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TIME-CHANGES PRESERVING ZETA FUNCTIONS

SAWIAN JAIDEE, PATRICK MOSS, AND TOM WARD

To Graham Everest (1957–2010), in memoriam

Abstract. We associate to any dynamical system with finitely many periodic
orbits of each length a collection of possible time-changes of the sequence of
periodic point counts that preserve the property of counting periodic points.
Intersecting over all dynamical systems gives a monoid of time-changes that
have this property for all such systems. We show that the only polynomials
lying in this ‘universally good’ monoid are the monomials, and that this monoid
is uncountable. Examples give some insight into how the structure of the
collection of maps varies for different dynamical systems.

1. Introduction

We are concerned with operations (time-changes) that act on integer sequences
preserving the following property. An integer sequence (an) is called realisable if
there is a map T : X → X (a ‘dynamical system’) with the property that

an = FixT (n) = |{x ∈ X | T nx = x}|

for all n > 1. This defines the same class of integer sequences if we require T to
be a homeomorphism and X a compact metric space, or indeed if T is required to
be a C∞ diffeomorphism of the 2-torus, by work of Puri and the last author [8]
or Windsor [10] respectively. Certain operations on integer sequences preserve
this property for trivial reasons: if (an) is ‘realised’ by (X,T ) and (bn) by (Y, S),
then (anbn) is realised by the Cartesian product T×S : X×Y → X×Y and (an+bn)
is realised by the disjoint union T⊔S : X⊔Y → X⊔Y , where T⊔S is defined to be T
on X and S on Y . All these statements may be expressed in terms of the dynamical

zeta function of T : X → X , formally defined as ζT (z) = exp
(
∑

n>1 FixT (n)
zn

n

)

.

Thus, for example, the space of zeta functions is closed under multiplication because
the sum of two realisable sequences is realisable, and is closed under a Hadamard-
like formal multiplication because the product is. We refer to work of Carnevale and
Voll [1] or Pakapongpun and the last author [6, 7] for more on the combinatorial
and analytic properties of these ‘functorial’ operations.

A different kind of operation on sequences (or on zeta functions) is a ‘time-
change’: a function h : N → N defines an operation on integer sequences by send-
ing (an) to (ah(n)). This may be thought of as replacing the usual sequence of

iterates T, T 2, T 3, . . . with the time-changed sequence T h(1), T h(2), T h(3), . . . .
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Definition 1. For a map T : X → X with FixT (n) <∞ for all n > 1, define

P(X,T ) = {h : N → N |
(
FixT (h(n))

)
is a realisable sequence}

to be the set of good time-changes for (X,T ). Also define

P =
⋂

{(X,T )}
P(X,T )

to be the monoid of universally good time-changes, where the intersection is taken
over all such maps.

It is not obvious that any non-trivial maps could have this property, but the
results below show that many do. Clearly the identity h(n) = n has this property,
and if functions h1, h2 lie in P, then their composition h1 ◦ h2 does, because
by definition if (an) is a realisable sequence then (ah2(n)) is also realisable, and
so (ah1(h2(n))) is too. Thus P is a monoid inside the monoid of all maps N → N

under composition. Here we prove two results about the structure of P.

Theorem 2. A polynomial lies in P if and only if it is a monomial.

We illustrate what is going on in Theorem 2 via some simple examples.

Example 3. (a) Let T denote the ‘golden mean’ shift, so FixT (n) is the nth Lucas
number and ζT (z) = 1

1−z−z2 (when we invoke a specific dynamical system, an

adequate reference is [2, Ch. 11]). The Cartesian square T × T is of course also
a shift of finite type, and a calculation shows that ζT×T (z) =

1
(1+z)(1−2z−2z2+z3) .

