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Abstract: In this paper, we introduce a context-free grammar G : x → xy, y → zu, z →
zw, w → xv, u → xyz−1v, v → x−1zwu over the variable set V = {x, y, z, w, u, v}. We use this
grammar to study joint distributions of several permutation statistics related to descents, rises,
peaks and valleys. By considering the pattern of an exterior peak, we introduce the exterior
peaks of pattern 132 and of pattern 231. Similarly, peaks can also be classified according to
their patterns. Let D be the formal derivative operator with respect to the grammar G. By
using a grammatical labeling, we show that Dn(z) is the generating function of the number of
permutations on [n] = {1, 2, . . . , n} with given numbers of exterior peaks of pattern 132 and of
pattern 231, and proper double descents. By solving a cylinder differential equation, we obtain
an explicit formula of the generating function of Dn(z), which can be viewed as a unification
of the results of Elizalde-Noy, Barry, Basset, Fu and Gessel. Specializations lead to the joint
distributions of certain consecutive patterns in permutations, as studied by Elizalde-Noy and
Kitaev. By a different labeling with respect to the same grammar G, we derive the joint
distribution of peaks of pattern 132 and of pattern 231, double descents and double rises, with
the generating function also expressed by the parabolic cylinder functions. This formula serves
as a refinement of the work of Carlitz-Scoville. Furthermore, we obtain the joint distribution
of exterior peaks of pattern 132 and of pattern 231 over alternating permutations.

Keywords: grammatical labeling; context-free grammar; permutation statistics; generating
function; the parabolic cylinder function.

AMS Classification: 05A15, 05A19.

1 Introduction

In this paper, we introduce a refinement of the exterior peaks based on their patterns. More
precisely, an exterior peak of a permutation is either of pattern 132 or 231. Similarly, we may
define the types of a peak of a permutation. By giving a context-free grammar, we study
the joint distribution of exterior peaks of pattern 132 and of pattern 231, and proper double
descents over permutations on [n] = {1, 2, . . . , n}. In the same manner, we study the joint
distribution of peaks of pattern 132 and of pattern 231, double descents and double rises on
permutations. It turns out that the generating functions for the joint distributions are in
connection with the parabolic cylinder functions.
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The notion of exterior peaks was introduced by Aguiar, Bergeron and Nymanin [2]. Let
π = π1π2 · · · πn be a permutation on [n] and π0 = 0, then for the index 1 ≤ i ≤ n− 1, we call
i an exterior peak if πi−1 < πi > πi+1. For example, the permutation 534621 has two exterior
peaks 1 and 4. For n ≥ 0, denote by T (n, k) the number of permutations on [n] with k exterior
peaks and let

Tn(x) =
∑

k≥0

T (n, k)xk.

Gessel [20, A008971] obtained the generating function of Tn(x).

Theorem 1.1 (Gessel [20]) We have

∞
∑

n=0

Tn(x)
tn

n!
=

√
1− x√

1− x cosh(
√
1− xt)− sinh(

√
1− xt)

.

Given a permutation π = π1π2 · · · πn on [n], for 2 ≤ i ≤ n− 1, an index i is a proper double
descent if πi−1 > πi > πi+1. As an example, the permutation 653421 has two proper double
descents 2 and 5. For n ≥ 0, let U(n, k) be the number of permutations on [n] with k proper
double descents and let

Un(y) =
∑

k≥0

U(n, k)yk.

By solving a second-order ordinary differential equation, Elizalde and Noy [9] obtained the
generating function of Un(y).

Theorem 1.2 (Elizalde-Noy [9]) We have

∞
∑

n=0

Un(y)
tn

n!
=

2
√

(y − 1)(y + 3)e(1−y+
√

(y−1)(y+3)) t
2

1 + y +
√

(y − 1)(y + 3)− (1 + y −
√

(y − 1)(y + 3))e
√

(y−1)(y+3)t
.

Barry [3] and Basset [4] independently derived the generating function of permutations on
[n] containing no proper double descents.

Theorem 1.3 (Elizalde-Noy [9], Barry [3], Basset [4]) We have

∞
∑

n=0

U(n, 0)
tn

n!
=

√
3

2

e
t
2

cos
(√

3t
2 + π

6

) .

The first named author [10] introduced the context-free grammar

x → xy, y → xz, z → zw, w → xz, (1.1)

and obtained the joint distribution of exterior peaks and proper double descents over permu-
tations on [n]. For n ≥ 0, let

Pn(x, y, z, w) =
∑

π∈Sn

xep(π)ypdd(π)zep(π)+1wn−2ep(π)−pdd(π), (1.2)

where Sn is the set of permutations on [n], ep(π) and pdd(π) are the number of exterior peaks
and the number of proper double descents in permutation π, respectively.

2



Theorem 1.4 (Fu [10]) We have

∞
∑

n=0

Pn(x, y, z, w)
tn

n!
=

2z
√

(y + w)2 − 4xze
t
2
(w−y+

√
(y+w)2−4xz)

y + w +
√

(y + w)2 − 4xz − (y + w −
√

(y +w)2 − 4xz)et
√

(y+w)2−4xz
.

Notice that Theorem 1.4 reduces to Theorem 1.1, Theorem 1.2 and Theorem 1.3.

In this paper, we give a refinement of the generating function Pn(x, y, z, w) by considering
the pattern of an exterior peak. For a permutation π = π1π2 · · · πn and 1 ≤ i ≤ n − 1, if i
is an exterior peak with πi−1 < πi > πi+1, then we say i is an exterior peak of pattern 132 if
πi−1 < πi+1, or an exterior peak of pattern 231 if πi−1 > πi+1. For example, the permutation
534621 has one index 1 as an exterior peak of pattern 132, and one index 4 as an exterior peak
of pattern 231.

For n ≥ 0, let Pn(i, j, k) be the number of permutations on [n] with i exterior peaks of
pattern 132, j exterior peaks of pattern 231, and k proper double descents. Define

Pn(x, y, z, w, u, v) =
n
∑

i,j,k=0

Pn(i, j, k)x
iviujzj+1ykwn−2i−2j−k, (1.3)

or equivalently,

Pn(x, y, z, w, u, v) =
∑

π∈Sn

xep1(π)vep1(π)uep2(π)zep2(π)+1ypdd(π)wn−2(ep1(π)+ep2(π))−pdd(π), (1.4)

where ep1(π) and ep2(π) are the numbers of exterior peaks of pattern 132 and of pattern 231
in the permutation π, respectively. We introduce the context-free grammar on the variable set
V = {x, y, z, w, u, v}:

G : x → xy, y → zu, z → zw, w → xv, u → xyz−1v, v → x−1zwu, (1.5)

which can be used to derive an explicit formula for the generating function of Pn(x, y, z, w, u, v)
in terms of the parabolic cylinder functions.

Let us recall some basic knowledges of the parabolic cylinder functions, where one can refer
to [17, 16, 18, 1] for more details. Let n be a nonnegative integer, then we adapt the notation
of the shifted factorial as follows:

(a)0 = 1,

(a)n = a(a+ 1) · · · (a+ n− 1), n > 0.

The confluent hypergeometric function 1F1 with parameters a, b and z is defined as

1F1(a; b; z) =

∞
∑

n=0

(a)n
(b)n

zn

n!
.

