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Abstract. We look at Bohemian matrices, specifically those with entries from {−1, 0,+1}.
More, we specialize the matrices to be upper Hessenberg, with subdiagonal entries 1. Even more, we
consider Toeplitz matrices of this kind. Many properties remain after these specializations, some of
which surprised us. Focusing on only those matrices whose characteristic polynomials have maximal
height allows us to explicitly identify these polynomials and give a lower bound on their height. This
bound is exponential in the order of the matrix.

1. Introduction. A matrix family is called Bohemian if its entries come from
a fixed finite discrete (and hence bounded) set, usually integers. The name is a
mnemonic for Bounded Height Matrix of Integers. Such families arise in many
applications (e.g. compressed sensing) and the properties of matrices selected “at
random” from such families are of practical and mathematical interest. An overview
of some of our original interest in Bohemian matrices can be found in [4].

We began our study by considering Bohemian upper Hessenberg matrices. We
proved two recursive formulae for the characteristic polynomials of upper Hessenberg
matrices (see [3] for details). During the course of our computations, we encountered
“maximal polynomial height” characteristic polynomials when the matrices were not
only upper Hessenberg, but Toeplitz (hi,j constant along diagonals j − i = k). Fur-
ther restrictions to this class allowed identification of key results including explicit
formulae for the characteristic polynomials of maximal height, which motivates this
paper. In what follows, we lay out definitions and prove several facts of interest about
characteristic polynomials and their respective height for these families.

In Figure 1, we see all the eigenvalues of all 14 × 14 upper Hessenberg Toeplitz
matrices with subdiagonal entries equal to 1 and all other entries from the population
{−1, 0,+1}. We see a wide irregularly hexagonal shape. In contrast, upper Hessen-
berg Bohemian matrices that are not Toeplitz generate an irregular octagonal shape
(see [3]). More, the density of eigenvalues (here, a darker colour indicates higher den-
sity of eigenvalues) is quite irregular, with high-density flecks dispersed throughout.
In some ways the picture is reminiscent of seeds in a cotton ball, if the cotton ball
has been flattened. The conjugate symmetry and z → −z symmetry are evident;
to save space, we could have plotted only the first quadrant, but for completeness
have included all four. This helps to show that there is a slightly lower density of
eigenvalues near (not on) the real line. The density of eigenvalues actually on the real
line is quite high, although this is not evident from the picture.

The one thing that is easily explained about that figure is the wide flat top (and
bottom). To do this, consider eigenvalues of Bohemian Upper Hessenberg Toeplitz
matrices with zero diagonal. Figure 2 is a picture of the set of eigenvalues of all 14×14
upper Hessenberg Toeplitz matrices with subdiagonal entries equal to 1, diagonal
entries equal to 0, and all other entries from the population {−1, 0,+1}. Here, we
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Fig. 1. The set of eigenvalues of all 14×14 upper Hessenberg Toeplitz matrices with subdiagonal
entries equal to 1, and all other entries from the set {−1, 0,+1}. A more detailed image can be found
at assets.bohemianmatrices.com/gallery/UHT 14x14.png

also see a hexagonal shape, but this time, it is not as wide. The matrices B giving
rise to Figure 1 are exactly the matrices B = A, B = A + I and B = A − I where
the matrices A give rise to Figure 2; thus the eigenvalues of each A occur three times,
once with zero shift, once with −1 shift, and once with 1 shift. That is, Figure 1 is
simply three copies of Figure 2 placed side by side, giving the appearance of a flat (or
mostly flat) top and bottom.

In Figure 2 we see more clearly that the high-density “flecks” occur moderately
near to the edge of the eigenvalue inclusion region. We have no explanation for this.
We also see that the eigenvalues fit into a rough diamond shape; one wonders if the
eigenvalues λ = x+ iy fit into a region of shape |x|+ |y| ≤ O(

√
n). Again, we have no

explanation for this (or even much data; we do not know if this guess is even correct
experimentally).

In this paper we seek to explain some other features of these pictures, and
to learn more about Bohemian upper Hessenberg Toeplitz matrices. We provide
supplementary material through a git repository available at https://github.com/
BohemianMatrices/Bohemian Upper Hessenberg Toeplitz Matrices. This repository
provides all code and data used to generate the results, figures, and tables in this
paper.

2. Prior Work. In our sister paper “Bohemian Upper Hessenberg Matrices” [3],
we introduced the following theorems, definitions, remarks, and propositions for upper

assets.bohemianmatrices.com/gallery/UHT_14x14.png
https://github.com/BohemianMatrices/Bohemian_Upper_Hessenberg_Toeplitz_Matrices
https://github.com/BohemianMatrices/Bohemian_Upper_Hessenberg_Toeplitz_Matrices
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Fig. 2. The set of eigenvalues of all 14 × 14 upper Hessenberg Toeplitz matrices subdiagonal
entries equal to 1, diagonal entries equal to 0, and all other entries from the set {−1, 0,+1}. A more
detailed image can be found at assets.bohemianmatrices.com/gallery/UHT 0 Diag 14x14.png

Hessenberg Bohemian matrices of the form

(2.1) Hn =



h1,1 h1,2 h1,3 · · · h1,n

s h2,2 h2,3 · · · h2,n

0 s h3,3 · · · h3,n

...
. . .