The time-change obtained by sampling along the squares, in contrast, is a map
with periodic point count (1, 7, 76, 2207, . . .). Theorem 2 asserts in part that there
is a smooth map S with this periodic point data. Such a map clearly cannot be

conjugate to a shift of finite type, because lim supn→∞
1
n2 log FixS(n) =

1+
√
5

2 > 0.
(b) In the reverse direction, Theorem 2 says that there must be some map with
the property that time-changing by sampling the periodic point counts along the
polynomial n2+1 produces an integer sequence which cannot be the periodic point
count of any map. Calculations suggest that the golden mean shift T has the
property that the sequence (FixT (n

2+1)) does count periodic points for some map
(though the sequence (FixT (n

2 + n)) does not). However (for example), there is
a map U with FixU (n) = σ(n) (the sum of divisors of n), since it may be built
up simply as the union of one orbit of length k for every k ∈ N. Time-changing
this map along the polynomial n2 +1 gives the sequence (3, 6, 18, 18, 42, . . . ) which
cannot count the periodic points of any map, as such a map would need to have 6−3

2
closed orbits of length 2.
(c) A Lehmer–Pierce sequence, with nth term | det(An − I)| for some integer ma-
trix A, counts periodic points for an ergodic toral endomorphism (if it is positive for
all n > 1). Time-changing it along the squares then gives a sequence that counts
periodic points for some map, and this sequence has a characteristic quadratic-
exponential growth rate, resembling a ‘bilinear’ or ‘elliptic’ divisibility sequence.
However, it has fundamentally different arithmetic properties and so cannot be an
elliptic sequence by work of Luca and the last author [4].

Theorem 2 suggests that P is (unsurprisingly) small, but we also use work of
the second author to show that there are many other maps in it, resulting in the
following.

Theorem 4. The monoid P is uncountable.
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2. Proofs of Theorem 2

First we recall from [8] that an integer sequence (an) is realisable if and only if

(1) n
∣
∣(µ ∗ a)n =

∑

d |n
µ(n/d)ad =

∑

d |n
µ(d)an/d > 0

(that is, (µ ∗ a)(n) is non-negative and divisible by n) for all n > 1, (where µ
denotes the Möbius function and ∗ denotes Dirichlet convolution). This is because
we have an = FixT (n) for all n > 1 if and only if OrbT (n) = 1

n (µ ∗ a)(n) is the
number of closed orbits of length n under T for all n > 1.

Proof of ‘if ’ in Theorem 2: monomials preserve realisability. We follow the method
of the thesis [5] of the second author. Assume that h(n) = cnk for some c ∈ N

and k ∈ N0. If k = 0 then the result is clear, as the constant sequence (ac, ac, ac, . . . )
is realised by the space comprising ac points all fixed by a map. If (an) is realised
by (X,T ) then (acn) is realised by (X,T c) for any c ∈ N, so it is enough to con-
sider the case h(n) = nk for some k > 1. Assume therefore that (an) is realisable
— which for this argument we think of as satisfying (1) rather than in terms of
maps — and write bn = ank for n > 1. We wish to show property (1) for the
sequence (bn). Fix n ∈ N, and let

n = pn1
1 · · · pnr

r

be its prime decomposition, with nj > 1 for j = 1, . . . , r. Then

(2) (µ ∗ b)n = ank −
∑

pi

ank/pk
i
+

∑

pi,pj

ank/pk
i
pk
j
− · · ·+ (−1)rank/pk

1 ···p
kr
r

where pi, pj , . . . are distinct members of {p1, . . . , pr}. Let

δ = nk/pk−1
1 · · · pk−1

r ,

so in particular n
∣
∣δ. Let

(3) e =
∑

m |nk

δ |m

∑

d |m
µ(m/d)ad.

Since (an) is realisable, we have by (1) that

m
∣
∣
∑

d |m
µ(m/d)ad > 0,

so in particular e > 0 and n
∣
∣e. Thus it is enough to show that e = (µ∗b)n. Letm

∣
∣nk

with δ
∣
∣m, so that we may write

(4) m = p
k(n1−1)+j1
1 · · · pk(nr−1)+jr

r

with 1 6 j1, . . . , jr 6 k. Thus by (3) we have

e =

k∑

j1=1

· · ·

k∑

jr=1

∑

d |m
µ(d)am/d

with m given by (4). Let

(5) m1 = m/p
k(n1−1)+j1
1 = p

k(n2−1)+j2
2 · · · pk(nr−1)+jr

r .
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Then we have
∑

d |m
µ(d)am/d =

∑

d |m1

µ(d)
(
am/d − am/p1d

)
.