The parabolic cylinder function Da(z) introduced by Whittaker and Watson [18, §16.5] is
defined as

Da(z) = 2
a
2
√
πe−

z2

4

(

1

Γ
(

1−a
2

)1F1

(

−a

2
;
1

2
;
z2

2

)

−
√
2z

Γ
(

−a
2

)1F1

(

1− a

2
;
3

2
;
z2

2

)

)

. (1.6)
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Theorem 1.5 Let δ =
√
xv − zu and δ̂ =

√
zu− xv. We have

∞
∑

n=0

Pn(x, y, z, w, u, v)
tn

n!
=

z(pq(w − y) + (δ̂ps− δqr))e
w−y
2

t+ δ2

4
t2

(δ̂s− qy)D zu−yw

δ2

(

δt+ w−y
δ

)

+ (pw − δr)Dxv−yw

δ̂2

(

δ̂t+ y−w

δ̂

) ,

where

p = D zu−yw

δ2

(

w − y

δ

)

, q = Dxv−yw

δ̂2

(

y − w

δ̂

)

,

r = Dxv−yw

δ2

(

w − y

δ

)

, s = D zu−yw

δ̂2

(

y − w

δ̂

)

.

It can be seen that Theorem 1.5 is a refinement of Theorem 1.4. By specializing the variables
in Theorem 1.5, we obtain the distribution of the total number of consecutive patterns 231 and
321 in permutations on [n]. For n ≥ 0, let L(n, k) be the number of permutations on [n] with
k consecutive patterns 231 and 321, and let

Ln(x) =
∑

k≥0

L(n, k)xk.

Theorem 1.6 We have

∞
∑

n=0

Ln(x)
tn

n!
=

e
t(t+2)(1−x)

2

1 + xe
x−1
2

∫ 1
t+1 e

1−x
2

s2ds
. (1.7)

As another specialization of Theorem 1.5, we obtain the joint distribution of exterior peaks
of pattern 132 and of pattern 231 over permutations on [n]. For n ≥ 0, denote by T (n, i, j)
the number of permutations on [n] with i exterior peaks of pattern 132 and j exterior peaks of
pattern 231, and let

Tn(x, y) =
∑

i,j≥0

T (n, i, j)xiyj .

Theorem 1.7 We have

∞
∑

n=0

Tn(x, y)
tn

n!
=

e
x−y
2

t2

1F1

(

1−y
2(x−y) ;

1
2 ;

x−y
2 t2

)

− t 1F1

(

1
2 +

1−y
2(x−y) ;

3
2 ;

x−y
2 t2

) . (1.8)

Specializations of Theorem 1.7 yield the generating function of the number of permutations
on [n] with no exterior peak of pattern 132 and the generating function of the number of
permutations on [n] avoiding the consecutive pattern 231 due to Kitaev [12, 13], as well as the
distribution of consecutive patterns 231 in permutations on [n] given by Elizalde and Noy [9].

Meanwhile, by using the context-free grammar G, we can derive the joint distribution of
more permutation statistics. Given a permutation π = π1π2 · · · πn on [n], first set π0 = πn+1 =
0. Following the terminology in [15, §1.5], for 1 ≤ i ≤ n, we call an index i a peak (or a
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maxima [5], or a modified maximum [11]) if πi−1 < πi > πi+1, a valley if πi−1 > πi < πi+1,
a double rise if πi−1 < πi < πi+1, or a double descent if πi−1 > πi > πi+1. For example, the
permutation 4356721 has two peaks 1 and 5, one valley 2, two double rises 3 and 4, and two
double descents 6 and 7. Denote by p(π), v(π), dd(π) and dr(π) the numbers of peaks, valleys,
double descents and double rises in permutation π, respectively. Carlitz and Scoville [5] studied
the joint distribution of peaks, valleys, double rises and double descents over permutations on
[n]. For n ≥ 1, define

Fn(x, y, z, w) =
∑

π∈Sn

xp(π)−1zv(π)ydd(π)wdr(π). (1.9)

They obtained the following generating function of Fn(x, y, z, w), see also [11, Exercise 3.3.46]
and [15, Exercise 1.61].

Theorem 1.8 (Carlitz-Scoville [5]) We have

∞
∑

n=1

Fn(x, y, z, w)
tn

n!
=

eβt − eαt

βeαt − αeβt
,

where αβ = xz and α+ β = y + w.

We also obtain a refinement of the generating function Fn(x, y, z, w) by considering the
patterns of peaks. Given a permutation π = π1π2 · · · πn and 1 ≤ i ≤ n, if i is a peak with
πi−1 < πi > πi+1, then we call i a peak of pattern 132 if πi−1 ≤ πi+1, or a peak of pattern 231
if πi−1 > πi+1. Note that only when π = 1 a peak i can be of pattern 132 with πi−1 = πi+1.
For n ≥ 1, let Qn(i, j, k, ℓ) be the number of permutations on [n] with i peaks of pattern 132,
j peaks of pattern 231, k double descents and ℓ double rises. For n ≥ 1, define

Qn(x, y, z, w, u, v) =

n
∑

i,j,k,ℓ=0

Qn(i, j, k, ℓ)x
iviujzjykwℓ,

or equivalently,

Qn(x, y, z, w, u, v) =
∑

π∈Sn

xp1(π)vp1(π)up2(π)zp2(π)ydd(π)wdr(π), (1.10)

where p1(π) is the number of peaks of pattern 132 in permutation π and p2(π) is the number
of peaks of pattern 231 in permutation π. Based on the same context-free grammar G (1.5),
we derive the generating function of Qn(x, y, z, w, u, v).

Theorem 1.9 Set Q0(x, y, z, w, u, v) = w. Let δ, δ̂, p, q, r, s be defined as in Theorem 1.5. Then

∞
∑

n=0

Qn(x, y, z, w, u, v)
tn

n!

=
(δ2t+ w − y)(pw − δr)Dxv−yw

δ̂2

(

δ̂t+ y−w

δ̂

)

(δ̂s− qy)D zu−yw

δ2

(

δt+ w−y
δ

)

+ (pw − δr)Dxv−yw

δ̂2

(

δ̂t+ y−w

δ̂

)

5



+
δ(δ̂s− qy)Dxv−yw

δ2

(

δt+ w−y
δ

)

+ δ̂(pw − δr)D zu−yw

δ̂2

(

δ̂t+ y−w

δ̂

)

(δ̂s− qy)D zu−yw

δ2

(

δt+ w−y
δ

)

+ (pw − δr)Dxv−yw

δ̂2

(

δ̂t+ y−w

δ̂

) .

Note that Theorem 1.9 can be viewed as a refinement of Theorem 1.8. Combining Theorem
1.5 and Theorem 1.9, we are led to the joint distribution of exterior peaks of pattern 132 and
of pattern 231 over alternating permutations on [n]. For n ≥ 0, let TA(n, i, j) be the number
of alternating permutations on [n] with i exterior peaks of pattern 132 and j exterior peaks of
pattern 231, and let

TA
n (x, y) =

∑

i,j≥0

TA(n, i, j)xiyj.

Theorem 1.10 We have

∞
∑

n=0

TA
n (x, y)

tn

n!
=

e
x−y
2

t2
(

1 + t 1F1

(

x
2(x−y) ;

3
2 ;−

x−y
2 t2

))

1F1

(

− y
2(x−y) ;

1
2 ;

x−y
2 t2

) . (1.11)

The rest of this paper is organized as follows. In Section 2, we give an overview of the
formal derivative with respect to a context-free grammar, and provide grammatical labelings
on permutations to generate the polynomials Pn(x, y, z, w, u, v) and Qn(x, y, z, w, u, v). In
Section 3, we give proofs of Theorem 1.5 and Theorem 1.9 by establishing a parabolic cylinder
differential equation. Then we show that Theorem 1.4 and Theorem 1.8 are specializations of
Theorem 1.5 and Theorem 1.9. Section 4 is devoted to the proofs of Theorem 1.6, Theorem
1.7 and Theorem 1.10.

2 Grammatical labelings

In this section, we first recall some basic backgrounds of the formal derivative with respect
a context-free grammar and the grammatical labeling. Then with the context-free grammar
G (1.5), we give the corresponding grammatical labeling to derive the generating function
Pn(x, y, z, w, u, v). By using a different grammatical labeling based on the same grammar G
(1.5), we derive the generating function Qn(x, y, z, w, u, v).

