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Shapley-like values without symmetry

Jacob North Clark∗
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Abstract

Following the work of Lloyd Shapley on the Shapley value, and tangentially the work of
Guillermo Owen, we offer an alternative non-probabilistic formulation of part of the work
of Robert J. Weber in his 1978 paper “Probabilistic values for games.” Specifically, we
focus upon efficient but not symmetric allocations of value for cooperative games. We offer
an alternative condition “reasonableness,” and retain standard efficiency and linearity to
replace the usual axioms. In the pursuit of the result, we discover properties of the linear
maps that describe the allocations. This culminates in a special class of games for which any
other map that is “reasonable, efficient” can be written as a convex combination of members
of this special class of allocations, via an application of the Krein-Milman theorem.

1 Introduction

1.1 History and Applications

1.1.1 The initial work

In Shapley’s 1953 work, entitled “A value for n-person games.”, Lloyd Shapley established an
important idea in the theory of collaborative games. In Shapley’s own words, “the possibility
of evaluating games is therefore of critical importance.” A player in the game needs to know
their prospects, what they might receive compared to what they might produce on their
own. Shapley’s work set forth an axiomatically based way to do just that.

1.1.2 Applications and iterations

Since its first appearance, the Shapley value has been utilized in numerous contexts.
One context in which the Shapley value appears is in social network analysis. One might

want to know who is the most important, or most influential in a network. In social contexts,
one might want to impartially find the leader of a community or rank the importance of
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members of a team. In a strictly economic sense, this could be used to target demonstrations
or free samples of products, or used to target advertising dollars to the “taste makers” of
a network. More detail regarding these ideas can be found in the work of Gómez et al.,
Narayanam and Narahari, Papapetrou et al. [6, 11, 13], and more generally the seminal work
of Myerson [10] on “Graphs and Cooperation in Games”.

Additionally, the Shapley value has been used in more general economic and political
applications. Mertens has a compact writeup, “Some Other Economic Applications of the
Value” [8] which discussed some of these applications, such as taxation and redistribution,
and economies with fixed prices. Additionally, for voting games, the Shapley-Shubik power
index builds on the ideas of the Shapley value to measure the power of each vote in voting
games [15], something of interest to the field of political science among other fields.

In many, if not all, cases in a usable context the computations necessary to calculate this
information are numerous, if not computationally prohibitive. As such, many approximation
schemes have appeared, as seen in the papers by Owen, Fatima et al. and Castro et al. in
1971/72, 2008 and 2009 respectively [12, 5, 3]. Algorithms using linear and polynomial
techniques have been considered, among others.

With all of this activity, one might question Shapley’s initial axioms. What is the fairness
that his axioms describe? There have been many explorations of variations of the Shapley
value concept, such as probabilistic values and indices of power as summarized in “Variations
on the shapley value” of Monderer and Samet [9]. What happens when an axiom is weakened
or removed? In Weber’s paper of 1988 [18], “Probabilistic values for games,” there was an
initial investigation of some of these ideas for the probabilistic value view of the Shapley
value. My research attempts to cover some of the same ideas in a different, more general
context with alternative assumptions placed on the allocations.

1.2 Review

To begin, we must first familiarize ourselves with the notion of an n-person cooperative
game in the style of Shapley [14], or for a more modern presentation see the exposition
of Maschler et al. [7]. In this section, and the ones following, a cooperative game can be
characterized as the following sections describe.

1.2.1 Game Theory necessities

To understand our results, one needs a background of the generalities of (cooperative) game
theory.

Characteristic functions of games

Definition 1.1. Given an n-player cooperative game, with players coming from the set N ,
we characterize the game in terms of possible collaborations, via its characteristic function
v, where

v : P (N) → R≥0
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or, alternatively the domain is {0, 1}|N |, i.e. in each situation, either a player is participating
in a collaboration, or not, and the characteristic function assigns some value, or “gains” to
this collaboration.

Now, we wish to obtain new information about these characteristic functions. First off,
one may view them as a vector, with each entry in the vector corresponding to a member
T ∈ P (N), applying some logical ordering scheme to the vector, such as increasing cardinality
from the top to bottom of the vector. This vector view of a characteristic function will be
useful in the considerations to come.

Definition 1.2 (Monotonicity). A characteristic function v is called monotone if given
sets S and T , with S ⊆ T , then

v(S) ≤ v(T ).

Given Definition 1.2, we wish to go further, and find a set of monotone characteristic
functions that characterize all monotone characteristic functions. Ideally, we would be able to
construct any monotone characteristic function as a positive linear combination of members
of some set of representatives. To accomplish this goal, we reduce our problem to one more
manageable, as seen in Section 2. We also interest ourselves in the following definitions.

Definition 1.3 (Superadditivity). A characteristic function v is called superadditive if
for all S, T ⊂ N , if S ∩ T = ∅, then

v(S ∪ T ) ≥ v(S) + v(T ).

In many practical examples, superadditivity is assumed, as in some way, this implies the
collaboration is “worth it”, and what one would receive has the potential to be better than
what one could do on ones own.

Definition 1.4 (Subadditivity). A characteristic function v is called subadditive if for all
S, T ⊂ N , if S ∩ T = ∅, then

v(S ∪ T ) ≤ v(S) + v(T ).

Remark. One can observe that monotonicity is a generalization of superaddditivity, assuming
v(S) ≥ 0 for all S.1 All superadditive characteristic functions are monotone, however, not
all monotone characteristic functions are superaddititve. ⊳

Indeed. Suppose we have a superadditive characteristic function, v. Thus, by definition

v(S ∪ T ) ≥ v(S) + v(T )

for all S and T with S ∩ T = ∅. Thus, we can clearly see that v is monotone. This because

v(S ∪ T ) ≥ v(S) + v(T ) ≥ v(S)

hence, under relabeling
v(A) ≥ v(B)

for B ⊂ A. �

1This is contrary to [18], where they do not assume that the characteristic functions take on non-negative
values, and hence, superadditive does not imply monotone.
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Simple Games A concept that will prove integral to our arguments is those of simple
games. In short a simple game is one made up of 0 and 1.

Definition 1.5. A game v is simple if it only takes on the values 0 and 1.

We tend to call simple games by a slightly different name, binary characteristic functions.
This can be attributed to their makeup as functions, having an output of 0 or 1.

Shapley’s value and the Collaborative Game With this information about the game,
we now shift focus to that of allocating the spoils of the collaboration to each player. Typ-
ically, this solution is viewed as a vector, φ(N ; v) and the gains assigned to each player are
denoted φi(N ; v) for player i. One can call this φ an allocation. The familiar Shapley value
is one such allocation. To arrive at the Shapley value, we need to familiarize ourselves with
his axioms for a “fair” solution φ to the problem of dividing spoils.

Axiom 1.1 (Efficiency). A solution φ is efficient if for every coalitional game (N ; v)

∑

i∈N

φi(N ; v) = v(N).

Namely, the total gains over the set of all players, v(N), is divided in some way between
them.

Definition 1.6. Let (N ; v) be a coalitional game, and let i, j ∈ N . Players i and j are
symmetric if for every coalition S ⊆ N \ {i, j}

v(S ∪ {i}) = v(S ∪ {j}).

Note. Essentially, if two players contribute the same, they will get the same payoff. In
the real world, experience and expertise also factor into this calculation. This is, however
somewhat difficult to quantify mathematically. ⊳

Axiom 1.2 (Symmetry). A solution φ is symmetric if for every coalitional game (N ; v)
and every pair of symmetric players i and j in the game:

φi(N ; v) = φj(N ; v)

Note. Of course, this seems reasonably fair, but how does one determine similarity in real
life? Does experience and expertise play a factor when collaborating with others? What
about time of arrival for each player? ⊳

Definition 1.7. A player i is called a null player in a game (N ; v) if for every coalition
S ⊆ N , including the empty coalition one has

v(S) = v(S ∪ {i})

Logically, if a player contributes nothing to all collaborations, then, they should not
expect to receive anything from the collaboration.
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Axiom 1.3 (Null player property). A solution φ satisfies the null player property if for
every coalitional game (N ; v) and every null player i in the game,

φi(N ; v) = 0.

Axiom 1.4 (Additivity). A solution φ satisfies additivity if for every pair of coalitional
games (N ; v) and (N ;w), φ(N ; v + w) = φ(N ; v) + φ(N ;w).

An alternative axiom can replace Null player property and additivity

Axiom 1.5 (Marginality, to replace Axioms 1.3 and 1.4). A solution φ satisfiesmarginal-
ity if for every pair of games (N ; v) and (N ;w) with the same set of players, and for every
player i, if

v(S ∪ {i})− v(S) = w(S ∪ {i})− w(S) ∀S ⊆ N \ {i}

then
φi(N ; v) = φi(N ;w).

