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WEAK ORDER AND DESCENTS FOR MONOTONE TRIANGLES

ZACHARY HAMAKER AND VICTOR REINER

ABSTRACT. Monotone triangles are a rich extension of permutations that biject with alternating sign matri-
ces. The notions of weak order and descent sets for permutations are generalized here to monotone triangles,
and shown to enjoy many analogous properties. It is shown that any linear extension of the weak order
gives rise to a shelling order on a poset, recently introduced by Terwilliger, whose maximal chains biject
with monotone triangles; among these shellings are a family of EL-shellings.

The weak order turns out to encode an action of the 0-Hecke monoid of type A on the monotone triangles,
generalizing the usual bubble-sorting action on permutations. It also leads to a notion of descent set for
monotone triangles, having another natural property: the surjective algebra map from the Malvenuto-
Reutenauer Hopf algebra of permutations into quasisymmetric functions extends in a natural way to an
algebra map out of the recently-defined Cheballah-Giraudo-Maurice algebra of alternating sign matrices.

1. INTRODUCTION

Permutations in the symmetric group &,, on n letters, when thought of as n x n permutation matrices,
are special cases of fascinating objects known as alternating sign matrices (ASMs ). The latter have been
intensely studied since their introduction by Mills, Robbins and Rumsey [12], and turn out to be connected
with such areas as statistical mechanics, representation theory, and number theory— see Bressoud [6] and
Brubaker, Bump and Friedberg [7] for more history and context. We recall their definition here, as well as
their bijection with the equivalent objects known as monotone triangles.

A vector in {0, £1}" is called alternating if its +1 values alternate in sign, beginning and ending with +1.
Denote by Alt,, the set of all such alternating vectors of length n. An n x n alternating sign matriz is one
whose row and column vectors all lie in Alt,,. Denote by ASM,, the set of all such matrices. For example,
we depict here on the left a matrix A in ASMg, abbreviating ” +” and — for entries +1 and —1:

04+0000 2

0904582 24

(1) bobroon|=4 Al T= 136
000560 1346
12356

There is a simple bijection between ASM,, and the set MT,, of monotone triangles of size n. A monotone
triangle of size n is a sequence T = (To, T4, ..., Tn-1,Ty) of subsets of [n] := {1,2,...,n} where #T,,, = m,
with the extra property that T,,,1 interlaces T,, in this sense: if one list entries of T}, T;,41 in increasing
order as

Tm = {i1<i2<"'<im},

Trt1 = {j1<Jj2<-<Jm <Jms1},
then one has
(2) 111 <2123 < JIm < im < Jmtl-

One depicts T as a triangular array having T}, as its m*" row from the top, omitting Ty = @, T}, = [n]. For
example, T = (&, {2},{2,4},{1,3,6},{1,3,4,6},{1,2,3,5,6},[6]) € MT¢ is shown on the right in (). For
the sake of defining the bijections ASM,, +» MT,, first introduce the indicator vector 1s in {0,1}" for a
subset S C [n], having coordinates (1g); = 1 for i € S and (1g); = 0 for ¢ ¢ S. Then given A in ASM,,
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one maps A — T = (Tp,...,T,) in MT,, whose mth row T, is the unique subset for which 17,, is the sum
of the first m rows of A. The inverse bijection sends 7'~ A where the m** row of A is 17, — 1r, _,. For
example, the matrix A in ASMg shown on the left in (I]) above has corresponding monotone triangle T' in
MT¢ shown to its right.

It is not hard to check (see Terwilliger [I7, Thm. 3.2]) that an (m + 1)-subset J C [n] interlaces an m-set
I C [n] if and only if the difference of the indicator vectors 1; —1; lies in Alt,,. Thus MT,, is in bijection with
the maximal chains of a partial order on the subsets of [n] that is the transitive closure of the relation I < J
when J interlaces I; Terwilliger denotes this partial order ®,. Note that this partial order ®,, is stronger
than the usual Boolean algebra poset 21"}, whose order relation is given by inclusion C, and whose maximal
chains are the monotone triangles of the form T'(w) := (&, {w1 }, {w1, w2}, ..., {w1, we, ..., wp_1}, [n]), which
correspond to the permutations w = (wy,ws, ..., wy) in &,. This monotone triangle T'(w) also corresponds
to the usual permutation matrix of w—!, thinking of permutation matrices as a subset of ASM,,. The Hasse
diagram for the poset ®5 on subsets of [3] is shown below, with solid edges indicating the weaker Boolean
algebra 203 ordering, and the unique extra order relation {2} < {1,3} from ®3 shown dotted:

{1,2,3}
PN
{1,2} {1,3} {2,3}
I G
{1y {2t {3}

Section [2] explores properties of the order ®,,, including characterizing it via a generalization of interlacing.

One of our original goals was to show that ®,, is a shellable poset, a notion that we review here. Say
that an abstract simplicial complex A is pure if all of its facets (=inclusion-maximal simplices) have the
same number of vertices. In this case, say that an ordering Fi, Fy, ... of the facets of A is a (pure) shelling
if for every j > 2, the intersection of the boundary of F; with the subcomplex generated by the facets
Fy,...,F;_, forms a pure subcomplex of codimension one within the boundary of F}; said differently, for
any pair 1 <14 < j , there exists k < j such that F; N F; C F, N F; with #F, N F; = #F; — 1. Having a
shelling for A imposes strong topological properties for its geometric realization ||A||, and strong algebraic
properties for its Stanley-Reisner ring k[A]; see Bjorner [I, Appendix] and [3], §1]. Here we are starting with
a partially ordered set P having both a bottom element 0 and top element 1, such as the Boolean algebra 21
with inclusion order on subsets of [n], or the order ®,, on subsets, where in either case, 0 = @ and 1 = [n]. In
this setting, one often removes the bottom and top elements, and associates an abstract simplicial complex
called the order complez to its proper part, so that A has vertex set P\ {O, i}, and simplices for each totally
ordered subset of P\ {0,1}. This means that facets of A biject with maximal chains of P.

As mentioned above, for P = ®,, and its subposet the Boolean algebra 21", these facets or maximal chains
are naturally labeled by the monotone triangles MT,, and permutations &,,, respectively. We illustrate this
here for n = 3, depicting the order complex A(®3\ {0,1}), with one extra facet (edge) shown dotted, whose
removal gives the subcomplex A(2\ {0,1}).

3) 3 (3} ——



For the Boolean algebra 2[™ this order complex A(Q["} \ {0, i}) is isomorphic to the Cozeter complex of type
Ap,_1, and a result of Bjorner [3, Thm. 2.1] shows that it is shellable, with a shelling order on its facets
provided by any linear ordering on the permutations &,, that extends the (right) weak order <y . This weak
order is the transitive closure of the relation in which ws; <y w if w = (w1,...,w,) has w; > w;y1, where
s;i = (i,1+ 1) is an adjacent transposition. One can view this weak order as induced from the action of the
bubble-sorting operators m1,...,m,—1 on &,

ws;  if w; > wiy
(4) wxm=1< ' T
w if w; < Wis1,

which satisfy the relations of the 0-Hecke monoid of type A, _1:

Ty = T 1f|j—l|22,
(5) Tt 1T = T 141,
7Ti2 = T;.

Note that m; acts on right. This notational choice highlights the relationship between the application of ;
and multiplication on the right by s;. One may then define the (right) weak order by w <y w’ if and only
if w lies in the 0-Hecke orbit of w’'.