Let V be a variable set. A context-free grammar G is defined as a set of substitution rules
replacing a variable in V by a Laurent polynomial of variables in V . For variables u, v ∈ V ,
define a linear operator D with respect to G with the following properties:

(i) D(u+ v) = D(u) +D(v);

(ii) D(uv) = D(u)v + uD(v);

(iii) D(c) = 0, if c is a constant.

6



Thus, for integer n ≥ 0, the operator D satisfies the Leibniz rule

Dn(uv) =
n
∑

k=0

(

n

k

)

Dk(u)Dn−k(v). (2.1)

For a Laurent polynomial w of variables in V , we define the generating function of w as

Gen(w, t) =
∞
∑

n=0

Dn(w)
tn

n!
. (2.2)

Then due to (2.1) and (2.2), the following relations hold:

Gen(uv, t) = Gen(u, t)Gen(v, t), (2.3)

Gen′(u, t) = Gen(D(u), t), (2.4)

where u, v are Laurent polynomials of variables in V , and Gen′(u, t) is the normal derivative
with respect to t. We call the above operator D the formal derivative with respect to the
grammar G.

The idea of using the formal derivative with respect to a context-free grammar to study
combinatorial structures was initiated by Chen [6]. Dumont [8] later found grammars for several
classical combinatorial structures. For example, Dumont defined a context-free grammar

x → xy, y → xy (2.5)

and used the corresponding formal derivative to generate the Eulerian polynomials An(x),
namely, Dn(x)|y=1 = xAn(x).

The concept of the grammatical labeling was introduced in [7] to build the connections
between context-free grammars and the combinatorial structures. A grammatical labeling
is an assignment of the underlying elements of a combinatorial structure with constants or
variables, which is consistent with the substitution rules of a context-free grammar G. For
example, by using the grammar

x → xy, y → x2, (2.6)

we may label the elements of a permutation π on [n] by assigning πi and πi+1 both label x if i is
an exterior peak and assigning all other elements label y. By this grammatical labeling, one can
prove that Dn(x) is the generating function of the number of permutations on [n] with a given
number of exterior peaks. This example can be found in [7], and see [14] for a similar example
but related to the normal derivative given by Ma. In [10], by the corresponding grammatical
labeling consistent with the grammar (1.1):

x → xy, y → xz, z → zw, w → xz

the first named author gave the generating function of Pn(x, y, z, w).

Recall that Pn(x, y, z, w, u, v) is defined in (1.3), that is,

Pn(x, y, z, w, u, v) =

n
∑

i,j,k=0

Pn(i, j, k)x
iviujzj+1ykwn−2i−2j−k.

7



Let G be the context-free grammar over the variable set V = {x, y, z, w, u, v} defined as in
(1.5):

G : x → xy, y → zu, z → zw, w → xv, u → xyz−1v, v → x−1zwu.

Notice that the grammar G is a refinement of grammars (2.5), (2.6) and (1.1). More precisely,
substituting w, u by x and z, v by y in the grammar G reduces to the grammar (2.5); substitut-
ing z, u, v by x and w by y in the grammar G reduces to the grammar (2.6); and substituting
v by z and u by x in the grammar G reduces to the grammar (1.1).

Theorem 2.1 Let D be the formal derivative with respect to the grammar G (1.5). For n ≥ 0,
we have

Dn(z) = Pn(x, y, z, w, u, v).

The theorem asserts that the generating function Pn(x, y, z, w, u, v) can be grammatically
acquired by computing the formal derivatives of z with respect to the grammar G (1.5). For
instance,

D4(z) = 6xzw2v + 5z2w2u+ 5xyzwv + yz2wu+ xy2zv + 3x2zv2 + 2xz2uv + zw4.

Since the coefficient of xyzwv in D4(z) is 5, we can deduce that there are five permutations on
{1, 2, 3, 4} with one exterior peak of pattern 132 and one proper double descent. It is easy to
check that they are 2431, 1421, 4213, 4312 and 3214.

To prove the theorem, given a permutation π = π1π2 · · · πn on [n], we assign a labeling of π
as follows. We first add an element 0 at the end of π and label it by z. Then for 1 ≤ i ≤ n− 1,
if i is an exterior peak of pattern 132, label πi by x and πi+1 by v, if i is an exterior peak of
pattern 231, label πi by u and πi+1 by z, if i is a proper double descent, label πi+1 by y. The
other elements of π are all assigned label w. Denote by w(π) the weight of permutation π as
the product of all labels of elements of π, i.e.,

w(π) = xep1(π)vep1(π)uep2(π)zep2(π)+1ypdd(π)wn−2(ep1(π)+ep2(π))−pdd(π). (2.7)

Example 2.1 Let π = 534621. The labeling of π is as follows:

5 3 4 6 2 1 0
x v w u z y z

(2.8)

and w(π) = xyz2wuv.

Proof of Theorem 2.1. We proceed to prove by induction on n. By (1.4) and (2.7), we observe
that

Pn(x, y, z, w, u, v) =
∑

π∈Sn

w(π).

For n = 0, the grammatical labeling of the empty permutation is given by

0
z
,

8



which leads to P0(x, y, z, w, u, v) = z. From the view of the formal derivative, we see that
D0(z) = z. Thus the theorem holds when n = 0. Suppose that the theorem is valid for n ≥ 1,
that is, Dn(z) =

∑

π∈Sn
w(π).

Let π = π1π2 . . . πn be a permutation on [n] with i exterior peaks of pattern 132, j
exterior peaks of pattern 231, and k proper double descents. Hence the weight of π is
xiviujzj+1ykwn−2i−2j−k. To complete the proof for the case n + 1, we first add an element 0
at the end of π, then generate permutations on [n + 1] by inserting n+ 1 before each element
of π (including the element 0). Depending on the position n + 1 inserted, we can label n + 1
by x, u or w, and adjust labels of some related elements. There are six cases as follows.

Case 1. Insert n + 1 before some element πℓ labeled by x. As shown below, the position of
n+1 becomes an exterior peak of pattern 132 since πℓ−1 < πℓ, so that we label n+1 by x and
relabel πℓ by v. The position of πℓ becomes a proper double descent since n + 1 > πℓ > πℓ+1,
so we relabel πℓ+1 by y.

πℓ−1 < πℓ > πℓ+1
x v

=⇒ πℓ−1 < n+ 1 > πℓ > πℓ+1
x v y

.

For example, inserting 7 before the element 5 in (2.8) yields the grammatical labeling:

7 5 3 4 6 2 1 0
x v y w u z y z

.

Therefore, this insertion of n+1 corresponds to the substitution rule x → xy in grammar G
(1.5). Since there are i exterior peaks of pattern 132 in π, the insertion produces i permutation
on [n+1] with i exterior peaks of pattern 132, j exterior peaks of pattern 231, and k+1 proper
double descents. The total weight of these i permutations is

ixiviujzj+1yk+1wn−2i−2j−k.

Case 2. Insert n+ 1 before some element πℓ labeled by v. We label n+1 by u and relabel πℓ
by z since the position of n+1 is an exterior peak of pattern 231 due to πℓ−1 > πℓ, in addition,
we relabel πℓ−1 by w since πℓ−1 < n+ 1, as illustrated below:

πℓ−2 < πℓ−1 > πℓ
x v

=⇒ πℓ−2 < πℓ−1 < n+ 1 > πℓ
w u z

.

For example, if we insert 7 before element 3 in (2.8), then the labeling is changed to

5 7 3 4 6 2 1 0
w u z w u z y z

.

Note that this insertion corresponds to the rule v → x−1zwu, and generates i permutations
on [n + 1] with i − 1 exterior peaks of pattern 132, j + 1 exterior peaks of pattern 231, and
k + 1 proper double descent. The total weight of these i permutations is

ixi−1vi−1uj+1zj+2yk+1wn−2i−2j−k.