Theorem 1.1 (Shapley value). There is a unique solution φi(N ; v) satisfying efficiency,
addativity, the null player property, and symmetry. This is the Shapley value.

Definition 1.8. The Shapley value is given by the equation

φi(N ; v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) .

Note. This indeed satisfies all the axioms, and is unique. One can think of it as a weighted
average. ⊳

The Shapley value can also be determined via a path integral calculation using a multi-
linear extension of v as described by Owen [12]. This idea led, somewhat tangentially, to the
results of this paper.

Note. This Shapley value is computationally intensive in practice. Hence, thereare many
approximation schemes, including but not limited to [3, 5, 12]. ⊳

1.2.2 Analysis background

In the proofs of our results, we invoke several analytical results. So, to make the explanations
clear, we present the results and concepts from functional analysis we shall draw from.

Extreme Points We familiarize ourselves with the concept of extreme points.

Definition 1.9. Let X be a vector space, and suppose K is a subset of X . A point x ∈ K
is an extreme point of K if it does not lie on a line segment in K. To be more explicit, x
cannot be written as a (generalized) linear combination of distinct values in K.
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We shall denote the set of extreme points of K ex(K). Typically, we consider convex K.
Another way to view the definition of an extreme point x, following Bowers and Kalton [2],

is if u and v are elements of K such that x = (1−t)u+tv for some t ∈ (0, 1), then x = u = v.
Namely, we cannot write an extreme point as the convex combination of two distinct points
in the set.

In our explorations, we shall see several examples of extreme points. In a basic sense,
extreme points follow our intuition. However, one must still be careful, as in some cases they
do not.

Metrizable topological vector spaces Following the exposition by Aliprantis and Border [1],
we explore some facts about metrizable topological vector spaces, that will also be useful in
proving our results. (Although, we do not need the full power of any of the statements.)

Definition 1.10. A neighborhood base at 0 is a collection of sets B of neighborhoods of 0
with the property that if U is any neighborhood of 0, there exists a B ∈ B such that B ⊂ U .

Theorem 1.2. A Hausdorff topological vector space is metrizable if and only if zero has a
countable neighborhood base.

Theorem 1.3. In a complete metrizable locally convex space, the closed convex hull of a
compact set is compact.

Note. Rn certainly has a countable neighborhood base at 0. It is also complete. ⊳

The Krein-Milman Theorem The Krein-Millman Theorem, of functional analysis, is
yet another result we shall utilize in our processes.

Theorem 1.4 (Krein-Milman). Suppose E is a locally convex Hausdorff topological vector
space. If K is a nonempty compact, convex subset of E, then

K = co (exK)

where ex is the set of extreme points, and co is the closed convex hull. In particular, ex(K) 6=
∅

The proof of the Krein-Millman Theorem is non-constructive, however, the power of this
result allows us to prove some results more intuitively.

1.3 Contributions of the paper

In the paper [18], Weber gave many results on the theory of probabilistic values for games.
One in particular is the fact that one can characterize games that are efficient without
symmetry, i.e. random order values, as probabilistic values [18, Theorems 12 and 13]. In this
paper, we offer an alternative idea and path to the results in the world of these non-symmetric
games, with the results below.
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Note. These results were inspired by the papers [12, 14] and without knowledge of [18], until
later on in idea development. The main difference between this paper, and the one of Weber
is we begin with more restricted, but reasonable assumptions, the Krein-Millman theorem is
used in the proof of the main result, and we dissect the process further, determining precisely
what reasonableness and efficiency imply, both individually and together. ⊳

While the following is not hard to prove, it inspired our consideration of monotone
characteristic functions.

Result 1 (Theorem 2.2). Any monotone characteristic function (v(S) ≤ v(T ) for S ⊆
T ), can be written as a positive sum of the extreme points of the set of monotone binary
characteristic functions (simple games).

First, consider the notion of an allocation of value, a function φ of N and v that takes its
values in R|N |. This φ gives some of the gains of a collaboration of players to each individual
player, i.e. φi(N ; v), the ith component of the vector φ(N ; v) is given to player i.

In the proof of our main result, two of our results come to the forefront, along with our
new conditions. We set forth an equivalent way to view efficiency (

∑

i φi(v,N) = v(N)),
and introduce the notion of reasonableness for an allocation, namely that the inequality

min
S:i/∈S

{v (S ∪ {i})− v(S)} ≤ φi(N ; v) ≤ max
S:i/∈S

{v (S ∪ {i})− v(S)}

is satisfied for all monotone v.
The first of these results is the pairing of elements in a matrix of an allocation. To

understand this result, one must view an allocation as a matrix, which is possible due to
linearity. Each entry in an allocation A can be referred to by the player i (row) and the set
of players S, associated with the column. Of course, we use the same ordering for columns
as we use for the rows of the characteristic functions. We denote each entry by Ai,S. In this
notation the amount allocated to a player i is φi(v,N) = Ai · v =

∑

S⊂N Ai,Sv(S).

Result 2 (Theorem 3.12 and Theorem 3.15). Given a player (row) i of a reasonable
allocation viewed as a matrix, the elements in each row pair off in the following manner:

1 ≥ Ai,S∪{i} = −Ai,S ≥ 0

for sets S with S ∩ {i} = ∅.

This allows us to prove many fundamental results, including allowing one to find the extreme
points of the so called “reasonable” allocations. It turns out that they are well behaved,
specifically these extreme points are the “special” allocations. The special allocations can
be constructed given the set chain

∅ = M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ M|N |−1 ⊂ M|N | = N

with |Mm+1 \Mm| = 1. Player Mm+1 \Mm = {i} is assigned the “gains”

φi(N, v) = v(Mm+1)− v(Mm)

by the allocation.2

2A terse way to define the special allocations would be to say that these are those reasonable, efficient
allocations viewed as a matrices, with a −1 and 1 in each row.
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Result 3 (Lemma 3.20). The extreme points of the set of all reasonable, efficient alloca-
tions are precisely the special allocations.

When we combine all our work together, we obtain our main result.

Result 4 (Theorem 3.21). Any reasonable, efficient allocation can be written as a convex
combination of the special allocations, more strongly,

An allocation is reasonable and efficient if and only if the allocation lies within the convex
hull of the special allocations.

Following the main result, we observe some further more generalized results.

Result 5 (Proposition 4.4). If A is reasonable and efficient for superadditive character-
istic functions (v(S ∪ T ) ≥ v(S) + v(T ) for S ∩ T = ∅), then it is a convex combination of
the special allocations.

Namely, we can obtain the results above looking only at superadditive characteristic func-
tions. One can even go further, as described in Section 4.

2 Motivation: a View of Characteristic Functions

To begin, one might wish to see the structure of a characteristic function of a game.

2.1 Monotone Characteristic Functions
and their Extreme Points

We wish to be able to characterize the monotone characteristic functions with a finite subset.
If we can find the extreme points of the set with v(N) = 1 we will have done just that, and
will have a spanning set for which any monotone characteristic function can be written as a
positive linear combination of the extreme points.

Theorem 2.1. The set of extreme points of the monotone characteristic functions with
v(N) = 1 are the monotone characteristic functions with entries consisting of either 0 or 1,
or the monotone binary vectors, which in turn are simple games.

The proof of this result is fairly straightforward.

Remark. This statement allows us to write any monotone function with

v(N) = 1

as a generalized convex combination of the set of extreme points of the monotone charac-
teristic functions with v(N) = 1. Further, one can see that any monotone characteristic
function can be written as a positive sum of these extreme points by dilating the set of all
monotone functions with v(N) = 1. ⊳

8



Table 1: Number of Monotone Characteristic Vectors

n count of characteristic vectors

1 2
2 5
3 19
4 167
5 7,580
6 7,828,353
7 2,414,682,040,997
8 56,130,437,228,687,557,907,787

Theorem 2.2. Any monotone characteristic function, can be written as a positive sum of
the extreme points of the set of monotone binary characteristic functions (simple games).

In general, one might be curious how many of these monotone binary vectors or “extreme
points” there are for various numbers of players, and how fast this number grows. This is a
well studied sequence, the Dedekind Numbers (with various offsets) see for example [16, 17],
or Table 1.

2.2 Motivations

This initial view of the characteristic functions, led to the question, what analogues might
one get for the allocations of value? What form would the set of extreme points take? These
questions lead directly to our results that follow.

3 Allocations of Value

3.1 An introduction to allocations

The Shapley value is a very specialized concept, and the given axioms might be too specific
in some situations. From this point forward, we see if we can generalize the idea of division
of total value v(N) among the players in N , while reducing the number of required axioms.
In addition, we shall see what properties we can determine based on these axioms. We call
an alternative way of splitting the spoils, with fewer axiomatic assumptions an allocation of
value, or allocation. So, certainly the Shapley value can be viewed as an allocation.

