of
f(x) of order N at x = a with respect to {ϕn(x)} at x = a is also an asymptotic expansion
of g(x) of order N at x = a if and only if

f(x)− g(x) = o(ϕN(x)) (x→ a)X.

Proof. Suppose that f(x) ∼
∑N

n=1 anϕn(x) (x → a)X is an asymptotic expansion of f(x) of
order N at x = a, or equivalently,

f(x)−
N∑
n=1

anϕn(x) = o(ϕN(x)) (x→ a)X.

If one has

g(x)−
N∑
n=1

anϕn(x) = o(ϕN(x)) (x→ a)X,

then subtracting we see that

f(x)− g(x) = o(ϕN(x)) (x→ a)X.

The converse is also clear. The proposition follows.

The next proposition, which is complementary to Proposition 2.1, provides a natural
condition under which two asymptotic sequences are “equivalent.”

Proposition 2.2. Let a be a limit point of a topological space X, and let {ϕn(x)} be an
asymptotic sequence over X at x = a such that each ϕn(x) is nonzero in a punctured neigh-
borhood of a. Let {ψn(x)} be any sequence of complex-valued functions such that

ψn(x)− ϕn(x) = o(ϕm(x)) (x→ a)X

for all positive integers n and m with n ≤ m. Then {ψn(x)} is also an asymptotic sequence
over X at x = a. Moreover, if N is a positive integer or ∞, then any asymptotic expansion

f(x) ∼
N∑
n=1

anϕn(x) (x→ a)X

of a complex-valued function f(x) over X of order N at x = a with respect to {ϕn(x)} is
equivalent to the asymptotic expansion

f(x) ∼
N∑
n=1

anψn(x) (x→ a)X

of f(x) over X of order N at x = a with respect to {ψn(x)}.
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Proof. For all n one has ψn(x) − ϕn(x) = o(ϕn(x)) (x → a)X and therefore ψn(x) ∼
ϕn(x) (x → a)X. It follows that {ψn(x)} is also an asymptotic sequence over X at x = a.
Without loss of generality we may assume that N is finite. Suppose that the given asymptotic
exansion of f(x) with respect to {ϕn(x)} holds. Then one has

f(x)−
∑N

n=1 anψn(x)

ϕN(x)
=
f(x)−

∑N
n=1 anϕn(x)

ϕN(x)
+

∑N
n=1 an(ψn(x)− ϕn(x))

ϕN(x)
→ 0 + 0 = 0

as x→ a, so that

f(x)−
∑N

n=1 anψn(x)

ψN(x)
=
ϕN(x)

ψN(x)
· f(x)−

∑N
n=1 anψn(x)

ϕN(x)
→ 1 · 0 = 0

as well. Therefore the same asymptotic expansion of f(x) with respect to {ψn(x)} holds.
This proves one implication, and since also ϕn(x) − ψn(x) = o(ψN(x)) (x → a)X for all
n ≤ N , the reverse implication holds as well.

3 Known asymptotic expansions of π(x)

In this section we derive two known asymptotic expansions of the prime counting function
from a weak version of the prime number theorem with error term.

In 1838, Dirichlet observed that π(x) can be well approximated by the logarithmic integral
function

li(x) =

∫ x

0

dt

log t
,

where the Cauchy principal value of the integral is assumed. (As some introductory texts
do, one may use instead the slightly less natural function Li(x) =

∫ x
2

dt
log t

= li(x) − li(2).)
Since it is straightforward to show using integration by parts that

li(x) ∼ x

log x
(x→∞),

the prime number theorem is equivalent to

π(x) ∼ li(x) (x→∞).

The prime number theorem with error term, proved in 1899 by de la Vallée Poussin [6], states
that there exists a contant c > 0 such that

π(x) = li(x) +O
(
xe−c

√
log x
)

(x→∞).

To understand this estimate of π(x)− li(x), it is useful to observe that

xt = o(ec
√
x) (x→∞)

for all t > 0 and all c > 0, and therefore the prime number theorem with error term implies
that

p(x) =
li(x)

x
+ o

(
1

(log x)t

)
(x→∞), (3.1)
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for all t > 0, where also li(x)
x

= 1
x

∫ x
0

1
log t

dt is the average value of 1
log t

on the interval [0, x].
This weaker form of the prime number theorem with error term is easier to work with while
also being sufficient for many applications.

Now, Chebyshev, in 1849, derived the asymptotic expansion

li(x)

x
∼

∞∑
k=1

(k − 1)!

(log x)k
(x→∞) (3.2)

using repeated integration by parts. The proof is given in almost every introductory analytic
number theory text and is not difficult. From (3.1) and Proposition 2.1, then, we see that

p(x) has the same asymptotic expansion as li(x)
x

, namely

p(x) ∼
∞∑
k=1

(k − 1)!

(log x)k
(x→∞). (3.3)

In fact, from (3.2) and Proposition 2.1 (both of which both elementary) it follows easily that
(3.1) and (3.3) are equivalent. In some sense, all of the asymptotic expansions we will prove
are equivalent to (3.1), and thus this paper is mainly concerned with exploring consequences
of the asymptotic expansion (3.3). One of the more immediate consequences is that

p(x)− 1

log x− a
∼ (1− a)

(log x)2
(x→∞)

for all a 6= 1 and

p(x)− 1

log x− 1
∼ 1

(log x)3
(x→∞),

which is seen to be in sharp contrast to (3.1). It follows that li(x) for large x is a much
better approximation of π(x) than is the function x

log x−a for any a ∈ R, just as Dirichlet and
Gauss had suspected.

An example of a more interesting consequence of the asymptotic expansion (3.3) is a
result of Panaitopol proved in 2000 [16, Theorem]. Note first that the asymptotic expansion
(3.3) has an alternative representation as

p(ex) ∼ 1

x

n∑
k=0

k!

xk
(x→∞)

with respect to the asymptotic sequence
{

1
xk

}
. Reciprocating this asymptotic expansion, we

find that there is also an asymptotic expansion

A(ex) = x− 1

p(ex)
∼

∞∑
k=0

Ik+1

xk
(x→∞), (3.4)

where {Ik+1} is the sequence possessing the generating function
∑∞

k=0 Ik+1X
k given by

∞∑
k=0

Ik+1X
k =

1

X
− 1

X
∑∞

k=0 k!Xk
.

12



Graphs of the first five terms of the asymptotic expansion (3.4) of A(ex) are provided in
Figure 4. It is known that In for any nonnegative integer n is equal to the number of
indecomposable permutations of {1, 2, 3 . . . , n}, where a permutation of {1, 2, 3, . . . , n} is
said to be indecomposable, or connected, if it does not fix {1, 2, 3, . . . , j} for 1 ≤ j < n.
The sequence {In} is sequence A003319 in the On-Line Encyclopedia of Integer Sequences
(OEIS), with first several terms given by 0, 1, 1, 3, 13, 71, 461, 3447, 29093, . . .. Substituting
log x for x in (3.4), we obtain the equivalent asymptotic expansion

A(x) = log x− 1

p(x)
∼

∞∑
k=0

Ik+1

(log x)k
(x→∞). (3.5)

This is equivalent to Panaitopol’s result [16, Theorem]

π(x) =
x

log x−
∑n

k=0
Ik+1

(log x)k
+ o

(
1

(log x)n

) (x→∞), n ≥ 0,

but the argument above provides a much shorter and more conceptual proof. The result
shows in particular that the sequence {In}, like the sequence {n!}, encodes information
about the distribution of the primes. We provide many other examples of this phenomenon
in Section 6.