9



Case 3. Insert n+1 before some element πℓ with label u. Then the position of n+1 becomes
an exterior peak of pattern 132 and the position of πℓ becomes a proper double descent, so
that we label n+ 1 by x, and relabel πℓ by v and πℓ+1 by y:

πℓ−1 < πℓ > πℓ+1
u z

=⇒ πℓ−1 < n+ 1 > πℓ > πℓ+1
x v y

.

For example, we insert 7 before the element 6 in (2.8). Then we obtain

5 3 4 7 6 2 1 0
x v w x v y y z

.

Hence the insertion is consistent with the rule u → xz−1yv, which produces j permutations
on [n+1] with i+1 exterior peaks of pattern 132, j−1 exterior peaks of pattern 231 and k+1
proper double descents. The total weight of these j permutations is

jxi+1vi+1uj−1zjyk+1wn−2i−2j−k.

Case4. Insert n + 1 before some element labeled by z. There exist two subcases. If n + 1 is
inserted before 0, then we label n+ 1 by w:

πn 0
z

=⇒ πn < n+ 1 0
w z

.

For example, inserting 7 before element 0 in (2.8), we get

5 3 4 6 2 1 7 0
x v w u z y w z

.

If n+1 is inserted before πℓ with label z for 1 ≤ ℓ ≤ n−1, then the label of n+1 is assigned
u, and the labele of πℓ−1 is adjusted to w, as showed below:

πℓ−2 < πℓ−1 > πℓ
u z

=⇒ πℓ−2 < πℓ−1 < n+ 1 > πℓ
w u z

.

For example, inserting 7 before the element 2 in (2.8) yields

5 3 4 6 7 2 1 0
x v w w u z y z

.

In conclusion, the insertions in this case always correspond to the substitution rule z → zw
and yields j + 1 permutations on [n+ 1] with i exterior peaks of pattern 132, j exterior peaks
of pattern 231, and k proper double descents. Thus, we obtain the total weight

(j + 1)xiviujzj+1ykwn−2i−2j−k+1.

Case 5. Insert n+1 before some element πℓ with label w. By the labeling rule, we know that
πℓ−1 < πℓ. Thus the position of n + 1 becomes an exterior peak of pattern 132 then we label
n+ 1 by x and relabel πℓ by v:

πℓ−1 < πℓ
w

=⇒ πℓ−1 < n+ 1 > πℓ
x v

.
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For example, we insert 7 before the element 4 in (2.8), which changes the grammatical labeling
to

5 3 7 4 6 2 1 0
x v x v u z y z

.

This insertion corresponds to the rule w → xv, which generates n−2i−2j−k permutations
on [n+1] with i+1 exterior peaks of pattern 132, j exterior peaks of pattern 231 and k proper
double descents. Thus the total weight of these permutations equals

(n− 2i− 2j − k)xi+1vi+1ujzj+1ykwn−2i−2j−k−1.

Case 6. Insert n+1 before some element πℓ labeled by y. It is easy to check that the position
of n + 1 becomes an exterior peak of pattern 231 since πℓ−1 > πℓ. Thus we label n + 1 by u
and relabel πℓ by z:

πℓ−2 > πℓ−1 > πℓ
y

=⇒ πℓ−2 > πℓ−1 < n+ 1 > πℓ
u z

.

For example, inserting 7 before the element 1 in (2.8) gives

5 3 4 6 2 7 1 0
x v w u z u z z

.

Hence, this insertion is coincident with the grammatical rule y → zu and produces k permu-
tations on [n+ 1] with i exterior peaks of pattern 132, j + 1 exterior peaks of pattern 231 and
k − 1 proper double descents. The total weight of these permutations amounts to

kxiviuj+1zj+2yk−1wn−2i−2j−k.

Taking all the above six cases into account, we deduce that

Pn+1(x, y, z, w, u, v) =
∑

π∈Sn+1

w(π)

=

n
∑

i,j,k=0

Pn(i, j, k)
(

ixiviujzj+1yk+1wn−2i−2j−k + ixi−1vi−1uj+1zj+2yk+1wn−2i−2j−k

+jxi+1vi+1uj−1zjyk+1wn−2i−2j−k + (j + 1)xiviujzj+1ykwn−2i−2j−k+1

+(n− 2i− 2j − k)xi+1vi+1ujzj+1ykwn−2i−2j−k−1 + kxiviuj+1zj+2yk−1wn−2i−2j−k
)

.

By the grammar (1.5), we have that

D(xiviujzj+1ykwn−2i−2j−k)

= ixiviujzj+1yk+1wn−2i−2j−k + ixi−1vi−1uj+1zj+2yk+1wn−2i−2j−k

+ jxi+1vi+1uj−1zjyk+1wn−2i−2j−k + (j + 1)xiviujzj+1ykwn−2i−2j−k+1

+ (n− 2i− 2j − k)xi+1vi+1ujzj+1ykwn−2i−2j−k−1 + kxiviuj+1zj+2yk−1wn−2i−2j−k.
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Therefore,

Pn+1(x, y, z, w, u, v) =
∑

π∈Sn

D(w(π)).

On the other hand, it follows from induction hypothesis that

Dn+1(z) = D(Dn(z)) = D

(

∑

π∈Sn

w(π)

)

=
∑

π∈Sn

D(w(π)).

Thus the theorem holds for n+ 1, which completes the proof.

By considering a different grammatical labeling on permutations, which is also consistent
with the substitution rules of the grammar G (1.5), we give a grammatical interpretation for
the generating function Qn(x, y, z, w, u, v).

Theorem 2.2 Let D be the formal derivative with respect to the grammar G (1.5). For n ≥ 1,
we have

Dn(w) = Qn(x, y, z, w, u, v).

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1, so we only present the
corresponding grammatical labeling. Given a permutation π = π1π2 · · · πn on [n], first add an
element πn+1 = 0 at the end of π. Then for 1 ≤ i ≤ n, if i is a peak of pattern 132, we label
πi by x and πi+1 by v, if i is a peak of pattern 231, we label πi by u and πi+1 by z, if i is a
double descent, we label πi+1 by y, finally, if i is a double rise, we label πi by w.

We claim that this grammatical labeling is well-defined, that is, for 1 ≤ i ≤ n + 1, each
element πi is assigned exactly one label. Since n = 1 is trivial, we assume n ≥ 2. If i = 1,
then π1 is either a peak of pattern 132 or a double rise since 0 = π0 < π1. Thus π1 is labeled
by x or w. If i = n + 1, since πn is either a peak of pattern 231 or a double descent due to
πn > πn+1 = 0, we may label πn+1 by either z or y. Suppose 2 ≤ i ≤ n. If πi−1 < πi < πi+1,
then πi is a double rise receiving label w, if πi−1 < πi > πi+1, then πi is a peak receiving label
x or label u. On the other hand, if πi−2 > πi−1 > πi, then πi−1 is a double descent so that
we label πi by y, if πi−2 < πi−1 > πi, then πi−1 is a peak so that we label πi by either z or v.
Following the above labeling rules, we can always assign πi a label for 1 ≤ i ≤ n + 1, which
completes the proof.

Furthermore, let Wn(i, j, k, ℓ,m) be the number of permutations on [n] with i peaks of
pattern 132, j peaks of pattern 231, k double descents, ℓ double rises and m − 1 valleys.
Denote by

Wn(x, y, z, w, u) =

n
∑

i,j,k,ℓ,m=0

Wn(i, j, k, ℓ,m)xiujzmykwℓ,

or equivalently,

Wn(x, y, z, w, u) =
∑

π∈Sn

xp1(π)up2(π)zv(π)+1ydd(π)wdr(π). (2.9)

By the definitions of peaks and valleys, it is clear that the number of peaks in a permutation
is one greater than that of valleys. If replacing v by z in Qn(x, y, z, w, u, v), then the exponent
of z will record the occurrences of valleys, that is,

Qn(x, y, z, w, u, v)|v=z = Wn(x, y, z, w, u). (2.10)
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Corollary 2.3 Let D be the formal derivative with respect to the grammar G (1.5). For n ≥ 1,
we have

Dn(w)|v=z = Wn(x, y, z, w, u).