Section Bl extends this 0-Hecke action from &, to MT,, by letting T x 7; replace the i*"-row of the
monotone triangle T with the componentwise smallest row that still forms a monotone triangle with the
remaining rows. One can then extend the weak order <y from &,, to MT,, by setting T" < T” whenever T
lies in the 0-Hecke orbit of T”. For n = 3, these actions of H3(0) on &3 and MTj3 look as follows, illustrating

the weak order posets <y on both:
3
23
N
3 2 2
13 13 23

st l 2
1 ¥ N
13 12
1
12

Section [4] then uses this to prove our first main result.
Theorem 1.1. Linear extensions of <y on MT,, give shelling orders on ®,,.

There is another sense in which the terminology weak order is appropriate. Lascoux and Schiitzenberger [10]
showed that the componentwise order on MT,, is a distributive lattice, one that turns out to be the MacNeille
completion of the (strong) Bruhat order <p on &,; we therefore refer to this componentwise order on MT;,
as its (strong) Bruhat order < B. Depicted below is the the poset (MT3, <p), with the usual Bruhat order
(&3, <p) as a subposet, and dotted edges indicating the order relation to the unique element T in MT3 \ &3:

3

23
3/ \2



It turns out (see Remark[3.0) that this Bruhat order <5 on MT,, is stronger than the weak order <y defined
above; in particular, any linear extension of the componentwise order gives rise to a shelling of ®,,.

The weak order shellings provided by Theorem [[T have another tight analogy to the weak order shellings
of the Boolean posets (2["], C), in that they contain as a special case certain EL-shellings, a notion which we
recall here. Given a poset P, with C(P) = {z <y : x,y € P} its set of cover relations (r <y means z < y
but Az with x < z < y), an EL-labeling of P is a function X : C(P) — A where (A, <,) is any poset, having
these properties:

e for every interval [z,y] C P, there is a unique maximal chain (z = 2o < z1 <--- <} = y), that has

weakly rising labels
AMzo,z1) <a AM(z1,22) <a -+ <A AM(@Th—1, Tzy)

o if ¥ <z <y, with z # 1, then Az, z1) <p A(z, 2).

For example, the Boolean algebras (2["], C) have a very simple EL-labeling. It assigns a covering relation
between subsets I C J with #J = #I + 1 the unique integer \(I, J) := j such that J = I U {j}; here the
labels come from the poset A = {1,2,...,n} with the usual ordering on integers. A poset is EL-shellable or
lexicographically shellable if it admits an EL-labeling. Bjorner [I Thm. 2.3] showed that for a poset with an
EL-labeling, one obtains a shelling order on its maximal chains via any linear extension of the lexicographic
extension of A to sequences of edge labels. In Section [Bl, we prove the following.

Theorem 1.2. There is a partial order on Alt,, so that the edge-labeling \ which assigns A(I<J) = 1;—1; in
Alt,, becomes an EL-labeling of ®,,. Furthermore, any of the EL-shelling orders associated with this labeling
will be a linear order on MT,, that extends the weak order <y .

The weak order shellings and EL-shellings in Theorems [I1] show that ®,, is a Cohen-Macaulay
poset, and allow one to combinatorially re-interpret its flag f-vector f(®n) := (f7)scin—1]; here f; is the
number of chains in ®,, that pass through the ranks in J. One can instead consider the flag h-vector
h(®,) = (f71)cn—1), defined by an inclusion-exclusion relation:

fr= Z hr,  or equivalently,
cJ

hy =3 (~1)*V g,

JCI
General shelling theory then implies this combinatorial interpretation for h:
hy(®,) = #{T € MT,, : Des(T) = J}.

Here one is led to define the descent set Des(T') for a monotone triangle T as follows via the following
generalization of the usual descent set Des(w) = {i € [n — 1] : w; > w;y1, thatis, w x m; # w} for
permutations w in &,,:

Des(T):={ien—1]:T xm #T}.
Section [l discusses this descent set Des(T'), and collects some data on its distribution over MT,,.

There is a further way in which this notion of a descent set for monotone triangles extends a pleasant
property of descents for permutations. Recall that Malvenuto and Reutenauer [I1] defined a graded Hopf
algebra, sometimes denoted FQSym = @@,,~( FQSym,,, where FQSym,, has Z-basis elements w indexed by
permutations w in &,,. The ring structure is determined by a shuffle product for u,v in &,,,&,, defined as

uv = Z w
[n]

weullv|n

in which the sum runs over all shuffles w of u = (u1,...,u,), and v[n] = (v1 + n,..., v, +n). This shuffle
product was introduced in such a way as to make a ring (and Hopf algebra) morphism into the quasisymmetric
functions QSym, defined by

(6) FQSym — QSym

W La(Dcs(w)) .



Here L, denotes Gessel’s fundamental quasisymmetric function associated to a composition «, and a(Des(w))
is the composition whose partial sums give the elements of Des(w); see [16, §7.19] and Section [1 below.
Recently, Cheballah, Giraudo and Maurice embedded FQSym inside a larger graded Hopf algebra ASM
whose n'’'-graded component has a basis {A} indexed by A in ASM,, [§], and whose product and coproduct
extend that of FQSym. Section [7] proves the following.

Theorem 1.3. The map FQSym — QSym in (6) extends to an algebra (but not a coalgebra) morphism
ASM  — QSym
A — Laes(a))
where Des(A) = Des(T'(A)) for an alternating sign matriz A is the descent set of its monotone triangle T(A).

Sections [§] concludes by comparing poset properties of the weak order on MT,, with analogous properties
for the weak order on &,,, including a conjecture for the homotopy type of open intervals in (MT,,, <y ).
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thank Ilse Fischer, Darij Grinberg, John Harding, Brendon Rhoades, John Stembridge and Jessica Striker
for helpful discussions, and thank Brendan Pawlowski for sharing his code to compute MacNeille completion
of posets. In addition, we are grateful to Roger Behrend for detailed feedback on an earlier draft leading to
numerous improvements, including his illuminating example. This work began during the Fall 2017 MSRI
semester in Geometric and Topological Combinatorics.

2. INTERLACING, MONOTONE TRAPEZOIDS, AND THE ORDER @,

The goal here is to relate Terwilliger’s order ®,, with the notions of interlacing and monotone trapezoids.

Definition 2.1.
Start with the componentwise order <gomp on subsets I, I’ C [n] of the same cardinality k for 0 < k <mn,
I:{i1<i2<"'<ik},
I'={i} <iy <. <ip},
defined by setting I <comp I’ if iy, <4, for m=1,2,... k.
For J = {j1 <--- < je} C[n] with #£J = £ > k = #1I, say that J interlaces I, written I <jace J, if

{jlana .. a.]k} Scomp I Scomp {jlfk+1ajlfk+2a .. 7.].5717].5}-

Note that when #J = k + 1 = #1 + 1, this condition I <, J is the usual definition of J interlacing I,
as given in (2)) earlier. One then has the following proposition which is easily checked (or see [17, §3]).

Proposition 2.2. If #J = #I1+ 1, then I <jace J if and only if 1; — 1 lies in Alt, [O.

One can also readily check that <j,ce is a partial order, that is, I <jace J <jace K implies I <juce K. This
partial order <j,ce is closely related to monotone trapezoids and Terwilliger’s order ®,,, as we now explain.

Definition 2.3.
An (I, J)-monotone trapezoid is a sequence of subsets T' = (I, Ix11,...,L—1,1¢) of {1,2,...} with
o I =1,1,=1J,
e #I, =m, and
o Im <lace Im+1 for k <m< L.
In other words, an (I, J)-monotone trapezoid is a saturated chain in <j,ce from I to J. When (I, J) = (&, [n]),
one calls T" a monotone triangle of size n.

Proposition 2.4. The following are equivalent for subsets I, J C [n]:
(a) There exists at least one (I,J)-monotone trapezoid.