Figure 4: Approximations of A(ex)

We remark that all of the asymptotic expansions of p(x) proved in this paper can be
generalized to any number field K as follows. For all x > 0, let πK(x) denote the number of
prime ideals of OK of norm less than or equal to x. The Landau prime ideal theorem, proved
by Landau in 1903, states that

πK(x) = li(x) +O
(
xe−c

√
log x
)

(x→∞)

for some constant c > 0 depending on K. It follows that

πK(x)

x
=

li(x)

x
+ o

(
1

(log x)t

)
(x→∞)

13



for all t > 0. Any asymptotic expansion of p(x) we prove in this paper also holds for the

functions li(x)
x

and πK(x)
x

, or more generally for any function P (x) such that

P (x) =
li(x)

x
+ o

(
1

(log x)t

)
(x→∞)

for all t > 0.

4 Asymptotic continued fraction expansions

In this section we introduce the notion of an asymptotic continued fraction expansion and
prove some general results about Jacobi continued fractions and Stieltjes continued fractions.

Let a be a limit point of a topological space X. Let f(x), a0(x), a1(x), a2(x), . . ., and
b1(x), b2(x), . . . be complex-valued functions, each of which has a domain contained in X and
containing some punctured neighborhood of a. Consider the (formal) continued fraction

a0(x) +
b1(x)

a1(x) +

b2(x)

a2(x) +

b3(x)

a3(x) +
· · · = a0(x) +

b1(x)

a1(x) +
b2(x)

a2(x) +
b3(x)

a3(x) + · · ·

.

Let

wn(x) = a0(x) +
b1(x)

a1(x) +

b2(x)

a2(x) +
· · ·

bn(x)

an(x)
= a0(x) +

b1(x)

a1(x) +
b2(x)

a2(x) + · · ·+
bn−1(x)

an−1(x) +
bn(x)

an(x)

for all n ≥ 0 denote the nth approximant of the given continued fraction, and let

Φ0(x) = w0(x) = a0(x)

and
Φn(x) = wn(x)− wn−1(x)

for all n ≥ 1. We write

f(x) ∼ a0(x) +
b1(x)

a1(x)+

b2(x)

a2(x)+

b3(x)

a3(x)+
· · · (x→ a)X (4.1)

if {Φn(x)} is an asymptotic sequence over X at x = a and

f(x) ∼
∞∑
n=0

Φn (x→ a)X

14



is an asymptotic expansion of f(x) over X with respect to the asymptotic sequence {Φn(x)}.
In that case we say that (4.1) is an asymptotic continued fraction expansion of f(x) over
X at x = a. To be more explicit, we note that (4.1) is an asymptotic continued fraction
expansion of f(x) over X at x = a if and only if

wn+1(x)− wn(x) = o(wn(x)− wn−1(x)) (x→ a)X

and

f(x)− wn(x) = o(wn(x)− wn−1(x)) (x→ a)X (4.2)

for all n ≥ 0, where w−1(x) = 0. Note that (4.2) may be replaced with

f(x)− wn(x) = O(wn+1(x)− wn(x)) (x→ a)X

Moreover, if wn(x)− wn−1(x) is nonzero in a punctured neighborhood of a, then (4.2) may
be replaced with

f(x)− wn−1(x) ∼ wn(x)− wn−1(x) (x→ a)X,

while if f(x) − wn−1(x) is nonzero in a punctured neighborhood of a, then (4.2) may be
replaced with

f(x)− wn(x) = o(f(x)− wn−1(x)) (x→ a)X.

For ease of notation one makes the identification

a0(x)−
b1(x)

a1(x)−
b2(x)

a2(x)−
b3(x)

a3(x)−
· · · = a0(x) +

− b1(x)

a1(x) +

− b2(x)

a2(x) +

− b3(x)

a3(x) +
· · · .

Let f =
∑∞

n=0 anX
n ∈ C[[X]] be a formal power series. The Padé approximant of f of

order [m,n] is the unique rational function R = g/h with g ∈ C[X] a polynomial of degree at
most m and h ∈ C[X] a nonzero polynomial of degree at most n such that hf−g = Xm+n+1k
for some k ∈ C[[X]]. A useful application is as follows. Let f(z) be a complex-valued function
defined on an unbounded subset X of C∪{∞}, and suppose that f(z) possesses an asymptotic
expansion f(z) ∼

∑∞
n=1

an−1

zn
(z → ∞)X over X, where a0 6= 0. The Padé approximant of

f(z) over X at z = ∞ of order [m,n] is defined to be S(z) = R(1/z)/z, where R(X) is
the Padé approximant of the formal power series

∑∞
n=0 anX

n of order [m,n]. Of particular
relevance is the case where m = n − 1; in that case, S(z) is the unique rational function
g(z)
h(z)

with g(z) a polynomial of degree at most m and h(z) a nonzero polynomial of degree at

most n such that f(z)− g(z)
h(z)

= O
(

1
z2n+1

)
X

(z →∞).

Recall that the degree of a rational function w ∈ K(X) over a field K is equal to the
maximum of the degree of the numerator and the degree of denominator of w when w is
written as a quotient of two relatively prime polynomials in K[X]. Let f(z) be some function
defined on an unbounded subset X of C∪{∞}. We say that a rational function w(z) ∈ C(z)
is a best rational approximation of f(z) (over X) if w(z) is the unique rational function
v(z) ∈ C(z) of degree at most degw(z) such that f(z)− v(z) = O(f(z)− w(z)) (z →∞)X.
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Continued fractions of the form given in the following theorem were introduced by Jacobi
are called Jacobi continued fractions, or J-fractions. The following theorem shows that if
a given complex function has an asymptotic Jacobi continued fraction expansion, then the
best rational approximations of the function are precisely the approximants of the continued
fraction.

Theorem 4.1. Let {an} and {bn} be sequences of complex numbers with an 6= 0 for all n,
and for all nonnegative integers n let wn(z) denote the nth approximant of the continued
fraction

a1

z + b1−
a2

z + b2−
a3

z + b3−
· · · .

One has the following.

1. wn(z) is a rational function of degree n with wn(z) ∼ a1
z

(z →∞) and

wn(z)− wn−1(z) ∼ a1a2 · · · an
z2n−1

(z →∞)

for all n ≥ 1. In particular, {wn(z)− wn−1(z)}∞n=1 is an asymptotic sequence at ∞.

2. Let f(z) be a complex-valued function defined on an unbounded subset X of C ∪ {∞}.
The following conditions are equivalent.

(a) f(z) has the asymptotic continued fraction expansion

f(z) ∼
a1

z + b1−
a2

z + b2−
a3

z + b3−
· · · (z →∞)X.

(b) f(z)− wn(z) ∼ a1a2···an+1

z2n+1 (z →∞)X for all nonnegative integers n.

(c) f(z)− wn(z) = O
(

1
z2n+1

)
(z →∞)X for all nonnegative integers n.

(d) f(z)− wn(z) = O
(

1
z2n+1

)
(z →∞)X for infinitely many nonnegative integers n.

(e) wn(z) for every nonnegative integer n is the unique rational function w(z) ∈ C(z)
of degree at most n such that f(z)− w(z) = O

(
1

z2n+1

)
(z →∞)X.

(f) wn(z) for every positive integer n is the unique Padé approximant of f(z) over X
at z =∞ of order [n− 1, n].

3. If the equivalent conditions of statement (2) hold, then the best rational approximations
of f(z) over X are precisely the approximants wn(z) for n ≥ 0.