Thus, because m1 is independent of j1,

k∑

j1=1

∑

d |m
µ(d)am/d =

∑

d |m1

k∑

j1=1

µ(d)
(
am/d − am/p1d

)

and hence
k∑

j1=1

∑

d |m
µ(d)am/d =

∑

d |m1

µ(d)
(
a
p
kn1
1 m1/d

− a
p
k(n1−1)
1 m1/d

)
.

It follows from (3) that

e =

k∑

j2=1

· · ·

k∑

jr=1

∑

d |m1

µ(d)
(
a
p
kn1
1 m1/d

− a
p
kn1
1 m1/pk

1d

)
,

where m1 is given by (5). The same procedure may be repeated, first setting

m2 = m1/p
k(n2−1)+j2
2 ,

to obtain e = e1 − e2, where

e1 =
k∑

j3=1

· · ·
k∑

jr=1

∑

d |m2

µ(d)
(
a
p
kn1
1 p

kn2
2 m2/d

− a
p
kn1
1 p

kn2
2 m2/pk

2d

)

and

e2 =

k∑

j3=1

· · ·

k∑

jr=1

∑

d |m2

µ(d)
(
a
p
kn1
1 p

kn2
2 m2/pk

1d
− a

p
kn1
1 p

kn2
2 m2/pk

1p
k
2d

)
.

Continuing inductively shows that each expression obtained matches up with a term
in (2), as required. �

Proof of ‘only if ’ in Theorem 2: only monomials preserve realisability. This argu-
ment proceeds rather differently, because we are free to construct dynamical systems
with convenient properties to constrain what the polynomial can be. So assume
that

h(n) = ck + ck−1n+ ck−2n
2 + · · ·+ c0n

k

is a polynomial in P with c0 6= 0, k > 1, and h(N) ⊂ N. For completeness we recall
the following well-known result.

Lemma 5. The coefficients of h are rational, and the set of primes dividing

some h(n) with n ∈ N is infinite.

Proof. We have









h(1)
h(2)
h(3)
...

h(k + 1)










=










1 1 1 · · · 1
1 2 4 · · · 2k

1 3 9 · · · 3k

...
1 (k + 1) (k + 1)2 · · · (k + 1)k



















ck
ck−1

ck−2

...
c0










,
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and the determinant
∏

16i<j6k+1(j − i) of this matrix (a so-called ‘Vandermonde’

determinant, an instance of Stigler’s law [11]) is non-zero, so the coefficients are all
rational.

Turning to the prime divisors of the values of h, if ck = 0 the claim is clear, and
if k = 1 we may for example write c1+c0n as gcd(c1, c0)

(
c′1+c

′
0n

)
with gcd(c′1c

′
0) = 1

to see this, so assume that ck 6= 0 and k > 1. Then we may write h(n) = np(n)+ck
for some polynomial p of positive degree. We may not have p(N) ⊂ N of course,
but h (and hence p) certainly has rational coefficients. Then we have

m!c2kp(m!c2k) + ck
ck

= m!ckp(m!c2k) + 1 =
h(m!c2k)

ck
.

If m is large then p(m!c2k) is an integer because p has rational coefficients and ck is
rational, so h(m!c2k) must be divisible by some prime greater than m. �

Using Lemma 5, we let q be a very large prime dividing some value of h, let n0 be
the smallest value of n such that q

∣
∣h(n), and let (X,T ) consist of a single orbit of

length q. (Looking further ahead, it is here that we are failing to solve question (4)
from Section 5, in that we choose the system using information from the candidate
polynomial.) Then

(6) an = FixT (n) =

{

0 if q 6
∣
∣ n;

q if q
∣
∣n.