By using the Leibniz rule (2.1) on Dn+1(z) = Dn(zw), we have

Dn+1(z) =
n
∑

k=0

(

n

k

)

Dk(z)Dn−k(w).

Hence for n ≥ 1, combining Theorem 2.1 and Theorem 2.2, we can establish a convolutional
relation:

Pn+1(x, y, z, w, u, v) =

n
∑

k=0

(

n

k

)

Pk(x, y, z, w, u, v)Qn−k(x, y, z, w, u, v).

3 Connection to the parabolic cylinder functions

In this section, by using the grammar

G : x → xy, y → zu, z → zw, w → xv, u → xyz−1v, v → x−1zwu

as in (1.5), we give the proofs of Theorem 1.5 and Theorem 1.9. To be more specific, combining
Theorem 2.1 and (2.2), we have

∞
∑

n=0

Pn(x, y, z, w, u, v)
tn

n!
= Gen(z, t). (3.1)

Similarly, by Theorem 2.2 and (2.2), along with the assumption that Q0(x, y, z, w, u, v) = w,
we find that ∞

∑

n=0

Qn(x, y, z, w, u, v)
tn

n!
= Gen(w, t). (3.2)

Therefore, to prove Theorem 1.5 and Theorem 1.9, we need to compute Gen(z, t) and Gen(w, t).
To this end, we first give the explicit formula for the generating function Gen(x−1/2z−1/2, t)
by solving the parabolic cylinder differential equation. Recall that the parabolic cylinder dif-
ferential equation is a second-order ordinary differential equation of the form

y
′′

(z) +

(

a+
1

2
− z2

4

)

y(z) = 0 (3.3)

whose solution can be written as

y = c1Da(z) + c2D−a−1(iz),

where Da(z) and D−a−1(iz) are independent, and c1, c2 are constants to be determined by the
initial conditions of (3.3).

Based on the solutions of the equation (3.3), it is not difficult to solve a more general
differential equation of the form

y
′′

(z)− (az2 + bz + c)y(z) = 0. (3.4)
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Theorem 3.1 For the general parabolic cylinder differential equation (3.4), all solutions can
be written as

c1D b2−4ac−4a3/2

8a3/2

(√
2a1/4z +

b√
2a3/4

)

+ c2D 4ac−b2−4a3/2

8a3/2

(

i

(√
2a1/4z +

b√
2a3/4

))

,

where c1 and c2 are constants.

Proof. By equation (3.3), we know that these two parabolic cylinder functions are independent,
thus we only need to prove that they are solutions of (3.4). To this end, we first introduce two
recurrence relations related to Da(z) and D′

a(z) in [19, pp.16]:

D′
a(z) =

1

2
zDa(z) −Da+1(z), (3.5)

D′
a(z) = aDa−1(z)−

1

2
zDa(z). (3.6)

By (3.5) and (3.6), for any two constants r and s, we can deduce that

D′
a(rz + s) =

r

2
(rz + s)Da(rz + s)− rDa+1(rz + s), (3.7)

D′
a+1(rz + s) = r(a+ 1)Da(rz + s)− r

2
(rz + s)Da+1(rz + s). (3.8)

Combining (3.7) and (3.8) yields

D′′
a(rz + s) =

(r

2
(rz + s)Da(rz + s)− rDa+1(rz + s)

)′

=
r2

2
Da(rz + s) +

r

2
(rz + s)

(r

2
(rz + s)Da(rz + s)− rDa+1(rz + s)

)

− r2
(

(a+ 1)Da(rz + s)− 1

2
(rz + s)Da+1(rz + s)

)

=
r2

4

(

(rz + s)2 − 4a− 2
)

Da(rz + s). (3.9)

Therefore, plugging

D b2−4ac−4a3/2

8a3/2

(√
2a1/4z +

b√
2a3/4

)

and D 4ac−b2−4a3/2

8a3/2

(

i

(√
2a1/4z +

b√
2a3/4

))

into (3.9), we see that both of them satisfy the general parabolic cylinder differential equation
(3.4). This completes the proof.

The following theorem states that the generating function Gen(x−1/2z−1/2, t) satisfies a
general parabolic cylinder differential equation.

Theorem 3.2 Let
f(t) = Gen(x−1/2z−1/2, t)

14



and
α = (y + w)2 − 2(xv + zu), β = 2(w − y)(xv − zu), γ = 2(xv − zu)2.

We have

f ′′(t)−
(

γ

8
t2 +

β

4
t+

α

4

)

f(t) = 0. (3.10)

Proof. By the grammar G (1.5) and the corresponding formal derivative D, one can check that

D2(x−1/2z−1/2) =
1

4
x−1/2z−1/2((y + w)2 − 2(xv + zu)) =

α

4
x−1/2z−1/2. (3.11)

Moreover, since D(xv − zu) = 0, it follows that

D(α) = β, D(β) = γ, D(γ) = 4(xv − zu)D(xv − zu) = 0. (3.12)

By (2.4), we have

f (4)(t) =
∞
∑

n=0

Dn+4(x−1/2z−1/2)
tn

n!
. (3.13)

From the Leibniz rule (2.1) and (3.11), we see that

Dn+4(x−1/2z−1/2) = Dn+2
(α

4
x−1/2z−1/2

)

=
1

4

n+2
∑

k=0

(

n+ 2

k

)

Dk(α)Dn+2−k(x−1/2z−1/2).

By (3.12), the summation has only three nonzero terms, implying that

Dn+4(x−1/2z−1/2) (3.14)

=
α

4
Dn+2(x−1/2z−1/2) +

n+ 2

4
βDn+1(x−1/2z−1/2) +

1

4

(

n+ 2

2

)

γDn(x−1/2z−1/2).

Putting (3.14) into (3.13), and using (2.4) again, we deduce that

f (4)(t)−
(

γ

8
t2 +

β

4
t+

α

4

)

f ′′(t)−
(

γ

2
t+

β

2

)

f ′(t)− γ

4
f(t) = 0. (3.15)

Let

g(t) = f ′′(t)−
(

γ

8
t2 +

β

4
t+

α

4

)

f(t).

Taking the second-order derivative with respect to t on both sides gives

g′′(t) = f (4)(t)−
(

γ

8
t2 +

β

4
t+

α

4

)

f ′′(t)−
(

γ

2
t+

β

2

)

f ′(t)− γ

4
f(t).

It follows from (3.15) that
g′′(t) = 0.

Clearly, we have g(t) = c1t+ c2 with the indeterminate constants c1 and c2, that is,

f ′′(t)−
(

γ

8
t2 +

β

4
t+

α

4

)

f(t)− c1t− c2 = 0. (3.16)
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Set t = 0 and recall f (n)(0) = Dn(x−1/2z−1/2). By (3.11), we have

c2 = f ′′(0) − α

4
f(0) = D2(x−1/2z−1/2)− α

4
x−1/2z−1/2 = 0.

Hence, (3.16) can be reduced to

f ′′(t)−
(

γ

8
t2 +

β

4
t+

α

4

)

f(t)− c1t = 0.