Proof. Statement (1) follows easily from well known recursion formulas for the numerator
and denominator of the approximants of a generalized continued fraction. The equivalence of
conditions (2)(a)–(d) follows readily from statement (1) and the definition of an asymptotic
continued fraction expansion. Suppose that condition (2)(c) holds. Let v(z) be any rational
function of degree at most n such that f(z)− v(z) = O

(
1

z2n+1

)
(z → ∞)X. Then by (2)(c)

one also has

wn(z)− v(z) = (f(z)− v(z))− (f(z)− wn(z)) = O

(
1

z2n+1

)
(z →∞)X.
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But since wn(z)− v(z) is a rational function of degree at most degwn(z) + deg v(z) ≤ 2n <
2n + 1, it follows that wn(z)− v(z) = 0. Thus (2)(e) is equivalent to (2)(b). Moreover, the
equivalence of (2)(e) and (2)(f) is clear. Statements (2) and (4) immediately follow.

A similar argument shows that condition (2)(b) implies that wn(z) is a best rational
approximation of f(z) over X: if v(z) is any rational function of degree at most n such
that f(z) − v(z) = O(f(z) − wn(z)) (z → ∞)X, then (2)(b) implies that f(z) − v(z) =
O
(

1
z2n+1

)
(z → ∞)X, whence again we conclude that v(z) = wn(z). Now, suppose that

(2)(a)–(e) hold, and let v(z) be any best rational approximation of f(z) over X of degree
n = degwn(z). Since wn(z)− v(z) and 1

z2n+1 are rational functions, one has either

wn(z)− v(z) = O

(
1

z2n+1

)
(z →∞)

or
1

z2n+1
= o(wn(z)− v(z)) (z →∞).

In the former case one has

f(z)− v(z) = (f(z)− wn(z)) + (wn(z)− v(z)) = O

(
1

z2n+1

)
(z →∞)X

and therefore v(z) = wn(z) by (2)(e). We show that the latter case is impossible. Suppose
to obtain a contradition that 1

z2n+1 = o(wn(z)− v(z)) (z →∞). Then one has

f(z)− wn(z) ∼ a1a2 · · · an+1

z2n+1
= o(wn(z)− v(z)) (z →∞)X

and therefore

f(z)− v(z) = (wn(z)− v(z)) + (f(z)− wn(z)) ∼ wn(z)− v(z) (z →∞)X,

so that also
f(z)− wn(z) = o(f(z)− v(z)) (z →∞)X,

whence v(z) = wn(z) since v(z) is a best rational approximation of f(z). But this contradicts
our hypothesis that 1

z2n+1 = o(wn(z)− v(z)) (z →∞). This proves statement (3).

The following theorem is more or less a corollary of Theorem 4.1. Continued fractions
of the form given in the theorem were introduced by Stieltjes are called Stieltjes continued
fractions, or S-fractions.

Theorem 4.2. Let {an} be a sequence of nonzero complex numbers, and for all nonnegative
integers n let wn(z) denote the nth approximant of the continued fraction

a1

z−
a2

1−
a3

z−
a4

1−
· · · .

One has the following.
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1. wn(z) is a rational function of degree
⌊
n+1

2

⌋
with wn(z) ∼ a1

z
(z →∞) and

wn(z)− wn−1(z) ∼ a1a2 · · · an
zn

(z →∞)

for all n ≥ 1. In particular, {wn(z) − wn−1(z)}∞n=1 is an asymptotic sequence at ∞.
Moreover, the 2nth approximant w2n(z) of the Stieltjes continued fraction above coin-
cides with the nth approximant of the Jacobi continued fraction

a1

z − a2−
a2a3

z − a3 − a4−
a4a5

z − a5 − a6−
· · · .

2. Let f(z) be a complex-valued function defined on an unbounded subset X of C ∪ {∞}.
The following conditions are equivalent.

(a) f(z) has the asymptotic continued fraction expansion

f(z) ∼
a1

z−
a2

1−
a3

z−
a4

1−
· · · (z →∞)X

over X at z =∞.

(b) f(z) has the asymptotic continued fraction expansion

f(z) ∼
a1

z − a2−
a2a3

z − a3 − a4−
a4a5

z − a5 − a6−
· · · (z →∞)X.

over X at z =∞.

(c) f(z)− wn(z) ∼ a1a2···an+1

zn+1 (z →∞)X for all nonnegative integers n.

(d) f(z)− wn(z) = O
(

1
zn+1

)
(z →∞)X for all nonnegative integers n.

(e) f(z)− wn(z) = O
(

1
zn+1

)
(z →∞)X for infinitely many nonnegative integers n.

(f) w2n(z) for every nonnegative integer n is the unique rational function w(z) ∈ C(z)
of degree at most n such that f(z)− w(z) = O

(
1

z2n+1

)
(z →∞)X.

(g) w2n(z) for every positive integer n is the unique Padé approximant of f(z) over
X at z =∞ of order [n− 1, n].

3. If the equivalent conditions of statement (2) hold, then the best rational approximations
of f(z) over X are precisely the even-indexed approximants w2n(z).

Note that all of the approximants wn(z) in the theorem are “good” rational approxi-
mations of f(z) in the following sense: a rational function w(z) ∈ C(z) is a good rational
approximation of f(z) over X if deg v(z) ≥ degw(z) for any any rational function v(z) ∈ C(z)
such that f(z)−v(z) = O(f(z)−w(z)) (z →∞)X. (Clearly any best rational approximation
is a good rational approximation.)

Now, let µ be a measure on R. For all integers k, the kth moment of µ is the (possibly
infinite) integral

mk(µ) =

∫ ∞
−∞

tkdµ(t).
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In its modern formulation, the Stieltjes moment problem, posed and motivated in late 19th
century by Stieltjes in connection with his extensive theory of continued fractions, is the
problem of determining for which sequences {µk}∞k=0 of real numbers there exists a measure
µ on [0,∞) (i.e., with support suppµ contained in [0,∞)) such that µk = mk(µ) for all
nonnegative integers k. To solve this problem Stieltjes introduced what we now call the
Stieltjes transform, or Cauchy transform, of µ, which is the complex function

Sµ(z) =

∫ ∞
−∞

dµ(t)

z − t
.

If µ is a finite measure on R, then Sµ(z) =
∫∞

0
dµ(t)
z−t is analytic on C\ suppµ. Moreover,

Stieltjes et. al. established the following.

Theorem 4.3 (cf., [4, Theorems 5.1.1 and 5.2.1]). Let {µk}∞k=0 be a sequence of real numbers.

1. There exists a measure µ on [0,∞) that has infinite support (or equivalently that is not
a finite sum of point masses) such that µk = mk(µ) for all nonnegative integers k if
and only if there exists a Stieltjes continued fraction

a1

z−
a2

1−
a3

z−
a4

1−
· · · ,

where an ∈ R>0 for all n, whose nth approximant wn(z) for all n ≥ 1 has the asymptotic
expansion

wn(z) ∼
n−1∑
k=0

µk
zk+1

(z →∞)

of order n at z =∞. If these conditions hold, then Sµ(z) is analytic on C\[0,∞) and
for all ε > 0 has the asymptotic expansion

Sµ(z) ∼
∞∑
k=0

µk
zk+1

(z →∞)Cε

over Cε = {z ∈ C : |Arg(z)| ≥ ε}.

2. The measure µ is unique if and only if the continued fraction in statement (1) converges
to a function that is analytic on C\[0,∞), in which case one has

Sµ(z) =
a1

z−
a2

1−
a3

z−
a4

1−
· · ·

for all z ∈ C\[0,∞).

As a consequence of the theorem above, we have the following.

Theorem 4.4. Let µ be a measure on [0,∞) with infinite support and finite moments, and
let f(z) be any complex-valued function defined on an unbounded subset X of C∪{∞}. Then
f(z) has the asymptotic expansion

f(z) ∼
∞∑
k=0

mk(µ)

zk+1
(z →∞)X
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if and only if f(z) has the asymptotic continued fraction expansion

f(z) ∼
a1

z−
a2

1−
a3

z−
a4

1−
· · · (z →∞)X,

where the an ∈ R>0 are as in Theorem 4.3(1), if and only if f(z) satisfies the equivalent
conditions (2)(a)–(g) of Theorem 4.2. In particular, the Stieltjes transform f(z) = Sµ(z) for
every ε > 0 has the asymptotic continued fraction expansion

Sµ(z) ∼
a1

z−
a2

1−
a3

z−
a4

1−
· · · (z →∞)Cε

over Cε = {z ∈ C : |Arg(z)| ≥ ε}.