Thus (ah(n)) is a realisable sequence that only takes on the values 0 and q. Since q
is prime, we have

ah(1) ≡ ah(q) (mod q)

by (1). Since (ah(n)) only takes the values 0 and q by construction, we deduce
that n0 is the smallest n such that ah(n) = q. Thus the sequence (ah(n)) starts

(7) (ah(n)) = (0, . . . , 0, q, . . . )

with the first q in the h(n0)th place. Now (ah(n)) is by hypothesis realisable by
some dynamical system (Y, S), so (7) says that S has no fixed points, no points of
period 2, and so on, but it has q points of period h(n0). By (1) this is only possible
if h(n0)

∣
∣q, so we deduce that

(8) h(n0) = q.

Now consider the points of period 2n0 in (Y, S). There are ah(2n0) of these points,

and of course any point fixed by Sn0 is also fixed by S2n0 , so

ah(2n0) > ah(n0) = q.

On the other hand, the sequence (ah(n)) only takes on the values 0 and q, so in fact

ah(2n0) = q.
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The same argument shows that ah(jn0) = q for all j > 1. By (6), it follows

that q
∣
∣h(jn0) for all j > 1. Thus we have

h(n0) = ck + ck−1n0 + · · ·+ c0n
k
0 ≡ 0,

h(2n0) = ck + ck−12n0 + · · ·+ c02
knk

0 ≡ 0,

...

h((k + 1)n0) = ck + ck−1(k + 1)n0 + · · ·+ c0(k + 1)knk
0 ≡ 0

modulo q. That is,









1 1 1 · · · 1
1 2 4 · · · 2k

1 3 9 · · · 3k

...
1 (k + 1) (k + 1)2 · · · (k + 1)k



















ck
ck−1n0

ck−2n
2
0

...
c0n

k
0










≡










0
0
0
...
0










modulo q. Since k is fixed and q is large, the determinant
∏

16i<j6k+1(j − i) of
this matrix is non-zero modulo q, so we deduce that it is invertible modulo q, and
hence

(9) ck−jn
j
0 ≡ 0 (mod q)

for j = 0, . . . , k.
Now, by definition, n0 is the smallest n with q

∣
∣h(n), which tells us nothing

about the size of n0. However, we have seen in (8) that the realisability preserving
property shows that h(n0) = q. It follows that for large q we have

n0 ≈
( q

c0

)1/k

≪ q

since c0 6= 0. So (9) shows that

ck−jn
j
0 ≈ ck−j

( q

c0

)j/k

≪ q

for j 6 k − 1, and therefore the congruence (9) implies that

ck = ck−1 = · · · = c1 = 0

because we can choose q to be as large as we please. It follows that h(n) = c0n
k as

claimed. We can of course deduce nothing about c0, because c0n
k
0 ≈ q. �

3. Examples and Proof of Theorem 4

The forward part of Theorem 2, stating that monomials preserve realisability,
gives families of results concerning congruences in the spirit of Fermat’s little the-
orem and positivity statements from (1).

Example 6. Let (an) denote any realisable sequence, for example:

• the Bernoulli numerators (τn) or denominators (βn) defined by
∣
∣
∣
∣

B2n

2n

∣
∣
∣
∣
=
τn
βn
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in lowest terms for all n > 1, where

t

et − 1
=

∞∑

n=0

Bn
tn

n!

(see A27641, shown to be realisable in [3]; A2445 shown to be realisable
in [5], respectively); or

• the Euler numbers
(
(−1)nE2n

)
, where

2

et + e−t
=

∞∑

n=0

En
tn

n!

(see A364, shown to be realisable in [5]); or
• the Lucas sequence (1, 3, 4, 7, 11, . . . ) (see A000204 and [9] for its special
status as a realisable sequence); or

• the divisor sequence (σ(n)) = (1, 3, 4, 7, 6, 12, 8, . . . ) (realisable as it corre-
sponds to a single orbit of each integer length),

then

0 6
∑

d |n
µ(d)akn/d ≡ 0 (mod n)

for any k > 1 and n > 1.