The first thing we notice is the fact that these allocations φ can be viewed as linear maps,
assuming we adopt Axiom 1.4 (Additivity). As such, they can be viewed as |N |×2|N | matri-
ces. This view works quite well with the vector view of the characteristic functions discussed
previously. Thus, we assume that Axiom 1.4 holds in all of our further considerations. It is
helpful to note that in our considerations, N is fixed, so φ can be viewed as a function of
v only. We also often make the identification between φ and its matrix counterpart. The
majority of our results are proved using this identification.
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Inspired by the ideas presented by Owen [12], one can consider the path integrals along
the edges of the region of integration, rather than the main diagonal (corresponding to the
Shapley value). One may quickly see that the resulting allocations are well behaved. They
can be defined via set chains of the players inN , specifically set chains that contain all players
introduced one by one. More formally, allocations are “special” if they are the allocations
described below.

Definition 3.1. A special allocation φ is an allocation that assigns marginal contributions
directly to players in the following way. Given a set chain

∅ = M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ M|N |−1 ⊂ M|N | = N

with |Mm+1 \Mm| = 1, player Mm+1 \Mm = {i} is assigned the “gains”

φi(N, v) = v(Mm+1)− v(Mm).

Thinking about this in matrix form we can see there is strong matrix allocations are
“special” structure here as well. Using the set chain made up of Mm, with m = 0 to
m = |N | starting with M0 = ∅ with the restriction for all integer m between 0 and |N | − 1
that

|Mm+1 \Mm| = 1

we see this means that we are adding a single player to Mj at each step in the chain. This
corresponds with the matrix of the allocation directly, namely for m from 0 to |N | − 1, we
interpret the set chain as follows: in the row for player Mm+1 \Mm = {i}, we place a −1 in
the column associated with Mm and a 1 in the column associated with Mm+1. Looking at
this, one might see why such allocations are “special”.

We quickly see that there are nice consequences of viewing the allocation as a matrix.
The sum of elements in the first column is −1 and the sum of elements in the last column
is 1. All other columns sum to 0. The sum of the row elements is 2 in absolute value, and
additionally the sum of the column elements in absolute value is 2 as well. We will see all
these consequences appear again, in more general context.

These chains are in turn in one to one correspondence with the set of all permutations
of |N | letters, which we can use to find the number of such allocations, as seen in Table 2
on page 14.

With this new terminology, we endeavor to build something similar to what we had for
characteristic functions for the allocations. Namely, can we build a representative set of
allocations from which we can write any allocation? It turns out, we can do so for so-called
“reasonable, efficient” allocations, and it turns out that this set of representatives is the set
of all the special allocations.

3.1.1 Efficiency in allocations

Definition 3.2. We define an allocation φ with matrix A to be efficient if

n
∑

i=1

φi(N ; v) = v(N)− v(∅)

for all monotone v, where φj(N ; v) = Aj · v, with Aj denoting the jth row of A.
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Note. For most practical applications, we can assume that v(∅) = 0. With this assumption,
we will divide all the spoils, even those present when no work is done by any player, among
those participating in the game. Thus, we could think of efficiency as

n
∑

i=1

φi(N ; v) = v(N)− v(∅) = v(N).
⊳

This is of course closely related to Axiom 1.1 (Efficiency).
It turns out that the row-wise sum properties we observed in the special allocation’s

matrices are true of any efficient one.

Lemma 3.1. Column-wise, the sum of all the row elements in each column of the matrix of
an efficient allocation is

(−1, 0, . . . , 0, 1).

Proof. Suppose we have a n player game, with set of players N . Let us also suppose we have
an efficient allocation φ, with matrix A. By definition,

A · v = φ(N ; v)

for all v, with φj(N ; v) being the allocation of value to each player. Taking this information,
we can now multiply both sides of the equality by a row univector of length n, and obtain

[1, . . . , 1]A · v = [1, . . . , 1]φ(N ; v).

Now, taking the right hand side, we notice

[1, . . . , 1]φ(N ; v) =

n
∑

j=1

φj(N ; v).

Via efficiency,
n
∑

j=1

φj(N ; v) = v(N)− v(∅).

Of course,
v(N)− v(∅) = [−1, 0, . . . , 0, 1]v.

Putting all of this together,

[1, . . . , 1]A · v = [−1, 0, . . . , 0, 1]v.

As this is true for all v, we obtain

[1, . . . , 1]A = [−1, 0, . . . , 0, 1].

Therefore, the sum of the rows of A is what we require.

Note. The converse of this result is trivially true, namely if the sum of all the row elements
in each column is

(−1, 0, . . . , 0, 1)

then the allocation is efficient. ⊳
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3.1.2 Reasonableness in allocations

Definition 3.3. We consider an allocation φ with matrix A reasonable3 if for all monotone
v,

min
S:i/∈S

{v (S ∪ {i})− v(S)} ≤ Ai · v = φi(N ; v) ≤ max
S:i/∈S

{v (S ∪ {i})− v(S)} , (1)

where the maximum and minimum are taken over all S, with i /∈ S.

Why one might say this is “reasonable” is clear. A logical player in a game would not
expect to get less than the smallest contribution they make to a group. In the same way, an
impartial observer of a game would not expect a player to receive more than the maximum
contribution a player made to any collaboration.

It turns out that these reasonable allocations have numerous useful properties, and in-
deed, along with efficiency let us get a result analogous to the one we had for characteristic
functions for allocations of value. To begin, let us obtain some new results determined by
reasonableness (Definition 3.3) itself.

Lemma 3.2. Given a player m, there exists a monotone v so

min
S:m/∈S

{v (S ∪ {m})− v(S)} = max
S:m/∈S

{v (S ∪ {m})− v(S)} .

i.e., the inequalities in Definition 3.3 are equalities.

Proof. To begin, take m to be a given player in your game. We wish to build a binary
characteristic function (or simple game) vm so the minimum is equal to the maximum. We
construct vm as follows: If m ∈ S for each place, put 1 in that place, if not, place a 0. By
construction, this is monotone. Also by construction, the difference

vm (S ∪ {m})− vm(S) = 1

for all S with S ∩ {m} = ∅.

Note. This tells us φm(N ; vm) = 1, and φl(N ; vm) = 0 for l 6= m. ⊳

Lemma 3.3. The characteristic functions constructed in Lemma 3.2 are both superadditive
and subadditive, as defined in Definitions 1.3 and 1.4.

Proof. Let us handle this for playerm. The cases for other players follow identically. Observe,
via the proof of Lemma 3.2, we have

min
S:m/∈S

{v (S ∪ {m})− v(S)} = max
S:m/∈S

{v (S ∪ {m})− v(S)} .

3This condition clearly implies several other conditions sometimes used in the explorations of allocations,
namely Weber’s dummy axiom, and the null-player property (Axiom 1.3). Recall, the dummy axiom is a
generalization of the null player property. A player m is dummy in the game if

v(S ∪ {i}) = v(S) + v({i}) for all S ⊂ N \ {i}.

The dummy axiom is simply if player i is a dummy in the game v, then φi(v) = v({i}).

12



Via the body of the proof, we know vm (S ∪ {m})− vm(S) = 1 for all S \ {m}. So, we wish
to show that v(S ∪ T ) = v(S) + v(T ) for S ∩ T = ∅. Suppose that we have two disjoint sets
as described. There are two cases to deal with, m ∈ S ∪ T and m /∈ S ∪ T .

To begin, let us consider the first of those possiblilites. Without loss of generality m ∈ S.
Thus, by our construction we have v(S) = 1 as m ∈ S and v(T ) = 0 as m /∈ T , as S and T
are disjoint. Of course, v(S ∪ T ) = 1 as well. So, we have 1 = 1 + 0, an equality.

Now, consider the second of the two possibilities. As m /∈ S ∪ T , m /∈ S and m /∈ T .
Thus, v(S) = 0, v(T ) = 0 and v(S ∪ T ) = 0. So, we have 0 = 0 + 0, another equality.

Proposition 3.4. The convex combination of two reasonable allocations is again reasonable.

Proof. Suppose φ1(N ; v) and φ2(N ; v) are reasonable, and by definition satisfy the inequality
in Definition 3.3. By that definition, for j ∈ {1, 2}

min
i/∈S

{v (S ∪ {i})− v(S)} ≤ φj
i (N ; v) ≤ max

i/∈S
{v (S ∪ {i})− v(S)}

We now consider the reasonableness of the convex combination tφ1(N ; v) + (1− t)φ2(N ; v).
Certainly,

tmin
i/∈S

{v (S ∪ {i})− v(S)} ≤ tφ1

i (N ; v) ≤ tmax
i/∈S

{v (S ∪ {i})− v(S)}

and

(1 − t)min
i/∈S

{v (S ∪ {i})− v(S)} ≤ (1 − t)φj
i (N ; v) ≤ (1 − t)max

i/∈S
{v (S ∪ {i})− v(S)} .