Proof. We use the notation as in Theorem 4.3. Let n ≥ 0. Since wn(z) is a rational function
and is 0 at ∞, it is analytic at ∞. Therefore, since the asymptotic expansion

wn(z) ∼
n−1∑
k=0

µk
zk+1

(z →∞)

of order n holds, the Taylor series of wn(z) at ∞ agrees term by term with the formal series∑∞
k=0

µk
zk+1 up to and including the term µn−1

zn
, and therefore one has

wn(z) =
n−1∑
k=0

µk
zk+1

+O

(
1

zn+1

)
(z →∞).

Suppose now that f(z) has the asymptotic expansion

f(z) ∼
∞∑
k=0

µk
zk+1

(z →∞)X.

Since

f(z)−
n−1∑
k=0

µk
zk+1

= O

(
1

zn+1

)
(z →∞)X,

we deduce that

f(z)− wn(z) = O

(
1

zn+1

)
(z →∞)X.

But by Theorem 4.2 we also have

wn+1 − wn(z) ∼ a1a2 · · · an+1

zn+1
(z →∞),

and therefore
f(z)− wn(z) = O (wn+1(z)− wn(z)) (z →∞)X

and also {wn(z) − wn−1(z)} is an asymptotic sequence. Therefore the given asymptotic
continued fraction expansion of f(z) holds. This proves one direction of the implication, and
the other direction follows by reversing this argument.
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We also note the following analogues for Jacobi continued fractions of Theorems 4.3 and
4.4, respectively.

Theorem 4.5 (cf., [4, Theorems 5.1.4 and 5.2.3]). Let {µk}∞k=0 be a sequence of real numbers.
There exists a measure µ on R with infinite support such that µk = mk(µ) for all nonnegative
integers k if and only if there exists a Jacobi continued fraction

a1

z + b1−
a2

z + b2−
a3

z + b3−
· · · ,

where an ∈ R>0 and bn ∈ R for all n, whose nth approximant wn(z) for all n ≥ 1 has the
asymptotic expansion

wn(z) ∼
2n−1∑
k=0

µk
zk+1

(z →∞)

of order 2n at z =∞ (or equivalently wn(1/X)/X for all n ≥ 1 is the unique Padé approx-
imant of order [n − 1, n] of the formal power series

∑∞
k=0 µkX

k). If these conditions hold,
then Sµ(z) is analytic on C\R and for all δ, ε > 0 has the asymptotic expansion

Sµ(z) ∼
∞∑
k=0

µk
zk+1

(z →∞)Cδ,ε

over Cδ,ε = {z ∈ C : δ ≤ |Arg(z)| ≤ π− ε} (and thus wn(z) for all n ≥ 1 is the unique Padé
approximant of Sµ(z) over Cδ,ε at z =∞ of order [n− 1, n]), and one has

Sµ(z) =
a1

z + b1−
a2

z + b2−
a3

z + b3−
· · ·

for all z ∈ C\R.

Theorem 4.6. Let µ be a measure on R with infinite support and finite moments, and let
f(z) be any complex-valued function defined on an unbounded subset X of C ∪ {∞}. Then
f(z) has the asymptotic expansion

f(z) ∼
∞∑
k=0

mk(µ)

zk+1
(z →∞)X

if and only if f(z) has the asymptotic continued fraction expansion

f(z) ∼
a1

z + b1−
a2

z + b2−
a3

z + b3−
· · · (z →∞)X,

where the an ∈ R>0 and bn ∈ R are as in Theorem 4.5, if and only if f(z) satisfies the
equivalent conditions (2)(a)–(f) of Theorem 4.1. In particular, the Stieltjes transform f(z) =
Sµ(z) for every δ, ε > 0 has the asymptotic continued fraction expansion

Sµ(z) ∼
a1

z + b1−
a2

z + b2−
a3

z + b3−
· · · (z →∞)Cδ,ε

over Cδ,ε = {z ∈ C : δ ≤ |Arg(z)| ≤ ε}.
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5 Asymptotic continued fraction expansions of π(x)

Our goal in this section is to use the results in the previous section (which are largely based on
Stieltjes’ theory) to prove and generalize the two asymptotic continued fraction expansions
in Theorem 1.1.

The basic idea in the proof of Theorem 1.1 is that Stieltjes’ theory applied to a certain
probability measure on [0,∞) implies that a function f(x) has the asymptotic expansion

f(x) ∼
∑∞

n=1
(n−1)!
xn

(x→∞) if and only if it has the asymptotic continued fraction expansion

f(x) ∼
1

x−
1

1−
1

x−
2

1−
2

x−
3

1−
3

x−
· · · (x→∞).

Functions f(x) satisfying the first of these two conditions include p(ex), li(ex)
ex

, and −E1(−x)
ex

.
The exponential integral function E1(x) is the function

E1(z) =

∫ ∞
z

e−t

t
dt, z ∈ C\(−∞, 0],

where the integral is along any path of integration not crossing (−∞, 0]. Like the principal
branch of the complex logarithm, the function E1(z) is analytic on C\(∞, 0], while E1(x) :=
limε→0+ E1(x + εi) and limε→0− E1(x + εi) = E1(x) + 2πi for all x < 0. The function E1(x)
for nonzero real x is given by

E1(x) =

{
− li(e−x) if x > 0

− li(e−x)− πi if x < 0,

where

li(x) =

∫ x

0

dt

log t
= lim

ε→0+

(∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

)
, x > 0,

is the logarithmic integral function (where the limit is the Cauchy principal value of the given
integral). The well known continued fraction expansion

−E1(−z)

ez
=

1

z−
1

1−
1

z−
2

1−
2

z−
3

1−
3

z−
· · · (x→∞), z ∈ C\[0,∞),

of −E1(−z)
ez

holds, since by Stieltjes’ theory both are precisely the Stieltjes transform of the
measure on [0,∞) with density function e−t. Altough the continued fraction diverges on
[0,∞), using Stieltjes’ theory one can verify the asymptotic continued fraction expansion

li(ex) + πi

ex
=
−E1(−x)

ex
=

1

x−
1

1−
1

x−
2

1−
2

x−
3

1−
3

x−
· · · (x→∞),

which, along with de la Vallée Poussin’s prime number theorem with error term, yields
Theorem 1.1.

A complete proof using Theorems 4.4 and 4.6 and the fundamental asymptotic expansion
(3.3) of p(x) is provided below.
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Proof of Theorem 1.1. Let µ denote the probability measure on [0,∞) with density function
e−t. One has

mk(µ) =

∫ ∞
0

tkdµ(t) =

∫ ∞
0

tke−tdt = k!

for all nonnegative integers k. It is known [4, p. 87] that the Stieltjes transform of µ is given
by

Sµ(z) =

∫ ∞
0

dµ(t)

z − t
= −e−zE1(−z) =

1

z−
1

1−
1

z−
2

1−
2

z−
3

1−
3

z−
· · · , z ∈ C\[0,∞).

Moreover, by (3.3), one has the asymptotic expansion

p(ex) =
∞∑
k=0

mk(µ)

xk+1
(x→∞).

The theorem therefore follows from Theorems 4.4 and 4.6.

As a corollary of Theorems 1.1 and 4.1, we obtain the following.