Then taking the derivative with respect to t on both sides yields

f (3)(t)−
(

γ

8
t2 +

β

4
t+

α

4

)

f ′(t)−
(

γ

4
t+

β

4

)

f(t)− c1 = 0. (3.17)

Setting t = 0 in (3.17) gives

c1 = f (3)(0)− α

4
f ′(0)− β

4
f(0)

= D3(x−1/2z−1/2)− α

4
D(x−1/2z−1/2)− β

4
x−1/2z−1/2. (3.18)

Hence, from (3.11), we deduce that

D3(x−1/2z−1/2) = D
(α

4
x−1/2z−1/2

)

=
α

4
D(x−1/2z−1/2) +

β

4
x−1/2z−1/2. (3.19)

Combining (3.18) and (3.19), we see that c1 = 0. Therefore, given c1 = c2 = 0, equation (3.16)
reduces to (3.10). This completes the proof.

Combing Theorem 3.1 and Theorem 3.2, we give the explicit form for the generating function
Gen(x−1/2z−1/2, t) in terms of the parabolic cylinder functions.

Theorem 3.3 Let δ, δ̂, p, q, r, s be defined as in Theorem 1.5. We have

Gen
(

x−1/2z−1/2, t
)

(3.20)

=
x−1/2z−1/2

pq(w − y) + (δ̂ps− δqr)

(

(δ̂s− qy)D zu−yw

δ2

(

δt+
w − y

δ

)

+(pw − δr)Dxv−yw

δ̂2

(

δ̂t+
y − w

δ̂

))

.

Proof. From Theorem 3.1 and Theorem 3.2, Gen(x−1/2z−1/2, t) can be expressed as follows

Gen
(

x−1/2z−1/2, t
)

= c1D zu−yw
xv−zu

(√
xv − zut+

w − y√
xv − zu

)

+ c2D yw−xv
xv−zu

(

i

(√
xv − zut+

w − y√
xv − zu

))
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with the indeterminate constants c1 and c2. By noticing that i
√
xv − zu =

√
zu− xv, we

rewrite Gen
(

x−1/2z−1/2, t
)

as

Gen
(

x−1/2z−1/2, t
)

= c1D zu−yw
xv−zu

(√
xv − zut+

w − y√
xv − zu

)

+ c2Dxv−yw
zu−xv

(√
zu− xvt+

y − w√
zu− xv

)

.

Let δ, δ̂, p, q, r, s be defined as in Theorem 1.5. Since Gen(x−1/2z−1/2, 0) = x−1/2z−1/2, we
obtain

c1p+ c2q = x−1/2z−1/2. (3.21)

Moreover,

Gen′(x−1/2z−1/2, 0) = D(x−1/2z−1/2) = −1

2
x−1/2z−1/2(y + w).

Thus, by (3.7), we see that

c1

(

w − y

2
p− δr

)

+ c2

(

y − w

2
q − δ̂s

)

= −1

2
x−1/2z−1/2(y + w). (3.22)

Combining (3.21) and (3.22), we arrive at

c1 =
(δ̂s− qy)x−1/2z−1/2

pq(w − y) + (δ̂ps− δqr)
and c2 =

(pw − δr)x−1/2z−1/2

pq(w − y) + (δ̂ps− δqr)
.

This completes the proof.

Now we are ready to prove Theorem 1.5 and Theorem 1.9.

Proof of Theorem 1.5. Using mathematical induction on n with the fact D2(w − y) = D(xv −
zu) = 0, we see that for n ≥ 0,

Dn(x−1z) = x−1z

⌊n/2⌋
∑

k=0

n!

2k(n− 2k)!k!
(w − y)n−2k(xv − zu)k.

Therefore, we have

Gen(x−1z, t) =
∞
∑

n=0

x−1z





⌊n/2⌋
∑

k=0

n!

2k(n− 2k)!k!
(w − y)n−2k(xv − zu)k





tn

n!

= x−1z

∞
∑

k=0

∞
∑

n=0

(w − y)n(xv − zu)ktn+2k

2kn!k!

= x−1ze(w−y)t+ (xv−zu)t2

2 . (3.23)

On the other hand, by (2.3), we have

(

Gen(z, t) ·Gen(x−1/2z−1/2, t)
)2

= Gen(x−1/2z1/2, t)2 = Gen(x−1z, t),
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which leads to

Gen(z, t) =
Gen(x−1z, t)1/2

Gen(x−1/2z−1/2, t)
. (3.24)

Plugging (3.20) and (3.23) into (3.24), we arrive at the generating function Gen(z, t).

Proof of Theorem 1.9. From the substitution rule z → zw in the grammar (1.5), utilizing (2.3)
and (2.4), we obtain that

Gen′(z, t) = Gen(D(z), t) = Gen(zw, t) = Gen(z, t)Gen(w, t),

thus,

Gen(w, t) =
Gen′(z, t)
Gen(z, t)

. (3.25)

Using (3.7) on Gen(z, t) to compute (3.25), we are led to Theorem 1.9.

To see that Theorem 1.5 implies Theorem 1.4, replacing u by x and v by z in (1.4) gives
(1.2), that is,

Pn(x, y, z, w, u, v)
∣

∣

u=x
v=z

= Pn(x, y, z, w).

Thus by (3.1), we derive

∞
∑

n=0

Pn(x, y, z, w)
tn

n!
= Gen(z, t)

∣

∣

u=x
v=z

.

It follows from (3.24) that

Gen(z, t)
∣

∣

u=x
v=z

=

(

Gen(x−1z, t)
∣

∣

u=x
v=z

)1/2

Gen(x−1/2z−1/2, t)
∣

∣

u=x
v=z

. (3.26)

From (3.23), we can directly deduce that

Gen(x−1z, t)
∣

∣

u=x
v=z

= x−1ze(w−y)t. (3.27)

With the replacement u → x and v → z, the parabolic cylinder differential equation (3.10)
reduces to the second order linear differential equation

h′′(t)− ((y + w)− 4xz)h(t) = 0,

where h(t) = Gen(x−1/2z−1/2, t)
∣

∣

u=x
v=z

. According to the initial conditions

h(0) = x−
1
2 z−

1
2 and h′(0) = −1

2
x−

1
2 z−

1
2 (y + w),

solving the linear differential equation gives

Gen(x−
1
2 z−

1
2 , t)|u=x

v=z
(3.28)

=
x−

1
2 z−

1
2

2

((

1 +
y + w

√

(y + w)2 − 4xz

)

e−
t
2

√
(y+w)2−4xz
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+

(

1− y + w
√

(y + w)2 − 4xz

)

e
t
2

√
(y+w)2−4xz

)

.

Hence, plugging (3.27) and (3.28) into (3.26), we arrive at

Gen(z, t)
∣

∣

u=x
v=z

=
2z
√

(y + w)2 − 4xze
t
2
(w−y+

√
(y+w)2−4xz)

y + w +
√

(y + w)2 − 4xz − (y + w −
√

(y + w)2 − 4xz)et
√

(y+w)2−4xz
, (3.29)

which proves Theorem 1.4.

Next we show that Theorem 1.9 implies Theorem 1.8. Substituting u by x in (2.9) and
comparing with (1.9), then for n ≥ 1, we deduce

Wn(x, y, z, w, u)|u=x = xzFn(x, y, z, w).

Together with (2.10), we have

Qn(x, y, z, w, u)|u=x
v=z

= xzFn(x, y, z, w).

By (3.2), we see

∞
∑

n=1

Fn(x, y, z, w)
tn

n!
=x−1z−1

∞
∑

n=1

Qn(x, y, z, w, u, v)
∣

∣

u=x
v=z

tn

n!

=x−1z−1
(

Gen(w, t)
∣

∣

u=x
v=z

− w
)

. (3.30)

It follow from (3.25) that

Gen(w, t)
∣

∣

u=x
v=z

=

(

Gen(z, t)
∣

∣

u=x
v=z

)′

Gen(z, t)
∣

∣

u=x
v=z

. (3.31)

Let αβ = xz and α+ β = y + w, then by (3.29) and (3.31), we derive

Gen(w, t)
∣

∣

u=x
v=z

= αβ
eβt − eαt

βeαt − αeβt
+ w. (3.32)

Therefore, plugging (3.32) into (3.30) proves Theorem 1.8.