We also find integrality of some related sequences via the Euler product expan-
sion of the dynamical zeta function as follows. Recall that we write FixT (n) for the
number of points fixed by the nth iterate of a map T : X → X , and OrbT (n) for
the number of closed orbits of length n under T . By thinking of the collection of
all periodic orbits as a disjoint union of individual orbits, it is clear that

ζT (z) = exp




∑

n>1

FixT (n)
zn

n



 =
∏

n>1

(
1− zn

)−OrbT (n)
,

so the Taylor expansion of ζT (z) at z = 0 automatically has integer coefficients.

Example 7. The following sequences of coefficients are integral, answering ques-
tions raised in the relevant Online Encyclopedia of Integer Sequences entry.

• The sequence A166168 is the sequence of Taylor coefficients of the zeta func-
tion of the dynamical system with periodic point data given by sampling the
Lucas sequence along the squares, and so is integral as conjectured there.
More generally, the same property holds for the Lucas sequence sampled
along any integer power.

• Clearly there is the relation

exp




∑

n>1

σ(n) z
n

n



 =
∑

n>0

p(n)zn,

where p is the partition function A41; sampling along the squares gives as
Taylor coefficients the Euler transform of the Dedekind ψ function. The
argument here shows that sampling along any power also gives integral
Taylor coefficients.

http://oeis.org/A027641
http://oeis.org/A002445
http://oeis.org/A000364
https://oeis.org/A000204
https://oeis.org/
https://oeis.org/A166168
https://oeis.org/A000041
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• The full shift on A symbols shows that the Taylor coefficients of

exp




∑

n>1

Ank zn

n





are integral for and A, k ∈ N (see A155200).

Because of the diversity of integer sequences satisfying the condition (1), it is
clear that the property of ‘preserving realisability’ is extremely onerous. Indeed,
the forward direction of Theorem 2 is a little surprising, and one might ask if there
are any further functions with this property. In fact Moss [5] has constructed many
such maps.

Lemma 8. Let p be a prime, and define gp : N → N by

gp(n) =

{

n if p6
∣
∣ n;

pn if p
∣
∣n.

Then gp lies in P.

Proof. Let (an) be a realisable sequence and write (bn) = (agp(n)). We need to

show that (bn) satisfies (1) whenever (an) does. Fix n and write n = pordp(n)m
with gcd(m, p) = 1.

Assume first that ordp(n) = 0. Then p6
∣
∣ n and so

∑

d |n
µ(n/d)bd =

∑

d |n
µ(n/d)ad

and so (bn) satisfies (1) at n.
Next assume that ordp(n) = 1, so that n = pm and p6

∣
∣ m. Then

(µ ∗ b)(n) =
∑

d |pm
µ(d)bpm/d =

∑

d |m
µ(d)bn/d + µ(p)

∑

d |m
µ(d)bm/d

=
∑

d |m
µ(d)ap2m/d −

∑

d |
µ(d)am/d(10)

since µ is multiplicative. Now

(µ ∗ a)(pn) = (µ ∗ a)(p2m) =
∑

d |p2m

µ(d)ap2m/d

=
∑

d |m
µ(d)ap2m/d −

∑

d |m
µ(d)apm/d(11)

and

(µ ∗ a)(n) = (µ ∗ a)(pm) =
∑

d |pm
µ(d)apm/d

=
∑

d |m
µ(d)apm/d −

∑

d |m
µ(d)am/d.(12)

Adding (11) and (12) gives

(µ ∗ a)(pn) + (µ ∗ a)(n) =
∑

d |m
µ(d)ap2m/d −

∑

d |m
µ(d)am/d = (µ ∗ b)(n)

by (10), so (bn) satisfies (1) at n.

https://oeis.org/A155200
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Finally, assume that ordp(n) > 2. Then

∑

d |n
µ(n/d)bd =

∑

d |m
µ(n/d)ad

︸ ︷︷ ︸

Σ0

+

ordp(n)∑

j=1

∑

d |m
µ(n/pjd)apd

︸ ︷︷ ︸

Σj

Now µ
(
n
d

)
= 0 for all d dividing m, so Σ0 = 0.

Similarly, µ
(

n
pjd

)
= 0 for j 6 ordp(n)− 2, so Σj = 0 for 1 6 j 6 ordp(n)− 2.