So, adding the above together, noting t+ (1− t) = 1 leaves us with

min
i/∈S

{v (S ∪ {i})− v(S)} ≤ tφ1

i (N ; v) + (1 − t)φ2

i (N ; v) ≤ max
i/∈S

{v (S ∪ {i})− v(S)} .

Therefore, tφ1(N ; v) + (1− t)φ2(N ; v) is reasonable as we wished.

Lemma 3.5. Given a matrix of a reasonable allocation A with each row only containing a
single -1 and a single 1 and the rest of the entries all being 0, if a -1 falls in the column
for a set S, then the associated 1 in that row must fall in a superset of S, S ∪ T , where
|T | − |S ∩ T | > 0.

Proof. Suppose to the contrary, we have an allocation matrix A, for which the ordering is in
reverse, namely the −1 is in S ∪ T and 1 in S, in the row associated with player j. Build vS
as the monotone function with vS(S) = 0 and vS(S ∪ T ) = 1 for all T such that S ∩ T 6= ∅.
This function is monotone by construction. When we utilize our map A to determine how
to split the spoils, there is an immediate contradiction. For the player j, φj(v) = −1. This
contradicts the fact that reasonable allocations do not assign players negative spoils. At the
very worst, for a monotone binary game v,

0 ≤ φi(v,N) ≤ 1

which is non-negative.
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Table 2: Number of special allocations

n Number of special allocations

1 1
2 2
3 6
4 24
5 120

3.2 Extreme points of the reasonable efficient allocations

By observation, with small sets of players one might infer that the special allocations are the
set of extreme points for the reasonable, efficient allocations. We now proceed to provide a
proof of this assertion in general.

3.2.1 Special allocations and sets

To begin, recall we defined each special allocation based on a strictly increasing (by exactly
one member at each step) chain of sets. For example, the following special allocation matrix
for the game with 3 players,





−1 1 0 0 0 0 0 0
0 −1 0 0 1 0 0 0
0 0 0 0 −1 0 0 1





ordered usually, as follows

[∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]t,

is associated with the chain of sets

∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3}.

This idea of set chains and their connection to the special allocations will prove integral to
our following arguments. Additionally, it allows us to see the cardinality of the set of all
special allocations quite quickly, as we know that the number of these chains corresponds
directly to the number of permutations of n letters. This is summarized, with some explicit
values in Table 2.

To prove our result, we will suppose we have an extreme reasonable, efficient allocation
not listed in the set of all special allocations. We must show this is impossible. To obtain
this result, we must first note that any reasonable, efficient allocation has the following
properties.

3.2.2 Structural constraints on reasonable efficient allocations

Each reasonable, efficient allocation has many properties, as demonstrated previously. Via
those requirements, we can find even more structure that will help us reach our result. To

14



begin, we will find the row-wise paring of elements. To make the proof more clear, the
following notation is introduced.

Definition 3.4. Each entry in the matrix of an allocation can be referred to by a player
and set, given A, we denote each entry by

Ai,S

where i denotes the player (row), as before, and S denotes the column associated.

Note. Definition 3.4 allows us to prove things independent from the ordering of the sets
making up the columns of our matrices. Thus, if we can prove the statement that follows
for a single row, we have it for all rows. ⊳

This allows us to write the payout to any specific player simply, as

φi(v,N) = Ai · v =
∑

S⊂N

Ai,Sv(S),

recalling Ai is the ith row of A, and the sum is taken over all S ⊂ N .

3.2.3 Truncations of characteristic functions

Definition 3.5. We call a set S minimal in the sense of the characteristic function if v(S) >
0 and there exists no set T ( S with v(T ) > 0.

Definition 3.6. A truncation4 of a characteristic function v is the characteristic function
w such that w(S) = 0 for some minimal S, and w(T ) = v(T ) for T 6= S.

Remark. We call S the truncating set. ⊳

Lemma 3.6. If v is monotone, then any truncation of v is monotone.

Proof. Suppose v is a monotone characteristic function. Then, we know v(T ) ≥ v(S) for
all S ⊆ T by definition. Let us let w be a truncation of v, with truncating set St. Recall,
v(T ) = w(T ) for all T 6= St, and our inequality stands without much work for the majority
of our places. However, we must concern ourselves of the cases when St appears, as v(St) >
w(St) = 0. This is no obstacle for T with St ⊂ T , as

w(T ) = v(T ) ≥ v(St) > w(St)

and
v(St) > w(St) = 0 = v(S) = w(S)

for S ⊂ St. Recall, of course, the truncating set is minimal, and there are no subsets with
w(S) > 0. Therefore, any truncation of v is again monotone.

4This is similar in spirit to Weber’s deletion [18, Section 6]. The language truncation remains as we are
thinking of these characteristic functions as vectors.

15



Lemma 3.7. If v is superadditive, then any truncation of v is superadditive.

Proof. Suppose v is a superadditive characteristic function. Then, we know v(S ∪ T ) ≥
v(S) + v(T ) for all S and T with S ∩ T = ∅, by definition. Let us let w be a truncation
of v, with truncating set St. Recall, v(T ) = w(T ) for all T 6= St, so the inequality stands
without much work for the majority of our places. However, we must concern ourselves with
the cases when St appears, as v(St) > w(St) = 0. Note, however

w(St ∪ T ) = v(St ∪ T ) ≥ v(St) + v(T ) > w(St) + w(T )

if T 6= ∅, and the statement is trivial if T is empty. Therefore, any truncation of v is again
superadditive.

Remark. The truncations are not neccesarily subadditive. Our inequality is

v(S ∪ T ) ≤ v(S) + v(T ).

In this case, if v(S) = v(T ) = 0, it is not necessarily the case that v(S ∪ T ) = 0. Consider
the following subadditive vector see previously (with ordering

(∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3})

[0, 1, 0, 0, 1, 1, 0, 1]t.

Now we look at a truncation.
[0, 0, 0, 0, 1, 1, 0, 1]t.

For this vector, we notice v(1, 3) = 1. Importantly, notice v(1) = 0 and v(3) = 0. Substitut-
ing into our inequality, we quickly run into an issue, namely,

v({1} ∪ {3}) = 1 ≤ 0 = v({1}) + v({3}),

which is clearly false. ⊳

Definition 3.7. A pair truncation of the characteristic function v is two successive trunca-
tions of v with truncating sets S and S ∪ {p} respectively, for a player p with p /∈ S.

Lemma 3.8. A pair truncation w of a binary characteristic function v with marginal con-
tribution of player p equal to 0 with truncating sets S and S ∪ {p}, where S is any minimal
set with p /∈ S, retains the same 0 marginal contribution for p.

Proof. To begin, let us take a characteristic function v with the marginal contribution of p
equal to 0. Take the pairwise truncation of this v with the truncating sets S and S ∪ {p},
as described, where S is any minimal set with p /∈ S. Recall for v, v(S) and v(S ∪ {p}) = 1.
Prior to pair truncation, we note that, for sets T ∩ {p} = ∅, v(T ∪ {p})− v(T ) = 0, as the
marginal contribution of p is 0. Naturally, following the pair truncation, w(T ∪ {p})−w(T )
is still equal to 0 for all sets T . For all the unchanged places, this is clear, and for the two
changed places, rather than seeing 1 − 1 = 0 for the case of T = S, our truncating set, we
now observe 0− 0 = 0.

Note. This of course works on the characteristic functions one can construct following
Lemma 3.2 for player m, and they all have the same (zero) marginal contribution for any
player p ∈ N \ {m}. ⊳
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3.2.4 Extensions of characteristic functions

Definition 3.8. Given a characteristic function vM on the set M ( N , we can extend it to
a characteristic function vN on N by setting

vN (S) = vM (S ∩M).

Lemma 3.9. If a characteristic function vM on M ( N is monotone, then its extension vN
to N is also monotone.

Proof. As vM is monotone, we have

vM(T ) ≥ vM(S)

for all S and T with S ⊂ T . For the extension, we note, as S ⊂ T , S ∩M ⊂ T ∩M

vN(T ) = vM(T ∩M)

≥ vM(S ∩M)

= vN(S),

and therefore, the extension is also monotone.

Lemma 3.10. If a characteristic function vM on M ( N is superadditive, then its extension
vN to N is also superadditive.