4 Specializations

In this section, we discuss several applications of Theorem 1.5 and Theorem 1.9 by specializing
the variables in {x, y, z, w, u, v}. Before this, we recall the definition of consecutive patterns [9]
in permutations. Let m ≤ n be two positive integers, and π = π1π2 · · · πn be a permutation
on [n] and σ = σ1σ2 · · · σm be a permutation on [m]. Then we say π contains a consecutive
pattern σ if there exist m consecutive elements πi+1πi+2 · · · πi+m in π (0 ≤ i ≤ n − m) such
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that ρ(πi+1πi+2 · · · πi+m) = σ, where ρ is the reduction consisting in relabeling the elements
with {1, 2, . . . ,m} so that they keep the same order relationships they have in π.

Let L(n, k) be the number of permutations of [n] with k consecutive patterns 231 and 321,
and let

Ln(x) =
∑

k≥0

L(n, k)xk. (4.1)

In other words, L(n, k) counts the number of permutations of [n] whose total number of exterior
peaks of pattern 231 and proper double descents is k.

Proof of Theorem 1.6. Note that by (1.3), we have

Pn(1, x, 1, 1, x, 1) = Ln(x). (4.2)

Due to the explicit form of Da(z) in (1.6) with the fact limz→0
1

Γ(z) = 0, we can easily obtain

D0(z) = e−
z2

4 and D1(z) = ze−
z2

4 . (4.3)

Moreover, we see that

D−1(z) =

√

π

2
e−

z2

4

(

e
z2

2 −
√
2z√
π

1F1

(

1;
3

2
;
z2

2

)

)

=

√

π

2
e

z2

4 − ze−
z2

4 1F1

(

1;
3

2
;
z2

2

)

.

Notice that

1F1

(

1;
3

2
; z2
)

=

√
π

2z
ez

2
erf(z), (4.4)

where erf(x) is the error function defined by

erf(x) =
2√
π

∫ x

0
e−s2ds.

Then setting z → z√
2
in (4.4) gives

1F1

(

1;
3

2
;
z2

2

)

=

√

π

2
z−1e

z2

2 erf

(

z√
2

)

,

which leads to

D−1(z) =

√

π

2
e

z2

4

(

1− erf

(

z√
2

))

. (4.5)

Therefore, by (4.2), setting x, z, w, v → 1 and y, u → x in Theorem 1.5, utilizing (4.3) and
(4.5), we have

∞
∑

n=0

Ln(x)

n!
tn =

√

2(x− 1)e
t(t+2)(1−x)

2

√

2(x− 1) +
√
πe

x−1
2 x

(

erf
(
√

x−1
2

)

− erf
(

(t+1)
√
x−1√

2

)) .

After replacing the error function erf(x) by integration, we finally arrive at (1.7). This com-
pletes the proof.
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By setting x = 0 in (4.1), we have Ln(0) = L(n, 0), which is the number of permutations
on [n] avoiding the consecutive patterns 231 and 321. It follows from Theorem 1.6 that

∞
∑

n=0

Ln(0)

n!
tn = et+

t2

2 . (4.6)

Note that (4.6) is also the generating function of the number of involutions on [n], see [15, Eq.
5.32], which implies that the number of permutations on [n] avoiding the consecutive patterns
231 and 321 equals the number of involutions on [n]. A bijective proof given by Callan can be
found in [20, A000085].

Let T (n, i, j) be the number of permutations on [n] with i exterior peaks of pattern 132
and j exterior peaks of pattern 231, and let

Tn(x, y) =
∑

i,j≥0

T (n, i, j)xiyj . (4.7)

Proof of Theorem 1.7. By (1.3), we know that Pn(x, 1, 1, 1, y, 1) = Tn(x, y). Thus after replace-
ments y, z, w, v → 1 and u → y in Theorem 1.5, we obtain the numerator as

lim
y,z,w,v→1

u→y

z(pq(w − y) + (δ̂ps− δqr))e
w−y
2

t+ δ2

4
t2 = πe

x−y
4

t2Θ, (4.8)

where

Θ =

√
y − x

Γ
(

1−x
2(y−x)

)

Γ
(

1
2 +

1−y
2(x−y)

) −
√
x− y

Γ
(

1−y
2(x−y)

)

Γ
(

1
2 + 1−x

2(y−x)

) .

For the denominator, we have

lim
y,z,w,v→1

u→y

(δ̂s− qy)D zu−yw

δ2

(

δt+
w − y

δ

)

= −
πe

y−x
4

t2
1F1

(

1−y
2(x−y) ;

1
2 ;

x−y
2 t2

)

√
2Γ
(

1
2 + 1−x

2(y−x)

)

Γ
(

1
2 + 1−y

2(x−y)

) −
πe

y−x
4

t2t
√

−2(x− y)21F1

(

1
2 + 1−y

2(x−y) ;
3
2 ;

x−y
2 t2

)

Γ
(

1−x
2(y−x)

)

Γ
(

1−y
2(x−y)

)

+
πe

y−x
4

t2√y − x1F1

(

1−y
2(x−y) ;

1
2 ;

x−y
2 t2

)

Γ
(

1−x
2(y−x)

)

Γ
(

1
2 + 1−y

2(x−y)

) +
πe

y−x
4

t2t
√
x− y1F1

(

1
2 +

1−y
2(x−y) ;

3
2 ;

x−y
2 t2

)

Γ
(

1−y
2(x−y)

)

Γ
(

1
2 + 1−x

2(y−x)

)

= −A1 −A2 +A3 +A4,

and

lim
y,z,w,v→1

u→y

(pw − δr)Dxv−yw

δ̂2

(

δ̂t+
y − w

δ̂

)

=
πe

x−y
4

t2
1F1

(

1−x
2(y−x) ;

1
2 ;

y−x
2 t2

)

√
2Γ
(

1
2 +

1−x
2(y−x)

)

Γ
(

1
2 +

1−y
2(x−y)

) +
πe

x−y
4

t2t
√

−2(x− y)21F1

(

1
2 +

1−x
2(y−x) ;

3
2 ;

y−x
2 t2

)

Γ
(

1−x
2(y−x)

)

Γ
(

1−y
2(x−y)

)
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−
πe

x−y
4

t2√x− y1F1

(

1−x
2(y−x) ;

1
2 ;

y−x
2 t2

)

Γ
(

1−y
2(x−y)

)

Γ
(

1
2 +

1−x
2(y−x)

) −
πe

x−y
4

t2t
√
y − x1F1

(

1
2 +

1−x
2(y−x) ;

3
2 ;

y−x
2 t2

)

Γ
(

1−x
2(y−x)

)

Γ
(

1
2 +

1−y
2(x−y)

)

= B1 +B2 −B3 −B4.

Since

1F1(a; b; z) = ez1F1(b− a; b;−z), (4.9)

we deduce that

1F1

(

1− x

2(y − x)
;
1

2
;
y − x

2
t2
)

= e
y−x
2

t2
1F1

(

1− y

2(x− y)
;
1

2
;
x− y

2
t2
)

, (4.10)

1F1

(

1

2
+

1− x

2(y − x)
;
3

2
;
y − x

2
t2
)

= e
y−x
2

t2
1F1

(

1

2
+

1− y

2(x− y)
;
3

2
;
x− y

2
t2
)

. (4.11)

Plugging (4.10) into B1 and B3, and plugging (4.11) into B2 and B4, we see that A1 = B1,
A2 = B2 and

A3 −B3 = πe
y−x
4

t2Θ1F1

(

1− y

2(x− y)
;
1

2
;
x− y

2
t2
)

,

A4 −B4 = −πe
y−x
4

t2Θt1F1

(

1

2
+

1− y

2(x− y)
;
3

2
;
x− y

2
t2
)

,

which implies

lim
y,z,w,v→1

u→y

(δ̂s− qy)D zu−yw

δ2

(

δt+
w − y

δ

)

+ (pw − δr)Dxv−yw

δ̂2

(

δ̂t+
y − w

δ̂

)

(4.12)

= πe
y−x
4

t2Θ

(

1F1

(

1− y

2(x− y)
;
1

2
;
x− y

2
t2
)

− t1F1

(

1

2
+

1− y

2(x− y)
;
3

2
;
x− y

2
t2
))

.

