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Which graphs occur as γ-graphs?

Matt DeVos Adam Dyck Jonathan Jedwab Samuel Simon
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Abstract

The γ-graph of a graph G is the graph whose vertices are labelled by the minimum dominat-
ing sets of G, in which two vertices are adjacent when their corresponding minimum dominating
sets (each of size γ(G)) intersect in a set of size γ(G)− 1. We extend the notion of a γ-graph
from distance-1-domination to distance-d-domination, and ask which graphs H occur as γ-
graphs for a given value of d ≥ 1. We show that, for all d, the answer depends only on whether
the vertices of H admit a labelling consistent with the adjacency condition for a conventional
γ-graph. This result relies on an explicit construction for a graph having an arbitrary pre-
scribed set of minimum distance-d-dominating sets. We then completely determine the graphs
that admit such a labelling among the wheel graphs, the fan graphs, and the graphs on at most
six vertices. We connect the question of whether a graph admits such a labelling with previous
work on induced subgraphs of Johnson graphs.

1 Introduction

In this paper we consider only finite, loop-free, undirected graphs G without multiple edges. Our
main object of study is the γd-graph of a graph G, which we introduce via the following three
definitions.

Definition 1.1. Let G be a graph, and let S and T be subsets of the vertex set V (G) of G. The
set S distance-d-dominates T if every vertex of T is within distance d in G of some vertex in S. In
the case T = V (G), the subset S is a distance-d-dominating set of G.

Definition 1.2. A minimum distance-d-dominating set of a graph G is a distance-d-dominating
set of smallest size, and this size is the distance-d-domination number γd(G) of G.

These definitions reduce to well-studied domination notions when d = 1: a distance-1-dominating
set is a dominating set; a minimum distance-1-dominating set is a minimum dominating set; and
the distance-1-domination number γ1(G) is the domination number γ(G). The study of domination
in graphs spans more than fifty years, with early interpretations that include the number of queens
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Figure 1: A graph G, its γ1-graph, and its γ2-graph.

required to access every square of a chessboard [25], the strength of surveillance in a network [2], and
network communications [20]. The modern study of domination has connections to game theory,
coding theory, and matching theory; see [13] and [12] for extensive background. The extension of
domination notions to the cases d > 1 in Definitions 1.1 and 1.2 follows [19] and [14], for example.

Definition 1.3. The γd-graph γd ·G of a graph G has vertices labelled by the minimum distance-
d-dominating sets of G, and an edge joining two vertices if and only if their corresponding labels
intersect in a set of size γd(G) − 1.

The case d = 1 of Definition 1.3 corresponds to the γ-graph γ ·G, introduced by Subramanian
and Sridharan [29] and subsequently studied in [28], [1], [27], [3]. We believe that the generalisation
of the γ-graph in Definition 1.3 to cases d > 1 is new. (An alternative definition of a γ-graph,
written G(γ) and studied in [5], [10], [9], [23], imposes an additional restriction on the edges of the
γ-graph; we do not consider that definition in this paper.) See Figure 1 for an example of a graph
G and its γ1-graph and γ2-graph.

We say that a graph H is d-realisable if there exists a graph G for which H = γd ·G; otherwise
H is d-unrealisable. A graph is minimally d-unrealisable if it is d-unrealisable but every proper
induced subgraph is d-realisable. See Figure 2 for an example of a 2-unrealisable and minimally
2-unrealisable graph. The central objective is:

Determine, for given d, which graphs H are d-realisable and which are minimally d-unrealisable.
(1)

We say that a graph H is labellable if, for some positive integer k, the vertices of H can be
labelled by distinct k-subsets of {1, 2, 3, . . .} such that two vertices are adjacent if and only if their
corresponding labels intersect in a set of size k − 1; otherwise H is unlabellable. Given a labellable
graph H , neither its labelling nor the associated integer k are unique: adding a new symbol to each
of the vertex labels increases k by one. The following observation is immediate.