. . .
. . .

...

0 · · · 0 s hn,n


with characteristic polynomial Qn(z) ≡ det(zI−Hn).

Definition 2.1. The set of all n× n Bohemian upper Hessenberg matrices with
upper triangle population P and subdiagonal population from a discrete set of roots
of unity, say s ∈ {eiθk} where {θk} is some finite set of angles, is called Hn×n{θk}(P ).

In particular, Hn×n{0} (P ) is the set of all n × n Bohemian upper Hessenberg matrices

with upper triangle entries from P and subdiagonal entries equal to 1 and Hn×n{π} (P )

is when the subdiagonals entries are −1.

Theorem 2.2.

(2.2) Qn(z) = zQn−1(z)−
n∑
k=1

sk−1hn−k+1,nQn−k(z)

with the convention that Q0(z) = 1 (H0 = [ ], the empty matrix).

assets.bohemianmatrices.com/gallery/UHT_0_Diag_14x14.png
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Theorem 2.3. Expanding Qn(z) as

(2.3) Qn(z) = qn,nz
n + qn,n−1z

n−1 + · · ·+ qn,0,

we can express the coefficients recursively by

qn,n = 1,(2.4a)

qn,j = qn−1,j−1 −
n−j∑
k=1

sk−1hn−k+1,nqn−k,j for 1 ≤ j ≤ n− 1,(2.4b)

qn,0 = −
n∑
k=1

sk−1hn−k+1,nqn−k,0 for n > 0, and(2.4c)

q0,0 = 1 .(2.4d)

Definition 2.4. The characteristic height of a matrix is the height of its charac-
teristic polynomial.

Proposition 2.5. For any matrix A, −A has the same characteristic height as
A.

Proposition 2.6. The maximal characteristic height of Hn ∈ Hn×n{0,π}({−1, 0,+1})
occurs when sk−1hi,i+k−1 = −1 for 1 ≤ i ≤ n− k + 1 and 1 ≤ k ≤ n.

3. Upper Hessenberg Toeplitz Matrices. For the remainder of the paper
consider upper Hessenberg matrices with a Toeplitz structure of the form

(3.1) Mn =


t1 t2 t3 · · · tn
1 t1 t2 · · · tn−1

0 1 t1 · · · tn−2

...
. . .

. . .
. . .

...
0 · · · 0 1 t1


with tk ∈ {−1, 0,+1} for 1 ≤ k ≤ n. Let

(3.2) Pn(z) ≡ det(zI−Mn) =

n∑
k=0

pn,kz
k

be the characteristic polynomial of Mn with pn,n = 1.

Proposition 3.1. The characteristic polynomial recurrence from Theorem 2.2
can be written for upper Hessenberg Toeplitz matrices as

(3.3) Pn(z) = zPn−1(z)−
n∑
k=1

tkPn−k(z)

with the convention that P0(z) = 1 (M0 = [ ], the empty matrix).

Proof. For a matrix Mn, the entries at the ith row and the i + k − 1-th column
for 1 ≤ i ≤ n− k+ 1 (i.e. the k− 1-th diagonal) are all equal to tk. In equation (2.2),
we can replace hn−k+1,n with tk (i = n− k + 1) recovering equation (3.3). \

Proposition 3.2. The characteristic polynomial recurrence from Theorem 2.3
can be written for upper Hessenberg Toeplitz matrices as

pn,n = 1,(3.4a)
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pn,j = pn−1,j−1 −
n−j∑
k=1

tkpn−k,j for 1 ≤ j ≤ n− 1,(3.4b)

pn,0 = −
n∑
k=1

tkpn−k,0, and(3.4c)

p0,0 = 1 .(3.4d)

Proof. Performing the same replacement as above (a notational change), we re-
cover equation (3.4). \

Proposition 3.3. pn,i is independent of tj for j > n− i.
Proof. First, assume pn,` is a function of t1, . . . , tn−` for ` = i and all n. By

Proposition 3.2

(3.5) pn,` = pn−1,`−1 −
n−∑̀
k=1

tkpn−k,` .

Isolating the pn−1,`−1 term, we have

(3.6) pn−1,`−1 = pn,` +

n−∑̀
k=1

tkpn−k,`

The first term, pn,`, is a function of t1, . . . , tn−`. Each term tkpn−k,` in the sum is
a function of t1, . . . , tn−k−`, tk. Taking k = n − `, we have the sum is a function of
t1, . . . , tn−`. Hence, pn−1,`−1 is a function of t1, . . . , tn−1−(`−1) = tn−`.

