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Abstract

Using the index theory of seaweed algebras, we explore various new integer partition
statistics. We find relations to some well-known varieties of integer partitions as well
as a surprising periodicity result.

1 Introduction

Partition statistics are often defined with an eye toward proving a congruence property. An
application of this principal can be found in the proofs of the famous congruence results
of Ramanujan [23], which were eventually established using the rank and crank statistics
[2, 4]. On the other hand, a partition statistic may present itself without prior appeal to an
anticipated congruence property. The recent index theory of seaweed algebras [8, 9, 11, 13]
provides just such an instance. Indeed, seaweed subalgebras of sl(n) – or simply, seaweeds
– which are naturally defined in terms of two compositions of a single integer n, provide a
sort of partition statistic generator. One begins with a pair (λ, µ) of partitions of n. Since
partitions are compositions, we can use (λ, µ) to define a seaweed subalgebra of sl(n), whose
index will be taken to be the definition of the index of the partition pair (λ, µ).

If we let w(λ) denote the weight of λ, then there are two choices of µ naturally associated
with a given λ, namely, the trivial partition where µ = w(λ), and it’s conjugate µC = 1w(λ).
Since the values of the index of (λ, w(λ)) and (λ, 1w(λ)) are reliant only on λ, the index
of these partition pairs may be regarded as partition statistics on λ alone. Of course, the
efficacy of such statistics must be adjudged according to their utility. However, we find that
in each of these extremal cases, the index statistic connects to well-established investigations.

In the first case, (λ, 1w(λ)), we find a connection to classical partition theory by estab-
lishing that the sequence {cin}

∞
n=1 defined by

cin = |{λ ∈ P(n) : ind1w(λ)(λ) = n− i}|,
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for each fixed i is eventually constant – converging to the number of partitions of i− 1 into
parts of two kinds. See Theorem 12.

In the second case, we consider seaweeds defined by a pair of compositions (λ, w(λ)).
The enumeration of these composition pairs, when the index is zero, is of concern to Lie
theorists.1 Recent efforts to enumerate pairs of compositions that define a Frobenius (index
zero) seaweed have concentrated on limiting the number of parts in the compositions. For
example, Duflo (after the fashion of Coll et al [12]), uses certain index-preserving operators
on the set of compositions corresponding to a Frobenius seaweed subalgebra of sl(n) to
show that if t is the number of parts in the defining compositions, then the number of
such compositions is a rational polynomial of degree

[

t
2

]

evaluated at n. See [15], Theorem
1.1 (b). Dufflo’s result is existential in nature. However, if compositions are restricted to
partitions and a modest limit is placed on the size of the parts – rather than the number of
parts – the number of such compositions corresponding to a Frobenius seaweed subalgebra
of sl(n) becomes a periodic function of n. See Theorem 15.

The organization of the paper is as follows. In Section 2 we develop the definitions and
notation for integer partitions and seaweeds. In Section 3 we use the index theory of seaweeds
to define the index of a partition and use this new definition to connect to some well-known
classical investigations. We conclude with some open questions.

2 Preliminaries

In Section 2.1 we review standard combinatorial notation. In Section 2.2 we detail the recent
index theory of seaweed algebras. Throughout this article, we tacitly assume that all Lie
algebras are over the complex numbers.

2.1 Integer partitions

We follow the notation of Andrews [1] and adopt the following conventions.

Definition 1. A partition λ of a positive integer n is a finite non-increasing sequence of
positive integers λ1, λ2, . . . , λm such that n =

∑m

i=1 λi. The λi are called the parts of the
partition and w(λ) = n is the weight of the partition.

We will often employ the vector notation for the partition λ = (λ1, λ2, . . . , λm). It will
sometimes be useful to use a frequency notation that makes explicit the number of times a
particular integer occurs as a part of a partition. So, if λ = (λ1, λ2, . . . , λm), we alternatively
write

λ = (1f12f23f3 · · · ),

1Frobenius algebras form a distinguished class and have been extensively studied from the point of view
of invariant theory [21] and are of special interest in deformation and quantum group theory resulting from
their connection with the classical Yang-Baxter equation (see [16] and [17]).
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where exactly fi of the λj are equal to i.
A graphical representation of a partition, called a Ferrers diagram, is helpful to develop

the notion of the conjugate of a partition. More formally, the Ferrers diagram of a partition
λ = (λ1, . . . , λn) is a coordinatized set of unit squares in the plane such that the lower left
corner of each square will have integer coordinates (i, j) such that

0 ≥ i ≥ −n + 1, 0 ≤ j ≤ λ|i|+1 − 1.