(b) I<q,J.

(C) 1 Slace J.

In proving this proposition, and in the sequel, the following construction will be useful.



Definition 2.5.
For I <jpce J with #I =k and #J > k + 2, define Hypin(1,J) := {h1,ho,..., hgt1} by the rule

(7) B := max(im—1, jm),
and convention i, := 0 for p = 0. Thus when k = 0, so that I = &, then Hyin(&,J) = {j1}-

Lemma 2.6. The set Huyin(I, J) has these properties:
(1) It is a (k4 1)-subset, that is, hy < -+ < hgt1.

(ii) It lies in the family {H € (k[ill) T <jace H <iace J}.

(iii) Every H' in this family has Hyin(L, J) <comp H'.

Proof. Assertion (i). The definition of Hy,i, (I, J) implies hy,, < hy,41 since

hm = max(im—1,Jm) < max(im — 1, jm+1 — 1) = max(im, jmt1) — 1 = hpmg1 — 1.

Assertion (ii). We must show two <jace-inequalities, or equivalently, four <comp-inequalities.

e Two of the four come from i,,—1, jm < max(im—1,7jm) = hm for m =1,2,...,k + 1, which shows both
that I <comp {h2, ..., hkt1} and also that {j1,. .., jk+1} <comp Hmin(L,J).
e The inequality {h1,...,hk} <comp I comes from

hm = max(im—lujm) < max(imujm) = Z1n

which uses i;,—1 < i, and the fact that {j1,...,Jm} <comp I since I <jace J.
e The last inequality Humin(I,J) < {jo—k, jo—k+1,---,Je—1,J¢} comes from

hom = max(im—1, jm) < Jo—kt(m-1)
which uses jrm < jo—prm-1) (@s £ =k >2) and i1 < Jo—pt(m—1) (@8 I <jace J).

Assertion (iii). Any such H' = {h} <--- < hj } has I <jace H' <jace J, implying for 1 <m <k + 1 that

® hy, > i1, coming from I <comp {h3,h3, .., hy 1},
o ) > ju, coming from {ji1,...,Jm} <comp H
Thus A}, > max(im—1, jm) = hm, that is, Hynin(I, J) <comp H', as desired. |

With the construction Hy,in (I, J) and its properties in hand, one can now prove Proposition 2.4

Proof of Proposition [2-4} Note (a) < (b) via Proposition 2.2l and definition of ®,,. Then (a) = (c) from the
transitivity of <jace, while (¢) = (a) follows by induction on #J — #I via Lemma 2.6 O

Remark 2.7.
It is worth pointing out an involutive poset symmetry in ®,,, coming from the action of the longest permu-
tation wyg = (n,n —1,...,2,1) in &,,. This permuation wy acts on subsets as follows:

I={iy<ig<---<iry % woI)={n+1l—-ip<---<n+l—iz<n+1—i}.
Since ¢ < j if and only if n+1—4¢ > n+1— j, this action of wy preserves the interlacing inequalities (2]) that

define the covering relations I <, J. Thus it is an involutive automorphism of the poset ®,,, and therefore
also gives an involution on monotone triangles

T = (TQ,Tl,...,Tn) |ﬂ> ’wo(T) = (wo(To),wo(Tl),...,wo(Tn)).
Passing through the bijection ASM,, <+ MT,,, the corresponding involution wy acting on a matrix A = (a;;)
in ASM,, simply reflects it through a vertical axis: wo(4) := (aint1—5)-
Due to this wg-symmetry, for I <juc. J with #J — #I > 2, instead of defining the set Hpin(I,J) as in
Definition 2.5, we could have defined a set Hyax (I, J) = {h] < hiy < --- < hj} via two equivalent formulas:
R =min(im, jm_11e—k) for m =1,2,... k+ 1, with convention iy, := oo, or

(8) Hyax (1, J) = wo(Humin(wo (1), wo(J))).



One would then have the corresponding properties as in Lemma [Z6] namely that Hpax (I, J) is actually a
(k + 1)-subset, that it lies between I and J in the order <jace, and that it is the componentwise mazimum
among all such (k + 1)-subsets between I and J. We simply chose here to use Huyin(I, J), not Hyax (I, J).

The key property that we will need for shellability of ®,, is that, for any pair I <j,ce J, there is a
componentwise smallest (I, J)-monotone trapezoid, and that it can be characterized locally.

Lemma 2.8. Fizing I <jace J, the following are equivalent for an (I, J)-monotone trapezoid
T:= (I =)k Iugrs - Lom1, (= J)) :

(a) Ly = Hyin(I;m—1,J) form=k+1,k+2,...,0—1.

(b) I, = Hmin(Im—laIm—i-l) form=k+1,k+2,....,0—1.

(c) The elements of I, = {hgm) < hém) e < h&T)} are h,(,m) = max(jp, ip+k—m) with ig =0 for ¢ < 0.
(d) T is the componentwise smallest among all (I, J)-monotone trapezoids.

Proof. First check that if T satisfies (a), then its entries have the formula from (c), using induction on m.
The base case m = k + 1 comes from the definition of Hyin(Ix, J). The inductive step is this calculation:

(™ = max(jy, AT V) = max(jp, max(jp, ip— 144 (m—1))) = MAX(jp, ippk—m)-

Next check that if T" satisfies (b), then its entries obey the formula from (c), this time using induction on
#J — #I = — k. Assume that (b) holds for the trapezoid T, so

L = {B™ < BS™ oo < RO} = Hypy (1071, 107HD)),

This means that

9) (™ = max(R{™ D, Y.

By restriction, condition (b) also holds for the smaller trapezoid (I, Im+1,--.,1e—1,1¢ = J), and hence by
induction, one has h,(,mH) = max(jp, hz(ff)l) Similarly, by restriction, condition (b) also holds for the smaller
trapezoid (I = I, Ix41, ..., Im—1,1Im), and hence by induction, one has hfff;l) = max(hgf)l, Ip—14k—(m—1))-

Plugging these last two expressions into (), one concludes that

hém) = max(max(jp, hl(jn_l)l), max(hz(ff)l, ip—14k—(m—1)))

= max(Jp, h;(:f)lv iptk—m)) = MaX(fp, ip+k—m)

since h;@l < h{™ . This last expression is the one from (c), as desired.

Thus since (a) does define a monotone trapezoid having I, J as its bottom, top rows, then T satisfiying
(b) or (c) is equivalent to T being the one defined by (a).

To see (c) < (d), let T" = ((I =)I}, 1} ,...,1;_1,I;(= J)) be an (I,.J)-monotone trapezoid, with
I, ={i < ... <iy,}. Then i, > max(j,,iptr-m) by the inequalities defining monotone trapezoids.
Since the sets defined using (c¢) form an (I, J)-monotone trapezoid, we see they must form the minimal
(I, J)-monotone trapezoid and vice versa. O

Remark 2.9.

It should not be surprising that there exists a componentwise smallest (I, J)-monotone trapezoid, as in
Lemma [Z8] since Lascoux and Schiitzenberger [10, §5] showed that the componentwise order on MT,, has
meet and join operations given by componentwise minimum and maximum. Similarly, there is a componen-
twise largest such (I, J)-monotone trapezoid, having similar properties, which can be built in a analogous
fashion by iterating the Hpyax(I, J) construction from Remark 2.7



3. ACTION OF H,(0) AND THE WEAK ORDER

Recall from the Introduction (Bl) that the 0-Hecke monoid H,(0) for the symmetric group &,, (or type

A, —1) is the monoid with n — 1 generators 7y, 7o, ..., T,—1 subject to the usual braid relations
(10) mT; = W for |i — j| > 2,
TGTi41T = Ti41TT41 for ¢ = 1,2,...,71—2,

together with the quadratic relations
(11) 72 =m fori=1,2,...,n— 1.
See Norton [I3] for background on H,,(0) and the associated monoid algebra, called a 0-Hecke algebra.