For the two remaining terms, we have

Σordp(n) +Σordp(n)−1 =
∑

d |m
µ(m/d)apd +

∑

d |m
µ(pm/d)apd

=
∑

d |m
µ(m/d)apd −

∑

d |m
µ(m/d)apd = 0,

so (1) holds trivially for (bn) at n.
We deduce that (bn) satisfies (1) for all n > 1, as required. �

Proof of Theorem 4. Let S = {p1, p2, . . . } ⊆ {2, 3, 5, 7, 11, . . .} be any set of primes,
and define gS : N → N formally by gS = gp1 ◦ gp2 ◦ · · · in the notation of Lemma 8.
(For definiteness, we write a set of primes as {pj1 , pj2 , . . . } with pj1 < pj2 < · · · .)
More precisely, the map gS is defined as follows. For n ∈ N the set

{pj | pj divides n} = {pj1 , . . . , pjt}

is finite, and then we define

gS(n) = gpj1
◦ · · · ◦ gpjt

(n).

If S and T are different subsets of the primes, then there is a prime p in the
symmetric difference of S and T , and clearly gS(p) 6= gT (p). It follows that there
are uncountably many different functions gS .

Formally, we also need to slightly improve the simple observation in Section 1 as
follows. If (h1, h2, . . . ) is a sequence of functions in P with the property that

{j ∈ N | hj(n) 6= n} = {j(1)n , j(2)n , . . . , j(rn)n }

is finite for any n ∈ N, then the infinite composition h = h1 ◦ h2 ◦ · · · defined by

h(n) = h
j
(1)
n

◦ · · · ◦ h
j
(rn)
n

(n)

for any n ∈ N is also in P. This is clear, because for any given n checking (1) only
involves evaluating h on finitely many terms. We deduce that there are uncountably
many different elements of P from Lemma 8. �

4. Dynamical systems with additional polynomial time-changes

As mentioned earlier, if X simply comprises finitely many fixed points for T
then P(X,T ) = NN. Less trivial maps will have fewer maps that preserve realis-
ability, and the complex way in which properties of a map relate to the structure
of its associated set of maps are illustrated by examples of systems (X,T ) with

(13) P ( P(X,T ) ( NN.
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Example 9. Let T : X → X be the full shift on a > 2 symbols, so that we
have FixT (n) = an for all n > 1. Then we claim (this is an observation from the
thesis of the second named author [5]) that if h(n) = c0+c1n+· · ·+ckn

k is any poly-
nomial with non-negative integer coefficients, then h ∈ P(X,T ). By Theorem 2,

we know that the sequence (an
j

) is realised by some map Tj for any j = 1, . . . , k.
Certainly the constant sequence (a, a, . . . ) is realised by the identity map T0 on a
set with a elements. Then the Cartesian product

S = T0 × · · · × T0
︸ ︷︷ ︸

c0 copies

×T1 × · · · × T1
︸ ︷︷ ︸

c1 copies

× · · · × Tk × · · · × Tk
︸ ︷︷ ︸

ck copies

has

FixS(n) = ac0
(
an

)c1
· · ·

(
an

k)ck = ah(n)

for n > 1, by construction. Thus h ∈ P(X,T ), showing that this is strictly larger
than P. On the other hand, if the map that exchanges 1 and 2 (and fixes all
other elements of N) lies in P(X,T ), then we must be able to find some dynamical
system (Y, S) with FixS(1) = a2 and FixS(2) = a. This forces a2 6 a, so a 6 1. It
follows that P(X,T ) is strictly smaller than NN.

In general it is not at all easy to describe P(X,T ) — indeed with the exception
of the trivial case NN which arises for the identity map on a finite set, we have
no examples with a complete description. Example 9 relies on the accidental fact
that anam = an+m, allowing us to translate Cartesian products of systems into
addition in the time-change. The next example of a system satisfying (13) relies on
a different arithmetic trick, as well as the result from Example 9.