The Ferrers diagram of the partition (4, 2, 1) is illustrated in the left-hand side of Figure 1.
The conjugate of a partition µ is the partition µC resulting from exchanging the rows and
columns in the Ferrers diagram associated to µ.

Example 2. The Ferrers diagram of the partition λ = (4, 2, 1) and it’s conjugate λC =
(3, 2, 1, 1).

Figure 1: Ferrers Diagram of (4, 2, 1) and (3, 2, 1, 1)

2.2 Seaweed Algebras

In this section, we introduce seaweed algebras in type-A.2 These are seaweed subalgebras of
sl(n) – the set of all n× n matrices of trace zero. As we will see, such seaweed algebras are
naturally defined in terms of two compositions of the positive integer n. Recall that a com-

position of n is an unordered partition, which we will denote by λ1|λ2| · · · |λn to distinguish
it from the ordered case in Definition 1, where there is an order relation on the λ′is.

Definition 3. If V is an n-dimensional vector space with a basis {e1, . . . , en}, let a1| . . . |am
and b1| . . . |bl be two compositions of n and consider the flags

{0} ⊂ V1 ⊂ · · · ⊂ Vm−1 ⊂ Vm = V and V =W0 ⊃W1 ⊃ · · · ⊃Wt = {0},

where Vi = span{e1, . . . , ea1+···+ai} and Wj = span{eb1+···+bj+1, . . . , en}.

2In [22], Panyushev extended the Lie theoretic definition of seaweed algebras to the reductive case. If
p and p are parabolic subalgebras of a reductive Lie algebra g such that p + p′ = g, then p ∩ p′ is called
a seaweed subalgebra of g or simply seaweed when g is understood. For this reason, Joseph has elsewhere
[19] called seaweed algebras, biparabolic. One can show that type-C and type-B seaweeds, in their standard
representations, can be parametrized by a pair of partial compositions of n. See [10].
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The subalgebra of sl(n) preserving these flags is called a seaweed Lie algebra, or simply

seaweed, and is denoted by the symbol
a1| · · · |am
b1| · · · |bt

, which we refer to as the type of the

seaweed. If b1 = n, the seaweed is called maximal parabolic.

Remark: The preservation of flags in Definition 2 insures that seaweeds are closed under
matrix multiplication, and therefore define an associative algebra, hence also a Lie algebra
under the commutator bracket.

The evocative “seaweed” is descriptive of the shape of the algebra when exhibited in
matrix form. For example, the seaweed algebra 2|4

1|2|3
consists of traceless matrices of the

form depicted on the left side of Figure 2, where * indicates the possible non-zero entries
from the ground field, which we assume is the complex numbers.

*
* * *

*
*
*
*

*
*
*

*
*

*
*

* *

1

2

3

2

4

v1 v2 v3 v4 v5 v6

Figure 2: A seaweed of type 2|4
1|2|3

and its associated meander

The index of a Lie algebra was introduced by Dixmier [14]. Formally, the index of a Lie
algebra g is defined by

ind(g) = min
f∈g∗

dim(ker(Bf)),

where f is a linear form on g and Bf is the associated skew-symmetric Kirillov form defined
by Bf (x, y) = f([x, y]) for all x, y ∈ g. The index is an important algebraic invariant of the
Lie algebra – though notoriously difficult to compute. However, in [13], Dergachev and A.
Kirillov developed a combinatorial algorithm to compute the index of a seaweed subalgebra
of sl(n) by counting the number of connected components of a certain planar graph, called a

meander, associated to the seaweed. To construct a meander, let a1|···|am
b1|···|bt

be a seaweed. Now
label the n vertices of our meander as v1, v2, . . . , vn from left to right along a horizontal line.
We then place edges above the horizontal line, called top edges, according to a1 + . . . + am
as follows. Partition the set of vertices into a set partition by grouping together the first a1
vertices, then the next a2 vertices, and so on, lastly grouping together the final am vertices.
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We call each set within a set partition a block. For each block in the set partition determined
by a1+ . . .+am, add an edge from the first vertex of the block to the last vertex of the block,
then add an edge between the second vertex of the block and the second to last vertex of
the block, and so on within each block. More explicitly, given vertices vj , vk in a block of
size ai, there is an edge between them if and only if j + k = 2(a1 + a2 + · · ·+ ai−1) + ai + 1.
In the same way, place bottom edges below the horizontal line of vertices according to the
blocks in the partition determined by b1 + . . .+ bt. See the right side of Figure 2.