Definition 3.1.

Define maps m; : MT,, — MT,, for : = 1,2,...,n — 1 sending T — T X m;, where T X m; is obtained from
T by replacing its i** row T; with Hppnin(Ti—1, Tit1)-

Proposition 3.2. The operators m; on MT,, satisfy the braid and quadratic relations [I0), (II), and hence
define an action of Hp,(0) on MT,,.

Proof. The relations 72 = m; and mm; = m;m; for i — j| > 2 should be clear; only m;m; 17 = 7417 miq1
requires verification. We can check this locally in rows ¢ — 1,4,7 + 1,7 + 2 of a monotone triangle T', by
tracking two generic entries in rows ¢,7 + 1 shown in bold below. Here, we are using concatenation of sets of
entries to abbreviate their maximum:

a b a b a b a b
¢ d e =5 7 af bg 3 7 af bg 7 7 7 abfi
f 8 f g ? afi 7o afi
h i h i h i h v
a b » a b a b _ a b
c d e =% ¢ d e V5 7 ach bdi ~3 ?  ach bdi
f g ch di ch di ? achi
h i h 1 h i h i
Thus it only remains to check these equalities
(12) max(a, b, f,1) < max(b, d, ),
(13) max(a, f,1) < max(a, ¢, h, ),

which both follow, since
e a <d<band f <iimplies that the two sides in (I2]) are both equal to max(b, ),
e ¢, h < f < implies that the two sides in (I3)) are both equal to max(a,i). O

Once one knows that the operators m; satisfy the braid relations, one can define operators m,, for every
permutation w in &,, as follows: pick any factorization w = s;,s;, - - - 8;, for w that is shortest possible (i.e.,
reduced) as a product of the adjacent transpositions {s1, $2,...,8,—1} =: S, and then let

Tw = T4 Ty« + - Ty
As a consequence of satisfying the relations of #,,(0), one could equivalently define 7, recursively as follows:
Tws; 1f w(i) <w(i+ 1), that is, if i € Des(w),
T =
T if w(i) > w(i+ 1), that is, if ¢ € Des(w),

starting with the initial condition 7, := 1.

(14)



Remark 3.3.
It is worth noting in the case where T has T; C T, for all 4, so that

T=T(w):=(2,{w}, {wi,ws},...,{wr,ws,...,wp_1},[n])

for some permutation w = (w1, ws, ..., wy,) in &,, then one has

T (w) if w; < w;y1, that is, if 7 & Des(w),
T(ws;) if w; > wi1, that is, if i € Des(w).

T(w) X T = {

Here s; = (4,4 + 1) is the adjacent transposition, so that
ws; = (wl,wg, ey Wi—1, Wit 1, Wiy Wi425 .+ oy Wn—1, wn).

Thus the action of H,,(0) on MT,, extends its action on &,, via (bubble-)sorting operators as mentioned in the
Introduction. We let w x 7; denote the permutation corresponding to T'(w) X 7;, so that T (w) xm; = T (w X ;).

Definition 3.4.

Extend the weak order <y on the symmetric group &,, to a weak order <y, on monotone triangles MT,, as
the transitive closure of the relations T'x 7; < T where ¢ is any index in the range 1,2, ...,n—1. Equivalently,
T <w T’ means that T lies in the #,(0)-orbit of T".

Remark 3.5.

The name weak order is appropriate here, since (MT,,, <w ) is indeed weaker than the componentwise order
(MT,,, <p), and we view the latter as the appropriate extension of (strong) Bruhat order on &,, to a strong
Bruhat order on MT,,, via MacNeille completion. To see that (MT,,, <y ) is weaker than the componentwise
order, note that it is the transitive closure of the relations T' x m; <w T, where T X 7; is obtained from T
by replacing the i*" row of T' with Hyin(Ti—1, Ti11), the latter being componentwise smaller by Lemma

4. PROOF OoF THEOREM [1_1]

Recall the statement of the theorem.
Theorem M1l Any linear extension T TR ... TW) of <y on MT,, gives a shelling order on ®,,.

Before proving the theorem, we note in the next proposition a useful reinterpretation of Lemma [2.8]
generalizing the definition of the T x 7; on monotone triangles. Given any subset J C .S := {s1,...,8n-1},
recall there is a unique longest permutation wq(J) in the (Young or parabolic) subgroup (J) of &,, generated
by J. This wg(J) is an involution, characterized within (J) by the property that

(15) J = Des(wo(J))(= Des(wo(J) ™))

(here we identify J = {s;,,...,s;,} with {ji1,...,jkx}). For example, if n = 9 and J = {s1, s2, 84, S5, S¢, S8} C
{s1, 82,...,88} =5, then the parabolic subgroup (J) inside &g is the subgroup isomorphic to S5 x &4 x So
that stabilizes the blocks of the partition {1,2,3},{4,5,6,7},{8,9}. Its longest permutation is wp(J) =
(3,2,1,7,6,5,4, 9,8).

Proposition 4.1. Given any monotone triangle T and J C S, then T X (5 is the unique componentwise
smallest monotone triangle T™™ having the same rows Ty, as T for all s, & J.

Proof. Lemma 28(b) shows that this componentwise smallest triangle 7™ is uniquely characterized by

min _ T for sy & J,
" Huin (T2, T for sy, €

m—1>

On the other hand, we claim that the triangle 7" = T x m,, () has these same properties:
o 1" =T X Ty, () shares the same rows T}, = Ty, for s, & J since wo(J) lies in (J).
e For any s, € J one has T" X 7, = T X oo (1yTm = T X Ty gy = 1" combining (I4)) with the fact that
5 lies in J = Des(wq(J)) by (I5). This means that T}, = Huin(T),_1,T},,1). O

m—1>



Proof of Theorem 1l Thinking of each monotone triangle 7" as corresponding to a facet, we identify it
with its subset of n + 1 vertices, namely

7@ — {o= To(i),Tl(i), .. ,T(i) T\ = [n]}.

n—1" " n
Shellability, as defined in the Introduction, requires that for each pair i,j with 1 < i < j < N, we must
exhibit some k < j satisfying #7*) NTU) = n (including @ and [n]) and T® N T C THE N TG,
Given i < j, let J :={m: T =+ T,gf)}. We claim that T x 7,,, # T for at least one m in J, otherwise
Proposition [£1] implies the two equalities here

T(J) = T(J) X Mo (J) = T(l) X Two (J) <w T(l)a

but then the inequality T <y T would contradict i < j.
Given such an m, one checks that the index k defined by T x m,, = T(®) does the job:
o T =70 x 7, <w T implies that k < j.
o #(THNTW) =# (TY x 7)) NTU) = — 1, since TW x 7, # T,
o T NTW C T® NTU because sy, lies in J. O

We close this section with two remarks about the above shelling.

Remark 4.2.
Since the m; operators on MT,, restrict to the usual bubble-sorting operators on the symmetric group &,
embedded inside MT,, via w — T'(w), one finds that the subposet (&, <w) is actually an order ideal inside
(MT,,, <w); it is even the principal order ideal below T (wo) where wo = (n,n —1,...,2,1).

As a consequence, it is possible to pick a linear extension of <y, on MT,, which contains all of the elements
of the order ideal &,, as an initial segment. This then gives a shelling order on the facets of A(®,, \ {0,1})
which shells the Coxeter complex A(2["\ {0,1}) first, before continuing on to shell the remaining facets of
A(®,, \ {0,1}) that do not correspond to permutations.

