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Abstract

In this paper, we state a conjecture on the prime factorization of
numbers of the form n!+1, explore its implications, and compare it with
empirical evidence and established results based on the abc conjecture.

1 Introduction

Brocard’s problem asks for integer solutions to the equation n! + 1 = m2,
and it is believed that there are only three such solutions. Known as Brown
numbers, they are (4, 5), (5, 11), and (7, 71). In this paper, we will form
a stronger conjecture on the factorization of numbers of the form n! + 1,
compare it to empirical results, and investigate the implications it would
have regarding both the Brown numbers and another unsolved problem in
number theory, the (in)finitude of the Wilson primes.

To begin, we introduce two important functions pertaining to integer
factorization, the sigma and omega functions.

Definition 1.1 (Sigma function). Let n ∈ N. The sigma function, or
“number-of-divisors” function, denoted by σ0(n), returns the number of dis-
tinct divisors of n.

Definition 1.2 (Omega function). Let n ∈ N. The omega function, denoted
by ω(n), returns the number of distinct prime divisors of n.

Note the difference between the functions σ0(n) and ω(n): the former
counts the number of distinct divisors of n, while the latter counts only the
number of distinct prime divisors of n.

Now that we have defined these functions, it is critical to note some of
their most important characteristics.
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1 INTRODUCTION

Lemma 1.3. Let n ∈ N. Then σ0(n) is odd if and only if n is a perfect
square of an integer.

Proof. Given a positive integer n and a factor d, the number n/d must also
be a factor of n, by definition. Factors almost always come in pairs of the
form d and n/d, so the number of divisors will be even. However, if and
only if there exists a d such that d = n/d, then the two factors are no longer
distinct, and so it is only counted once, thus changing the parity of the
divisor count. Hence, the divisor count of any integer n will be odd if and
only if it is a perfect square.

For any n ∈ N, we can calculate σ0(n) based on the prime factoriza-
tion of n. Note that, by the fundamental theorem of arithmetic, the prime
factorization of n can be written

n =

ω(n)∏
i=1

(pi)
ai = (p1)

a1 · (p2)a2 · (p3)a3 · · · (pω(n))aω(n) , (1)

where each pi represents a distinct prime and ai is the greatest power of the
corresponding prime which divides n. Let ai be known as the multiplicity
of the factor pi, and note that ai > 0 in order for pi to divide n.

Lemma 1.4. Let n ∈ N. Then

σ0(n) =

ω(n)∏
i=1

(ai + 1). (2)

Proof. Using (1), n = (p1)
a1 · (p2)a2 · (p3)a3 · · · (pω(n))aω(n) for primes pi and

multiplicities ai. It is possible to construct a new number,

k =

ω(n)∏
i=1

(pi)
bi = (p1)

b1 · (p2)b2 · (p3)b3 · · · (pω(n))bω(n) ,

where 0 ≤ bi ≤ ai, which implies that k is a divisor of n. For each prime
factor pi where 1 ≤ i ≤ ω(n), there are ai + 1 choices of exponent, with
each bi independent and each combination of choices producing a unique k,
by the fundamental theorem of arithmetic. Therefore, the total number of
distinct divisors of n is given by

σ0(n) =

ω(n)∏
i=1

(ai + 1).
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2 THE CONJECTURE

There is one more definition that must be noted, and that is the concept
of a square-free number.

Definition 1.5 (Square-free numbers). A number n ∈ N is square-free if
and only if there are no perfect squares which divide n other than 1.

2 The conjecture

Now that we have defined the concepts of square-free numbers and factor
multiplicity, it is appropriate to introduce the conjecture. Henceforth, we
will use S to denote the set {4, 5, 7, 12, 23, 229, 562}.

Conjecture 2.1. Let n ∈ N \ S. Then n! + 1 is square-free.

Some members of the excluded set S should appear familiar. The first
three, 4, 5, and 7, are the only currently known solutions to Brocard’s prob-
lem, mentioned earlier. In fact, each of these seven numbers has something
in common which leads to their inclusion here: the prime factorization of
n! + 1 for any n ∈ S produces a prime factor with multiplicity of at least 2,
and these are the only numbers of the required form currently known to have
this property. As such, they present the only would-be counterexamples to
the conjecture, as demonstrated below.

Lemma 2.2. Let n ∈ N. By (1), for primes p and multiplicities a,

n =

ω(n)∏
i=1

(pi)
ai .

If and only if n is square-free, then ai = 1 for all i.

Proof. If n is square-free, then no perfect squares divide n. Assume for the
sake of contradiction that for some i, ai > 1. Then, the perfect square p2i
divides the right-hand side of the above equation, as (pi)

2 | (pi)ai for ai > 1.
Hence, we have found a perfect square that divides a square-free number,
which is a contradiction. Therefore, there must be no i such that ai > 1.
By definition, ai > 0, so n being square-free implies ai = 1 for all i.

It remains to show that ai = 1 for all i implies that n is square-free.
Assume for the sake of contradiction that n is not square-free, and let k 6= 1
be a perfect square that divides n. By definition, k is twice-divisible by an
integer square root, which itself is divisible by at least one prime. Then, k
is twice-divisible by that prime, and n is as well. However, for each prime
p that divides n, n is divisible by p only once, a contradiction. Therefore,
ai = 1 for all i implies that n is square-free.
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2 THE CONJECTURE

Now that the multiplicity of each prime factor of a square-free number
is known to be exactly 1, it is possible to state one of the more important
consequences.

Theorem 2.3. Let n ∈ N. If and only if n is square-free, then

σ0(n) = 2ω(n).