When i = 0, by Proposition 3.2 we have

(3.7) pn,0 = −
n∑
k=1

tkpn−k,0

which is a function of t1, . . . , tn. \

Theorem 3.4. The set of characteristic polynomials for all matrices Mn with
tk ∈ {−1, 0,+1} for 1 ≤ k ≤ n has cardinality 3n.

Proof. Let

(3.8) An =


a1 a2 a3 · · · an
1 a1 a2 · · · an−1

0 1 a1 · · · an−2

...
. . .

. . .
. . .

...
0 · · · 0 1 a1


with ak ∈ {−1, 0,+1} for 1 ≤ k ≤ n. Let Rn(z; a1, . . . , an) be the characteristic
polynomial of An. Assume P` = R` for ` < n. By Proposition 3.1, for An and Mn

to have the same characteristic polynomial we find

(3.9) zPn−1 −
n∑
k=1

tkPn−k = zRn−1 −
n∑
k=1

akRn−k .

Since P` = R` for all ` < n, and the
∑n
k=1 tkPn−k and

∑n
k=1 tkRn−k terms are

polynomials of degree n−1 in z, we find Pn = Rn only when tk = ak for all 1 ≤ k ≤ n
(the zPn−1 and zRn−1 terms are the only terms of degree n in z). Hence, for each
combination of tk, no other upper Hessenberg Toeplitz matrix with tk ∈ {−1, 0,+1}
and subdiagonal 1 has the same characteristic polynomial. \
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4. Maximal Characteristic Height Upper Hessenberg Toeplitz Matri-
ces.

Theorem 4.1. The characteristic height of Mn is maximal when tk = −1 for
1 ≤ k ≤ n.

Proof. Following from Proposition 2.6, the entries in the ith row and i+ k− 1-th
column for 1 ≤ i ≤ n−k+1 correspond to tk, after substituting s = 1 we find tk = −1
gives the maximal characteristic height. \

Proposition 4.2. Let F ⊂ R be a closed and bounded set with a = minF , b =
maxF and #F ≥ 2. Let Mn be upper Hessenberg Toeplitz with tk ∈ F . If |a| ≥ |b|,
Mn attains maximal characteristic height for tk = a for all 1 ≤ k ≤ n. If |b| ≥ |a|,
Mn attains maximal characteristic height for tk = a for k even, and tk = b for k odd.

Proof. First, consider the case when |a| ≥ |b|. Since a < b we find a < 0. Let
tk = −tk. Writing Proposition 2.5 in terms of tk gives

pn,n = 1,(4.1a)

pn,j = pn−1,j−1 +

n−j∑
k=1

tkpn−k,j for 1 ≤ j ≤ n− 1,(4.1b)

pn,0 =

n∑
k=1

tkpn−k,0, and(4.1c)

p0,0 = 1 .(4.1d)

If all tk are positive then pn,j must be positive for all n and j. Hence, the maximal
characteristic height is attained when tk is maximal, or equivalently tk is minimal and
negative. Thus tk = minF = a gives maximal characteristic height.

Next, consider when |b| ≥ |a|. Since a < b we find b > 0. By Proposition 2.5
we know that the characteristic height of Mn is equal to the characteristic height of
−Mn. Rewriting Proposition 3.2 for −Mn by substituting pn,j with (−1)n−jpn,j we
find the recurrence for the characteristic polynomial of −Mn:

pn,n = 1,(4.2a)

pn,j = pn−1,j−1 +

n−j∑
k=1

(−1)k−1tkpn−k,j for 1 ≤ j ≤ n− 1,(4.2b)

pn,0 =

n∑
k=1

(−1)k−1tkpn−k,0, and(4.2c)

p0,0 = 1 .(4.2d)

Separating out the even and odd values of k in the sums we can write the recurrence
as

pn,n = 1,(4.3a)

pn,j = pn−1,j−1 +

n−j∑
k odd

tkpn−k,j −
n−j∑
k even

tkpn−k,j for 1 ≤ j ≤ n− 1,(4.3b)

pn,0 =

n∑
k odd

tkpn−k,0 −
n∑

k even

tkpn−k,0, and(4.3c)
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p0,0 = 1 .(4.3d)

The odd sums are maximal for tk = maxF = b and the even sums are maximal for
tk = minF = a. Hence, the maximal characteristic height is attained for tk = b when
k is odd, and tk = a when k is even.

When |a| = |b|, equations (4.1) and (4.3) are equivalent and the maximal height
is attained both when tk = b for all k, and tk = b for k odd and tk = a for k even. \

Proposition 4.3. Mn also attains maximal characteristic height when tk = (−1)k−1

for 1 ≤ k ≤ n.