Remark 4.3.

Shellability implies that the (n — 2)-dimensional simplicial complex A(®,, \ {0,1}) has the homotopy type
of a bouquet of (n — 2)-spheres. The Coxeter complex A(2[")\ {0,1}) inside it is homeomorphic to a single
(n — 2)-sphere, and this sphere has well-known easy embeddings into R"~!. For example, it is isomorphic to
the barycentric subdivision of the boundary of a simplex with vertex set {1,2,...,n}. Alternatively one can
embed it within the hyperplane x; + --- + z,, = 0 inside R™ by extending piecewise-linearly the map that
sends its vertices to the &,-images of the fundamental dominant weights of type A, _1: the vertex indexed
by a subset I with @ C I C [n] is sent to the vector Y ;. e; — %(el +---+e,) where ¢; is the i*" standard
basis vector of R™.

After looking at the picture @) of A(®3\ {0,1}), which embeds it in R?, one might wonder whether
A(®,, \ {0,1}) embeds in some simple way into R*~*. We are doubtful. For example, when n = 4, one can
check that if one takes either of the two vertex coordinates for embedding A(2[4\ {0, 1}) into R? as described
in the previous paragaph, when one extends this piecewise-linearly over the extra simplices in A(®4\ {0,1}),
it leads to self-intersections, and not an embedding.

5. EL-LABELING AND PROOF OF THEOREM

Recall the statement of the theorem.

Theorem There is a partial order on Alt,, so that the edge-labeling A which assigns N(I <J) =1;—1;
in Alt,, becomes an EL-labeling of ®,. Furthermore, any of the EL-shelling orders associated with this
EL-labeling is a linear order on MT,, which extends the weak order <yy.

We will define the partial order on Alt,, via its identification with a Boolean algebra 2[*~1. Note that a
vector v in {0,£1}" lies in Alt,, exactly when each of its tail sums v - 1[; ) = v; + vig1 + -+ + vy lies in
{0,+1}, with 371", v; = +1. The following proposition is straightforward to verify.
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Proposition 5.1. One has mutually-inverse bijections
Alt,, % 21l
v s Sw):={icn-1]:v- Tjig1,n) = +1}
-1
e1 + ZiGS(eH‘l - ei) £ s
Definition 5.2.
Put a partial order <g7, on Alt,, that pulls back the inclusion order on 2"~ via the above bijection ¢, that

is, v <gr, w if and only if S(v) C S(w). Equivalently, v <gr w if and only for every ¢ = 1,2,...,n one has
dot product (w —v) - (e; + €41 + -+ + €,) > 0.

Example 5.3.
Here is the order <gy, on Alt,, for n = 3,4,5:

oooo+

. / ‘ \ ocoo4+0 +—oo+ o+—o+4+ oo+—+
2 BN m
OO XX

o+o +—+ co+oo +—o+o ot—+o +o0o—0+4 oto—+ +—+—+
NSRS
+oo0 \‘/
+ o oo o+ooo +—+4o0o0 +0—40 4+oo—+
+ooo0o0

Next, we show that A : C(®,) — Alt, defined by A\(I < J) := 1; —1; is an EL-labeling of ®,, with respect
to <gr, on Alt,. For the rest of this section, fix a pair I <jace J in ®,, with Hyin(I,J) as in Definition

Lemma 5.4. Assume I <jace H <iace J with #H = #I1 +1. Then 1y, (1,5 — 11 <pr 1w —1s.

Proof. Recall <, can be rephrased as follows: A <gj, B if and only if (1p —14) - Lig,n) = 0 for all £.
Thus, since Huyin (I, J) <comp H according to Lemma 2.6(iii), for all ¢ one will have

(r =11 ~ QHpur,) = 10) L) = @i = Lepur,)) - Ligw) > 0. O
It turns out that one can characterize Huyin(I,J) in terms of <gp,.
Lemma 5.5. Assume I <jace H <iace J with #J = #I1 + 2. Then
1y —1; <pp 17—1x if and only if H = Hpyin(1,J).
Proof. Name the elements of I, H, J as follows:

I={in < - <ip},
H:{h1<'-'<hp<hp+1},
J:{jl<"'<jp<jp+1<jp+2}'

<): Assume H = Hpy,in (I, J). We check for each ¢ that (1g —17) -1y, < (1y—1g)-1Ljp,, or equivalently,
[¢,n] [¢,n]

#INn)+H#IN[E,n] —2#HN[¢,n] > 0.
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If HN[¢,n] = @, this is clear. Otherwise, let HN[¢,n] = {hk, hg+1, ..., hp+1}, so that #FHN[(,n] =p+2—k.
Then the interlacing I <jace H <lace J along with hy = max(ix_1, jx) imply that

Iﬁ[f n]: {ik,ikJrl,...,ip} ifhk>ik,1,
’ {ik—1yikyihg1s - orip}  if B = ig_1,
JO[6n] = {Jha15 Jht2s -5 dpgr ) if hy, > Ji,
7 ks ka1 ety -+ s Jprey i hi = J.

From this one can calculate that

0 if hy, = Jr > ig—1 or by = ip—1 > Ji,

#JIN[n] +#IN[n] —2#H N [l,n] = {_|_1 if hy = ig—1 = Jr.

(:>)2 Assume 1g —1; <gr 1;—1pg.
Claim: One cannot have both strict inequalities i1 < hy < i, nor a strict inequality i, < hpi1.

To see this claim, note that in either case (ix—1 < hx < i or ip < hpt1), it would imply hy € H \ I
Then since I <jace H, this would imply (1g — 1) - 1j, ») = +1. But then hy, € H and H <jace J implies
(17 —1g5) - 1p,m =0<+1=(1g — 11) - L}, ], & contradiction to our assumption.

By Lemma 2.8 (¢) and (d), I <jace H <lace J implies hy > max(ig_1,jr) for k=1,2,...,p+ 1. We must
now show that these are all equalities, not inequalities. For the sake of contradiction, assume not and pick
k mazimal such that hy > max(ig_1, ji)-

The Claim above then forces k < p and hy, = iy, (else ix—1 < hy <ix or k =p+1 and i, < hpt1). Then
hi+1 > hix = i and the maximality of k forces hyi11 = max(ig, jx+1) = max(hg, jk+1) = je+1. And again
the Claim forces k+ 1 < p and ig+1 = hgt1(= Jrt1)-

We now repeat this argument to show by induction that for all m = k+ 1,k + 2, ..., one has both m <p
and this triple coincidence j,,, = hy, = im,; this would contradict finiteness of p. The inductive step again
notes that hpi1 > by = iy, and maximality of k forces hy, 11 = max(im, jm+1) = Max(Pm, Jmt1) = Jmt1-
But then the Claim forces m + 1 < p and iy, 41 = Am+1(= Jm+1), recreating the inductive hypothesis. O

Proof of Theorem [[.2. We first check our edge-labeling A satisfies the two conditions for an EL-labeling:

e for every interval [z,y] C ®,, there is a unique maximal chain (z = 29 < 1 < --- < = y), that has

weakly rising labels A(zo, x1) <a Ma1,z2) <p - <p MTg—1,Ts,,)

o if & <z <y, with z # z1, then A(z,z1) <a Az, 2).
The first condition follows by combining Lemma [2§(b) and Lemma B35 which show that for any I <jaee J,
the unique maximal chain in the interval [I,J] corresponds to the (I,.J)-monotone trapezoid Tin([,J).
Then the second condition comes from Lemma [5.41

For the second assertion of the theorem, it suffices to check that if T, 7’ are monotone triangles with
T' <w T, then any of the above EL-shellings, which come from linearly extending the lexicographic ordering
of <y on edge labels, will have T" earlier than T'. By definition of the weak order <y, it suffices to check
this holds when T = T x 7; for some 4. In this case, it follows because Lemma [5.4] shows that T will have
lexicographically earlier edge label sequence than T': the two sequences first differ in replacing the label
17,,, — 11, with the <gr-smaller label L H, i (T Ti2) — L1 O

7

6. DESCENTS, h-VECTORS AND FLAG h-VECTORS

Recall from the Introduction the usual descent set for a permutation w = (wy,...,w,) in &,
Des(w) :={ken—1]:wp >wiy1} ={k €[n—1]: w X m = wsp <w w}.