Observation 1.4. Each induced subgraph of a labellable graph is labellable.

A graph that is d-realisable for some positive integer d is necessarily labellable. Our main result
(Corollary 1.6 below) is that the converse holds for every d, which we prove using the following
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G K2,3

Figure 2: The graph G is 2-unrealisable, and it contains the induced subgraph K2,3 which is
minimally 2-unrealisable (as established in Corollary 1.6 and Theorem 3.3).

theorem. We consider it very surprising that there is such a simple characterisation of when a graph
is d-realisable.

Theorem 1.5. Let k and d be positive integers, and let D be a nonempty set of k-subsets of
{1, 2, 3, . . .}. Then there is a graph G whose minimum distance-d-dominating sets are the elements
of D.

Corollary 1.6.

(i) A graph H is d-realisable for every positive integer d if and only if it is labellable.

(ii) A graph H is d-unrealisable for every positive integer d if and only if it is unlabellable.

(iii) A graph H is minimally d-unrealisable for every positive integer d if and only if it is unla-
bellable but every proper induced subgraph is labellable.

Proof. Let d be a positive integer. We shall show that a graph H is d-realisable if and only if it is
labellable, which implies each of (i), (ii), and (iii).

If H is d-realisable with respect to a graph G then it is labellable using the minimum distance-d-
dominating sets of G. Conversely, suppose that H is labellable. Then for some positive integer k the
vertices of H can be labelled by distinct k-subsets of {1, 2, 3 . . .} such that two vertices are adjacent
if and only if their corresponding labels intersect in a set of size k− 1. Then by Theorem 1.5 there
is a graph G whose minimum distance-d-dominating sets are these k-subsets. Therefore H = γd ·G
and so H is d-realisable.

In view of Observation 1.4 and Corollary 1.6, we shall say that a graph H is minimally unlabellable
if it is unlabellable but every proper induced subgraph is labellable. This allows us to rephrase the
central objective (1) as:

Determine which graphs are labellable and which are minimally unlabellable. (2)

Using the crucial insight that (1) is equivalent to (2), we shall simplify, unify, and extend many
results that were previously stated and proved (often only with considerable effort) in terms of
γ1-graphs.

We now describe some relationships with previous work that uses different terminology.
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Definition 1.7. For positive integers k and n satisfying k ≤ n, the Johnson graph J(n, k) has
vertices labelled by the k-subsets of {1, 2, . . . , n}, and an edge joining two vertices if and only if
their corresponding labels intersect in a set of size k − 1.

Johnson graphs are well-studied as distance-regular graphs [4], in quantum probability [17], and in
spectral analysis [18]; see [11] for further background. It follows from Definition 1.7 that a graph G
is labellable if and only if it is (isomorphic to) an induced subgraph of a Johnson graph. The results
of [24], [22], and [21], concerning which graphs occur as an induced subgraph of a Johnson graph,
can therefore be equivalently phrased as results on which graphs are labellable. In this paper we
extend many of these previous results.

The special case d = 1 of Theorem 1.5 was established by Honkala, Hudry and Lobstein [15,
Theorem 2] using the language of optimal dominating codes in graphs; we shall show that in this
special case our construction proving Theorem 1.5 is both simpler and much more economical.
Although these authors developed certain generalisations of the case d = 1 of Theorem 1.5 in a
later paper [16], to our knowledge the cases d > 1 of Theorem 1.5 (and therefore the cases d > 1 of
Corollary 1.6) are new. Honkala, Hudry and Lobstein interpreted their result on optimal dominating
codes [15, Theorem 2] in terms of induced subgraphs of Johnson graphs, and cited results of [24]
on these graphs. They also defined a graph N (G) which is identical to γ ·G, but did not explicitly
mention γ-graphs nor cite publications phrased in terms of γ-graphs.