Proof. By Proposition 4.2, we have F = {−1, 0,+1} with a = −1, and b = +1.
Thus Mn is also of maximal characteristic height for tk = b = +1 for odd values of
k, and tk = a = −1 for even values of k. \

Proposition 4.4. The maximum characteristic height grows at least exponen-
tially in n.

Proof. When tk = −1, the characteristic height is maximal by Theorem 4.1.
Equation (3.4c) from Proposition 3.2 reduces to

(4.4) pn,0 =

n∑
k=1

pn−k,0 = 2n−1

for n ≥ 1 with p0,0 = 1 by equation (3.4d). Thus, the maximal characteristic height
must grow at least exponentially in n. \

Conjecture 4.5. The maximum characteristic height approaches C(1 + ϕ)n as
n→∞ for some constant C where ϕ is the golden ratio.

Remark 4.6. This limit is illustrated in Figure 3, motivating this conjecture.

Proposition 4.7. Let Mn be of maximal characteristic height and let µn be the
degree of the term of the characteristic polynomial of Mn corresponding to the height.
The characteristic height of Mn is independent of tj for j > n− µn.

Proof. Let Pn be the characteristic polynomial of Mn. By Proposition 3.3, pn,µn

is independent of tj for j > n−µn. Thus, tj for j > n−µn only affects pn,k for k < µn.
Since Mn is of maximal height, |pn,k| ≤ |pn,µn | for k < µn for all tj ∈ {−1, 0,+1}
with j > n− µn. \

n µn τn
2 1 2
3 1 5
4 1 12
5 1 27
6 2 66
7 2 168
8 2 416
9 2 1,008
10 3 2,528

Table 1
Maximum height τn and degree of term of characteristic polynomial corresponding to maximum

height µn upper Hessenberg Toeplitz matrices for n from 2 to 10.
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Fig. 3. The points are log τn+1 − log τn for n from 0 to 50,000 where τn is the maximal
characteristic height of Mn (i.e. when tk = −1, for example). The solid line is log(1 + ϕ) where ϕ
is the golden ratio.

Proposition 4.8. For fixed n, µn is the same for all matrices Mn of maximal
characteristic height.

Proof. The characteristic polynomial of Mn when tk = −1 has the same coeffi-
cients as the characteristic polynomial of Mn for tk = (−1)k−1 up to a sign change.
By Proposition 4.7, changing any of the entries tj of Mn for j > n − µn does not
affect the value of µn. Therefore µn is fixed. \

Theorem 4.9. The number of upper Hessenberg Toeplitz matrices of dimension
n with tk ∈ {−1, 0,+1} for 1 ≤ k ≤ n of maximal characteristic height is 2 · 3µn .

Proof. By Theorem 4.1 and Proposition 4.3, there are two matrices that at-
tain maximal characteristic height. By Proposition 4.7, any combination of tj ∈
{−1, 0,+1} for j > n − µn will not affect the characteristic height. Thus there are
3µn combinations of tj that result in the same characteristic height for each of the
two choices of tk that give maximal characteristic height. \

Remark 4.10. We have found that µn remains constant for 3 or 4 subsequent
values of n followed by an increment by 1. We have verified this pattern experimentally
up to degree 50,000. Figure 4 shows the pattern for matrix dimension up to 100.

Remark 4.11. The sequence µn+1 − µn is nearly equivalent to the sequence for
the generalized Fibonacci word f [3]

(4.5) a(n) =

⌊
n+ 2

ϕ+ 2

⌋
−
⌊
n+ 1

ϕ+ 2

⌋
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Fig. 4. Degree of the term corresponding to the height of the characteristic polynomial of an
n× n upper Hessenberg Toeplitz matrix of maximal characteristic height.

(A221150 on the OEIS). We have found that up to at least degree 50,000, µn+1−µn =
a(n+ 326) except when n ∈ {0, 2, 24,148, 24,149}.

Remark 4.12. The sequence µn is nearly equivalent to the sequence

(4.6)

⌊
n+ 327

ϕ+ 2

⌋
− 90

for n > 2. The two sequences are equal for all values up to n = 50,000 except when
n = 24,149.

The sequences presented in the previous remarks are examples of high-precision
fraud [2] requiring evaluation up to dimension 25,000 and nearly 25,000 digits of
precision to identity.

5. Maximal Height Characteristic Polynomials. In this section we restrict
our analysis to specific upper Hessenberg Toeplitz matrices of maximal characteristic
height, that is tk = −1 for all k. We denote a dimension n matrix of this form by

M̃n. M̃n is of maximal height by Proposition 4.3.

Proposition 5.1. The characteristic polynomial of M̃n is of the form

(5.1) Pn = zn + pn,n−1z
n−1 + · · ·+ pn,0

where pn,j is positive for all n and j.