Every meander consists of a disjoint union of cycles and paths. The main result of [13]
is that the index of a seaweed can be computed by counting the number and type of these
components in it’s associated meander.

Theorem 4. (Dergachev and A. Kirillov, [13]) If p is a seaweed subalgebra of sl(n), then

ind(p) = 2C + P − 1,

where C is the number of cycles and P is the number of paths in the associated meander.

Example 5. In the example of Figure 1, the meander associated to the seaweed 2|4
1|2|3

has no
cycles and consists of a single path – so, has index zero, hence is Frobenius.

While Theorem 4 is an elegant combinatorial result it is difficult to apply in practice.
However, Coll et al in [12] show that any meander can be contracted or “wound-down” to
the empty meander through a sequence of graph-theoretic moves, each of which is uniquely
determined by the structure of the meander at the time of move application. There are
five such moves, only one of which affects the component structure of the meander graph
and is therefore the only move capable of modifying the index of the meander. Using these
winding-down moves the authors in [12] established the following index formulas which allow
us to ascertain the index directly from the block sizes of the flags that define the seaweed.3

Theorem 6 (Theorem 7, [11]). A seaweed of type
a|b

n
has index gcd(a, b)− 1.

Theorem 7 (Theorem 8, [11]). A seaweed of type
a|b|c

n
, or of type

a|b

c|n− c
, has index given

by gcd(a + b, b+ c)− 1.

Since we will need the explicit winding-down moves in the proof of Theorem 15 we review
the winding-down process.

3A recent result by Karnauhova and Liebscher [20] has established, in particular, that the formu-
las in Theorems 6 and 7 are the only nontrivial linear ones that are available in the maximal parabolic

case. More specifically, If m ≥ 4 and p is a seaweed of type
a1|a2| · · · |am

n
, then there do not exist ho-

mogeneous polynomials f1, f2 ∈ Z[x1, ..., xm], of arbitrary degree, such that the index of p is given by
gcd(f1(a1, ..., am), f2(a1, ..., am)).
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Lemma 8 (Winding-down). Given a meander M of type
a1|a2|...|am
b1|b2|...|bt

, create a meander M ′

by exactly one of the following moves. For all moves except the Component Elimination

move, M and M ′ have the same index.

1. Vertical Flip (Fv): If a1 < b1, then M
′ has type

b1|b2|...|bt
a1|a2|...|am

.

2. Component Elimination (C(c)): If a1 = b1 = c, then M ′ has type
a2|a3|...|am
b2|b3|...|bt

.

3. Rotation Contraction (R): If b1 < a1 < 2b1, then M
′ has type

b1|a2|a3|...|am
(2b1 − a1)|b2|...|bt

.

4. Block Elimination (B): If a1 = 2b1, then M
′ has type

b1|a2|..|am
b2|b3|...|bt

.

5. Pure Contraction (P ): If a1 > 2b1, then M
′ has type

(a1 − 2b1)|b1|a2|a3|...|am
b2|b3|...|bt

.

Example 9. In this example, the seaweed 17|3
10|4|6

is wound-down to the empty meander using
the moves detailed in Lemma 8.

17|3
10|4|6

R
7→

10|3
3|4|6

P
7→

4|3|3
4|6

C(4)
7→

3|3
6

Fv7→
6
3|3

B
7→

3
3

C(3)
7→

∅

∅

Figure 3: Winding down the meander
17|3

10|4|6

In what follows, it is helpful to add a sixth index preserving transformation, Fh, called a

horizontal flip which takes M to
am|...|a2|a1
bm|...|b2|b1

.

3 The index of a partition

Let P(n) be the set of integer partitions of a positive integer n and let λ, µ ∈ P(n) with
λ = (λ1, λ2, . . . , λm) and µ = (µ1, µ2, . . . , µt). These compositions can be used to define the
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seaweed

p(λ, µ) =
λ1|λ2| . . . |λm
µ1|µ2| . . . |µt

.

