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DISTRIBUTIVE LAWS BETWEEN THE THREE GRACES

MURRAY BREMNER AND MARTIN MARKL

All algebras are equal, but some algebras are more equal than others.

Abstract. By the Three Graces we refer, following J.-L. Loday, to the alge-
braic operads Ass , Com, and Lie, each generated by a single binary operation;
algebras over these operads are respectively associative, commutative associa-
tive, and Lie. We classify all distributive laws (in the categorical sense of Beck)
between these three operads. Some of our results depend on the computer al-

gebra system Maple, especially its packages LinearAlgebra and Groebner.
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1. Introduction

As the epigraph indicates1, some algebras are more important than others. Experience
teaches us that the most common classes of algebras are the Three Graces2 — associative,
commutative associative, and Lie — together with other classes of algebras that combine
these in a specific way. The algebras in these three classes are representations of the
quadratic Koszul operads denoted Ass , Com, and Lie, or created from these operads
using quadratic homogeneous distributive laws (the precise meaning of this phrase will be
explained in §2). Examples of structures combining two of these operads are the following:

2010 Mathematics Subject Classification. Primary 18D50. Secondary 13P10, 16R10, 16S10,
16S37, 16W10, 17B60, 17B63, 18-04, 68W30.
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Natural Sciences and Engineering Research Council of Canada. Martin Markl was supported by
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1The allusion is to a famous quotation from George Orwell’s satire Animal Farm.
2This terminology originated with J.-L. Loday, referring in particular to the famous painting

Les Trois Grâces, a Renaissance masterpiece by Lucas Cranach the Elder. Since 2011 it has been
in the collection of the Musée du Louvre in Paris. It depicts the charites or daughters of Zeus
from classical Greek mythology: Aglaea (meaning elegance or splendor), Euphrosyne (mirth or
happiness), and Thalia (youth or beauty).
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2 MURRAY BREMNER AND MARTIN MARKL

• Poisson algebras, omnipresent in classical mechanics [4,5,23–25,30,35]
• Gerstenhaber algebras [3,13,18,22,29]
• Batalin-Vilkovisky algebras [2,16,19,21,37,46]
• en-algebras and the little cubes operad from homotopy theory [7,12,15,36,39,40]

The motivation for the present article is to investigate whether there are other combina-
tions of the Three Graces via such a distributive law, beyond the well-known examples. It
turned out that there are, up to isomorphism, only the classical, well-known distributive
laws, plus the trivial and truncated ones. Since classifying distributive laws amounts to
solving hundreds of quadratic equations, we found it fascinating that for the Three Graces
this huge system has only a small finite number of solutions.

The situation dramatically changes when we move away from the world of the Three
Graces. We will give an example of a one-parameter family of distributive laws between
associative and magmatic algebras which moreover depends on the arithmetic properties
of the ground field. This kind of rigidity which the Three Graces possess might be another
reason why they are more equal than others. Although the results of this article might not
surprise everyone, we thought that at some point of the history of mankind this analysis
had to be made.

In the context of the present paper we found it interesting that, according to [17], one
of the Three graces – the operad Lie – has the property that the variety of its algebras is
the only variety of non-associative algebras which is locally algebraically cartesian closed.

The existence of this paper was greatly facilitated by advances in computer-assisted
mathematics, and in particular the computer algebra system Maple; worksheets written
by the first author expressly for this project were used to extend hand calculations of the
second author dating from some 20 years ago.

In Section 2 we recall Jon Beck’s definition of distributive laws [6] along with its op-
eradic translation [14,33]. In the subsequent sections we classify all homogeneous operadic
distributive laws between the Three Graces. The last section describes a one-parameter
family of distributive laws between associative and magmatic multiplications. Classifying
all possible distributive laws is difficult, but to verify whether a given formula induces a
distributive law is relatively simple. We did so by hand in Sections 3 and 7, believing it
might elucidate the meaning of coherence of distributive laws.

In a sequel to this paper we intend to perform a similar analysis for bialgebras.

2. Distributive laws

2.1. Background. In this section we recall basic facts about distributive laws, closely
following the work of Fox and the second author [14]; see also the original paper by
Beck [6] and the works of Street [41] and Lack [28]. We will assume working knowledge
of operads and their various versions. Suitable references are the monographs [8, 31, 34]
complemented with [32] and the original source [20]. All algebraic objects will be defined
over a ground field k of characteristic 0, and the basic category will be the monoidal
category of graded vector spaces. Loosely speaking, a distributive law relates operations
of two types, in the sense that it rearranges multiple applications of these operations in
such a way that operations of the first type are applied first, followed by those of the
second type. Moreover, this rearrangement must be done in a way that is coherent in the
categorical sense.

Example 2.1. Poisson algebras have two operations: the Lie bracket denoted [a, b] and
the commutative associative multiplication denoted a · b. These operations are related by
the derivation law:

(1) [a · b, c] = a · [b, c] + [a, c] · b.
On the left side we see the operation of the second type, namely a ·b, multiplied by c using
the operation of the first type, while in each term on the right side we first apply the Lie
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DISTRIBUTIVE LAWS BETWEEN THE THREE GRACES 3

bracket and then the operation of the second type. By repeated application of equation (1)
regarded as a directed (left to right) rewrite rule, we may convert any monomial, involving
some number of occurrences of the first and second operations, into a sum of terms where
all of the Lie brackets have been applied first. Coherence means that equation (1) does
not introduce any ‘unexpected relations’; to be precise, this means that the free Poisson
algebra generated by a vector space X is naturally isomorphic to the free commutative
associative algebra on the free Lie algebra generated by X; symbolically,

Pois(X) ∼= Com(Lie(X)).

Distributive laws are ordered: equation (1) is a distributive law of a Lie multiplication
over a commutative associative multiplication; we denote this by

D : Lie(Com) Com(Lie).
Definition 2.2. Let us recall the precise definition introduced by Beck [6]. Assume that
T1 = (T1, µ1, η1) and T2 = (T2, µ2, η2) are monads (formerly called triples) on a category C.
A distributive law guarantees that for every T2-algebra A in C, the object T2(A) ∈ C has
the structure of a T1-algebra in a very explicit way. More precisely, a distributive law is
a natural transformation

(2) λ : T1T2 → T2T1,

such that, for every T2-algebra A = (A,α : T2(A) → A), the object T2(A) ∈ C is a T1-
algebra with structure morphism

T1T2A
λ−−→ T2T1A

T2α−−−→ T2A.

This imposes certain conditions on λ whose explicit form can be found in [6]; see also
[14, §3]. In this situation, the endofunctor T = T2T1 is again a monad, with structure
transformations

µ = T2µ1 ◦ µ2T
2
1 ◦ T2λT1, η = η1 ◦ η2 ◦ T1.

The equality
T (X) = T2

(

T1(X)
)

, X ∈ C,

may be interpreted as saying that the free T -algebra on X is (as an object of C) naturally
isomorphic to the free T2-algebra generated by the free T1-algebra on X.