Proof. When tk = −1 for 1 ≤ k ≤ n, Proposition 3.2 reduces to

pn,n = 1,(5.2a)

http://oeis.org/A221150
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pn,j = pn−1,j−1 +

n−j∑
k=1

pn−k,j for 1 ≤ j ≤ n− 1,(5.2b)

pn,0 =

n∑
k=1

pn−k,0, and(5.2c)

p0,0 = 1 .(5.2d)

Since p0,0 is positive, and all coefficients in the above equations are positive, pn,j must
be positive for all n and j. \

Proposition 5.2. The generating function of the sequence (pi,i, pi+1,i, . . .) for all
i ≥ 0 is

(5.3) Gi(x) =

(
1− x
1− 2x

)i+1

.

Proof. First we will prove the i = 0 case. Let

(5.4) G0(x) =

∞∑
`=0

p`,0x
` .

Then,

(5.5) (1− 2x)G0(x) = p0,0 +

∞∑
`=1

(p`,0 − 2p`−1,0)x` .

From equation (5.2c),

(1− 2x)G0(x) = p0,0 + (p1,0 − 2p0,0)x+

∞∑
`=2

(p`,0 − 2p`−1,0)x`(5.6)

= p0,0 + (p1,0 − 2p0,0)x+

∞∑
`=2

(∑̀
k=1

p`−k,0 − 2

`−1∑
k=1

p`−1−k,0

)
x`(5.7)

= p0,0 + (p1,0 − 2p0,0)x+
∞∑
`=2

(∑̀
k=1

p`−k,0 − 2
∑̀
k=2

p`−k,0

)
x`(5.8)

= p0,0 + (p1,0 − 2p0,0)x+

∞∑
`=2

(
p`−1,0 −

∑̀
k=2

p`−k,0

)
x` .(5.9)

Since p0,0 = p1,0 = 1,

(1− 2x)G0(x) = 1− x+

∞∑
`=2

(
p`−1,0 −

`−1∑
k=1

p`−1−k,0

)
x`(5.10)

= 1− x .(5.11)

Therefore

(5.12) G0(x) =
1− x
1− 2x

.
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Next we prove the general case for i > 0. Assume inductively that

(5.13) Gi(x) =

(
1− x
1− 2x

)i+1

=

∞∑
`=0

pi+`,ix
` .

∞∑
`=0

pi+`+1,i+1x
` =

(
1− 2x

1− 2x

) ∞∑
`=0

pi+`+1,i+1x
`

=

(
1

1− 2x

)[ ∞∑
`=0

pi+`+1,i+1x
` − 2x

∞∑
`=0

pi+`+1,i+1x
`

]

=

(
1

1− 2x

)[
pi+1,i+1 +

∞∑
`=1

(pi+`+1,i+1 − 2pi+`,i+1)x`
]

Because pi+1,i+1 = 1 = pi,i

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(pi+`+1,i+1 − 2pi+`,i+1)x`
]

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(
pi+`+1,i+1 − pi+`,i+1 − pi+`,i+1

)
x`
]

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(
pi+`+1,i+1 − pi+`,i+1 −

`−1∑
k=0

pi+`−k,i+1 +

`−1∑
k=1

pi+`−k,i+1

)
x`
]

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(
pi+`+1,i+1 − pi+`,i+1 −

`−1∑
k=0

pi+`−k,i+1 +

`−1∑
k=1

pi+`−k,i+1

)
x`
]

=

(
1

1− 2x

)[
pi,i +

∞∑
`=1

((
pi+`+1,i+1 −

∑̀
k=1

pi+`+1−k,i+1

)
−
(
pi+`,i+1 −

`−1∑
k=1

pi+`−k,i+1

))
x`

]
.

Rewriting equation (5.2b) as

(5.14) pn,j = pn+1,j+1 −
n−j∑
k=1

pn+1−k,j+1,

we find
∞∑
`=0

pi+`+1,i+1x
` =

(
1

1− 2x

)[
pi,i +

∞∑
`=1

(pi+`,i − pi+`−1,i)x
`

]

=

(
1

1− 2x

)[ ∞∑
`=0

pi+`,ix
` −

∞∑
`=1

pi+`−1,ix
`

]

=

(
1

1− 2x

)[ ∞∑
`=0

pi+`,ix
` −

∞∑
`=0

pi+`,ix
`+1

]

=

(
1− x
1− 2x

) ∞∑
`=0

pi+`,ix
`

=

(
1− x
1− 2x

)i+2

\
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Proposition 5.3. The coefficients pn,k are given by the OEIS sequence A105306
for the “number of directed column-convex polynomials of area n, having the top of
the right-most column at height k.” We have pn,k = Tn+1,k+1 where

(5.15) Tn,k =


n−k−1∑
j=0

(
k + j

k − 1

)(
n− k − 1

j

)
if k < n

1 if k = n

Maple “simplifies” this to

(5.16) Tn,k =

kF
(
k + 1, k + 1− n −1

2

)
if n 6= k

1 if n = k

where F (·) is the hypergeometric function defined as

(5.17) F

(
a, b

z
c

)
=

∞∑
n=0

an̄bn̄

cn̄
zn

n!

where qn̄ is q · (q + 1) · · · (q + n− 1).