We can then define the index of the pair (λ, µ) to be the index of p(λ, µ), and we write
indµ(λ). Given λ as above, there are two choices for µ naturally associated with λ, namely,
w(λ) and its conjugate 1w(λ). These yield, respectively, two partition statistics on λ defined
as follows:

indw(λ)(λ) = ind

(

λ1| . . . |λm
w(λ)

)

and ind1w(λ)(λ) = ind

(

λ1| . . . |λm
1| . . . |1

)

. (1)

In the first seaweed, the bottom composition is defined by the trivial partition, yielding
a maximal parabolic seaweed. In the second case, the bottom composition consists of w(λ)
1′s.

Example 10. Let λ = (3, 2, 1) in (1). An application of Theorem 3 now yields

ind6(λ) = ind

(

3|2|1

6

)

= 0 and ind16(λ) = ind

(

3|2|1

1|1|1|1|1|1

)

= 3.

3.1 All 1’s

In this section we investigate, for fixed i and varying n, the sequence of values defined by
the number of partitions λ ∈ P(n) such that ind1w(λ)(λ) = n − i. We find that for each i,
if cin = |{λ ∈ P(n)|ind1w(λ)(λ) = n − i}|, then {cin}

∞
n=i is eventually constant, converging to

a well-known classical value ci (see Theorem 12). The following Table 1, illustrates cin for
small values of n and i.

n\i 0 1 2 3 4 5 6 7 8 9
1 1 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0
3 0 2 1 0 0 0 0 0 0 0
4 0 2 2 1 0 0 0 0 0 0
5 0 0 4 2 1 0 0 0 0 0
6 0 0 3 5 2 1 0 0 0 0
7 0 0 0 7 5 2 1 0 0 0
8 0 0 0 5 9 5 2 1 0 0
9 0 0 0 0 12 10 5 2 1 0
10 0 0 0 0 7 17 10 5 2 1

Table 1: Number of λ ∈ P(n) with ind1w(λ)(λ) = i.

By coloring partitions, we can better understand the ci’s. We will use two colors (red
and blue), to color the parts of a given partition. When enumerating colored partitions, we
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will assume that two partitions which are identical, save for their coloring, will be considered
different partitions. So, for example the partition of the integer 2 given by (1, 1) is different
from the partition of the integer 2 given by (1, 1). We also tacitly assume that in a given
colored partition all blue parts of a given size precede all red parts of the same size. See
Example 9.

Remark: In the classical literature such (two)-colored partitions are called partitions into
parts of two kinds. Partitions into two kinds can be found in Guptas’ ([18],1958) and have
recently been connected to other objects as diverse as quandles [5, 6].

Example 11. The (two)-colored partitions of 2 are: (2), (2), (1,1), (1,1), and (1,1).

The generating function for the number of (two)-colored partitions of n is well-known and
is equal to

∏

m≥1

1

(1− xm)2
.

The following theorem connects the current exposition to classical partition theory.

Theorem 12.
∑

i≥1

cixi−1 =
∏

m≥1

1

(1− xm)2
.

Proof. The case i = 1 is clear since, by Theorem 4, the only λ ∈ P(n) with ind1w(λ)(λ) = n−1
is λ = 1n. We show that for i > 1 and n ≥ 3i−3, there is a bijective correspondence between
M(i, n) = {λ ∈ P(n) : ind1w(λ)(λ) = n− i} and P2(i − 1) = {colored partitions of i − 1}.
We do this in two steps.

First, let M(i − 1) be the set of partitions µ = (µ1, . . . , µm) such that µm > 1 and
the meander corresponding to p(µ, 1w(µ)) has i − 1 arcs. Consider the map ϕ which takes
λ = (λ1, . . . , λm) ∈ P2(i− 1) to the partition ϕ(λ) = (µ1, . . . , µm) defined by

µi =

{

2λi + 1, λi is blue;

2λi, λi is red.

By construction, ϕ(λ) ∈ M(i− 1). Furthermore, ϕ is invertible so ϕ is a bijection between
P2(i− 1) and M(i− 1). Via this correspondence, it is easy to see that the largest partition
of M(i− 1) has weight 3i− 3.