Proof. As vM is superadditive, we have

vM(S ∪ T ) ≥ vM(S) + vM(T )

for all S and T with S ∩ T = ∅. For the extension, we note

vN(S ∪ T ) = vM((S ∪ T ) ∩M)

= vM((S ∩M) ∪ (T ∩M))

≥ vM(S ∩M) + vM(T ∩M)

= vN(S) + vN(T ),

and thus, the extension is also superadditive.

Lemma 3.11. For the extensions of characteristic functions M = N \ {i}, the inequalities
in the definition of reasonableness taken for player i are equalities and

φi(N ; v) = 0.

Proof. This is clear, as
v(S ∪ {i}) = v(S)

by the definition of an extension, and by the definition of reasonableness.
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3.2.5 Pairing behavior in the rows of a reasonable allocation

In the following theorem, we establish a strong condition on the reasonable allocations,
specifically their matrix counterparts. To our main result, this theorem serves as an integral
component.

Theorem 3.12 (Pairing of row elements). Given a player (row) i of a reasonable allo-
cation’s matrix A, the elements pair off in the following manner:

Ai,S = −Ai,S∪{i}

for sets S with S ∩ {i} = ∅.

Proof. To obtain this result, we consider a player i. (Any other player’s information can be
obtained identically.) Starting off, we consider the characteristic function of all 1s on N \{i}.
From this characteristic function, we can create a sequence of truncations

v0, v1, v2, v3, . . . , vK−1, vK = 0̄

such that for every set S ⊂ N \ {i} is the truncating set with v(S) > 0 at some point in this
finite sequence. To obtain the pairings, we must first extend these vj to the set N ,

w0, w1, w2, w3, . . . , wK−1, wK = 0̄,

say. Make a note, the marginal contribution of player i is always 0 for all of these extensions.
Note also the extension wj of a truncation vj is a pair truncation of wj−1. So, finally to
obtain all of the pairings, we multiply our map A by each wj in turn. Then, we observe,
by the following clever manipulation of specific characteristic functions, we can obtain all
pairings. To begin, we note, Ai ·wj = 0 for all wj, and we proceed to subtract Ai ·wj+1 = 0
from Ai ·wj = 0. Observe the result of this subtraction Ai · (wj −wj+1) = 0 when expanded
gives us

Ai,S + Ai,S∪{i} = 0,

by construction, where S is the truncating set for vj+1. More succinctly,

Ai,S = −Ai,S∪{i}.

Thus, we have all pairings, as required.

Alternative proof of Theorem 3.12. Another view of the proof can be seen in the following
fashion. Construct the following superadditive v, given S with S ∩ {i} = ∅

vSa (T ) =

{

1 if S ⊂ T

0 else

and

vSb (T ) =

{

1 if S ( T \ {i}

0 else.
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Observe, vSa is superadditive trivially, as

vSa (Q ∪R) ≥ vSa (Q) + vSa (R)

for Q and R with Q ∩ R = ∅. This can quickly be seen as S ⊂ Q or S ⊂ R, but not both.
So, at the very worst, 1 ≥ 1 + 0 or 1 ≥ 0 + 1.

Notice vSb is a pair truncation of vSa , by construction, as it zeros out the S and S ∪ {i}
places precisely. Thus, vSb is also superadditive. vSa also has the property that the marginal
contribution of player i is 0, observe, by construction, for Q with Q ∩ {i} = ∅,

vSa (Q ∪ {i})− vSa (Q) =

{

1− 1 = 0 if S ⊂ Q

0− 0 = 0 if S 6⊂ Q
.

Recall, i /∈ S by our initial choice of S. So, to obtain the pairing for Ai,S and Ai,S∪{i}, we
observe

φi(N ; vSa ) = Ai · v
S
a = 0

φi(N ; vSb ) = Ai · v
S
b = 0.

However, using this to our advantage, notice

0 = φi(N ; vSa )− φi(N ; vSb )

= Ai · (v
S
a − vSb )

= Ai,S + Ai,S∪{i}.

Rearranging,
Ai,S = −Ai,S∪{i}, (2)

as we wished. Repeating this process for all S ⊂ N \{i} gives us all the pairings we desire.

3.2.6 Bounds on the matrix elements

Lemma 3.13. Given a row i of a reasonable allocation’s matrix A, for nonempty S, with
S ∩ {i} = ∅

0 ≤ Ai,S∪{i} ≤ 1

and
0 ≥ Ai,S ≥ −1.

Namely, the non-negative entries fall in the columns associated with sets S ∪ {i} and the
associated non-positive entries fall in the columns associated with S.

Proof. Using techniques seen in the proof of Theorem 3.12, we can make short work of this
statement. Consider

vSb (T ) =

{

1 if S ( T \ {i}

0 else
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as seen previously, and

vSc (T ) =

{

1 if S ( T

0 else.

Note, vSc is a truncation (not a pairwise truncation) of the vSa from the superadditive proof
of Theorem 3.12. Hence, it is superadditive. The only difference between vSb and vSc is
vSb (S ∪ {i}) = 0, while vSc (S ∪ {i}) = 1. Recall, with vSb , the marginal contribution of player
i is always 0. Note, also, for vSc , the marginal contribution of player i falls between 0 and 1,
as the only difference from vSb occurs at the place associated with S, which results in

vSc (S ∪ {i})− vSc (S) = 1− 0 = 1

rather than 0. Now, to use this to our advantage, we note

φi(N ; vSb ) = Ai · v
S
b = 0.

and
0 ≤ φi(N ; vSc ) = Ai · v

S
c ≤ 1

via reasonableness. However, there is little difference between Ai · v
S
b and Ai · v

S
c , notice

Ai · v
S
c −Ai · v

S
b = Ai,S∪{i}. (3)

So, we may conclude

0 ≤ φi(N ; vSc )− φi(N ; vSb ) ≤ 1

0 ≤ Ai · v
S
c − Ai · v

S
b ≤ 1

and utilizing Equation (3),
0 ≤ Ai,S∪{i} ≤ 1 (4)

as we wished to show. By the pairings, we obtain

0 ≤ −Ai,S ≤ 1,

i.e.
0 ≥ Ai,S ≥ −1 (5)

again, as we wished to show.

Note. Via this lemma, we have the signs of nearly all of the matrix entries. The only missing
are, for row i Ai,∅ and Ai,{i}. This is covered by Lemma 3.14 below. ⊳

Lemma 3.14. Given a reasonable, efficient allocation matrix A, we have 1 ≥ Ai,{i} ≥ 0 for
all players i, and hence, by the pairing −1 ≤ Ai,∅ ≤ 0.
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Proof. We can utilize the information we have gained thus far to infer this information. First,
recall that −1 ≤ Aj,{i} ≤ 0 for all j 6= i, via the pairings, as by the previous Lemma 3.13,
1 ≥ Aj,{i,j} ≥ 0. More specifically,

0 ≥
∑

j 6=i

Aj,{i} ≥ −1.

This is indeed the case, as if not, we shall reach a contradiction. Let us assume that

∑

j 6=i

Aj,{i} ≤ −1.

Via the pairings, we can follow each of the nonzero elements in the sum up the chain to
Aj,{i,j} and there must be a paired positive value there, for each j. Their sum, even though
they might not remain in the same column remains more than 1. In columns {i, j} for each
of these j, there must be a negative contribution to make the column-wise sum 0. (It is
possible there might be a splitting between two or more rows. Keep in mind no entry can
exceed 1 in absolute value by Lemma 3.13 at this point, if we have any entry greater than
1 in absolute value, we have a contradiction. The sum, of course must remain 0.) Each of
those entries pairs off with a superset in the same row. We can continue this process until
we reach the set of all players N . In this column, we have the tail of every (possibly split up)
chain we traveled along, and due to the pairing of the elements, the overall sum is greater
than or equal to 1 (as each chain must carry at the very least all of its value along, even if it
splits or combines along the way due to the pairings). This contradicts reasonableness, and
thus we have that

∑

j 6=iAj,{i} ≥ −1 as we wished. Noting this, we see that it is imperative
that Ai,{i} must be greater than or equal to 0 and less than or equal to 1, as, via efficiency,
the sum of all elements in the column {i} is 0 by Lemma 3.1. More explicitly,

∑

j 6=i

Ai,{j} + Ai,{i} = 0

so

Ai,{i} = −

(

∑

j 6=i

Ai,{j}

)

and
0 ≤ Ai,{i} ≤ 1.

Clearly, as a result, −1 ≤ Ai,∅ ≤ 0 via the pairings.

So, we now have the signs for all of the row elements, and we can summarize our results
in the following convenient way.

Theorem 3.15. Given a reasonable, efficent allocation with matrix A, for player i,

1 ≥ Ai,S ≥ 0 if i ∈ S

−1 ≤ Ai,S ≤ 0 if i /∈ S
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Proof. Refer to Lemmas 3.13 and 3.14.