Therefore, combining (4.8) and (4.12) gives (1.8), which completes the proof.

Letting y → x in Theorem 1.7 also leads to the result of Gessel [20, A008971].

Proof of Theorem 1.1. One can check that

lim
y→x

1F1

(

1− y

2(x− y)
;
1

2
;
x− y

2
t2
)

=
∞
∑

n=0

(
√
1− xt)2n

(2n)!
= cosh(

√
1− xt)

and

lim
y→x

1F1

(

1

2
+

1− y

2(x− y)
;
3

2
;
x− y

2
t2
)

=
1√

1− xt

∞
∑

n=0

(
√
1− xt)2n+1

(2n + 1)!
=

1√
1− xt

sinh(
√
1− xt).

Thus we have

lim
y→x

∞
∑

n=0

Tn(x, y)
tn

n!
= lim

y→x

e
x−y
2

t2

1F1

(

1−y
2(x−y) ;

1
2 ;

x−y
2 t2

)

− t 1F1

(

1
2 + 1−y

2(x−y) ;
3
2 ;

x−y
2 t2

)
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=

√
1− x√

1− x cosh(
√
1− xt)− sinh(

√
1− xt)

=

∞
∑

n=0

Tn(x)
tn

n!
.

We complete the proof.

Furthermore, setting y → 1 and x → 1 in (4.7), respectively, we deduce that

T̄n(x) := Tn(x, 1) =
∑

k≥0

T1(n, k)x
k and T̃n(y) := Tn(1, y) =

∑

k≥0

T2(n, k)y
k,

where T1(n, k) is the number of permutations on [n] with k exterior peaks of pattern 132, and
T2(n, k) is the number of permutations on [n] with k exterior peaks of pattern 231.

Corollary 4.1 We have
∞
∑

n=0

T̄n(x)
tn

n!
=

e
x−1
2

t2

1−
∫ t
0 e

x−1
2

s2ds
(4.13)

and ∞
∑

n=0

T̃n(y)
tn

n!
=

1

1−
∫ t
0 e

y−1
2

s2ds
. (4.14)

Proof. Since

1F1

(

1

2
;
3

2
;−z2

)

=

√
π

2z
erf(z),

we observe that

lim
y→1

1F1

(

1

2
+

1− y

2(x− y)
;
3

2
;
x− y

2
t2
)

=

√
π

√

2(1− x)t
erf

(

√

1− x

2
t

)

. (4.15)

Then by Theorem 1.7, setting y → 1 in (1.8) and utilizing (4.15), we obtain

∞
∑

n=0

T̄n(x)
tn

n!
=

√

2(1− x)e
x−1
2

t2

√

2(1 − x)−√
πerf

(
√

1−x
2 t
) . (4.16)

With the help of (4.4), we deduce that

lim
x→1

1F1

(

1

2
+

1− y

2(x− y)
;
3

2
;
x− y

2
t2
)

=

√
π

√

2(1− y)t
e

1−y
2

t2erf

(

√

1− y

2
t

)

. (4.17)

Thus, setting x → 1 in (1.8) and using (4.17), we see that

∞
∑

n=0

T̃n(y)
tn

n!
=

√

2(1 − y)
√

2(1− y)−√
πerf

(

√

1−y
2 t

) . (4.18)
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After replacement error functions by integration in (4.16) and (4.18), we obtain (4.13) and
(4.14). This completes the proof.

Setting x = 0 in (4.13), we obtain the generating function of the number of permutations
on [n] with no exterior peaks of pattern 132

∞
∑

n=0

T1(n, 0)
tn

n!
=

e−
t2

2

1−
∫ t
0 e

− s2

2 ds
,

which recasts the formula obtained by Kiteav in [12, Theorem 6]. Since π0π1π2 cannot be a
exterior peak of pattern 231, T2(n, k) is also the number of permutations on [n] with k con-
secutive pattern 231. Thus, (4.14) reproduces the result of Elizalde-Noy given in [9, Theorem
4.1]. Similarly, setting y = 0 in (4.14) yields the generating functions of permutations on [n]
avoiding the consecutive patterns 231:

∞
∑

n=0

T2(n, 0)
tn

n!
=

1

1−
∫ t
0 e

− s2

2 ds
,

which is also a special case of [9, Theorem 4.1] and [13, Theorem 12].

As the conclusion of this section, by combining Theorem 1.5 and Theorem 1.9, we give
the joint distribution of exterior peaks of pattern 132 and of pattern 231 over alternating
permutations on [n]. As defined in [15], we say that a permutation π = π1π2 · · · πn ∈ Sn is
alternating (or zigzag or down-up) if π1 > π2 < π3 > π4 < · · · . Recall that TA(n, i, j) is the
number of alternating permutations on [n] with i exterior peaks of pattern 132 and j exterior
peaks of pattern 231, and the generating function

TA
n (x, y) =

∑

i,j≥0

TA(n, i, j)xiyj.

From (1.11), we see that

lim
x,y→1

1F1

(

x

2(x− y)
;
3

2
;−x− y

2
t2
)

=

∞
∑

n=0

(−1)n

(2n + 1)!
t2n =

sin t

t

and

lim
x,y→1

1F1

(

− y

2(x− y)
;
1

2
;
x− y

2
t2
)

=

∞
∑

n=0

(−1)n

(2n)!
t2n = cos t.

Thus if we set x, y → 1 in (1.11), then (1.11) reduces to the generating function

∞
∑

n=0

En
tn

n!
= sec t+ tan t,

where the Euler number En is the number of alternating permutations on [n].

Proof of Theorem 1.10. The proof is divided into the following cases depending on the parity
of n. For the case that n is even, we let z, v → 1 and y,w → 0 and u → y in (1.3). One can
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check that the permutations not vanished are alternating permutations with even length. Thus
we have

P2k(x, 0, 1, 0, y, 1) = TA
2k(x, y) and P2k+1(x, 0, 1, 0, y, 1) = 0,

where k is a nonnegative integer. By setting z, v → 1 and y,w → 0 and u → y in Theorem 1.5,
using formula (4.9), we obtain that

∞
∑

k=0

TA
2k(x, y)

t2k

(2k)!
=

e
x−y
2

t2

1F1

(

− y
2(x−y) ;

1
2 ;

x−y
2 t2

) . (4.19)

For the case that n ≥ 3 is odd, we set z, v → 1 and y,w → 0 and u → y in (1.10). Notice
that only the alternating permutations with odd length are not vanished in this case. By the
labeling rules in proof of Theorem 2.2, we have

Q2k+1(x, 0, 1, 0, y, 1)/y = TA
2k+1(x, y) and Q2k(x, 0, 1, 0, y, 1)/y = 0,

where k is a positive integer. By letting z, v → 1 and y,w → 0 and u → y in Theorem 1.9,
then using formula

(1 + a− b)1F1(a; b; z) = a1F1(a+ 1; b; z) + (1− b)1F1(a; b− 1; z),

we derive that

∞
∑

k=1

TA
2k+1(x, y)

t2k+1

(2k + 1)!
=

te
x−y
2

t2
1F1

(

x
2(x−y) ;

3
2 ;−

x−y
2 t2

)

1F1

(

− y
2(x−y) ;

1
2 ;

x−y
2 t2

) − 1. (4.20)

Therefore, summing TA
1 (x, y) = 1 and (4.19), (4.20) together yields (1.11), which completes

the proof.
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