Example 2.3. We know one example of a distributive law from elementary school. If C is
the category of sets, T1 the commutative monoid monad, and T2 the abelian group monad,
then the equation x(a + b) = xa + xb generates a natural transformation T1T2 → T2T1

taking a product of sums to a sum of products. The algebras for the combined monad
T = T2T1 are commutative rings.

2.2. Setting of this article. We restrict ourselves, for reasons explained below, to mon-
ads given by the free P-algebra functor for a quadratic finitely generated operad P. More-
over, the distributive laws we consider will be given by very specific data. Before we give
a precise definition, we need to establish some notational conventions; we write Σn for the
symmetric group on n letters.

Notation 2.4. If E is a vector space which is also a Σ2-module, then F(E) denotes the
free operad generated by E placed in arity 2. For a subspace R ⊆ F(E)(3), we write
〈E;R 〉 for the quotient F(E)/(R) of the free operad F(E) modulo the operad ideal (R)
generated by R.

Suppose that the Σ2-module E has an invariant decomposition E = E1 ⊕ E2. This
induces the decomposition

F(E)(3) = F(E)(3)11 ⊕ F(E)(3)12 ⊕ F(E)(3)21 ⊕ F(E)(3)22,

where F(E)(3)ij is the Σ3-invariant subspace of F(E)(3) generated by the compositions of
the form µ(1, ν) and µ(ν, 1) with µ ∈ Ei and ν ∈ Ej for i, j = 1, 2. Notice that F(E)(3)ii
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4 MURRAY BREMNER AND MARTIN MARKL

can be identified with the image of the map F (Ei)(3) → F(E)(3) induced by the inclusion
Ei ⊆ E. Let us consider a Σ3-invariant map

(3) D : F(E)(3)12 −→ F(E)(3)21.

Every such map defines a Σ3-submodule RD ⊆ F(E)(3) generated by elements of the form
x−D(x) for x ∈ F(E)(3)12.

Let P = 〈E;R 〉 be a quadratic operad for which there exists a Σ2-module decom-
position E = E1 ⊕ E2, a Σ3-equivariant linear map D : F(E)(3)12 → F(E)(3)21, and
Σ3-invariant subsets Ri ⊆ F(E)(3)ii, i = 1, 2, such that R = R1 ⊕ RD ⊕ R2. In other
words, the operad P has the presentation

(4) P = 〈E1 ⊕ E2;R1 ⊕RD ⊕R2 〉.
We can clearly consider the suboperads Pi = 〈Ei;Ri 〉 ⊆ P for i = 1, 2. For 1 ≤ s ≤ l ≤ n,
and a sequence m1, . . . ,ml ≥ 1 with m1 + · · · + ml = n, we write P(n)l for the Σn-
submodule of P(n) generated by the elements of the form µ(ν1, . . . , νl) for µ ∈ P2(l) and
νs ∈ P1(ms). The inclusions Pi ⊆ P (i = 1, 2) induce, for any n ≥ 2, an equivariant linear
map

ξ(n) :
⊕

1≤l≤n

P(n)l −→ P(n).

Definition 2.5. We say that the map D of equation (3) is an (operadic homogeneous
quadratic) distributive law of P1 over P2 if the map ξ(n) is an isomorphism for every
n ≥ 2. We express this fact by writing D : P1(P2) P2(P1).

We denote by Ti (i = 1, 2) the free Pi-operad monad acting on the category of Σ-
modules. From [33, Proposition 2.6] we know that a distributive law in the sense of
Definition 2.5 determines, in a very explicit way, a distributive law (2) in the sense of
Beck, namely λ : T1T2 → T2T1, for which the combined monad T = T2T1 is the monad
for P-algebras. Of course, not all distributive laws in the sense of Beck are distributive
laws in the sense of Definition 2.5: see Example 2.3, which is not even ‘operadic’ since x
appears twice in the right hand side.

Remark 2.6. One sometimes says more precisely that the map in (3) satisfying the con-
dition of Definition 2.5 is a rewrite rule defining a distributive law between the associated
monads. Rewrite rules are often conveniently expressed in the form of an equation such
as (1) whose left hand side belongs to F(E)(3)12 and right hand side to F(E)(3)21.

The adjective quadratic in Definition 2.5 means that the distributive law involves qua-
dratic operads and is therefore determined by its behavior inside F(E)(3); from this it
follows that the resulting operad (4) is again quadratic. Quadratic operads have their
Koszul duals, and therefore we have the following result.

Lemma 2.7. [14, Lemma 9.3] In the situation of Definition 2.5 one has the following

canonical dual quadratic homogeneous distributive law of P!
2 over P

!
1,

D! : P!
2(P

!
1) P

!
1(P

!
2),

such that the resulting combined operad is the Koszul dual of the operad (4).

The adjective homogeneous in Definition 2.5 means that the distributive law preserves
the bigrading of the free operad F(E1 ⊕E2) given by the number of operations first from
E1 and then from E2. Therefore the resulting combined quadratic operad (4) is also
bigraded, and hence free P-algebras are also bigraded. As a consequence, the operadic
cohomology of P-algebras can be calculated as the cohomology of a bicomplex combining
P1- and P2-cochains; see [14, Theorem 10.2].

Example 2.8. An ‘archetypal’ distributive law in the sense of Definition 2.5 is equa-
tion (1) which combines Lie and commutative associative algebras into Poisson algebras.

[September 24, 2018] [dl-final.tex]



DISTRIBUTIVE LAWS BETWEEN THE THREE GRACES 5

A particular inhomogeneous quadratic operadic distributive law is that which describes
associative algebras as algebras with two operations, a commutative nonassociative mul-
tiplication − · − and a Lie bracket [−,−], with the relations

[x, y · z] = [x, y] · z + y · [x, z], [y, [x, z]] = (x · y) · z − x · (y · z).
This law is indeed not homogeneous, since on the left hand side of the second equation we
see a term with no instance of the multiplication − · − but two instances of the bracket
[−,−], i.e. of bidegree (0, 2), while the terms in the right hand side of the same equation
are of bidegree (2, 0).

While defining a transformation λ as in equation (2), and verifying that it is indeed
a distributive law, is a difficult problem in general, operadic distributive laws are deter-
mined by a very small set of data of essentially finitary nature. Moreover, verifying the
required property (Definition 2.5) boils down to a finite calculation.

Theorem 2.9. [33, Theorem 2.3] The map ξ(n) is an isomorphism for all n ≥ 2 if and
only if it is an isomorphism for n = 4.

It can also be shown that the maps ξ(n) are epimorphisms for an arbitrary D as in
equation (3). Since both the domain and codomain of ξ(n) are finite dimensional, it is
enough to verify that

dim
⊕

1≤l≤4

P(4)l = dimP(4).

It is clear that this equation, when expressed in terms of structure constants, leads to
a system of quadratic equations without constant terms. In particular, taking D to be
identically zero always gives a distributive law, the trivial one.