We utilize some of the ideas found in the proof of Lemma 3.14 to get more general results,
along with Theorems 3.12 and 3.15. So, as a consequence of these results, we can find another
important fact for our reasonable, efficient allocations.

Lemma 3.16. Each column of a reasonable, efficient allocation matrix can contain no more
than a sum of −1 of negative elements and a sum of 1 in positive elements.

Proof. Suppose the contrary, that there is a sum of more than -1 of the negative elements
in one column. Our aim is to show this is not possible. Let us assume that this overflow
of negatives occurs in the column {i, j}, in rows l, . . ., and m, say. Now, via the pairing,
we can follow each of these chains up, there must be a paired positive value in Al,{i,j,l}, . . .,
and Am,{i,j,m} respectively, and their sum remains more than 1. In columns {i, j, l}, . . .,
and {i, j,m}, there must be a negative contribution to make the column-wise sum 0. (It is
possible there might be a splitting between two or more rows. Keep in mind no entry can
exceed 1 in absolute value, if we have any entry greater than 1 in absolute value, we have
a contradiction. The sum, of course must remain 0.) Each of those entries pairs off with a
superset in the same row. We can continue this process until we reach the set of all players
N . In this column, we have the tail of every (possibly split up) chain we traveled along, and
due to the pairing of the elements, the overall sum is greater than or equal to 1 (as each
chain must carry all of its value along). This contradicts reasonableness.

The case of two or more positive values with sum greater than 1 is handled nearly
identically, one just starts the chain at this point, noting the sum of the column must be 0,
and thus, there must be elements summing to greater than −1 in the column to compensate.

Therefore, we have what we set out to show, each column can contain no more than a
sum of −1 of negative elements and a sum of 1 in positive elements.

Lemma 3.17. For a reasonable allocation φ with matrix A, the partial row-wise sum satisfies
the equality

∑

S:i/∈S

Ai,S∪{i} = 1.

Proof. Recall, from Lemma 3.2, we know there exists a vi for which

φi(N, vi) = 1

by the squeezing of the reasonableness condition. This vi is precisely the one with a 1 in all
places with i ∈ T . Now, noting that

φi(N, vi) = Ai · vi =
∑

S:i/∈S

Ai,S∪{i},

we obtain the result we desire.

Corollary (to Lemma 3.17). For a reasonable allocation φ with matrix A, the partial
row-wise sum satisfies the equality

∑

S:i/∈S

Ai,S = −1.
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Indeed. This is clear, as the sum
∑

S,S⊂N Ai,S = 0. �

Remark. For a reasonable, efficient allocation with matrix A, the sum over all players i of the
elements Ai,S ≥ 0 with cardinality of S a fixed integer between 0 and |N | is

∑

iAi,S = 1.5⊳

Indeed. This is seen similarly to Lemma 3.16. Note, via efficiency, the sum
∑

i

Ai,∅ = −1.

Using this via the pairings, we know that this travels up, and we obtain the sum
∑

i

Ai,{i} = 1.

Recall, via Theorem 3.15, This is the result we wish for |S| = 1, as the only elements Ai,S ≥ 0
with the cardinality of S being 1 are the Ai,{i}. To obtain the rest of our results, we utilize
strong induction. Suppose that

∑

i,|S|=l

Ai,S = 1

for Ai,S ≥ 0 and S up to cardinality k. To see this for S of cardinality k + 1, we invoke the
pairings, and efficiency. Via efficiency, in the columns where Ai,S ≥ 0, |S| = k reside, there
are some Aj,T ≤ 0 with |T | = k and j /∈ T such that the sum of the column is equal to 0. As
we have all of the positive elements in our sum, this search finds all of the negative elements
in the columns as well. The sum of all of these found elements is −1, as the sum we started
with was 1. If we apply the pairings to our newfound negative sum, and travel up, we obtain
what we wish, namely,

∑

j

Aj,T∪{j} = 1,

exactly as we wished. �

3.3 Extreme points, and the reasonable efficient allocations

In the journey to prove the thesis result, we find the following lemma integral to our argu-
ments as well.

Lemma 3.18. For an allocation φ with matrix A, if for all players i,

Ai,S is

{

≥ 0 if i ∈ S

≤ 0 if i /∈ S
. (6)

and for T with T ∩ {i} = ∅

Ai,T = −Ai,T∪{i} (7)

and
∑

T

Ai,T∪{i} = 1, (8)

then the allocation φ is reasonable.
5This is similair to the implicit result alluded to in the proof of [18, Theorem 13].
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Proof. To begin, by Equations (7) and (8), we have that
∑

T Ai,T = −1, and all elements of
the matrix are determined. To check for reasonableness, note

φi(N ; v) = Ai · v

=
∑

S

Ai,S · v(S)

=
∑

T

Ai,T∪{i} (v(T ∪ {i})− v(T ))

with T ∩ {i} = ∅ by our map and Equation (7). By Equations (6) and (8), we note that
φi(N ; v) is a generalized linear combination of the marginal contributions of each player,
as all the elements in the sum are greater than or equal to 0 and sum to 1. Trivially, a
generalized convex combination lies between the

min
T :i/∈T

{v (T ∪ {i})− v(T )} and max
T :i/∈T

{v (T ∪ {i})− v(T )} .

Thus, the allocation is reasonable, as required.

Lemma 3.19. The converse to Lemma 3.18 is also true.

Proof. For the reverse, suppose matrix A and its associated φ is reasonable. In part, this now
equates to showing that the only possible choices for elements satisfy Equations (6) to (8).
The pairings, we note, can be found utilizing the results of Theorem 3.12. Identically, the
partial row sum in Equation (7) is obtained via Lemma 3.17. Both of these theorems use
only the satisfaction of the reasonability condition in the body of their results. Taking
note that we have the pairings, we can obtain almost all the signs we wish via Lemma 3.13.
However, in our proofs above, we cannot obtain the signs of Ai,∅ and Ai,{i} without efficiency.
However, if we allow ourselves to utilize non-superadditive, yet monotone vectors, we can
get the remaining signs we wish. To prove Ai,∅ ≤ 0 for all players i, one can observe, via
multiplying the map A by the characteristic function

v = [1, 1, 1, . . . , 1, 1, 1]t,

focusing on the ith row,

Ai,∅ + Ai,{1} + Ai,{2} + · · · + Ai,{1,2} + · · · + Ai,N\{n} + · · · + Ai,N\{1} + Ai,N = 0

by reasonableness. Similarly, we obtain

1 ≥ Ai,{1} + Ai,{2} + · · · + Ai,{1,2} + · · · + Ai,N\{n} + · · · + Ai,N\{1} + Ai,N ≥ 0

by using the definition of reasonableness, Definition 3.3, along with the vector

v = [0, 1, 1, . . . , 1, 1, 1]t.

This is evident due to the fact that each player must receive no less than 0 and no more than
1, based on the marginal contribution bounds, given the fact our characteristic function is
monotone. Combining these two facts, one quickly sees that

−1 ≤ Ai,∅ ≤ 0, (9)

as required. 1 ≥ Ai,{i} ≥ 0 is immediately picked up via the pairings. Therefore, we have
the last piece of needed info, Equation (6).
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Lemma 3.20 (Extreme points of the reasonable, efficient allocations). The extreme
points of the set of all reasonable, efficient allocations are precisely the special allocations.

Proof. We prove this using the matricies of the allocations. Suppose first we have a reason-
able, efficient allocation matrix A that is an extreme point, but is not a member of the set
of all special allocations. Our aim is to reach a contradiction. To begin, via efficiency, and
Lemma 3.1, we know there is at least one entry in the first column that is negative, in the
ith row, say. Starting at this entry, we build a set chain as introduced in Section 3.2.1 by
utilizing the row-wise pairings of Theorem 3.12. Given our choice of negative element in the
first column, Ai,∅, by the pairings, we know there is a positive, and equal in absolute value,
entry in Ai,{i}. Calling upon efficiency yet again, for the internal columns, we know that the
sum of all the entries is equal to 0. Thus, there exists at least one negative element in row j,
say, Aj,{i}. This entry in turn has a paired entry in a superset {i, j}, Aj,{i,j}. Continuing this
process, we can continue to build a set chain to represent this path through the allocation.
The set chain would appear as something of the form

∅ ⊂ {i} ⊂ {i, j} ⊂ {i, j, k} ⊂ · · · ⊂ N.