Corollary 5.1. The best rational approximations of the function p(ex) are precisely the
approximants wn(x) of the continued fraction

1

x− 1−
1

x− 3−
4

x− 5−
9

x− 7−
16

x− 9−
· · · .

for n ≥ 0. Moreover, the function wn(x) for all n ≥ 0 is the unique rational function
w(x) ∈ R(x) of degree at most n such that

p(ex)− w(x) = O

(
1

x2n+1

)
(x→∞),

and thus wn(x) for all n ≥ 1 is the Padé approximant of p(ex) at x =∞ of order [n− 1, n].
Furthermore, one has

p(ex)− wn(x) ∼ (n!)2

x2n+1
(x→∞)

for all n ≥ 0.

Note that the asymptotic expansion (3.3) can be reinterpreted as the statement that the
function

q(x) =

{
p(e1/x) if x > 0

0 if x ≤ 0

is infinitely differentiable at 0 from the right with q(n)(0+) = n!(n − 1)! for all n ≥ 1, and
then one has wn(x) = Rn(1/x), where Rn(x) is the Padé approximant of q(x) at x = 0+ of
order [n, n].

We now extend the above analysis to the probability measure µn on [0,∞) with density
function tn

n!
e−t. The exponential integral function En(z), for any positive integer n, is the

function

En(z) = zn−1

∫ ∞
z

e−t

tn
dt = zn−1Γ(1− n, z), z ∈ C\(∞, 0],
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where

Γ(s, z) =

∫ ∞
z

ts−1e−tdt, z ∈ C\(∞, 0],

denotes the (incomplete) gamma function, where the integrals are along any path of integra-
tion not crossing (−∞, 0]. By [4, p. 277], the Stieltjes transform of µn is precisely

Sµn(z) = −e−zEn+1(−z) =
1

z−
n+ 1

1−
1

z−
n+ 2

1−
2

z−
n+ 3

1−
3

z−
n+ 4

1−
· · · , z ∈ C\[0,∞),

and the moments µn,k of µn are given by

µn,k = mk(µn) =
(k + n)!

n!
, n, k ≥ 0.

For all n ≥ 0 let

fn(x) =
xn

n!

(
li(ex)

ex
−

n∑
k=1

(k − 1)!

xk

)
,

so that

fn(log x) =
(log x)n

n!

(
li(x)

x
−

n∑
k=1

(k − 1)!

(log x)k

)
= (log x)n

1

x

∫ x

0

dt

(log t)n+1
.

From the asymptotic expansion

li(ex)

ex
∼

∞∑
k=0

k!

xk+1
(x→∞)

we easily obtain the asymptotic expansion

fn(x) ∼
∞∑
k=0

(k + n)!

n!

1

xk+1
(x→∞)

and therefore also

fn(x) ∼
∞∑
k=0

µn,k
xk+1

(x→∞)

for all n ≥ 0. If we also let

gn(x) =
xn

n!

(
p(ex)−

n∑
k=1

(k − 1)!

xk

)
,

then by the same argument we have

gn(x) ∼
∞∑
k=0

µn,k
xk+1

(x→∞).

By Theorems 4.4 and 4.6, then, we have the following.
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Theorem 5.2. For all nonnegative integers n one has the asymptotic continued fraction
expansions

p(x)−
∑n

k=1
(k−1)!
(log x)k

n!
(log x)n

∼
1

log x− n− 1−
n+ 1

log x− n− 3−
2(n+ 2)

log x− n− 5−
3(n+ 3)

log x− n− 7−
· · · (x→∞)

and

p(x)−
∑n

k=1
(k−1)!
(log x)k

n!
(log x)n

∼
1

log x−
n+ 1

1−
1

log x−
n+ 2

1−
2

log x−
n+ 3

1−
3

log x−
n+ 4

1−
· · · (x→∞).

Moreover, the same asymptotic continued fraction expansions hold for the function

Fn(x) = (log x)n
1

x

∫ x

0

dt

(log t)n+1
,

and for all nonnegative integers n and all t > 0 one has

p(x)−
∑n

k=1
(k−1)!
(log x)k

n!
(log x)n

= Fn(x) + o

(
1

(log x)t

)
(x→∞).

To provide some further context, we note that the fundamental asymptotic expansion

p(x) ∼
∞∑
k=1

(k − 1)!

(log x)k
(x→∞)

used in the proof of the theorem is by definition equivalent to

p(x)−
∑n

k=1
(k−1)!
(log x)k

n!
(log x)n

∼ 1

log x
, n ≥ 0.

We also provide motivation for our choice of the functions

fn(x) = Fn(ex) =
xn

n!

(
li(ex)

ex
−

n∑
k=1

(k − 1)!

xk

)
= xne−x

∫ ex

0

dt

(log t)n+1
,

as follows. Let µ be a finite measure on R. Let

Sµ(x+ 0i) = lim
ε→0+

Sµ(x+ εi) = lim
ε→0

∫ ∞
−∞

(x− t) dµ
(x− t)2 + ε2

− i lim
ε→0

∫ ∞
−∞

ε dµ

(x− t)2 + ε2

for all x ∈ R such that the limit exists. In fact the limit exists for all x ∈ R outside a
set of Lebesgue measure zero, and its real part by definition is equal to π times the Hilbert
transform

Hµ(x) =
1

π
ReSµ(x+ 0i) =

1

π
lim
ε→0

∫ ∞
−∞

(x− t) dµ
(x− t)2 + ε2
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of the meausure µ [17]. If µ has a density function ρ(t), then Hµ(x) coincides with the
ordinary Hilbert transform H(ρ)(x) of ρ(x). Moreover, by the Sokhotski-Plemelj inversion
theorem, if suppµ ⊆ [0,∞) and ρ(t) is continuous on [0,∞) and satisfies ρ(t) = O(1/t) (t→
∞), then Sµ(x+ 0i) exists and satisfies

Sµ(x+ 0i) = πHµ(x)− πiρ(x)

for all x > 0. For the measure µn used above in the proof of Theorem 5.2 one has

Sµn(x+ 0i) = lim
ε→0+

(
−e−(x+εi)En(−(x+ εi))

)
= fn(x)− xne−x

n!
πi,

and therefore
fn(x) = πHµn(x) = ReSµn(x+ 0i)

for all x > 0. Thus for the particular measure µ = µn we have the asymptotic expansion

ReSµ(x+ 0i) ∼
∞∑
k=0

mk(µ)

xk+1
(x→∞), (5.1)

so that the function fn(x) = ReSµn(x + 0i) satisfies the equivalent conditions of Theorem
4.4.

It is certainly not the case that the asymptotic expansion (5.1) is limited just to the
measures µ = µn. Unfortunately, however, we do not know a general characterization of
the measures µ for which (5.1) holds. One can generalize this problem by considering the
expansion (5.1) instead to some finite order N . It is known, for example, that if µ has a
density function in the Schwartz class, then the expansion (5.1) holds at least to first order
[20]:

ReSµ(x+ 0i) ∼ m0(µ)

x
(x→∞).

To accommodate more general measures for which the Hilbert transform may not be defined
everywhere, one can pose the same problem relative to the set X = {x ∈ R : ReSµ(x +
0i) exists} or any of its subsets.