By Theorem 4, ind1w(λ)(λ) corresponds to n minus the number of arcs in the meander
minus 1. Thus, M(i, n) consists of partitions λ ∈ P(n) such that the meander corresponding
to p(λ, 1w(λ)) has exactly i− 1 arcs. Therefore, if n ≥ 3i− 3, then elements of λ ∈ M(i, n)
can be mapped bijectively to elements of M(i − 1) by the map ψ which removes all parts
equal to 1. The required bijection is given by ψ ◦ ϕ.
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3.2 The maximal parabolic case

As above, let λ = (λ1, . . . , λm) be an element of P(n). In this section, we consider the seaweed
defined by the pair of compositions (λ, w(λ)). In contrast to the previous section, here we
investigate the number of partitions λ such that indw(λ)(λ) = 0. We naturally call such
partitions, Frobenius partitions. The main theorem of this section, Theorem 15, remarkably
establishes that if λi ≤ 7, for i = 1, . . . , m, then the number of Frobenius partitions is a
periodic function of n.

We begin with two Lemmas which will be helpful in the proof of Theorem 15.

Lemma 13. Let g = a1|...|am∑m
i=1 ai

be a seaweed algebra. If there exists i < j − 1 such that
∑i

l=1 al =
∑m

l=j al, then g is not Frobenius.

Proof. Applying the winding moves (F ) followed by i applications of (P ) to the meander
corresponding to g results in the meander corresponding to the seaweed algebra of type

b1|ai|...|a1
ai+1|...|aj |...|am

where b1 =
∑j−1

l=i+1 al > 0; but this meander consists of at least two components,

one corresponding to b1
ai+1|...|aj−1

, and the other ai|...|a1
aj |...|am

. Thus, by Theorem 4, ind(g) > 0.

Lemma 14. Let g = a1|...|am∑m
i=1 ai

be a seaweed algebra. If there exists more than two odd ai’s,

then g is not Frobenius.

Proof. Each odd ai contributes a vertex of degree 1 to the meander corresponding to g.
Recall that each open path consists of exactly two vertices of degree 1 and no closed paths
contains a vertex of degree 1. So, if there are more than two odd ai’s, then the corresponding
meander must contain more than one open path and thus, by Theorem 4, ind(g) > 0.

Let P(n, d) be the set of Frobenius partitions λ = (λ1, . . . , λm) ∈ P(n) such that λi ≤ d

for 1 ≤ i ≤ m.

Theorem 15. If d ∈ {1, 2, 3, 4}, then the values of |P(n, d)| are eventually periodic. More

precisely,

• If n ≥ 3, |P(n, 1)| = 0

• If n ≥ 5,

|P(n, 2)| =

{

1, n odd

0, n even

• If n ≥ 13,

|P(n, 3)| =

{

2, n odd

0, n even

9



• If n ≥ 17,

|P(n, 4)| =



















4, n ≡ 1(mod 4)

2, n ≡ 2(mod 4)

3, n ≡ 3(mod 4)

0, n ≡ 0(mod 4)

Proof. The proof heuristic is described as follows. We consider the possible partitions for
each d ≤ 4 – except for those cases considered in Lemma 13 and Lemma 14 – in reverse
lexicographic ordering and determine which partitions are Frobenius.

d = 1: ind(1|...|1
n

) = ⌊n
2
⌋ > 0 for n ≥ 3. Thus, for n ≥ 3 we have |P(n, 1)| = 0.

d = 2,n ≥ 5: Using the results determined for the case d = 1, we consider only partitions
with λ1 = 2. After applying Lemma 13 and Lemma 14, the only partitions remaining are
those of the form (112f2), which are Frobenius by Theorem 10 of [11]. Thus, there is exactly
one such Frobenius partition if and only if the weight is odd.

d = 3,n ≥ 13: As before, using the results for the cases d = 1 and d = 2, we can restrict
our attention to partitions with λ1 = 3. After applying Lemma 13 and Lemma 14, the
only partitions remaining are those of the form (2f231), which are Frobenius, once again, by
Theorem 10 of [11]. Thus, as in the case d = 2, there is exactly one such Frobenius partition
if and only if the weight is odd.

d = 4,n ≥ 17: Finally, using the results for d = 1, 2, 3, we consider only partitions with
λ1 = 4. After applying Lemma 13 and Lemma 14, we are left with seven cases to consider.

1. (314f4): Partitions of this form are Frobenius by Theorem 10 of [11].

2. (324f4): Applying the sequence of moves (Fv), (P ), (Fh), (R), (R), (B), (Fv), (P ), (Fh) to
the corresponding meander results in the meander for a partition of the form (11f f4),
which is found to be Frobenius in case 5 below.