If, at all stages the at least one player was exactly one player, we have a contradiction.
Recalling Lemma 3.16, each column can contain no more than a sum of −1 in negative
elements and a sum of 1 in positive elements. If there was only a single choice in each case,
as the sum of the first column must be −1, that forces Ai,∅ = −1. In turn, Ai,{i} = 1.
Continuing, it must be the case that Aj,{i} = −1. Following this along the chain, we know
every element we touched was either a −1 or 1 by the pairings and efficiency (Lemma 3.1).
More precisely, it was a special allocation already, a contradiction. Therefore, we know that
at in at least one instance when we were building our chain, we had two choices of elements
(either both positive, or both negative, distinct from the element we started with), in row
l and m, say. If, in our initial chain, we chose row l, we can make a secondary set chain
by choosing row m at the juncture and following this alternative path. More explicitly, for
some T with T ∩ {l, m} = ∅ and l 6= m, our two set chains would contain the links

T ⊂ T ∪ {l}

for the first set chain, and
T ⊂ T ∪ {m}

for the second set chain, respectively. Thus, we have two distinct set chains. From these
two distinct set chains, we can find the associated special allocation matrices Sa and Sb, say.
These special allocations will be used to demonstrate that our assumed extreme A is not.
Following the same ideas we did in the case of the characteristic functions, we wish to find
a way to modify our A in small ways on either side, both modified matrices still reasonable,
with a convex combination of the matrices equal to A itself. To do this, we choose an ǫ in
the following way:

ǫ < min

{

AMm+1\Mm,Mm+1

1− AMm+1\Mm,Mm+1
AMm+1\Mm,Mm+1

6= 1
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where Mm and Mm+1 are consecutive elements in the set chains we have defined above.
First, notice AMm+1\Mm,Mm+1

> 0 by construction. Notice also, as we have assumed A is not
a special allocation, and have excluded the entries AMm+1\Mm,Mm+1

6= 1 from consideration
in ǫ, we have 0 < ǫ < 1. By this choice of ǫ, we claim that one can both add and subtract
ǫSa ± ǫSb without compromising the reasonableness of the map. To see this, consider

A± (ǫSa − ǫSb)

alongside Lemma 3.18. We note by our choice of ǫ, the signs of each element of A±(ǫSa−ǫSb)
are unchanged. Trivially, we satisfy the pairings for T with T ∩ {i} = ∅ as A, Sa and Sb do
as well, and addition and subtraction of matrices with the pairings produces other matrices
satisfying the pairings. Finally, we note that each row in ±(ǫSa − ǫSb) makes a contribution
of 0 to the row sum of A′ = A ± (ǫSa − ǫSb), and the sum

∑

T A′
i,T∪{i} = 1, as, in net, all

that is done is an addition and subtraction of ǫ to the sum. Thus, all of the requirements of
Lemma 3.18 are fulfilled, and we can conclude that A′ is reasonable. Clearly, as A, Sa and
Sb are efficient, the sum A′ = A± (ǫSa − ǫSb) is efficient as well utilizing Lemma 3.1 and its
converse. Thus, we have two additional derived reasonable, efficient maps, Aa and Ab, with

Aa = A− (ǫSa − ǫSb)

Ab = A+ (ǫSa − ǫSb).

Notice

A =
1

2
Aa +

1

2
Ab.

This contradicts the assumed extremeness of A. Therefore, we can conclude that the extreme
points of the set of all reasonable, efficient allocations are precisely the special allocations.

3.4 Reasonable efficient allocations and the convex hull of the spe-
cial allocations

With all of the machinery we have established, we can now prove a nice property of the
special allocations, namely any reasonable, efficient allocation can be written as a positive
(generalized) linear combination of the special allocations. We now prove the main result of
the thesis.

Theorem 3.21. Any reasonable, efficient allocation can be written as a convex combination
of the special allocations, more strongly,

An allocation is reasonable and efficient if and only if the allocation lies within the convex
hull of the special allocations.

Proof. We prove this for the matrix A of an allocation φ. If A lies within the convex hull of
all special allocation matrices, it is clear that our proposition is true based on the inherent
properties of special allocations explored in Proposition 3.4, in particular.

Conversely, suppose we have the set of all reasonable, efficient allocations, R, say. Our
goal is to show that R is identical to the convex hull of the special allocations. First, we
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know that the set of all reasonable, efficient allocations is compact, as R is finite dimensional
over R, and each entry of the matrix of a reasonable, efficient allocation is bounded (by −1
and 1 inclusive via Theorem 3.15.) As a result, we have a closed and bounded set, and under
our conditions, this results in a compact set via the Heine-Borel theorem. From our prior
exploration in Proposition 3.4, we know that R is convex. Via Lemma 3.20, we know that
the extreme points of R are precisely the set of all special allocations, S, say. Putting these
facts together, we may conclude, by Theorem 1.4 (Krein-Milman) that

R = co (exR)

= co (S)

This is nearly what we wish to show. Note, S is a finite set and is also bounded, hence closed,
thus one can make the last conclusion, that the closure of the convex hull is the convex hull
itself, via the theorems and definitions in Section 1.2.2. Therefore,

R = co (S)

= co (S) ,

and we now have what we set out to prove. Any reasonable, efficient allocation lies within
the convex hull of the special allocations.

We now have both directions of our proof, and so, we can think of the special allocations
as a spanning set of sorts for the set of reasonable, efficient allocations. More specifically,
any such allocation is in the cone made up of the special allocations. Viewing things this
way lets us prove several more results.

3.5 Consequences of the main result

With the knowledge gained through Theorem 3.21, we can now prove even more properties
of the reasonable, efficient allocations.

Theorem 3.22. Given a reasonable, efficient allocation matrix A, the sum of each interior
column (not first or last) in absolute value is 2.

Proof. This is trivial to see in the case of the special allocation matrices. To obtain the
general result, we must see that the result holds for a convex combination of two reasonable,
efficient allocations that satisfy the condition already.6 Observe, the column-wise sum, of two
such allocation matrices, P and Q for column S. (P1,S, P2,S, . . . , Pn−1,S, Pn,S)

t and, similarly
(Q1,S, Q2,S, . . . , Qn−1,S, Qn,S)

t. By our assumption,

n
∑

i=1

|Pi,S| = 2

6As any reasonable allocation can be written as a (generalized) convex combination, this gives us our
result.
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n
∑

i=1

|Qi,S| = 2

for S 6= ∅ and S 6= N . Now, taking the convex combination of the columns, we obtain

(tP1,S + (1− t)Q1,S, . . . , tPn,S + (1− t)Qn,S)
t.

We note

n
∑

i=1

|tPi,S + (1− t)Qi,S| ≤

n
∑

i=1

t|Pi,S|+ (1− t)|Qi,S|

= t
n
∑

i=1

|Pi,S|+ (1− t)
n
∑

i=1

|Qi,S|

= t · 2 + (1− t) · 2

= 2

by the triangle inequality and properties of the absolute value. Now, one must argue that
this inequality is necessarily an equality. Recall, the triangle inequality is an equality if
both numbers are non-positive or non-negative. By Lemma 3.13 we see that Pi,S and Qi,S

necessarily are both non-positive or non-negative. So the triangle inequality is a triangle
equality, and we have the equality we desire.

Theorem 3.23. The sum of each row of an allocation’s matrix in absolute value is 2.

Note. We could have proved this without our main result, however, it is presented here with
similar in spirit results. ⊳

Proof. Recall, via Lemma 3.13, the elements summed in Lemma 3.17 are all non-negative.
Similarly, the sum in the corollary is of all non-positive numbers. As a result,

∑

S:i/∈S

|Ai,S∪{i}| = 1

and
∑

S:i/∈S

|Ai,S| = 1.

Hence,
∑

S

|Ai,S| = 2.

Remark. We can now recognize “un-reasonable” allocations quite easily. If the row sums of
the absolute value of the elements of the matrix of the allocation are not equal to 2 and if
the column sums of an interior column are not equal to 2, we can immediately notice it is
unreasonable. ⊳
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4 Consequential Parallel Results

With slightly different assumptions, we can get the same results, in a broader context.

4.1 Superadditivity as a replacement for monotonicity

To get similair results for superadditive functions, we need only add the following axioms,

Axiom 4.1. The value of v(∅) = 0.

Remark. This is of course true for superadditve functions, and is not so much an axiom, but
a consequence of the definition of superadditivity. If v(∅) > 0, we reach a contradiction, as
v(S) = v(S ∪∅) ≥ v(S) + v(∅). ⊳

Typically, one would assume Axiom 4.1, if one wants to divide all “produced” among the
players of the game. This was mentioned when we first defined efficiency in Definition 3.2.

Axiom 4.2. The sum of all elements in each row is of the matrix of the allocation φ is 0.