It has a natural extension to monotone triangles 7', motivated by the weak order <y and our shelling results.

12



Definition 6.1.
Define the descent set Des(T) for T = (To, Ty, ..., T,) in MT,, by

Des(T):={ken—-1]:T xm <w T}
={k € [n—1]: Tk # Huin(Tk-1, Tr+1)}-
There is another way to define Des(T).
Lemma 6.2. For T in MT,,, one has
Des(T) :={k € [n — 1] : there does not exist some T' # T with T" x 7, = T'}.
In particular, T is one of the mazimal elements of the weak order <y if and only if Des(T) = [n — 1].

Proof. Since w7 = my, if there exists 7" with 7/ x 1 =T, then T x 1, = T"x =T x 1, = T, so k & Des(T).
Conversely, if k & Des(T'), so that T x 7, = T, we wish to exhibit at least one T” # T having m,(T') = T.
From T x m, = T = (To,T1,...,Ty) we know that Ty, = Huin(I,J) where I := Tj_1,J := Tyy1, so that
if we construct T” from T by replacing Ty, with Hyax(I,J) as defined in (§), then it will certainly have
T x T = T.
It only remains to show that T’ # T, that is Huax(I, J) # Hmin(I, J). To check this, name elements:
I:{il <idg < .- <ik,1},
min(I;J) = {hl <hg < - - <hp_1< hk},
Hupox (I, J) = {h} < hy <--- < hj_; < h,},
J={j <jo < <r—1 <Jr < e}
Then the formulas defining Huin(I, J), Hmax (I, J) are hy, = max(im—1, jm), A, = min(im, jm+1), implying
that hl, = hy, if and only if 4, = Jp, OF 41 = Jm41. Since #INJ < #I =k — 1, such an equality occurs

at most k — 1 times, and hence h],, # h,, for at least one m =1,2,... k. 0
Remark 6.3.
Embedded in the previous proof are operators mj, : T — T on MT,, for k = 1,2,...,n — 1, where T” is

obtained from T by replacing T} with T,é = Hpax(Tk-1,Tk+1). Because of the relation between the Hyipn
and Hy,ax constructions described in Remark 27 the operators {n}, }x=1,2,...n—1 satisfy the same braid and
quadratic relations as {7}, giving a (different) action of the 0-Hecke monoid H,,(0) on MT,,.

One can check that this other action, in fact, extends the (right-)reqular action of H,(0) on itself, when
one identifies the monotone triangle T'(w) in MT,, with 7}, in #,(0). One could use it to define a different
version of a weak order on MT,,, having a unique top element T'(wy), but several different minimal elements.
One reason that we instead chose the action by {7} and their resulting weak order <y is so that the
monotone triangle T'(e) corresponding to e = (1,2,...,n) in S, labels the first facet in all of the shellings.

As mentioned in the Introduction, descent sets conveniently encode the flag f-vector f(®,) := (f7)scm—-1]s
where f; counts the number of chains that pass through the ranks in J. One instead considers the flag h-
vector h(®,,) = (h)scin—1], defined by these inclusion-exclusion relations:

fr= Z hy, or equivalently, hj; = Z (-1 N\ g,
I.ICJ I:ICJ
General shelling theory (e.g., Bjorner [3, §1(B)]) then implies this combinatorial interpretation for h ;:
hy(®,) = #{T € MT,, : Des(T) = J}

The usual f-vector f = (f_1, fo, f1,--, fn_2) and h-vector h = (ho,h1,..., hn_1) for A(®, \ {0,1}) can
then be obtained by grouping the terms in (f;), (hy) as follows:

fi= > fs. and hi= > hy

Je(nrh: Je("7M):
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=

o ): (ho,h1y. ..y hn—1)

—
\/3

)_x

,2)
1,11 21,9)

1,26, 130,192, 80)

,b7,638,2318,3101,1321)

,120,2773,21472,67340, 87616, 39026)

,247,11264, 172222, 1108243, 3260759, 4280764, 2016716)

CO[ [ O U x| W N 3
AAAAAAA

=l

n ZJC[’H,—I] h]((I)n) i where xryg = HiEJ T;

X1 —|— 1

20129 + 221 + 220+ 1

9x1x2:173 + 7:1715172 + 7171503 + 7x2:c3 + 3$1 + 5262 + 3263 +1

80x1xox3x4 + D221 X233 + 44x122T4 + 4412324 + D2T0x324 + 162122 + 262123 + 322023
+14x1xy + 262924 + 162324 + 41 + 922 + 923 + 424 + 1

6 || 1321x1xox3T425 + 7T45T 1220304 + D622 1200375 + 48TT 12021475 + HO6221 3T 475 + T4Dx2T3T4 X5
+180x1z2x3 + 251212974 + 298212374 + 405202374 + 120212275 + 215212375 + 298227375
+120x12475 + 251200405 + 180232425 + 302122 + 652123 + 922023 + H8x124 + 1252024
+92x314 4+ 231125 + 582225 + 652315 + 302425 + B + 1429 + 1923 + 1424 4+ 525 + 1

QY = W DN

TABLE 1. The h-vectors of ®,, for n < 8 and flag h-polynomials of ®,, for n < 6. All data
computed using SAGE.

In particular, h;(®,) = #{T € MT,, : #Des(T) = i}. See Table [1 for the h-vector h(®,) and flag h-
polynomial for small values of n.

We remark on some features of this data. Note the sequence of values 1,2, 9,80, 1321, 39026, 2016716 for
hn—1=#{T € MT,, : Des(T) = [n — 1]} = #{ maximal elements in the poset (MT,,, <w)},

appearing at the right in Table [l which is not in the Online Encyclopedia of Integer Sequences (0EIS).

The data invites comparison with the Boolean algebra 21" which has h-vector h(2I") = (ho, b1, ..., hn_1)
given by the Eulerian numbers, that is, h;(2[") = #{w € 6 : #Des(w) = i}. The Eulerian numbers are
well-behaved in many ways (see Petersen [14]). For example, they satisfy recurrences and have the symmetry
h; = hyp—1—;. They also have the very strong property that the h-polynomial

2["] t Z h; th = Z t#Dcs(w)

weS,
has only real zeroes. This implies log-concavity h? > h; 1h;_1, which then implies unimodality, meaning

that there is some k (in this case k = L"T_lj works) for which ho < h; <---hyp >+ > hy_9 > hy—1. From

the data in Table [ the reader can check that for ®,,, the h-polynomial

n—1
t) — Z hztl — Z t#Dcs(T)
1=0

TeMT,

is irreducible in Q[¢t] with only real zeroes for n < 8, hence is log-concave for those values.

Question 6.4. Does h(®,,,t) have only real zeroes? If not, is its coefficient sequence log-concave, or at least
unimodal?
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Question 6.5. What is the largest entry in the h-vector of ®, % Is it always hp,_o?