The discussion in this section makes clear the prominent rôle played by operadic ho-
mogeneous quadratic distributive laws. In the rest of this article we will deal exclusively
with such distributive laws, and will therefore omit the adjectives operadic homogeneous
quadratic and speak simply about distributive laws.

2.3. Case studies. In the following sections we describe all distributive laws between the
Three Graces. It suffices to consider the seven cases in the first column of the following
table, since the dual cases in the second column follow by Lemma 2.7:

distributive law Koszul dual

Ass(Ass) Ass(Ass) self-dual
Ass(Ass) Ass(Ass) self-dual
Lie(Ass) Ass(Lie) Ass(Com) Com(Ass)
Com(Ass) Ass(Com) Ass(Lie) Lie(Ass)
Com(Com) Com(Com) Lie(Lie) Lie(Lie)
Com(Lie) Lie(Com) self-dual
Lie(Com) Com(Lie) self-dual

3. Distributive laws Ass(Ass)  Ass(Ass)

In this section we describe all distributive laws of the associative operad over itself.
We will analyze first the versions living in the world of nonsymmetric operads3 where
distributive laws are given by formulas without permutation of variables, and then we
move to the general case. The main result, Theorem 3.4, states that there are only three
non-isomorphic distributive laws – the trivial one, the truncated one, and the one for
nonsymmetric Poisson algebras (see Remark 3.2 below).

3Sometimes also called non-Σ operads.
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6 MURRAY BREMNER AND MARTIN MARKL

3.1. Non-Σ version. In this subsection we prove:

Theorem 3.1. The only distributive laws between two associative multiplications that do
not involve permutations of variables are given by

(a) (x ◦ y) • z = 0, x • (y ◦ z) = 0
(b) (x ◦ y) • z = 0, x • (y ◦ z) = (x • y) ◦ z
(c) (x ◦ y) • z = x ◦ (y • z), x • (y ◦ z) = 0
(d) (x ◦ y) • z = x ◦ (y • z), x • (y ◦ z) = (x • y) ◦ z

Remark 3.2. Distributive law (a) is the trivial one. Distributive law (d) describes struc-
tures studied by the second author in [33], where they were called ‘nonsymmetric Poisson
algebras’. The corresponding distributive law was written as

〈x · y, z〉 = x · 〈y, z〉, 〈x, y · z〉 = 〈x, y〉 · z,

which is indeed a nonsymmetric form of equation (1). The same structure was later called

an As(2)-algebra in [47].

Proof of Theorem 3.1. To save space, we will omit in this proof the symbol ◦ and write ·
instead of •. We will also omit parentheses whenever the meaning is clear. We therefore
write for example xy · z instead of (x ◦ y) • z.

Let BB be the free nonsymmetric operad generated by two binary operations denoted
xy and x · y. We use the following ordered basis for BB(3) consisting of eight monomials:

(xy)z, x(yz), (x · y) · z, x · (y · z), xy · z, x · yz, (x · y)z, x(y · z).

We identify quadratic relations with row vectors of coefficients with respect to this basis.
Consider the ideal I ⊂ BB generated by the subspace R = I(3) ⊂ BB(3) which is the row
space of the following matrix:

[R] =







1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 0 a b
0 0 0 0 0 1 c d







Row 1 expresses the associativity of xy. Row 2 expresses the associativity of x · y. Rows
3 and 4 express two relations which may also be written as rewrite rules:

xy · z + a (x · y)z + b x(y · z) ≡ 0 or xy · z −→ −a (x · y)z − b x(y · z),
x · yz + c (x · y)z + d x(y · z) ≡ 0 or x · yz −→ −c (x · y)z − d x(y · z).

These rules allow us to eliminate binary trees with root operation x · y by replacing them
by linear combinations of binary trees with root operation xy. Let us denote the four
relations corresponding to the four rows of [R] as follows:

α1(x, y, z) = (xy)z − x(yz),
α2(x, y, z) = (x · y) · z − x · (y · z),
β1(x, y, z) = xy · z + a (x · y)z + b x(y · z),
β2(x, y, z) = x · yz + c (x · y)z + d x(y · z).

Let ρ(x, y, z) represent any of these four relations. Then ρ(x, y, z) has ten cubic (arity 4)
consequences, namely

(5)
ρ(wx, y, z), ρ(w · x, y, z), ρ(w,xy, z), ρ(w, x · y, z), ρ(w, x, yz),
ρ(w, x, y · z), ρ(w,x, y)z, ρ(w,x, y) · z, wρ(x, y, z), w · ρ(x, y, z).

Altogether the four relations α1, α2, β1, β2 have 40 cubic consequences which span the
subspace RR = I(4) ⊂ BB(4). The subspace RR may be identified with the row space of
the 40 × 40 matrix [RR]: the rows correspond to the consequences of the four quadratic
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DISTRIBUTIVE LAWS BETWEEN THE THREE GRACES 7

relations (ordered in some convenient way), and the columns correspond to the monomial
basis of BB(4) ordered first by association type as follows:

(6)
((w ⋆1 x) ⋆2 y) ⋆3 z, (w ⋆1 (x ⋆2 y)) ⋆3 z, (w ⋆1 x) ⋆2 (y ⋆3 z),
w ⋆1 ((x ⋆2 y) ⋆3 z), w ⋆1 (x ⋆2 (y ⋆3 z)).

Within each association type, the sequence ⋆1⋆2⋆3 represents one of the eight sequences
of operation symbols; we order these as follows, where the vertical line | represents the
operation symbol for xy:

(7) ⋆1⋆2⋆3 = |||, ||·, |·|, |··, ·||, ·|·, ··|, ···,

The matrix [RR] has entries in the set {0, 1,−1, a, b, c, d} and hence may be regarded as
a matrix over the polynomial ring F[a, b, c, d]. This matrix is displayed in Figure 1 with
dot, +,− for 0, 1,−1 respectively.





























































































































+ . . . . . . . − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . + . . . − . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. + . . . . . . . . . . − . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . + . . . . . . . . . . − . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . + . . . . − . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . + . . . . . . . . . − . . . . . . . . . . . . . . . . . . . .

+ − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . + − . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . + − . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + − . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . + . . . . − . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . − . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . − . . .

. . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . − . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . − . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . − . . . .

. . + − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . + − . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . + − . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + − . . . .

. . . . a . . . . b . . . . . . . . . . + . . . . . . . . . . . . . . . . . . .

. . a . . . . . . . . b . . . . . . . . . . . . . . + . . . . . . . . . . . . .

. . . . . a . . . . . . . . . . b . . . . + . . . . . . . . . . . . . . . . . .

. . . a . . . . . . . . . . b . . . . . . . . . . . . + . . . . . . . . . . . .

. . . . . . . . . . a . . . . . . b . . . . . . . . . . + . . . . . . . . . . .

. . . . . . . . . . . a . . . b . . . . . . . . . . . . . + . . . . . . . . . .