“Secondary measures” allow one to construct further families of measures satisfying (5.1).
The secondary measure associated to a measure µ on R satisfying the hypotheses of Theorem
4.5 with density function ρ(t) is the unique measure ν on R such that

Sµ(z) =
a1

z + b1 − Sν(z)
,

or, equivalently,

Sν(z) =
a2

z + b2−
a3

z + b3−
a4

z + b4−
· · · ,

for all z ∈ C\R [19, p. 68] [8]. Note that a1 = m0(µ) and b1 = −m1(µ)
m0(µ)

. By [8, p. 374], if µ

is supported on [0,∞) and satisfies Sokhotski-Plemelj inversion and Sµ(x+ 0i) exists for all
x > 0, then the measure ν has a density function σ(t) given explicity by

σ(t) =
ρ(t)

|Sµ(t+ 0i)|2
=

ρ(t)

π2(H(ρ)(t))2 + ρ(t)2)
.
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By considering the asymptotic expansions of their Cauchy transforms, one sees that the
moments µ and ν are related through their generating functions by the equation

X

∞∑
k=0

mk(ν)Xk =
1

X
− m1(µ)

m0(µ)
− m0(µ)

X
∑∞

k=0mk(µ)Xk
. (5.2)

It also follows that the measure µ satisfies (5.1) if and only if its secondary measure ν satisfies
(5.1). As done in [9], one can iterate this process by considering the secondary measure of
ν, and so on. In this way, from any measure µ supported on [0,∞) satisfying (5.1) and
Sokhotski-Plemelj inversion such that Sµ(x + 0i) exists for all x > 0, one can produce an
infinite sequence of measures with the same properties.

Let us consider, for example, the secondary measure ν of the measure µ on [0,∞) with
density function ρ(t) = e−t that was used in the proof of Theorem 1.1. It is the unique
measure ν on [0,∞) such that

Sµ(z) =
1

z − 1− Sν(z)
,

or, equivalently,

Sν(z) = z − 1− 1

Sµ(z)
=

1

z − 3−
4

z − 5−
9

z − 7−
16

z − 9−
· · · ,

for all z ∈ C\[0,∞). It has density function given by

σ(t) =
e−t

(e−t li(et))2 + π2e−2t
=

et

li(et)2 + π2
.

Moreover, from (5.2) it follows that the moments of the measure ν are given by

mk(ν) = Ik+2,

where In, as defined in Section 3, the number of indecomposable permutations of {1, 2, 3, . . . , n}.
Therefore, from (3.4) we have the asymptotic expansion

A(ex)− 1 ∼
∞∑
k=0

mk(ν)

xk+1
(x→∞).

It follows from Theorem 4.4, then, that one has the asymptotic continued fraction expansion

A(ex)− 1 ∼
1

x− 3−
4

x− 5−
9

x− 7−
16

x− 9−
· · · (x→∞),

This expansion can be derived immediately from Theorem 1.1, but the observations above
provide further context for the coefficients Ik+1 in the asymptotic expansion (3.5) of A(x)
found by Panaitopol in 2000.
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6 Further asymptotic expansions of π(x)

In this final section we provide some methods for deriving further asymptotic expansions
of the prime density function. The first of these is of a more combinatorial nature and is
based on the following lemma, whose proof is a straightforward application of the binomial
theorem.

Lemma 6.1. Let an, cn ∈ C for all n ≥ 0. Any asymptotic expansion

f(x) ∼
∞∑
n=0

an
xn

(x→∞)

of a complex-valued function f(x) at x =∞ with respect to
{

1
xn

}
is equivalent to the asymp-

totic expansion

f(x) ∼
∞∑
n=0

(
n∑
k=0

(
n

k

)
akc

n−k
k

)
1

(x+ cn)n
(x→∞)

of f(x) at x =∞ with respect to
{

1
(x+cn)n

}
.

An application of the lemma to (3.3) yields the following.

Proposition 6.2. One has the asymptotic expansions

p(x) ∼
∞∑
n=1

Dn−1

(log x− 1)n
(x→∞)

and

p(ex) ∼
∞∑
n=1

Dn−1

(log x)n
(x→∞),

where Dn = n!
∑n

k=0
(−1)k

k!
for any nonnegative integer n denotes the number of derangements

of an n element set. Similarly, one has the asymptotic expansions

p(x) ∼
∞∑
n=1

An−1

(log x+ 1)n
(x→∞)

and

p(x/e) ∼
∞∑
n=1

An−1

(log x)n
(x→∞),

where An is the number n!
∑n

k=0
1
k!

of arrangements of an n element set.

The sequence Dn begins 1, 0, 1, 2, 9, 44, 265, . . .. In particular, since D1 = 0, the propo-
sition provides another explanation for the fact that p(x) − 1

log x−1
is asymptotic to 1

(log x)3

despite the fact that p(x)− 1
log x−a is asymptotic to 1−a

(log x)2
for all a 6= 1.
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The sequence An begins 1, 2, 5, 16, 65, 326, 1957, . . .. Thus one has

p(x/e) ∼ 1

log x
+

2

(log x)2
+

5

(log x)3
+

16

(log x)4
+

65

(log x)5
+ · · · (x→∞).

Coincidentally, squaring the asymptotic expansion p(x) ∼
∑∞

k=1
(n−1)!
(log x)n

of p(x) yields

p(x)2 ∼ 1

(log x)2
+

2

(log x)3
+

5

(log x)4
+

16

(log x)5
+

64

(log x)6
+ · · · (x→∞),

and therefore one has

p(x/e)− p(x)2 log x ∼ 1

(log x)6
(x→∞).

It follows that
p(x)2 log x < p(x/e)

for sufficiently large x, which is equivalent to Ramanujan’s famous inequality

π(x)2 <
ex

log x
π(x/e), x� 0.

The two examples above show that combinatorial relationships between various sequences
related to the factorials can yield interesting consequences for the asymptotic behavior of
π(x).

Now, for any n ≥ 1 let D′n denote the number of indecomposable derangements of
{1, 2, 3, . . . , n}, and let D′0 = −1. The sequence {D′n} is OEIS sequence A259869 and begins
−1, 0, 1, 2, 8, 40, 244, 1736, 14084, . . .. It has generating function

∞∑
n=0

D′nX
n = − 1∑∞

n=0 DnXn
.

Proposition 6.2 therefore has the following corollary.

Corollary 6.3. One has the asymptotic expansions

1

p(x)
∼ −

∞∑
n=−1

D′n+1

(log x− 1)n
(x→∞)

and
1

p(ex)
∼ −

∞∑
n=−1

D′n+1

(log x)n
(x→∞).

Proposition 6.2 may be generalized as follows. Note first that the functions En(z) used
in the previous section generalize to complex values of n by

Es(z) = zs−1Γ(1− s, z).
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For all nonnegative integers n one has

n!
n∑
k=0

zk

k!
= ezΓ(n+ 1, z) = zn+1ezE−n(z), z 6= 0

(and, incidentally, also E−n(z) = (−1)n dn

dzn
e−z

z
)). Moreover, one has

ezΓ(s, z) =
zs

z − s+ 1−
s− 1

z − s+ 3−
2(s− 2)

z − s+ 5−
3(s− 3)

z − s+ 7
· · ·

for all z ∈ C\(−∞, 0] and all s ∈ C. Thus, from Lemma 6.1 we also obtain the following.

Proposition 6.4. For every t ∈ R>0 one has the asymptotic expansions

p(x) ∼
∞∑
n=0

pn(t)

(log x+ t)n+1
(x→∞)

and

p(x/t) ∼
∞∑
n=0

pn(log t)

(log x)n+1
(x→∞)

where

pn(t) = n!
n∑
k=0

tk

k!
= etΓ(n+ 1, t) = tn+1etE−n(t)

and

pn(t) =
tn+1

t− n−
n

t− n+ 2−
2(n− 1)

t− n+ 4−
3(n− 2)

t− n+ 6−
· · ·

n

t− n+ 2n

for every positive integer n (assuming the limiting value if t ∈ {n, n− 2, . . . , nmod 2}).