7. DESCENTS AS A MAP TO QSYM, AND PROOF OF THEOREM [[.3]

As described in the Introduction, the map w — Des(w) that sends a permutation w in &,, to its descent set
was pleasingly reinterpreted in the work of Malvenuto and Reutenauer [I1] as a morphism of Hopf algebras.
We wish to explain here how this extends to the map T — Des(T) sending a monotone triangle to its descent
set, giving at least an algebra (but not coalgebra) morphism out of the Hopf algebra of ASMs recently
defined by Cheballah, Giraudo and Maurice [§].

Let us start by recalling the algebra structures on quasisymmetric functions, permutations, and ASMs.

Definition 7.1.
The ring of quasisymmetric functions QSym can be defined as the subalgebra of the algebra Z[[x1, z2,. . .]]
of formal power series that has Z-basis given by the monomial quasisymmetric functions

1<y <ip<... <
as a = (aq,...,a) runs through all (ordered) compositions having «; € {1,2,...} and any length & > 0.

The ring QSym was introduced by Gessel [9]. He observed that if one defines the unitriangularly related
Z-basis of fundamental quasisymmetric functions

(16) Loi= Y Mg
B:8 coarsens «

then results from Stanley’s theory of P-partitions [16, Cor. 7.19.5] imply the following expansion for products
of Ly’s. Given a subset J = {j1 < -+ < j¢} C [n— 1], define its associated composition of n to be

alJ) == (j1,d2 — J1, 73 — Jo, - - -+ Je — Je—1,10 — Je)-

In other words, «(J) is the composition whose partial sums are the elements of J.

For u,v in &,, 8, let u w v[a] be the set of all shuffles w = (w1, ws,...,ws4s) of the sequences u =
(u1,...,uq), and v[a] = (a +vi,a 4+ va,...,a+ vp). In other words, w € G,qp is in u Wvla] if (u1,...,uq)
and (a + v1,...,a + vp) are subsequences of w.

Proposition 7.2. Given u,v in &,, Sy,
(17) La(Dcs(u)) : La(Dcs(v)) = Z La(Dcs(w))-
w € u W vlal

This was part of Malvenuto and Reutenauer’s motivation for the following definition.

Definition 7.3.
The Malvenuto-Reutenauer (Hopf) algebra of permutations is a graded free abelian group

FQSym = P FQSym,,,
n>0

in which FQSym,, has Z-basis elements {w},ee,. As an algebra, its multiplication is extended Z-linearly
from this rule: for u,v in &,, Sy,

(18) u-v= Z W
w € u W vla]

in which the sum runs over the same set of w as in (7).
Thus the algebra structure on FQSym was defined so that this map is a (surjective) algebra morphism:

FQSym s QSym

19
( ) W La(Dcs(w))
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Definition 7.4.
Cheballah, Giraudo and Maurice [§] embedded FQSym inside a larger graded Hopf algebra
(20) ASM = P ASM,,

n>0

whose nt"-graded component ASM,, has a Z-basis {A} indexed by A in ASM,,. Its algebra structure
generalizes that of FQSym to the following row-shuffldl product. Given ASMs A, B of sizes a X a and b X b,
define A o b to be the a x (a + b) matrix with first a columns A and last b columns all 0-vectors. Likewise,
ao B is the b x (a + b) matrix with last b columns B and first a columns all 0-vectors. Then define

(21) A-B= > C

C € (Aob) W (aoB)

where C' runs through all the (a +b) X (a 4 b) matrices obtained by shuffling the rows of Ao b and of a o B.

Example 7.5.
0+ 0 0+000
IfA=[+—+]andB:[ﬂg],thenAObz[+7+00},anda032[88823}.Onethenhas
0+ 0 0+000
040
aB=[og] (28]
040
0+000 0+000 0+000 0+000 0+000
+—-4+00 +—-4+00 +—-+00 0000+ 0000+
=|0+000|+]0000+|+|0000+|+|+-+00|+|+-—+00
0000+ 0+000 000+0 0+000 000+0
000+0 000+0 0+000 000+0 0+000
0+000 0000+ 0000+ 0000+ 0000+
0000+ 0+000 0+000 04000 000+0
+]l000+0|+|+-+00|+|[+-+00|+|000+0[+|0+000].
+—-4+00 0+000 000+0 +—-4+00 +—-4+00
0+000 000+0 0+000 0+000 0+000

Note that when one restricts the product formula 2I)) to the elements of the form w := A(w) where
A(w) is the permutation matrix corresponding to w™!, it agrees with the multiplication rule for u - v given

in ([I8). We also wish to recast the formula (ZI)) in terms of monotone triangles. The following proposition
is straightforward using the bijection ASM,, — MT,, described in the Introduction.

Proposition 7.6. Fiz A, B in ASM,, ASM,,, with corresponding monotone triangles T(A), T(B) in MT,, MT,.
Let C in (Aob) W (ao B) have

e S Cla+Db] the a-element subset indexing the rows of C' that come from Aob, and

o [a+0b]\'S the b-element subset indexing the rows of C' that come from a o B.
Then T(C) in MT .4y has as its k' row the set

T(C)x =T(A); U (a+T(B));,
where
o i =#SNIkK], and
o j=#(a+b]\S)N[K] (=k—1i).

Example 7.7.
2
For A = [—Er } -H and B = [fﬂ ] as in Example [[5] one has T(A) = 13 anda+T(B) = 455 Hence
123

the terms C appearing in the product A - B correspond to these monotone triangles T'(C):

1Actually, in [8] the algebra structure uses column shuffles, but this is equivalent to what is described here after transposing
the alternating sign matrices A — A?.
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(5 [ (23 [ (24 [ (125 [ (L3.4) | {13.5) |

2 2 2 5 5

T(C) 13 13 13 25 25
123 135 135 135 135
1235 1235 1345 1235 1345

[ S [ {1L,45) | 12,34 | (2.35] | {245) | {345}

2 5 5 2 2

7(C) 25 25 25 25 45
245 135 135 245 245
1345 1235 1345 1345 1345

Recall the statement of the theorem.

Theorem [[31 The map FQSym 2+ QSym in (@) extends to an algebra (but not a coalgebra) morphism

ASM 5 FQSym
A —  Lyes(a)

where Des(A) = Des(T'(A)) for A in ASM,, is the descent set of its monotone triangle T'(A).

Proof of Theorem[L.3. Given A, B in ASM,, ASM,;, we claim that the multiset of descent sets {Des(T(C))}
as C runs through the elements of (Aob) L (aoB) depends only upon the descent sets Des(T'(A)), Des(T'(B)),
not on A, B themselves. Assuming this claim for the moment, one finishes the proof by picking arbitrary
u,v in 6,4, S having Des(u) = Des(T(A)) and Des(v) = Des(T'(B)), and calculating

o(A-B) = Z Lo(pes(T(C))) Z Lo (Des(w))
Ce(Aob) W (aoB) wEuULLY

= Laes(u)) La(Des(v)) = La(Des(A)) La(pes(B)) = (A)p(B).

Here the second equality used the claim, while the third equality used (I9]).

To prove the claim, note that each C' in (Aob) W (ao B) is determined by the a-subset S C [a+b] indexing
the rows of C' that come from A ob. We give rules in cases below that decide whether some k € [a + b — 1]
lies in Des(T'(C')), based only on the subset S and the descent sets Des(T'(A)) and Des(T'(B)), not on A, B
themselves. As notation, let i := #S N[k —1],5 := #(([a + b] \ S) N [k — 1])), and name these elements:

T(A)ig2 ={a1 < - <a; <aip1 < aiq2},
(@a+T(B))jy2 ={b1 <--- <bj <bjy1 <bjsa}.
Note that deciding whether k lies in Des(T'(C')) simply means checking whether any of the entries of 77,

where T' := (T(C) x 7 )k = Hmin(T(C)g—1, T(C)k+1), differs from the corresponding entry of T'(C');, when
computed via the formula (7)) as the maximum of its two neighboring entries to the northwest and southwest.