. . . . + . a b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . + . a b . . . . . . . . . . . .

. . . . . . . . . . . . . . . . + . a b . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . a b

. . . . c . . . . d . . . . . . . . . . . . . . . . . . + . . . . . . . . . . .

. . c . . . . . . . . d . . . . . . . . . . . . . . . . . . + . . . . . . . . .

. . . . . c . . . . . . . . . . d . . . . . . . . . . . . . . . + . . . . . . .

. . . c . . . . . . . . . . d . . . . . . . . . . . . . . . . . . . . . . . + .

. . . . . . . . . . c . . . . . . d . . . . . . . . . . . . . . . + . . . . . .

. . . . . . . . . . . c . . . d . . . . . . . . . . . . . . . . . . . . . . . +

. . . . . + c d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . + c d . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . + c d . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + c d





























































































































Figure 1. Matrix [RR]: cubic consequences of quadratic relations

To understand how the rank of [RR] depends on the parameters a, b, c, d we first use
elementary row and column operations to compute a partial Smith form as described
in [8, Chapter 8]. Roughly speaking, we repeatedly move entries equal to ±1 to the upper
left diagonal of the matrix, change their signs if necessary, and then use each resulting
diagonal 1 to eliminate the entries below and to the right, continuing until the lower right
block no longer contains a nonzero scalar. When this computation terminates, we have
reduced [RR] to the block-diagonal matrix diag(I32, L), which is row-column equivalent
to [RR] and hence has the same rank as [RR], where L is an 8× 8 matrix over F[a, b, c, d]
which has two zero rows and two zero columns. After deleting these superfluous rows and
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8 MURRAY BREMNER AND MARTIN MARKL

columns, we obtain this 6× 6 matrix:

L′ =















−ad −b2 − b a2 − ac 0 0 0
0 bd+ d −ac− a 0 0 0
ad bd− d2 c2 + c 0 0 0
0 0 0 −b2 − b −ab− a −a2 − ab
0 0 0 −ad 0 ad
0 0 0 −cd− d2 −cd− d −c2 − c















In order for the map representing the distributive law to be an isomorphism, it is necessary
and sufficient that [RR] have rank 32, or equivalently that L′ be the zero matrix. Consider
the set G consisting of the nonzero entries of L′. We compute a Gröbner basis for the ideal
J ⊂ F[a, b, c, d] generated by G with respect to the deglex monomial order determined by
a ≺ b ≺ c ≺ d. This Gröbner basis for J consists of the polynomials a, d, b(b+1), c(c+1).
Hence J is a zero-dimensional ideal whose zero set consists of exactly four points:

(a, b, c, d) = (0, 0, 0, 0), (0, 0,−1, 0), (0,−1, 0, 0), (0,−1,−1, 0).

These solutions correspond to the following pairs of rewrite rules

(a) xy · z −→ 0, x · yz −→ 0
(b) xy · z −→ 0, x · yz −→ (x · y)z
(c) xy · z −→ x(y · z), x · yz −→ 0
(d) xy · z −→ x(y · z), x · yz −→ (x · y)z

which give the four nonsymmetric laws Ass(Ass) Ass(Ass) of Theorem 3.1. �

3.2. General version. In this subsection we generalize Theorem 3.1 by allowing permu-
tations of variables:

Theorem 3.3. The only distributive laws between two associative multiplications are the
four laws of Theorem 3.1 together with the following three:

(e) (x ◦ y) • z = 0, x • (y ◦ z) = y ◦ (x • z)
(f) (x ◦ y) • z = (x • z) ◦ y, x • (y ◦ z) = 0
(g) (x ◦ y) • z = (x • z) ◦ y, x • (y ◦ z) = y ◦ (x • z).

The proof is postponed to the end of this subsection. We note that the rewrite rule
(x ◦ y) • z = (x • z) ◦ y states that the right multiplications − ◦ y and − • z commute;
similarly, x • (y ◦ z) = y ◦ (x • z) states that the left multiplications y ◦ − and x • −
commute.

Let us denote by A1, . . .A7 the operads defined by distributive laws (a)–(g) of The-
orems 3.1 and 3.3 (in the given order). It turns out that these operads fall into three
isomorphism classes:

• the isomorphism class of {A1},
• the isomorphism class containing {A2,A3,A5,A6}, and
• the isomorphism class containing {A4,A7}.
The corresponding isomorphisms are given by changing one or both multiplications into
the opposite, that is ◦ 7→ ◦op and/or • 7→ •op. It is easy to verify that one gets the
following isomorphism diagrams:

A2 ∼=

◦7→◦op //

•7→•op ∼=

��

A5

∼= •7→•op

��

A6
◦7→◦op

∼=
// A3

and

A4
◦7→◦op

∼=
//

•7→•op ∼=

��

A7

•7→•op∼=

��

A7
◦7→◦op

∼=
// A4.

One therefore has:
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DISTRIBUTIVE LAWS BETWEEN THE THREE GRACES 9

Theorem 3.4. There are precisely three nonisomorphic distributive laws between two
associative multiplications, namely

• the trivial law (a),
• the truncated law represented by rewrite rules (b), (c), (e) or (f), and
• the law for nonsymmetric Poisson algebras represented by (d) or (g).

Remark 3.5. Note that the operads A1,A2,A3 and A4 defined by distributive laws
(a)–(d) of Theorem 3.1 are mutually non-isomorphic in the category of non-Σ operads.
Therefore in the category of algebras over non-symmetric operads there are four different
distributive laws between two associative multiplications.

Theorem 3.4 has the following simple but very interesting consequence:

Corollary 3.6. Up to isomorphism, the only distributive law between two associative
multiplications in the monoidal category of sets is that of nonsymmetric Poisson algebras.

Example 3.7. Let us verify ‘by hand’ that (e) indeed determines a distributive law. We
must verify that it is compatible with the associativity of • and ◦. We also need to check
that the result of repeated applications of (e) does not depend on their order. Theorem
2.9 tells us that it suffices to consider only expressions involving four variables.

Compatibility with the associativity of ◦. The associativity of ◦ means that
(

(y ◦ z) ◦ w
)

=
(

y ◦ (z ◦ w)
)

,

for arbitrary symbols y, z, w. Thus, for a symbol x, one has

(8) x •
(

(y ◦ z) ◦ w
)

= x •
(

y ◦ (z ◦ w)
)

.

The compatibility with associativity means that both sides of this equation remain equal
after we apply, possibly repeatedly, rule (e) to them. For the left side of (8) we get

x •
(

(y ◦ z) ◦ w
)

= (y ◦ z) ◦ (x • w),

while the right hand side is modified into

x •
(

y ◦ (z ◦ w)
)

= y ◦
(

x • (z ◦ w)
)

= y ◦
(

z ◦ (x • w)
)

.

So we need to check whether

(y ◦ z) ◦ (x • w) = y ◦
(

z ◦ (x • w)
)

.