Note that (1.2) is equivalent to pn(0) = n!, while Proposition 6.2 is equivalent to the fact
that pn(−1) = Dn and pn(1) = An for all n ≥ 1. Let

qn(t) = pn(log t) = n!
n∑
k=0

(log t)k

k!
= tΓ(n+ 1, log t)

for all n. Note that
qn(t) ∼ t · n! = t · qn(1) (n→∞)

(and therefore qn(t)
qn(u)

∼ t
u

(n→∞) for all t, u ∈ R>0). Thus, for example, one has

qn(e−1) = Dn ∼ e−1 · n! (n→∞)

and
qn(e) = An ∼ e · n! (n→∞),

which are well known asymptotics for the sequences Dn and An.
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Let us now seek further asymptotic expansions of p(x) by applying Proposition 2.2 of

Section 2 to various asymptotic sequences that are “equivalent” to
{

1
(log x)n

}
. First, we recall

that the harmonic numbers Hn are defined by

Hn =
n∑
k=1

1

k
, n ≥ 1.

The harmonic numbers are interpolated by the continuous function

Hx = Ψ(x+ 1) + γ =

∫ 1

0

1− tx

1− t
dt, x > 0,

where Ψ(z) = Γ′(z)
Γ(z)

is the digamma function, which in turn is the logarithmic derivative of

the gamma function Γ(z). It is well known that

Hx − γ − log x ∼ 1

2x
(x→∞)

and that

Hx − γ = Ψ(x+ 1) = Ψ(x) +
1

x

for all x > 0. Thus, from Proposition 2.2 we deduce the following.

Proposition 6.5. Let f(x) be a complex-valued function of a real variable defined to the right
of 0, and let g(x) be the function f(1/ log x) defined in a neighborhood of ∞; equivalently,
we may let g(x) be any complex-valued function of a real variable defined in a neighborhood
of ∞ and let f(x) = g(e1/x) to the right of 0. Let an ∈ C for all n ≥ 0, let N be a positive

integer, and let L(x) be any function such that L(x) = log x + o
(

1
(log x)N−2

)
(x → ∞) (such

as L(x) = log x, L(x) = Hx−γ, or L(x) = Ψ(x)). Then the following asymptotic expansions
of order N + 1 are equivalent:

1. f(x) ∼
N∑
n=0

anx
n (x→ 0+).

2. f(1/x) = g(ex) ∼
N∑
n=0

an
xn

(x→∞).

3. g(x) ∼
N∑
n=0

an
(L(x))n

(x→∞).

4. g(x) ∼
N∑
n=0

an
(log x)n

(x→∞).

5. g(x) ∼
N∑
n=0

an
(Hx − γ)n

(x→∞).
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6. g(x) ∼
N∑
n=0

an
(Ψ(x))n

(x→∞).

Combining Proposition 6.5 with previous results, we obtain the following.

Corollary 6.6. Let L(x) be any function such that L(x) = log x + o((log x)t) (x→∞) for

all t ∈ R, and let P (x) be any function such that P (x) = li(x)
x

+ o((log x)t) (x → ∞) for all
t ∈ R. One has the following asymptotic expansions.

1. P (x) ∼
∞∑
n=1

(n− 1)!

L(x)n
(x→∞).

2. P (ex) ∼
∞∑
n=1

Dn−1

L(x)n
(x→∞).

3. P (x/e) ∼
∞∑
n=1

An−1

L(x)n
(x→∞).

4. L(x)− 1

P (x)
∼

∞∑
n=0

In+1

L(x)n
(x→∞).

5.
1

P (ex)
∼ −

∞∑
n=−1

D′n+1

L(x)n
(x→∞).

6. P (x) ∼
1

L(x)− 1−
1

L(x)− 3−
4

L(x)− 5−
9

L(x)− 7−
16

L(x)− 9−
· · · (x→∞).

7. P (x) ∼
1

L(x)−
1

1−
1

L(x)−
2

1−
2

L(x)−
3

1−
3

L(x)−
· · · (x→∞).

Corollary 6.7. For all a ∈ R one has the following.

1. p(x)− 1

Hx − a
∼ 1 + γ − a

(log x)2
(x→∞), if a 6= 1 + γ.

2. p(x)− 1

Hx − (1 + γ)
∼ 1

(log x)3
(x→∞).

3. Hx − (1 + γ)− 1

p(x)
∼ 1

log x
(x→∞).

4. lim
x→∞

(
Hx −

1

p(x)

)
= 1 + γ.

5. p(x) ∼
∞∑
n=0

(
n∑
k=0

n!

k!
γk

)
1

Hn+1
x

(x→∞).
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For any number field K, the function P (x) = πK(x)
x

, where πK(x) for all x > 0 counts
the number of prime ideals of OK of norm less than or equal to x, satisfies the condition
P (x) = lix

x
+ o((log x)t) (x → ∞) for all t ∈ R that is required for the functions P (x)

in Corollary 6.6. Moreover, the third of the Mertens’ theorems, which was stated in the

introduction, can be improved to show that the function L(x) = e−γ
∏

p≤x

(
1− 1

p

)−1

satisfies

the condition L(x) ∼ log x + o((log x)t) (x → ∞) for all t ∈ R required for the functions
L(x) in Corollary 6.6. Indeed, the following proposition follows from the clasical result [13,
p. 201–203] of Landau applied to the function F (u) = log

(
1− 1

u

)
. (The result is improved

considerably in [12] using more powerful methods.)

Proposition 6.8 (cf., [13, p. 201–203], [12]). One has the following.

1.
∑
p≤x

log

(
1− 1

p

)
= − log log x− γ +O

(
e(log x)−1/14

)
(x→∞).

2.
∑
p≤x

log

(
1− 1

p

)
= − log log x− γ + o((log x)t) (x→∞) for all t ∈ R

3. eγ
∏
p≤x

(
1− 1

p

)
=

1

log x
+ o((log x)t) (x→∞) for all t ∈ R

4. e−γ
∏
p≤x

(
1− 1

p

)−1

= log x+ o((log x)t) (x→∞) for all t ∈ R

Proof. From the series expansion

log

(
1− 1

t

)
= −

∞∑
k=1

1

ktk
, t > 1 (6.1)

it follows that

log

(
1− 1

t

)
= −1

t
+O

(
1

t2

)
(t→∞).

It follows that the function F (u) = log
(
1− 1

u

)
satisfies the three necessary hypotheses of

Landau’s theorem [13, p. 201–203], and therefore one has

∑
p≤x

log

(
1− 1

p

)
=

∫ x

2

log
(
1− 1

t

)
log t

dt+ A+O
(
e(log x)−1/14

)
(x→∞)

for some constant A. Now, from (6.1) it follows that∫ x

2

log
(
1− 1

t

)
log t

dt = − log log t−
∞∑
k=1

li(1/tk)

k + 1
+B
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for some constant B. But also

0 < − li(1/t) <
1

t log t
,

for all t > 1 and therefore

0 < −
∞∑
k=1

li(1/tk)

k + 1
<
∞∑
k=1

1

k(k + 1)tk log t
= O

(
1

t log t

)
for all t > 1. Thus we have∫ x

2

log
(
1− 1

t

)
log t

dt = − log log t+B +O

(
1

t log t

)
and therefore∑

p≤x

log

(
1− 1

p

)
= − log log t+B +O

(
1

t log t

)
+ A+O

(
e(log x)−1/14

)
(x→∞)

= − log log t+B + A+O
(
e(log x)−1/14

)
(x→∞).

But by Mertens’ third theorem we know that B+A = −γ. This proves statement (1) of the
proposition, and then statements (2)–(4) readily follow.

Corollary 6.9. One has the following.

1. eγ
∏
p≤x

(
1− 1

p

)
=

1

Hx − γ
+ o

(
1

(Hx)t

)
(x→∞) for all t > 0.

2. γ + e−γ
∏
p≤x

(
1− 1

p

)−1

= Hx + o

(
1

(Hx)t

)
(x→∞) for all t > 0.