Note. The choice of the first column is arbitrary, due to the fact that v(∅) = 0 via Axiom 4.1,
or its following remark. Thus, without loss of generality, Axiom 4.2 always holds, as we can
pick the value in the first column to make the sum work. ⊳

To first proceed, let us get an idea what we can do with superadditive characteristic
functions.

Proposition 4.1. The set of all superadditive binary characteristic functions (superadditive
simple games) form a spanning set for the monotone binary characteristic function with
v(∅) = 0.

Proof. If we look at the linear span of superadditive binary v, they do form a spanning set
for all monotone v with v(∅) = 0. We can see this by viewing them in the following way.
Consider all of the “monotone” set chains,

∅ ⊂ {i} ⊂ {i, j} ⊂ {i, j, k} ⊂ . . . ⊂ N,

adding a single player in each subsequent set in the chain. This set chain, can of course
be associated with a special allocation, but it can also be associated with a superadditive
characteristic function vsa,

7 following the steps below. Place a 1 in all of the places associated
with each non-empty set in the chain, and a 0 in all others. This is trivially superadditive,
as

vsa(S) + vsa(T ) ≤ vsa(S + T )

by construction for S∩T = ∅. Notice also, we can truncate this vsa, starting the assignment
of ones at any point midway through the set chain still yields a superadditive characteristic

7This is not one of our previously named superadditive characteristic functions.
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function. Recall, superadditive implies monotone in our considerations.8 However, the re-
verse direction is easily seen to be false, there are certainly monotone characteristic functions
that are not superadditive. To see that these are within the linear span of the superaddi-
tive characteristic functions, we can follow a constructive process detailed below. Given a
monotone v, there is at least one set with smallest cardinality. Take all of the chains starting
with these minimal sets, and add together their associated characteristic functions, call it
vk, say. Notice, if there were more than one set of smallest cardinality, vk is no longer a
binary vector, or simple game. To fix this, we subtract off a truncation of the characteristic
function associated with our set chains, starting where our vector has a place containing a
value more than 1, being careful that we do not subtract anything from a place with a 1 in
it, as this would break our monotonicity. We continue this process, for the vector v − vk,
updating vk as we proceed, and after finitely many steps v = vk and we are done.

Definition 4.1 (Definition 3.3, redux). Assuming Axiom 4.2, An allocation is reason-
able for superadditive characteristic functions if

min
S,i/∈S

{v (S ∪ {i})− v(S)} ≤ φi(N ; v) ≤ max
S,i/∈S

{v (S ∪ {i})− v(S)} (10)

is satisfied for all superadditive v.

Note. Recall for an allocation φ with matrix A, we have φi(N ; v) = Ai · v. ⊳

Proposition 4.2. If a map is efficient for all superadditive characteristic functions v, and
we assume Axiom 4.2 holds, then it is efficient for all monotone characteristic functions.

Proof. We prove this by viewing the allocation as a matrix. To deal with efficiency, we look
at the sums of the column elements, and ensure they add up to

(−1, 0, . . . , 0, 1)

following our note following Lemma 3.1. This, as seen in Lemma 3.1, depends on this being
true for all v, which we can shorten to monotone v thanks to our prior work. This time,
however, we can consider only superadditive v via Proposition 4.1. So, following the results
in the proof of Lemma 3.1, we obtain all the sums of column elements except the first −1.
This −1 is given to us by the assumption that the row-wise sum is 0. Hence, as the sum of
all the rows, save the first element in each row is 1, this forces the entries in the first column
to sum to −1. Thus, we have efficiency via the superadditive v only.

If we have a matrix of a reasonable allocation, we can also find the pairings while checking
only the superadditive vectors by the following proposition.

Proposition 4.3. Given an allocation φ, reasonable for superadditive characteristic func-
tions, with matrix A, and assuming Axiom 4.2, the row-wise pairing in the matrix can be
determined by using only superadditive characteristic functions.

8We can not, however, easily obtain a result stating the extreme points of this set, unfortunately. See
Section 5.1 for details.
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Proof. Certainly, as we have seen previously, the row-wise pairing of elements can be deter-
mined by superadditive characteristic functions and their truncations, save the

Ai,∅ = −Ai,{i} (11)

pair. Thus, we need only check a subset of the superadditive characteristic functions to obtain
all but the n pairings mentioned in Equation (11). Following our prior method of proof, we
need the vector [1, 1, . . . , 1, 1]t to obtain the last pairings above. This is not superadditive,
as v(∅) > 0. However, this vector is simply a convenient way to ensure that the sum of each
row is 0. Supposing Axiom 4.2 holds, observe that the sum of all of the elements in the row
is 0. However, all of the other elements in each row sum to 0 in pairs, except Ai,∅ and Ai,{i}.
Thus, we immediately gain the final pairing, for when we take the row sum, it collapses to
the two elements,

Ai,∅ + Ai,{i} = 0,

we need only re-arrange and obtain the final pairings,

Ai,∅ = −Ai,{i}.

Note. The pairing alone is not sufficient to show reasonableness, we would additionally need
that

∑

S

Ai,S∪{i} = 1

for S without i and Ai,S∪{i} ≥ 0 for the same S. Then, certainly A is reasonable. ⊳

Notice, with no modifications whatsoever that Lemma 3.20 holds. Additionally, with the
background above, we have Theorem 3.21 as well, replacing reasonable with reasonable for
superadditive characteristic functions, as the argument does not depend on superadditive or
monotone v in the slightest.

Proposition 4.4. If φ is reasonable and efficient for superadditive characteristic functions,
then it is a convex combination of the special allocations.

Proof. This is mainly a direct consequence of Lemma 3.20 and Propositions 4.2 and 4.3.
Suppose we have a matrix A of the allocation φ that is reasonable for superadditive char-
acteristic functions. By Proposition 4.2 we know that the same efficiency constrains are
satisfied. Further, by Proposition 4.3 we have the pairings we seek. Finally, via Lemma 3.20
we see that the extreme points of the reasonable, efficient allocations are the special alloca-
tions. To complete the result, we apply Theorem 3.21, with the prior results on reasonable
for superadditive characteristic functions v and the proof is complete.

Note. It can be shown that this convex combination is always unique if and only if the
number of players in the game is less than or equal to 3. For explicit proof of this, and
additional information, see Appendicies B, C and D of the dissertation version of this set of
results [4] (in preparation). ⊳

With this result, we note the following corollary.
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Corollary (to Proposition 4.4). Given an efficient allocation, reasonable for superaddi-
tive characteristic functions implies reasonableness.

Indeed. We can trivially observe that if something lies within the convex combination of the
special allocations, then it is reasonable by the vanilla version of Theorem 3.21. �

Note. This is quite nontrivial. If one attempts to prove this fact from first principles it is
difficult, if not impossible. ⊳

Proposition 4.5. Assuming Axiom 4.2, reasonableness implies reasonable for superadditive
characteristic functions.

Proof. This is trivially the case. If one satisfies reasonableness for all monotone v, Equa-
tion (10) is certainly satisfied for all superadditive v.

We conclude by distilling our results into the following Theorem.

Theorem 4.6. An efficient allocation is reasonable if and only if it is reasonable for super-
additive characteristic functions.

4.2 Further exploration

We note that our results here can be generalized further, in both directions. Namely, all of
the results we have seen can be made less stringent. In all of our reasonability discussions,
we have used only a small set of superadditive characteristic functions,

vSa (T ) =

{

1 if S ⊂ T

0 else

vSb (T ) =

{

1 if S ( T \ {i}

0 else

vSc (T ) =

{

1 if S ( T

0 else
.

Our results hold if we are reasonable and efficient for the set Vabc containing all vectors of
this type.

Further, as long as our general set of vectors contains this set of vectors, we can establish
a version of reasonableness, and obtain the results once again.

5 Final Remarks

5.1 Open problems and conjectures

In the pursuit of the result, especially in the initial stages, one might wonder what would
happen if we did not consider monotone characteristic functions, but the more standard
superadditive ones?
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Open Problem 5.1. Determine the extreme points of the superadditive binary (simple)
characteristic functions.

Conjecture 5.1. The extreme points of the superadditive binary characteristic functions
are the subset of the extreme points of the monotone binary characteristic functions that
are superadditive.

5.2 Concluding remarks

As we discussed previously, one of the important ideas of cooperative game theory, and more
generally, a way to fairly determine power or distribute gains, is the Shapley value. As such,
an understanding of the setting surrounding the value, and the axiomatic assumptions is
necessary. Within this paper, we discovered in the general, non-probabilistic context, that
alternative assumptions still give us a robust structure.

Even without the Shapley value’s uniqueness, the structure within gives us some insight
on how a reasonable, efficient allocation is constructed. This insight leads us to other possible
values, parallel to Shapley’s, offering a structure for an alternative way of distributing the
gains of collaboration.
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