Proof. We will show that

(5.18) pi+n,i = Tn+i+1,i+1 =


n−1∑
j=0

(
i+ j + 1

i

)(
n− 1

j

)
if n > 0

1 if n = 0 .

By Proposition 5.2

(5.19) pi+n,i =
1

n!

dn

dxn
Gi(x)

∣∣∣
x=0

where

(5.20) Gi(x) =

(
1− x
1− 2x

)i+1

= fi(g(x))

with

fi(x) = xi+1, and(5.21)

g(x) =
1− x
1− 2x

=
1

1− 2x
− x

1− 2x
.(5.22)

Differentiating fi(x) and g(x) with respect to x,

dn

dxn
fi(x) =

{
(i+ 1)(i) · · · (i− n+ 2)xi+1−n for n ≤ i+ 1

0 for n > i+ 1
(5.23)

=

(
i+ 1

n

)
n!xi+1−n(5.24)

http://oeis.org/A105306
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and

dn

dxn
g(x) =

dn

dxn
1

1− 2x
+

dn

dxn
x

1− 2x
(5.25)

=
2nn!

(1− 2x)n+1
+

2n−1n!

(1− 2x)n
+

2nn!x

(1− 2x)n+1
(5.26)

=
2nn!(1− x)

(1− 2x)n+1
− 2n−1n!

(1− 2x)n
(5.27)

with

(5.28)
dn

dxn
g(x)

∣∣∣
x=0

=

{
n! 2n−1 for n > 0

1 for n = 0 .

When n = 0,

(5.29) pi+n,i = pi,i = Gi(0) = 1 .

For n > 0, by Faà di Bruno’s formula we have

dn

dxn
Gi(x) =

dn

dxn
fi(g(x))(5.30)

=

n∑
k=1

f
(k)
i

(
g(x)

)
Bn,k(g′(x), g′′(x), . . . , g(n−k+1)(x))(5.31)

and therefore

dn

dxn
Gi(x)

∣∣∣
x=0

=

n∑
k=1

f
(k)
i

(
g(0)

)
Bn,k(g′(0), g′′(0), . . . , g(n−k+1)(0))(5.32)

=

n∑
k=1

f
(k)
i (1)Bn,k(1, 4, 24, . . . , (n− k + 1)!2n−k) .(5.33)

By Theorem 6 of [1],

Bn,k(1, 4, 24, . . . , (n− k + 1)!2n−k) = Bn,k(q0(1), q1(2), . . . , qn−k(n− k + 1))(5.34)

=

(
n− 1

k − 1

)
n!

k!
2n−k(5.35)

because the function

(5.36) qn(x) =
x!

(x− n)!
2n

satisfies

(5.37) qn(x+ y) =

n∑
k=0

(
n

k

)
qk(y)qn−k(x) .

Returning to the proof,

pi+n,i =
1

n!

dn

dxn
Gi(x)

∣∣∣
x=0

(5.38)
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=
1

n!

n∑
k=1

(
i+ 1

k

)(
n− 1

k − 1

)
k!
n!

k!
2n−k(5.39)

=

n∑
k=1

(
i+ 1

k

)(
n− 1

k − 1

)
2n−k(5.40)

=

n−1∑
k=0

(
i+ 1

k + 1

)(
n− 1

k

)
2n−k−1(5.41)

=

n−1∑
k=0

(
i+ 1

k + 1

)(
n− 1

k

) n−k−1∑
j=0

(
n− k − 1

j

)
(5.42)

=

n−1∑
k=0

n−k−1∑
j=0

(
n− 1

k

)(
i+ 1

k + 1

)(
n− k − 1

j

)
(5.43)

=

n−1∑
j=0

n−j−1∑
k=0

(
n− 1

k

)(
i+ 1

k + 1

)(
n− k − 1

j

)
(5.44)

=

n−1∑
j=0

j∑
k=0

(
n− 1

k

)(
i+ 1

k + 1

)(
n− k − 1

n− j − 1

)
(5.45)

=

n−1∑
j=0

j∑
k=0

(
n− 1

n− j − 1

)(
j

k

)(
i+ 1

k + 1

)
(5.46)

=

n−1∑
j=0

(
n− 1

j

) j∑
k=0

(
j

k

)(
i+ 1

k + 1

)
(5.47)

=

n−1∑
j=0

(
n− 1

j

)(
i+ j + 1

j + 1

)
(5.48)

=

n−1∑
j=0

(
n− 1

j

)(
i+ j + 1

i

)
(5.49) \

Proposition 5.4. The characteristic polynomial of M̃n is

Pn(z) =

bn/2c∑
`=0

(
n

2`

)(
z

2
+1

)n−2`(
1+

z2

4

)`
+
z

2

bn−1
2 c∑
`=0

(
n

2`+ 1

)(
z

2
+1

)n−2`−1(
1+

z2

4

)`
.