3. p(x)− eγ
∏
p≤x

(
1− 1

p

)
∼

∞∑
k=2

(k − 1)!

(log x)k
(x→∞).

4. p(ex)− eγ
∏
p≤x

(
1− 1

p

)
∼

∞∑
k=3

Dk−1

(log x)k
(x→∞).

Note that Mertens’ theorems generalize to any number field K. The third theorem
generalizes as follows:

eγ Ress=1 ζK(s)
∏

p:NK/Q(p)≤x

(
1− 1

NK/Q(p)

)
∼ 1

log x
(x→∞).

It is likely possible to generalize Proposition 6.8 to show that

eγ Ress=1 ζK(s)
∏

p:NK/Q(p)≤x

(
1− 1

NK/Q(p)

)
=

1

log x
+ o((log x)t) (x→∞)
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for all t ∈ R; by [14, p. 343], at least this holds under the generalized Riemann hypothesis.
One can also express many of our asymptotic expansions in terms of the asymptotic

sequences
{(

li(x)
x

)n}
and {p(x)n} by “inverting” the expansion

li(x)

x
∼

∞∑
n=1

(n− 1)!

(log x)n
(x→∞)

as one does formal power series under composition. Let G(X) = −
∑∞

n=1 GnX
n denote the

series inversion of the formal power series

F (X) =
∞∑
n=1

(n− 1)!Xn,

that is, the unique formal series such that

X = G(F (X)) = F (G(X)).

One has G1 = −1, and the sequence {Gn}∞n=2 appears as OEIS sequence A134988, with
first several terms given by 1, 0, 1, 4, 22, 144, 1089, 9308, 88562, . . .. In particular, Gn for any
n ≥ 2 is the number of generators in arity n of the operad Lie when considered as a free non-
symmetric operad [18], and Gn for all n ≥ 2 also has a de Rham cohomological interpretation
as dimQH

n−2(Mδ
0,n+1,Q), where Mδ

0,n for any n ≥ 3 is a certain smooth affine scheme that
approximates the moduli space M0,n, defined over Z, of smooth n-pointed curves of genus 0
[2]. It is also known that

X

G(X)
=
∞∑
n=0

JnX
n,

where Jn is the number of “stabilized-interval-free” permutations of {1, 2, · · · , n} and is
OEIS sequence A075834, with first several terms given by 1, 1, 1, 2, 7, 34, 206, 1476, 12123, . . .
[3]. The following proposition follows.

Proposition 6.10. Let L(x) be any function such that L(x) = log x + o((log x)t) (x→∞)

for all t ∈ R, and let P (x) be any function such that P (x) = li(x)
x

+ o((log x)t) (x→∞) for
all t ∈ R. One has the following asymptotic expansions.

1. L(x)p(x) ∼
∞∑
n=0

n!

L(x)n
(x→∞).

2.
1

L(x)
∼ −

∞∑
n=1

GnP (x)n (x→∞).

3.
1

L(x)p(x)
∼ −

∞∑
n=0

Gn+1P (x)n (x→∞).

4. L(x)p(x) ∼
∞∑
n=0

JnP (x)n (x→∞).
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5. L(x) ∼
∞∑

n=−1

Jn+1P (x)n (x→∞).

Corollary 6.11. For P (x) = li(x)
x

(or for P (x) = p(x)), one has the following asymptotic
expansions.

1.
1

log x
∼ −

∞∑
n=1

GnP (x)n (x→∞).

2.
1

Hx − γ
∼ −

∞∑
n=1

GnP (x)n (x→∞).

3. eγ
∏
p≤x

(
1− 1

p

)
∼ −

∞∑
n=1

GnP (x)n (x→∞).

4.
eγ
∏

p≤x

(
1− 1

p

)
p(x)

∼ −
∞∑
n=0

Gn+1P (x)n (x→∞).

5. p(x) log x ∼
∞∑
n=0

JnP (x)n (x→∞).

6.
p(x)

eγ
∏

p≤x

(
1− 1

p

) ∼ ∞∑
n=0

JnP (x)n (x→∞).

7. A(x) = log x− 1

p(x)
∼

∞∑
n=0

Jn+1P (x)n (x→∞).

8. log x ∼
∞∑

n=−1

Jn+1P (x)n (x→∞).

9. Hx − γ ∼
∞∑

n=−1

Jn+1P (x)n (x→∞).

The asymptotic expansions of the prime counting function we have considered in this
paper are all in some sense equivalent to (3.1), which we have seen is a weakening of the
prime number theorem with error term. In 1901 von Koch proved [11] that the Riemann
hypothesis is equivalent to a considerable strengthening of the prime number theorem with
error term, namely, to

π(x) = li(x) +O(
√
x log x) (x→∞).

Using the following lemma, we find a reformulation of von Koch’s result in which li(x) is
replaced with an appropriate expression involving the harmonic numbers. (By Corollary 6.7
an expression of the form x

Hx−a will not suffice.)
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Lemma 6.12. The limit

lim
n→∞

(
li(n)−

n∑
k=1

1

Hk − γ

)
exists.

Proof. That the limit

lim
n→∞

(
li(n)−

n∑
k=2

1

log k

)
(6.2)

exists is clear since the function 1
log t

is decreasing on [2,∞). Thus it suffices to show that
the limit

lim
n→∞

(
n∑
k=2

1

log k
−

n∑
k=2

1

Hk − γ

)
=
∞∑
k=2

(
1

log k
− 1

Hk − γ

)
(6.3)

also exists. But one has

1

2k + 1
< Hk − γ − log k <

1

2k
, k ≥ 1,

and therefore

0 <
1

log k
− 1

Hk − γ
<

1

2k(log k)2
, k ≥ 2,

so the limit (6.3) exists by comparison with the convergent sum
∑∞

k=2
1

2k(log k)2
.

Because the limit (6.2) exists, von Koch’s result implies that the Riemann hypothesis is
equivalent to

π(n) =
n∑
k=2

1

log k
+O(

√
n log n) (n→∞).

Likewise, by Lemma 6.12, we have the following.

Proposition 6.13. The Riemann hypothesis is equivalent to

π(n) =
n∑
k=1

1

Hk − γ
+O(

√
nHn) (n→∞)

The equivalent form of the Riemann hypothesis above is noteworthy because of its sim-
plicity: it makes no explicit mention of transcendental functions and the only numbers
involved that may not be rational are

√
n and γ.

We note that by the lemma the well known lower bound

π(x)− li(x) = Ω±

(√
x log log log x

log x

)
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on the growth of π(x) − li(x) proved by Littlewood in 1914 [15] applies to the functions
π(n)−

∑n
k=2

1
log k

and π(n)−
∑n

k=1
1

Hk−γ
as well. We also note that Proposition 6.13 can also

be deduced from the inequalities

n+1∑
k=3

1

log k
<

n∑
k=2

1

Hk − γ
<

∫ n+1

2

dt

log t
= li(n+ 1)− li(2) <

n∑
k=2

1

log k
< li(n) <

n−1∑
k=1

1

Hk − γ
,

which can be verified to hold for all integers n ≥ 8 using the fact that log(x + 1/2) <
Ψ(x+ 1) = Hx − γ < log(x+ 1) for all x > −1/2. Note that the difference between each of
the above quantities is bounded and approaches a finite limit as n→∞.

Note also that by results in [13] the Riemann hypothesis is equivalent to

e−γ
∏
p≤x

(
1− 1

p

)−1

= log x+O

(
(log x)2

√
x

)
(x→∞)

and therefore also to

e−γ
∏
p≤n

(
1− 1

p

)−1

= Hn − γ +O

(
(Hn)2

√
n

)
(n→∞)

and to

eγ
∏
p≤n

(
1− 1

p

)
=

1

Hn − γ
+O

(
1√
n

)
(n→∞).
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