This equality follows from the associativity of ◦ . We need to do the same analysis for
(

(x ◦ y) ◦ z) • w =
(

x ◦ (y ◦ z)
)

• w.

In this case (e) turns both sides into 0.
Compatibility with the associativity of •. We need to consider three equations implied

by the associativity of •. The first one is

(x • y) • (z ◦ w) = x •
(

y • (z ◦ w)
)

.

Modifying the left hand side using (e) gives

(x • y) • (z ◦ w) = z ◦
(

(x • y) • w),

while
x •

(

y • (z ◦ w)
)

= x •
(

z ◦ (y • w)
)

= z ◦
(

x • (y • w)
)

.

However, thanks to the associativity of • we have

z ◦ (
(

x • y) • w) = z ◦
(

x • (y • w)
)

.

The next equation to analyze is
(

x • (y ◦ z)
)

• w = x •
(

(y ◦ z) • w
)

.

The left side expands as
(

x • (y ◦ z)
)

• w =
(

y ◦ (x • z)
)

• w = 0,
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10 MURRAY BREMNER AND MARTIN MARKL

while the right side is seen to be zero immediately. The last equation to be considered is
(

(x ◦ y) • z) • w = (x ◦ y) • (z • w).

But applying (e) turns both sides immediately to zero.
Independence of order. All expressions featured above offered at most one way to

apply (e). This is not true for
(x ◦ y) • (z ◦ w).

Applying the first rule of (e) first, with (z ◦ w) instead of z, turns it into zero, while
applying the second rule of (e) first we get

(x ◦ y) • (z ◦ w) = z ◦
(

(x ◦ y) • w)
)

,

which is zero again, by the first rule of (e). It is not difficult to see that the above
finite number of cases was all we needed to check, thus the verification that (e) defines
a distributive law is finished.

Remark 3.8. The above calculations can be visualized by labelled planar rooted trees.
Representing the ◦-multiplication by a white vertex with two inputs and one output,
and the •-multiplication by a similar black vertex, the associativity of ◦ and • can be
depicted as

◦
◦
❅
❅

✻

zyx

= ◦
◦

�
�

✻

x y z

and •
•
❅
❅

✻

zyx

= •
•

�
�

✻

x y z
while rule (e) reads

◦
•
❅
❅

✻

zyx

= 0 and ◦
•

�
�

✻

x y z

= •
◦

�
�

✻

y x z

.

A pictorial verification of the compatibility of rule (e) with equation (8) is shown in
Figure 2; the remaining (and in fact easier) cases can be verified similarly.

◦
wzyx

◦
•✻

❅❅
�

��

=

wzyx

◦
◦

•✻

��
�

��

wzxy

◦
•

◦✻

��
�

��

wxzy

•
◦

◦✻

��
�

��
wxzy

◦
•◦

✻

❅❅��
=

w

w

�

w

w

�

w

w

�

Figure 2. Tree diagrams for compatibility proof
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DISTRIBUTIVE LAWS BETWEEN THE THREE GRACES 11

Proof of Theorem 3.3. We use the same conventions regarding the notation for the ◦ and
• products as in the proof of Theorem 3.1. The method for the symmetric case is essen-
tially the same as for the nonsymmetric case, although the matrices and the number of
parameters are six times larger. Let BB be the free symmetric operad generated by two
binary operations denoted xy and x · y. We use the following ordered basis for BB(3)
consisting of 48 monomials:

(xσyσ)zσ, xσ(yσzσ), (xσ · yσ) · zσ, xσ · (yσ · zσ),
xσyσ · zσ, xσ · yσzσ, (xσ · yσ)zσ, xσ(yσ · zσ).

The permutations σ ∈ S3 permuting the arguments x, y, z (not the positions) are in
lexicographical order. We identify quadratic relations with row vectors of coefficients with
respect to this basis. Consider the ideal I ⊂ BB generated by the subspace R = I(3) which
is the row space of the following block matrix:

(9) [R] =









I6 −I6 · · · · · ·
· · I6 −I6 · · · ·
· · · · I6 · A B
· · · · · I6 C D









We write I6 and dot for the 6× 6 identity and zero matrices, together with

(10) A =











a1 a2 a3 a4 a5 a6
a2 a1 a5 a6 a3 a4
a3 a4 a1 a2 a6 a5
a5 a6 a2 a1 a4 a3
a4 a3 a6 a5 a1 a2
a6 a5 a4 a3 a2 a1











,

and similarly for B, C and D. Thus [R] contains 24 parameters. We point out that
rows 1, 7, 13, 19 generate the row space of [R] as an S3-module: rows 1 and 7 represent
associativity for operations xy and x · y; rows 13 and 19 represent the rewrite rules which
show how to express a binary tree with operation x · y at the root as a linear combination
of binary trees with operation xy at the root:

xy · z + a1(x · y)z + a2(x · z)y + a3(y · x)z + a4(y · z)x+ a5(z · x)y + a6(z · y)x
+ b1x(y · z) + b2x(z · y) + b3y(x · z) + b4y(z · x) + b5z(x · y) + b6z(y · x) ≡ 0,

x · yz + c1(x · y)z + c2(x · z)y + c3(y · x)z + c4(y · z)x+ c5(z · x)y + c6(z · y)x
+ d1x(y · z) + d2x(z · y) + d3y(x · z) + d4y(z · x) + d5z(x · y) + d6z(y · x) ≡ 0.

Let ρ(x, y, z) be the relation represented by one of the rows 1, 7, 13, 19. Each of these
four relations has ten cubic consequences as in equation (5), for a total of 40 relations
which generate the S4-module RR = I(4) ⊂ BB(4). Each of these 40 relations has 24
permutations, for a total of 960 relations which span RR as a subspace of BB(4). If we
apply the 24 permutations of w, x, y, z to the 40 nonsymmetric monomials in equations
(6)-(7) then we obtain 960 monomials which form an ordered basis of BB(4). Thus we can
represent RR as the row space of a 960× 960 matrix [RR] whose entries belong to

{0,±1} ∪X, where X = {ak, bk, ck, dk | 1 ≤ k ≤ 6}.
Thus [RR] may be regarded as a matrix over the polynomial ring F[X] with 24 variables.
As in the nonsymmetric case, we compute a partial Smith form for [RR] and obtain a block
diagonal matrix diag(I768, L) where L has size 192 × 192 and contains no nonzero scalar
entries4. The set of nonzero entries of L contains 575 polynomials, all of which have total
degree 1 or 2 in the variables X. From this large set of ideal generators we obtain a deglex
Gröbner basis of only 28 polynomials:

a1, a3, a4, a5, a6, b2, b3, b4, b5, b6, c2, c3, c4, c5, c6, d1, d2, d4, d5, d6,

a2
2 + a2, a2b1, a2c1, b21 + b1, b1d3, c21 + c1, c1d3, d23 + d3.