This proposition can be proved in several ways. We choose below to think of z ∈
C \ {±2i}, for a reason that will become clear. Since the end result is a polynomial
in z, proving the formula for z 6= ±2i will recover the exceptional cases by continuity.

Another equally valid approach would be to think of z as being transcendental

and noting that the characteristic polynomial of M̃n has integer coefficients.

Proof. From Proposition 3.1

Pn(z) = zPn−1(z)−
n∑
k=1

tkPn−k(z)(5.50)
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= zPn−1(z)−
n−1∑
k=0

tn−kPk(z) .(5.51)

If tk = −1 for 1 ≤ k ≤ n,

(5.52) Pn(z) = zPn−1(z) +

n−1∑
k=0

Pk(z) .

Let Tj(z) =
∑j
k=0 Pk(z). Tn(z) = Tn−1(z) + Pn(z), so

Pn(z) = zPn−1(z) + Tn−1(z)(5.53)

Tn(z) = zPn−1(z) + 2Tn−1(z)(5.54)

or [
Pn(z)
Tn(z)

]
=

[
z 1
z 2

]n [
P0(z)
T0(z)

]
(5.55)

=

[
z 1
z 2

]n [
1
1

]
(5.56)

since P0(z) = 1 and T0(z) =
∑0
j=0 P0(z) = 1. The eigenvalues of this matrix are

λ+ = 1 +
z

2
+ ∆(5.57)

λ− = 1 +
z

2
−∆(5.58)

∆ =
√

1 + z
2/4 .(5.59)

If z = ±2i the eigenvalues are multiple and our approach would have to be modified.
We ignore this and recover the true result at the end. The eigenvectors are

(5.60) V =

[
1 1

1− z
2 + ∆ 1− z

2 −∆

]
and

(5.61) V−1 =
−1

2∆

[
1− z

2 −∆ −1
−1 + z

2 −∆ 1

]
hence

(5.62) V−1

[
1
1

]
=
−1

2∆

[ −z
2 −∆
z
2 −∆

]
=

[
1
2 + z

4∆
1
2 −

z
4∆

]
.

Therefore

(5.63)

[
Pn(z)
Tn(z)

]
=

[
1 1

1− z
2 + ∆ 1− z

2 −∆

] [
λn+
(

1
2 + z

4∆

)
λn−
(

1
2 −

z
4∆

) ]
and in particular

(5.64) Pn(z) = λn+

(
1

2
+

z

4∆

)
+ λn−

(
1

2
− z

4∆

)
.
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Now

λn+ =

(
z

2
+ 1 + ∆

)n
(5.65)

=

n∑
k=0

(
n

k

)(
z

2
+ 1

)
∆k(5.66)

and

λn− =

(
z

2
+ 1−∆

)n
(5.67)

=

n∑
k=0

(
n

k

)(
z

2
+ 1

)
(−∆)

k
.(5.68)

(5.69) ∴ Pn(z) =

n∑
k=0

(
n

k

)(
z

2
+ 1

)n−k(
1

2
∆k +

1

2
(−∆)k

)

+
z

4∆

n∑
k=0

(
n

k

)(
z

2
+ 1

)n−k (
∆k − (−∆)k

)
.

Every odd term drops out of the first, and every even out of the second.

∴ Pn(z) =

n∑
k=0
k even

(
n

k

)(
z

2
+ 1

)n−k
∆k +

z

4∆

n∑
k=0
k odd

(
n

k

)(
z

2
+ 1

)k
· 2∆k

=

bn/2c∑
`=0

(
n

2`

)(
z

2
+ 1

)n−2`(
1 +

z2

4

)`
+
z

2

bn−1
2 c∑
`=0

(
n

2`+ 1

)(
z

2
+ 1

)n−2`−1(
1 +

z2

4

)`
.

At this point the difficulty with ∆ = 0 has been resolved by continuity. We see that
Pn(z) is a polynomial of degree n. \

6. A Connection with Compositions. Consider the case with symbolic en-
tries ti, and subdiagonals −1 for convenience with minus signs in the formulae. For
instance, the 5 by 5 example upper Hessenberg Toeplitz matrix is

(6.1) M5 =



t1 t2 t3 t4 t5

−1 t1 t2 t3 t4

0 −1 t1 t2 t3

0 0 −1 t1 t2

0 0 0 −1 t1


.