Example 10. Let T : X → X be the map x 7→ −ax modulo 1 on the additive
circle X = R/Z for some integer a > 2. Then we have FixT (n) = an − (−1)n

for n > 1, and we claim that if h(n) = n2 + 1 then h ∈ P(X,T ). (In fact, the
same argument shows the same property for any polynomial with non-negative
coefficients, but for simplicity of notation we consider this specific example.) To
prove this, we first show that

η(n) =
∑

d |n
(−1)dµ(n/d) = 0

for all n > 2. Writing µ(s) =
∑

n>1
µ(n)
ns , ζ for the Riemann zeta function, and η

for the Dirichlet η-function
∑

n>1
(−1)n−1

ns it is clear that η(s) = (1 − 2−s)ζ(s)

by splitting into odd and even terms, and ζµ = 1, so µ(s)η(s) = (1 − 21−s)
for ℜ(s) > 1. It follows that η(1) = −1, η(2) = 2, and η(n) = 0 for n > 2.

As all our other arguments are elementary, for completeness we also show this
directly by separating out the power of 2 dividing n, as follows.

(1) If n > 2 is odd, then

η(n) = −
∑

d |n
µ(n/d) = −

∑

d |n
µ(d) = 0.

(2) If n = 2k for some k > 1, then

η(n) =
∑

d |2k
(−1)dµ(2k/d) = µ(1) + µ(2) = 0.
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(3) If n = 2m with m > 2 odd, then

η(n) =
∑

d |2m
µ(d)(−1)2m/d =

∑

d |m
µ(d)

(
(−1)2m/d − (−1)m/d

)
= 2

∑

d |m
µ(d) = 0.

(4) Finally, if n = 2km with k,m > 1 and m odd, then

η(n) =
∑

d |2km
µ(d)(−1)2

km/d =
∑

d |m
µ(d)

(
(−1)2

km/d − (−1)2
k−1m/d

)
= 0.

We now show that h ∈ P(X,T ) using the basic relation (1). That is, we need to
show the congruence and positivity properties in (1) for the sequence (an) defined

by an = an
2+1+(−1)n for n > 1 (since (−1)n

2+1 = −(−1)n). Then (a∗µ)1 = a2−1
and (a ∗ µ)2 = a2(a3 − 1) + 2, so we see that (a ∗ µ)n is non-negative and divisible
by n for n = 1, 2 as desired. For n > 2, we have

(14) (a ∗ µ)n =
∑

d |N
µ(n/d)ad

2+1 +
∑

d |n
(−1)dµ(n/d) =

∑

d |N
µ(n/d)ad

2+1

since η(n) = 0. Now a special case of Example 9 shows that the sequence (an
2+1) is

realisable, so by (1) the last sum in (14) must be non-negative and divisible by n for
all n > 2. This shows that (an) is a realisable sequence, and hence h ∈ P(X,T ).
To see that P(X,T ) is not everything, notice that if the map exchanging 1 and 3
lies in P(X,T ), then a3 6 a, which is impossible.

5. Questions

(1) The simple arguments showing that realisable sequences can be added and
multiplied may be seen using disjoint unions and products of dynamical systems.
Is there a similar argument showing that monomials preserve realisability? For
example, from a system (X,T ) with an = FixT (n) for all n > 1, is there a simple
construction of a map (X(2), T (2)) with the property that FixT (2)(n) = an2 for
all n > 1? Of course the proof above notionally ‘constructs’ such a system because
it contains a ‘formula’ for how many orbits of each length such a map must have,
but in a far from natural or geometric way.
(2) There is no a priori reason for any given P(X,T ) to be a monoid under com-
position of functions, though P clearly is. For cases with P(X,T ) ) P, what
combinatorial properties of (FixT (n)) determine the property that P(X,T ) is a
monoid?
(3) Is there a sequence of maps

(
(Xn, Tn)

)

n>1
with the property that

P(Xn, Tn) ) P(Xn+1, Tn+1)

for all n > 1?
(4) Is there a map T : X → X with the property that the only polynomials
in P(X,T ) are monomials?
(5) Is there a map T : X → X with the property that P(X,T ) = P?
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