4This computation took 7.5 minutes using Maple 18 on a MacBook Pro purchased new in 2017.
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12 MURRAY BREMNER AND MARTIN MARKL

From this we easily determine that the ideal is zero-dimensional and that its zero set
consists of the following seven points:

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 c1 c2 c3 c4 c5 c6 d1 d2 d3 d4 d5 d6

1 · · · · · · · · · · · · · · · · · · · · · · · ·
2 · · · · · · · · · · · · −1 · · · · · · · · · · ·
3 · · · · · · −1 · · · · · · · · · · · · · · · · ·
4 · · · · · · −1 · · · · · −1 · · · · · · · · · · ·
5 · · · · · · · · · · · · · · · · · · · · −1 · · ·
6 · −1 · · · · · · · · · · · · · · · · · · · · · ·
7 · −1 · · · · · · · · · · · · · · · · · · −1 · · ·

For points 1–4, the matrices A,B,C,D from equations (9)-(10) are as follows:
[

A B
C D

]

=

[

0 0
0 0

]

,

[

0 0
−I6 0

]

,

[

0 −I6
0 0

]

,

[

0 −I6
−I6 0

]

.

The corresponding distributive laws are simply the symmetrizations of the four laws from
the nonsymmetric case. Solutions (5)-(7) give new symmetric distributive laws which have
no analogue in the nonsymmetric case. Consider these (negative) permutation matrices:

P =













· −1 · · · ·
−1 · · · · ·

· · · −1 · ·
· · −1 · · ·
· · · · · −1
· · · · −1 ·













, Q =













· · −1 · · ·
· · · · −1 ·

−1 · · · · ·
· · · · · −1
· −1 · · · ·
· · · −1 · ·













.

Then points 5–7 correspond to
[

A B
C D

]

=

[

0 0
0 Q

]

,

[

P 0
0 0

]

,

[

P 0
0 Q

]

.

These solutions correspond respectively to (all permutations of) these rewrite rules:

5 : xy · z −→ 0, x · yz −→ y(x · z)
6 : xy · z −→ (x · z)y, x · yz −→ 0
7: xy · z −→ (x · z)y, x · yz −→ y(x · z).

These are the three remaining distributive laws of Theorem 3.3. �

4. Distributive laws Com(Ass)  Ass(Com)

Theorem 4.1. The only distributive law Com(Ass) Ass(Com) is the trivial one.

Proof. We write ab for the associative operation, and a · b for the commutative associative
operation. Commutativity implies that we need to consider only six association types in
arity 3, which we order as follows:

∗ · ∗ · ∗ = (∗ · ∗) · ∗, (∗∗) · ∗, (∗ · ∗)∗, ∗∗∗ = (∗∗)∗, ∗(∗ · ∗), ∗(∗∗).

Similarly, we need consider only 25 association types in arity 4; in the following ordered
list we leave in all the parentheses:

((∗ · ∗) · ∗) · ∗, ((∗∗) · ∗) · ∗, ((∗ · ∗)∗) · ∗, ((∗∗)∗) · ∗, (∗(∗ · ∗)) · ∗,
(∗(∗∗)) · ∗, (∗ · ∗) · (∗ · ∗), (∗ · ∗) · (∗∗), (∗∗) · (∗∗), ((∗ · ∗) · ∗)∗,
((∗∗) · ∗)∗, ((∗ · ∗)∗)∗, ((∗∗)∗)∗, (∗(∗ · ∗))∗, (∗(∗∗))∗,
(∗ · ∗)(∗ · ∗), (∗ · ∗)(∗∗), (∗∗)(∗ · ∗), (∗∗)(∗∗), ∗((∗ · ∗) · ∗),
∗((∗∗) · ∗), ∗((∗ · ∗)∗), ∗((∗∗)∗), ∗(∗(∗ · ∗)), ∗(∗(∗∗)).
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The number of distinct association types for a sequence of n arguments with two associative
binary operations, one commutative and one noncommutative, is sequence A276277 in the
Online Encyclopedia of Integer Sequences (oeis.org):

1, 2, 6, 25, 111, 540, 2736, 14396, 77649, 427608, 2392866, 13570386, 77815161, . . .

Applying all permutations to the arguments, and ignoring duplications which follow from
commutativity, we obtain 27 distinct multilinear monomials in arity 3, which we order as
follows, again leaving in all the parentheses:

(a · b) · c, (a · c) · b, (b · c) · a, (ab) · c, (ac) · b, (ba) · c, (bc) · a, (ca) · b, (cb) · a,
(a · b)c, (a · c)b, (b · c)a, (ab)c, (ac)b, (ba)c, (bc)a, (ca)b, (cb)a,
a(b · c), b(a · c), c(a · b), a(bc), a(cb), b(ac), b(ca), c(ab), c(ba).

Similarly, we obtain 405 distinct multilinear monomials of arity 4. The number of distinct
multilinear monomials with two associative binary operations, one commutative and one
noncommutative, is the sextuple factorials, sequence A011781 in the OEIS:

n−1
∏

k=0

(6k+3) = 1, 3, 27, 405, 8505, 229635, 7577955, 295540245, 13299311025, . . .

Figure 3 displays the matrix whose row space is the S3-submodule generated by three
quadratic relations: associativity for ab, associativity for a · b, and the relation expressing
the reduction of a monomial of the form (ab) · c to a linear combination of permutations
of the monomial (a · b)c.

















































. . . . . . . . . . . . + . . . . . . . . − . . . . .

. . . . . . . . . . . . . + . . . . . . . . − . . . .

. . . . . . . . . . . . . . + . . . . . . . . − . . .

. . . . . . . . . . . . . . . + . . . . . . . . − . .

. . . . . . . . . . . . . . . . + . . . . . . . . − .

. . . . . . . . . . . . . . . . . + . . . . . . . . −
+ . − . . . . . . . . . . . . . . . . . . . . . . . .
. − + . . . . . . . . . . . . . . . . . . . . . . . .

− + . . . . . . . . . . . . . . . . . . . . . . . . .

. . . + . . . . . a1 a2 a3 . . . . . . b1 b2 b3 . . . . . .

. . . . + . . . . a2 a1 a3 . . . . . . b1 b3 b2 . . . . . .

. . . . . + . . . a1 a3 a2 . . . . . . b2 b1 b3 . . . . . .

. . . . . . + . . a2 a3 a1 . . . . . . b3 b1 b2 . . . . . .

. . . . . . . + . a3 a1 a2 . . . . . . b2 b3 b1 . . . . . .