Proof. By equation (2) and lemma (2.2), if n is square-free, then

σ0(n) =

ω(n)∏
i=1

(ai + 1) =

ω(n)∏
i=1

(1 + 1) =

ω(n)∏
i=1

(2) = 2ω(n).

It remains to be proven that σ0(n) = 2ω(n) implies that n is square-
free. (The steps above cannot simply be reversed because ai = 1 implies the
second equality in the chain, but this implication is not bidirectional. For
instance, if ω(n) = 2, a1 = 0, and a2 = 3, the products would be equal but
ai = 1 would not hold.) Note that ai > 0 by definition, so (ai + 1) > 1.
Again, using equation (2),

2ω(n) = σ0(n) =

ω(n)∏
i=1

(ai + 1).

As 2 is prime, the only way to form 2ω(n) from a product of ω(n) integers
greater than 1 is as the product of ω(n) copies of 2. The proof of this fact
is trivial. Hence, it must be true that each multiplicand of (ai + 1) in the
product is equal to 2, so ai = 1 for all i. Therefore, by lemma (2.2), n must
be square-free.

Corollary 2.4. Let n ∈ N. If and only if n! + 1 is square-free, then

σ0(n! + 1) = 2ω(n!+1).

Proof. This fact immediately follows from theorem (2.3), upon substituting
n! + 1 in place of n.

The significance of the above statement is astronomical, as it provides a
way to quickly verify if n! + 1 if square-free or not. If the conjecture (2.1)
is true, then the equality σ0(n! + 1) = 2ω(n!+1) holds for all natural n not
contained in the excluded set S. We will now present numerical evidence
which exemplifies this behavior and supports the claim set forth.
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3 NUMERICAL EVIDENCE

3 Numerical evidence

There is very strong empirical evidence to support the results suggested in
(2.4) for numbers of the form n! + 1.

n σ0(n! + 1) 2ω(n!+1)

1 2 2
2 2 2
3 2 2
4 3 2
5 3 2
6 4 4
7 3 2
8 4 4
9 8 8
10 4 4
11 2 2
12 6 4
13 4 4
14 4 4
15 8 8
16 4 4
17 2 2
18 6 4
19 4 4
20 4 4

n σ0(n! + 1) 2ω(n!+1)

21 8 8
22 8 8
23 12 8
24 4 4
25 4 4
26 4 4
27 2 2
28 4 4
29 8 8
30 32 32
31 16 16
32 16 16
33 32 32
34 4 4
35 32 32
36 64 64
37 2 2
38 4 4
39 16 16
40 128 128

In the table shown above, emphasis has been added to every row where
σ0(n!+1) 6= 2ω(n!+1), indicating the first five members of the excluded set S.
It is confirmed in [5] and [6] that this pattern holds for every n between 41
and 100, as well. The next case known to break from the pattern is n = 229,
as (229! + 1) has a repeated prime factor of 613 [4]. After that, the only
other instance currently known is 562, the final member of the excluded set
S, where (562! + 1) is divisible by 5632 [2].

Furthermore, it has been shown that the abc conjecture implies that
n! + 1 = m has finitely many solutions for powerful m [3], where powerful
numbers are defined as those for which every prime divisor has a multiplicity
greater than 1. This implies there are infinitely many non-powerful m,
where each is only once-divisible by at least one of their prime divisors.
The conjecture (2.1), on the other hand, postulates that there are infinite
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4 FURTHER IMPLICATIONS

m that are only once-divisible by all of their prime divisors, and explicitly
notes each of the finite exceptions to this rule.

4 Further implications

It is important to return to Brocard’s problem and the Brown numbers to
understand the full implications of the conjecture at hand.

Corollary 4.1 (Brocard’s problem). If (2.1) is true, the only solutions to
n! + 1 = m2 for positive integers (n,m) are (4, 5), (5, 11), and (7, 71).

Proof. The conjecture (2.1) asserts that n! + 1 is square-free unless n is in
the set S, and it is clear that a square-free number is, by definition, not a
perfect square. Therefore, there are no perfect squares n! + 1 when n /∈ S.
However, when n ∈ S, the only integers n which satisfy the equation are 4,
5, and 7. Hence, these three are the only solutions to the equation.

This conjecture implies that there are no more Brown numbers than the
three pairs already discovered, as has been shown to hold for at least n ≤ 109

[1]. In general, any result which shows that σ0(n! + 1) is even for n ∈ N \S,
by (1.3), would have this same implication. However, the conjecture we
introduce in this paper is strictly stronger than that claim because it does
not only assert that σ0(n! + 1) is even, but also that it is a power of 2.

There is another significant consequence of the conjecture (2.1), and this
one concerns the Wilson primes. A Wilson prime is a prime p such that p2

divides (p − 1)! + 1. There are believed to be infinitely many such primes,
but 5, 13, and 563 are known to be the only such numbers below 2 · 1013 [2].

Corollary 4.2 (Finitude of the Wilson primes). If (2.1) is true, the only
Wilson primes are 5, 13, and 563.

Proof. According to conjecture (2.1), n! + 1 is square-free if n /∈ S. By
definition, the square of a Wilson prime p divides (p−1)!+1, so let n = p−1
and it is clear that (p − 1) ∈ S must be true in order for the conjecture to
hold. It is easily verified that the only primes p for which (p − 1) ∈ S are
5, 13, and 563, and these are all Wilson primes. Hence, these three are the
only Wilson primes that exist.

With the above two results, it is clear that a proof of this conjecture
would directly and simultaneously imply the existence of only three pairs of
Brown numbers and three Wilson primes, thus at once resolving two major
unsolved problems in the field of number theory.
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