Case 1. Both k,k+ 1 liein S.
In this case, Proposition [[.6 implies that (T(C)g-1,T(C)k, T(C)k+1) look like this:

a/l PR a’i bl PR bj
N iyl by - by
ai -oa iyl Qiy2 by - b

Each of the entries by, in T'(C); equals its northwest neighbor, so is unchanged in T(C') x 7. This implies
that k& € Des(T'(C)) if and only if k& € Des(T'(A)).
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Case 2. Both k,k+ 1 liein [a + 0]\ S.
Here (T(C)k—1,T(C), T(C)g41) look like this:

a/l DRI a/z bl ... b]
al ... a’L bl DRI b] b]+l
ay ce Qg b1 ce bj bj+1 bj+2
Similarly to Case 1, each entry a,, in T(C); equals its southwest neighbor, so is unchanged in T'(C) x 7.

This implies k € Des(T'(C)) if and only if k € Des(T'(B)).

Case 3. k lies in S, but k + 1 lies in [a 4+ b] \ S.
Here (T(C)k—1,T(C), T(C)g41) look like this:

a/l DR a/i bl ... bj
aip - a; iyl by - by
ar ccoa Qit1 by - by bjt1

We claim that in this case, k € Des(T(C)), since each entry a,, of T(C)) equals its southwest neighbor,
while each entry by, of T(C) equals its northwest neighbor.

Case 4. k+ 1 lies in S, but k lies in [a 4 b] \ S.
Here (T(C)k—1,T(C), T(C)g41) look like this:

a;l DRI ai bl DY bj
a/l PR a’i bl PR bj bj+l
ar o ait1 by - b bjt+1

In this case k € Des(T(C)), since the entry by of T(C)y has by > a > max(a;, a;41).
To see that A Lo (Des(a)) is not a coalgebra morphism, for example, one can check from the coproduct
0 +1 0
formula of Cheballah, Giraudo and Maurice [8], (1.3.5)] that the alternating sign matrix A = [-161 i 461} has
coproduct A(A) =1® A+ A ®1, that is, A is primitive. Meanwhile, its image ¢(A) = L 1,1) has

Alp(A)) =ALaay)=1@ Loy +Lay® Ly + Loy ® Loy + Loy @1,
which is not the same as (¢ ® p)(A(A)) =1® L,1,1) + L1,1,1) ® 1. That is, ¢(A) is not primitive. O
Remark 7.8.

It is well-known, and not hard to see (e.g., as a special case of [I6 Thm. 7.19.7]), that applying ¢ to the
sum of all of the basis elements {w},eg, for FQSym,, gives a readily-identifiable symmetric function

w(z W) - Z Laesw)) = (@1 + 22+ )"

weG, weG,

This fails for ASM,,, e.g., the data in Table [l for n = 4 together with (I€) shows that

9"( > A)Z Y~ Laesray)

AEASM, A€ASM,
=Ly +3La3) +5L2 +3L31) +7La,2) +TLaz21) + 7L,y + 900,111
= M) +4M 3y + 6M 3 9) +4M 3 1) + 16M(q,1,2) + 14M(q 21) + 16M 2 11) +42M 1 11,1y

which is not a symmetric function, because its coefficient on M, is not constant for all compositions «
within the same rearrangement class. It would be interesting to find natural subcollections {A} of ASM,,,
not contained entirely in &,, for which ¢ (3~ 4 A) is a symmetric function.
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FIGURE 1. An interval of weak order in MT4 that is not a lattice, and a subinterval within it.

8. POSET PROPERTIES OF WEAK ORDER ON MT,,

The weak order <y, on the symmetric group &,, has many pleasant poset-theoretic properties:

e It has bottom and top elements 0 = e = (1,2,...,n—1,n) and 1 = wy = (n,n —1,...,2,1).

o It is a lattice.

o It is ranked with rank function given by the cardinality #Inv(w) of the (left-)Jinversion set of w:

Inv(w) = {(wj,w;) : 1 <i<j<nandw >w,}

e It has an encoding via inclusion of these (left-)inversion sets: u <y v if and only if Inv(u) C Inv(v).

o The Mdébius function u(u,v) for u <w v only takes on values in {0,+1,—1}.

e More precisely, the homotopy type of the order complex A(u,v) of any of its open intervals (u,v) is
contractible or homotopy-spherical. Specifically, one can phrase this in terms of #H,,(0)-action on S,, as
follows: A(u,v) is contractible unless u = v X T, sy for some subset J C Des(u), in which case, A(u,v)
is homotopy-equivalent to a (#J — 2)-dimensional sphere; see Bjorner [2, Theorem 6].

Only a few of these properties extend to the weak order <y to MT,,. It is still true that (MT,,, <w ) has
a bottom element 0 = T'(e) = (2, {1},{1,2},{1,2,3},...,[n]), but it no longer has a top element 1, as there
are many maximal elements.

Since MT,, is finite, and has no top element, it cannot be a lattice, but it is also true that its intervals
fail to be lattices. For example, the lower interval shown on the left in Figure [ is not a lattice, because, for
example,

1 2 2 3
13 and 12 donot have a least upper bound since both 13 and 23
123 123 123 123
are minimal upper bounds. Note that this same lower interval is not ranked since there are maximal chains
of lengths four and five.

Alternating sign matrices A = (a;;) have a well-established inversion number inv(A) 1= %", 1 i<, aijake,

introduced by Mills, Robbins and Rumsey [12, p344], which generalizes the rank function #Inv(w) for
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(6, <w) of permutations. However, it is not clear that it relates to chains in the weak order (MT,,, <w ).
For example, one might hope that the length of the shortest saturated chain from 0 to 7' in weak order might
correspond to the inversion number of the alternating sign matrix of 7. However, Roger Behrend noted that
this fails for the first time in MT,, where one can check that

3 00+0

T= 24 < A_{ggg}, inv(4) =5
134 0+00

but the shortest saturated chain from 0 to T has length 4. Additionally, in MT5 one can check that
; 38598
_ 34 _ ot : _

T= yys © A=|3eooy| wA=5

1245 00400

but all saturated chains in the weak order from 0 to T have length at least 6.

Question 8.1. Is there a generalization of the notion of the (left-)inversion set Inv(w) for permutations to
an inversion set Inv(T') for monotone triangles, encoding the weak order (MT,,, <w) via inclusion, that is,
T <w T" if and only if Inv(T) C Inv(T")?

In spite of some of the above shortcomings, the Mobius function and homotopy type of open intervals in
(MT,,, <w) may be just as simple to describe as for weak order on &,,.

Conjecture 8.2. For two monotone triangles T' <w T, the order complex A(T',T) of their open interval
in <w is contractible unless T" =T X Ty for some J C Des(T'), namely, J := {m : T, # T}, in which
case A(T',T) is homotopy equivalent to a (#J — 2)-dimensional sphere.

Conjecture B2 would imply that (77, T) = 0 in the contractible case, and (—1)#“ when T = T x T (J)-

Example 8.3.

An interesting example is the non-lattice lower interval [f), y] on the left in Figure [[ which has the order
complex A(f), y) of its open interval homotopy equivalent to a 1-sphere (circle). Meanwhile, its subinterval
[, y] shown to its right has A(z,y) contractible.
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