In this section we consider what happens when we take determinants Pn(z) = det(zI−
Mn). Examining P0(0), P1(0), P2(0), P3(0), and P4(0), and in particular Pk(0) (i.e.
det(−Mk)) we see that

P0(0) = 1 by convention(6.2)

P1(0) = t1(6.3)
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P2(0) = t21 + t2(6.4)

P3(0) = t31 + 2t1t2 + t3(6.5)

P4(0) = t41 + 3t21t2 + 2t1t3 + t22 + t4 .(6.6)

One may interpret these (looking at the subscripts) as compositions: 2 = 1 + 1 = 2;
3 = 1 + 1 + 1 = 1 + 2 = 2 + 1 = 3; 4 = 1 + 1 + 1 + 1 = 2 + 1 + 1 = 1 + 2 + 1 =
1 + 1 + 2 = 1 + 3 = 3 + 1 = 2 + 2 = 4. The number of compositions of n is 2n−1,
which we get if all tj = 1.

From the Wikipedia entry on composition (combinatorics), “a composition of an
integer n is a way of writing n as the sum of a sequence of strictly positive integers.”

One may interpret the recurrence relation

(6.7) pn,0 =

n∑
k=1

tkpn−k,0

from Proposition 3.2 as saying that to generate a composition of n, you get the
composition of n − k and then add the number “k” to them; adding these together
gives all compositions. For example, when n = 5 we have p0,0 = 1, p1,0 = t1,
p2,0 = t21 + t2, p3,0 = t31 + 2t1t2 + t3, and p4,0 = t41 + 3t21t2 + 2t1t3 + t22 + t4. Then

p5,0 = t1p4,0 + t2p3,0 + t3p2,0 + t4p1,0 + t5p0,0

= t51 + 3t31t2 + 2t21t3 + t1t
2
2 + t1t4 + t2t

3
1 + 2t1t

2
2 + t2t3 + t21t3 + t2t3 + t4t1 + t5

= t51 + 4t31t2 + 3t21t3 + 3t1t
2
2 + 2t1t4 + 2t2t3 + t5 .

Remark 6.1. This determinant also contains the whole characteristic polynomial.
Simply replace t, with t1−z and we get det (Mn − zI) = (−1)nPn. This suggests that
“compositions with all parts bigger than 1” can be used to generate all compositions.
This fact is well-known. The combinatorial analysis of this recurrence formula is not
quite trivial.

7. Concluding Remarks. The class of upper Hessenberg Bohemian matrices,
and the much smaller class of Bohemian upper Hessenberg Toeplitz matrices, give
a useful way to study Bohemian matrices in general. This is an instance of Polya’s
adage “find a useful specialization.” [5, p. 190] Because these classes are simpler than
the general case, we were able to establish several theorems.

In this paper we have introduced two new formulae for computing the character-
istic polynomials of upper Hessenberg Toeplitz matrices. Our first formula, Propo-
sition 3.1, computes the characteristic polynomials recursively. Our second formula,
Proposition 3.2, computes the coefficients recursively. Finally, we show the number
of upper Hessenberg Toeplitz matrices of maximal characteristic height which is at
least 2n and we conjecture O((1 + ϕ)n) in Theorem 4.9.

Many puzzles remain. Perhaps the most striking is the angular appearance of
the set of eigenvalues Λ(Mn), such as in Figures 1, and 2. General matrices have
eigenvalues asymptotic to a (scaled) disc [6]; our computations suggest that as n→∞,
Λ(Mn)/n1/2 tends to an irregular hexagonal shape, rather than a disk. More, the density
does not appear to be approaching uniformity. Further, the boundary is irregular, with
shapes suggestive of what is popularly known as the “dragon curve” (in reverse—these
delineate where the eigenvalues are absent, near the edge). We have no explanation
for this.
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of the project Giner de los Rios. L. Gonzalez-Vega, J. R. Sendra and J. Sendra are
partially supported by the Spanish Ministerio de Economı́a y Competitividad under
the Project MTM2017-88796-P.

REFERENCES

[1] M. Abbas and S. Bouroubi, On new identities for Bell’s polynomials, Discrete Mathematics,
293 (2005), pp. 5–10.

[2] J. M. Borwein and P. B. Borwein, Strange series and high precision fraud, The American
mathematical monthly, 99 (1992), pp. 622–640.

[3] E. Y. S. Chan, R. M. Corless, L. Gonzalez-Vega, J. R. Sendra, J. Sendra, and S. E.
Thornton, Bohemian upper hessenberg matrices. In preparation., 2017.

[4] R. M. Corless and S. E. Thornton, The Bohemian eigenvalue project, ACM Communications
in Computer Algebra, 50 (2016), pp. 158–160.

[5] G. Polya, How to solve it: A new aspect of mathematical method, Princeton university press,
2014.

[6] T. Tao and V. Vu, Random matrices have simple spectrum, Combinatorica, 37 (2017), pp. 539–
553.


	1 Introduction
	2 Prior Work
	3 Upper Hessenberg Toeplitz Matrices
	4 Maximal Characteristic Height Upper Hessenberg Toeplitz Matrices
	5 Maximal Height Characteristic Polynomials
	6 A Connection with Compositions
	7 Concluding Remarks
	References