. . . . . . . . + a3 a2 a1 . . . . . . b3 b2 b1 . . . . . .

















































Figure 3. Associative-commutative quadratic relation matrix

The S4-module generated by the consequences of the three quadratic relations has size
540 × 405. Its partial Smith form consists of an identity matrix of size 330 and a lower
right block B of size 210× 75. The matrix B contains 56 distinct nonzero polynomials of
degrees 1 and 2; replacing each by its monic form gives the following 43 polynomials:

a3, b2, a
2
2, a

2
3, b

2
1, b

2
2, a1b3, a1(a2+1), a1(a1+a2+a3+b1+b2+b3), a2a1, a2a3, a2b2,

a2(a2+1), a2(a3+b2), a3a1, a3b1, a3(a2+b1+1), b1b2, b1b3, b1(a3+b2), b1(b1+1),

b2b3, b2(a2+b1+1), b3(b1+1), b3(a1+a2+a3+b1+b2+b3), a1(a2−a1), a1(a3−a1),

a1(a3−a2), a1(b2−b1), b3(a3−a2), b3(b2−b1), b3(b3−b1), b3(b3−b2), a2b1+a2
3,

a2b1+b22, a1a2+a3b3, a1b1+a2b3, a1b2+a3b3, a1b2+b1b3, a
2
2+a3b2+a2, a3b2+b21+b1,

a1a3+a2b3+b3, a1b1+b2b3+a1.

One easily verifies that the deglex Gröbner basis for the ideal generated by these polyno-
mials consists of the six variables a1, a2, a3, b1, b2, b3 and this completes the proof. �
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5. Distributive laws Lie(Ass)  Ass(Lie)

The methods in this case are very similar to the case Com(Ass) Ass(Com) except that
instead of a commutative associative operation we have a Lie bracket: an anticommutative
operation satisfying the Jacobi identity. This requires keeping track of sign changes that
occur as a result of anticommutativity when calculating normal forms of the monomials
in consequences and permutations of various quadratic and cubic relations.

Theorem 5.1. The only distributive law Lie(Ass) Ass(Lie) is the trivial one. By
Koszul duality, the same conclusion holds for Ass(Com) Com(Ass).

Non-example 5.2. One is tempted to relax the commutativity of the associative mul-
tiplication of Poisson algebras, keeping other axioms unchanged, as done e.g. in [1].
We show that in this case the derivation rule (1) does not define a distributive law
Lie(Ass) Ass(Lie), so we suspect that these näıve noncommutative Poisson algebras
are ill-behaved. More specifically, we show that the rule (1) is not compatible with the
anticommutativity of [−,−]. Let us consider the equation

(11) [ab, cd] = −[cd, ab].

Expanding its left side using (1) twice gives

[ab, cd] = a[b, cd] + [a, cd]b = ac[b, d] + a[b, c]d + c[a, d]b+ [a, c]db,

while the right side results in

−[cd, ab] = −c[d, ab]− [c, ab]d = −ca[d, b]− c[d, a]b− a[c, b]d− [c, a]bd

= ca[b, d] + c[a, d]b+ a[b, c]d + [a, c]bd.

The compatibility of (1) with (11) would require the ‘tautological’ equality

ac[b, d] + c[a, d]b+ a[b, c]d + [a, c]db = ca[b, d] + c[a, d]b+ a[b, c]d + [a, c]bd,

which is the same as

(ac− ca)[b, d] + [a, c](db− bd) = 0.

One however cannot expect this to be true in general unless ac = ca and db = bd. If we
denote the commutator of the associative multiplication by {−,−} then we obtain

(12) {a, c}[b, d] = [a, c]{b, d},

which can be found e.g. in [44, Lemma 1.1] or [45, Theorem 1]. Theodore Voronov in-
formed us that (12) was first obtained by Dirac, who used it to motivate his argument
that in quantum mechanics, the ‘quantum Poisson bracket’ has to be proportional to the
commutator of the operators.

Remark 5.3. We advise the reader that there are other structures called ‘noncommuta-
tive Poisson algebras’ in the literature. The structure in [26,27] combines Leibniz and as-
sociative algebras via the derivation rule (1); it is therefore of type Lei(Ass) Ass(Lei).
The structure in [11] is defined as a Poisson algebra on the abelization A/[A,A] of an asso-
ciative algebra A. Other generalizations include double Poisson algebras [42,43] equipped
with a ‘double bracket’ A⊗ A → A⊗ A, or a twisted version in the physics paper [38].

6. The remaining cases

In this section we analyze the remaining three types of distributive laws between the
Three Graces.

Theorem 6.1. For Com(Com) Com(Com) we obtain only the trivial distributive law.
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Proof. The calculations are similar to those discussed in detail in previous sections, so we
provide only a brief outline. The number of distinct association types in arity n for two
commutative operations is sequence OEIS A226909; see also [10]:

1, 2, 4, 14, 44, 164, 616, 2450, 9908, 41116, 173144, 739884, 3196344, 13944200, . . . .

For arities 3 and 4, these types are as follows:

(∗∗)∗, (∗ · ∗)∗, (∗∗) · ∗, (∗ · ∗) · ∗;
((∗∗)∗)∗, ((∗ · ∗)∗)∗, ((∗∗) · ∗)∗, ((∗ · ∗) · ∗)∗, (∗∗)(∗∗),
(∗∗)(∗ · ∗), (∗ · ∗)(∗ · ∗), ((∗∗)∗) · ∗, ((∗ · ∗)∗) · ∗, ((∗∗) · ∗) · ∗,
((∗ · ∗) · ∗) · ∗, (∗∗) · (∗∗), (∗∗) · (∗ · ∗), (∗ · ∗) · (∗ · ∗).

The number of distinct multilinear monomials is the quadruple factorials (OEIS A001813):

(2n)!

n!
= 1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, . . . .

For arity 3, these monomials are as follows (in lex order):

(ab)c, (ac)b, (bc)a, (a·b)c, (a·c)b, (b·c)a, (ab)·c, (ac)·b, (bc)·a, (a·b)·c, (a·c)·b, (b·c)·a.
Using these monomials, associativity for each operation has the form

(ab)c− (bc)a, (a · b) · c− (b · c) · a.
The most general distributive law relating the operations is as follows, where x1, x2, x3

are free parameters:

x1(ab) · c+ x2(ac) · b+ x3(bc) · a− (a · b)c.
Applying all permutations of the variables a, b, c to these three relations, and expressing
the relations as row vectors of coefficients, we obtain this matrix:





























1 · −1 · · · · · · · · ·
· −1 1 · · · · · · · · ·

−1 1 · · · · · · · · · ·
· · · · · · · · · 1 · −1
· · · · · · · · · · −1 1
· · · · · · · · · −1 1 ·
· · · x1 x2 x3 1 · · · · ·
· · · x2 x3 x1 · · 1 · · ·
· · · x3 x1 x2 · 1 · · · ·





























We compute the consequences in arity 4 of these nine relations I in arity 3. If we write
ω1, ω2 for the two operations then for each I we obtain I ◦k ωj (k = 1, 2, 3; j = 1, 2)
and ωj ◦k I (j, k = 1, 2) where ◦k denotes operadic partial composition. Each term of
each consequence must be straightened using commutativity to convert the underlying
monomial to one of the 120 normal forms in arity 4. Each quadratic relation I produces
10 cubic consequences for a total of 30; applying all permutations of the four variables
a, b, c, d we obtain altogether 360 cubic relations, which we store in a 360× 120 matrix R
with entries 0, 1, −1, x1, x2, x3. Following [8], we compute a partial Smith form

PSF(RR) =

[

I105 0
0 B

]

,

where the lower right block B contains the following nonzero entries:

x2
2, x2x3, x3x1, −x2

1, −x2
2, −x2x3, −x3x1, x2 − x3, x3 − x2, −x2

3 − x3, x
2
3 + x3,

−x1x2 − x1, x1x2 + x1, −x2
3 − x2, x

2
3 + x2, −x2x3 − x3, x2x3 + x3, −x2x3 − x2,

x2x3 + x2, −x2x3 + x2
3, x2x3 − x2

3, −x2
2 + x2

3, −x2
2 + x2x3, x

2
2 − x2x3, −x1x2 + x1x3,

x1x2 − x1x3, −x1x2 − x1x3 − x1, x1x2 + x1x3 + x1, −x2
1 − x1x2 − x1x3,

−x2
1 − x1x2 + x1x3, −x2

1 + x1x2 − x1x3, x
2
1 − x1x2 + x1x3, x

2
1 + x1x2 + x1x3.