3. (214f4): Applying the sequence of moves (Fh), (Fv), (P ), (Fv), (Fh), (B) inductively to
the corresponding meander results in the meander for the seaweed algebra of type 2

2
,

which has index 1.

4. (21314f4): Applying the sequence of moves (Fv), (P ), (Fh), (B), (Fv), (R), (B), (Fh) to
the corresponding meander results in the meander for a partition of the form (114f4),
which is found to be Frobenius in case 5 below.

5. (114f4): Partitions of this form are Frobenius by Theorem 10 of [11].

6. (112f24f4), f2 ≥ 1: Applying the sequence of moves (Fv), (P ), (Fh), (P ) to the corre-

sponding meander results in a seaweed algebra of type 2|1|n−8
2|...|2|4|...|4

, which splits into at

least two components, 2
2
and 1|n−8

2|...|2|4|...|4
, and is therefore not Frobenius by Theorem 4.

7. (124f4): Applying the sequence of moves (Fh)(Fv)(P )(P )(Fv)(Fh)(P )(B)(Fh) to the
corresponding meander results in the meander for a partition of the form (114f4),
which was found to be Frobenius in case 5 above.

10



Thus, there are two Frobenius partitions with weight congruent to 1(mod 4); two with weight
congruent to 2(mod 4); and one with weight congruent to 3(mod 4).

Remark: Similar methods to those used in the proof of Theorem 15 can be used to establish
periodic behavior for d ∈ {5, 6, 7}. In the case of d = 5, the period is of length 4 – with
values 7,3,5,3 – while in the cases of d ∈ {6, 7}, the period jumps to 14. See Example 16.

Example 16. The sequence of values of |P(n, d)| for d ∈ {5, 6, 7}, along with the value of
n at which |P(n, d)| becomes periodic.

d = 5, n ≥ 21 : 7, 3, 5, 3

d = 6, n ≥ 37 : 14, 5, 9, 3, 11, 5, 11, 3, 12, 5, 8, 3

d = 7, n ≥ 41 : 19, 9, 18, 7, 19, 9, 17, 7, 20, 9, 17, 7

Remark: At d = 8 the periodicity stops, which can be seen by considering |P(n, 8)| for
n ≡ 1(mod 8) where for n = 8m+ 1 we have that indw(λ)(1

142(m−k)8k) = 0.

4 Conclusion

Using the index theory of seaweed algebras we advance the notion of the index of a partition
pair, by simply defining the index of the latter to be the index of the former. This rather
pedestrian definition allows us to describe various statistics on integer partitions. We consider
the two extremal cases defined by (λ, 1w(λ)) and (λ, w(λ)). But what about other λ-based
choices for the second composition? For example one could pair a partition λ = (λ1, . . . , λm)
with its reverse Rev(λ) = (λm, . . . , λ1). It follows from a result of [7] that

|{λ ∈ P(n) : indRev(λ)(λ) = n− 1}| = d(n).

Alternatively, a partition can be paired with its conjugate. In this case, via the same result
of [7], we find that |{λ ∈ P(n) : indλC (λ) = n − 1}| is equal to twice the number of
self-conjugate partitions of n.

We might also consider incorporating weighted sums, such as those that appear in Euler’s
Pentagonal Number Theorem and other Legendre type theorems [3]. In such results, parti-
tions λ contribute a term of the form (−1)l(λ)qw(λ) to the weighted sum. One could instead
insist that each partition contributes a term of the form (−1)indw(λ)(λ)qw(λ). For example, by
restricting to partitions with only odd parts (denoted P(n, Sodd)) and considering the sets

en = |{λ ∈ P(n, Sodd) : indw(λ)(λ) is even}| on = |{λ ∈ P(n, Sodd) : indw(λ)(λ) is odd}|,

numerical data suggests the following interesting conjecture.

Conjecture 17.

∑

n≥0

|en − on|q
n =

∏

k≥1

1

1 + (−1)kq2k−1
. (2)

11



The sequence of coefficients of the product in (2) can be found on the Online Encyclopedia
of Integer Sequences (“OEIS”) as A300574, where this sequence is further conjectured to be
nonnegative. If true, Conjecture 17 would not only establish that the sequence A300574 is
nonnegative but (2) would also provide a combinatorial interpretation.
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