The ideal in Q[x1, x2, x3] generated by these polynomials has Gröbner basis x1, x2, x3. �
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Theorem 6.2. For Com(Lie) Lie(Com) we obtain only the trivial distributive law.

Proof. Very similar to the proof of Theorem 6.1. �

Theorem 6.3. The only nontrivial distributive law Lie(Com) Com(Lie) is that for
Poisson algebras.

The theorem is a particular case of the classification of generalized distributive laws
between Lie and Com given in [9].

7. Associative-Magmatic

In this final section we illustrate that outside the realm of the Three Graces, various
bizarre distributive laws exist. We present a distributive law depending on a parameter γ
in the ground field k satisfying the condition that the square root of γ2+γ exists:

(x◦y)•z = 0,(13a)

x•(y◦z) = −γ (x•y)◦z +
√

γ2+γ (x•z)◦y + (γ+1) y◦(x•z)−
√

γ2+γ z◦(x•y),(13b)

where • is an associative multiplication and ◦ is magmatic (= satisfying no axioms). To
verify that these equations define a distributive law, we need to consider three equalities
that follow from the associativity of •:

((u◦v)•a)•b = (u◦v)•(a•b),(14a)

(u•(v◦a))•b = u•((v◦a)•b), and(14b)

(u•v)•(a◦b) = u•(v•(a◦b)).(14c)

We apply the rewrite rule to both sides of each equation; in all cases we must obtain
equalities. Let us illustrate this on (14c). Expanding its left side gives

(u•v)•(a◦b) =− γ
(

(u•v)•a
)

◦b+
√

γ2+γ
(

(u•v)•b
)

◦a+ (γ+1)a ◦
(

(u•v)•b
)

−
√

γ2+γ b ◦
(

(u•v)•a
)

=− γ (u•v•a)◦b+
√

γ2+γ (u•v•b)◦a + (γ+1)a ◦(u•v•b)

−
√

γ2+γ b ◦(u•v•a).
However, its right side leads to

u•
(

v•(a◦b)
)

=− γ u•
(

(v•a)◦b
)

+
√

γ2+γ u•
(

(v•b)◦a
)

+ (γ+1)u•
(

a◦(v•b)
)

−
√

γ2+γ u•
(

b◦(v•a)
)

= γ 2
(

u•(v•a)
)

◦b− γ
√

γ2+γ (u•b)◦(v•a)− γ (γ+1) (v•a)◦(u•b)
+ γ

√

γ2+γ b◦
(

u•(v•a)
)

− γ
√

γ2+γ
(

u•(v•b)
)

◦a+ (γ2+γ) (u•a)◦(v•b)
+ (γ+1)

√

γ2+γ (v•b)◦(u•a)− (γ2+γ) a◦
(

u•(v•b)
)

− γ (γ+1) (u•a)◦(v•b)
+ (γ+1)

√

γ2+γ
(

u•(v•b)
)

◦a+ (γ +1)2a◦
(

u•(v•b)
)

− (γ+1)
√

γ2+γ (v•b)◦(u•a) + γ
√

γ2+γ (u•b)◦(v•a)
− (γ2+γ)

(

u•(v•a)
)

◦b− (γ+1)
√

γ2+γ b ◦
(

u•(v•a)
)

+ (γ2+γ) (v•a)◦(u•b)
= γ 2(u•v•a)◦b− γ

√

γ2+γ (u•b)◦(v•a)− (γ2+γ) (v•a)◦(u•b)

+ γ
√

γ2+γ b◦(u•v•a)− γ
√

γ2+γ (u•v•b)◦a + (γ2+γ) (u•a)◦(v•b)

+ (γ+1)
√

γ2+γ (v•b)◦(u•a)− (γ2+γ) a◦(u•v•b)− (γ2+γ) (u•a)◦(v•b)

+ (γ+1)
√

γ2+γ (u•v•b)◦a + (γ +1)2a◦(u•v•b)
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− (γ+1)
√

γ2+γ (v•b)◦(u•a) + γ
√

γ2+γ (u•b)◦(v•a)− (γ2+γ) (u•v•a)◦b
− (γ+1)

√

γ2+γ b ◦ (u•v•a) + (γ2+γ) (v•a)◦(u•b).

What we obtained is indeed an equality. For instance,
√

γ2+γ appears as the coefficient
of the boxed term (u•v•b)◦a in the expansion of (u•v)•(a◦b), while in the expansion of

u•
(

v•(a◦b)
)

we see the same term twice, once with coefficient −γ
√

γ2+γ and once with

coefficient (γ+1)
√

γ2+γ . These terms cancel since
√

γ2+γ = −γ
√

γ2+γ + (γ+1)
√

γ2+γ .

We leave a similar (and in fact, easier) analysis of (13a) and (13b) to the reader. The last
property to be verified is that the results of successive applications of the rewriting rules
to (u◦v)•(a◦b) rule does not depend on the order of applications. Applying (13a) with
x = u, y = v and z = a◦b gives (u◦v)•(a◦b) = 0 immediately. Rule (13b) with x = u◦v,
y = a and z = b leads to

(u◦v)•(a◦b) =− γ
(

(u◦v)•y
)

◦z +
√

γ2+γ
(

(u◦v)•z
)

◦y
+ (γ+1) y◦

(

(u◦v)•z
)

−
√

γ2+γ z◦
(

(u◦v)•y
)

.

Its right side equals zero by (13a), as required. Thus (13b) and (13a) indeed define
a distributive law Ass(Mag) Mag(Ass). For instance, if k equals the rationals Q,
equations (13a)–(13b) make sense only when γ 6∈ (−1, 0). On the other hand, when the
ground field k contains the square root of −1, then the rules

(x◦y)•z = 0,

x•(y◦z) = 1

2
(x•y)◦z +

√
−1

2
(x•z)◦y +

1

2
y◦(x•z)−

√
−1

2
z◦(x•y),

define a distributive law between associative and magmatic multiplication.
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