We now outline the rest of the paper. In Section 2 we give a constructive proof of Theorem 1.5.
In Section 3 we summarise previous proven and claimed results on which graphs are labellable and
which are (minimally) unlabellable, and present counterexamples that disprove two of these claimed
results. In Section 4 we derive a series of lemmas that constrain the form of the labelling of an
induced subgraph of a labellable graph G, for use in subsequent sections. In Section 5 we determine
precisely which wheel graphs and which fan graphs are labellable, exhibiting an infinite family of
minimally unlabellable graphs. In Section 6 and Appendix A we verify the previously known result
that there are exactly four minimally unlabellable graphs on at most five vertices. In Section 7
and Appendix B we prove that there are exactly four minimally unlabellable graphs on six vertices.
In Section 8 we establish that a specific graph on seven vertices is minimally unlabellable. We
conclude in Section 9.

2 Proof of Theorem 1.5

In this section we give a constructive proof of Theorem 1.5. The principle of the construction is to
modify a complete graph in order to eliminate all sets of size k − 1, and all sets of size k that do
not appear in D, as possible minimum distance-d-dominating sets. The construction is illustrated
in Figure 3.

Proof of Theorem 1.5. Take n =
∣

∣

∣

⋃

D∈D

D
∣

∣

∣
, and relabel if necessary so that each element of D is a

subset of [n] := {1, 2, . . . , n}. Call the collection B of all minimal subsets of [n] containing at least
one element of each D ∈ D the blocker of D. Construct the following graph G.

Step 1. Initialise G to be the complete graph Kn and label its vertices 1, 2, . . . , n.

Step 2. For each B ∈ B: add new vertices xB, yB to G; add paths P (xB), P (yB) of length d− 1 to
G that terminate in xB , yB, respectively; and join xB and yB to each of the vertices of B.
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We now prove the result by showing that the minimum distance-d-dominating sets of G are
exactly the elements of D.

(a) No vertex added in Step 2 is contained in a minimum distance-d-dominating set of G.

Consider B ∈ B and suppose, for a contradiction, that a vertex w in P (xB) is contained in a
minimum distance-d-dominating set D of G. Then no vertex z in P (yB) is contained in D,
otherwise we may obtain a smaller distance-d-dominating set than D by replacing the vertices
w and z in D with a single vertex from the nonempty set B: this vertex distance-d-dominates
all vertices of P (xB) and P (yB) by construction, and it is at least as close to each of the other
vertices of G as w and z are.

Since no vertex z in P (yB) is contained in D, and the pendant vertex of P (yB) is distance-d-
dominated by some vertex of D, the set D must contain some vertex of B. This vertex of B
distance-d-dominates all vertices of P (xB) and P (yB) by construction, and is at least as close
to each of the other vertices of G as w is. So we may obtain a smaller distance-d-dominating
set than D by removing w from D, giving the required contradiction.

(b) Each element of D is a distance-d-dominating set of G.

Let D ∈ D. Each vertex of D distance-1-dominates the vertices labelled 1, 2, . . . , n because G
was initialised to Kn. Let B ∈ B; it remains to show that D distance-d-dominates all vertices
of P (xB) and P (yB). By the definition of B, we may choose a vertex i in the nonempty set
B ∩ D. By construction, the vertices of P (xB) and P (yB) are all distance-d-dominated by
i ∈ D.

(c) No (k − 1)-subset of [n], and no k-subset of [n] not contained in D, distance-d-dominates G.

In the case k = 1, the statement holds vacuously. Otherwise, take k ≥ 2 and let S be a subset
of [n] that either has size k− 1, or has size k and is not contained in D. We shall show that S
does not distance-d-dominate G. The set [n] \ S contains at least one element of each D ∈ D
and so, by minimality of the elements of the blocker, contains some set B ∈ B. Therefore no
element of B belongs to S. It follows that S does not distance-d-dominate the pendant vertex
of P (xB) and therefore does not distance-d-dominate G.

By part (a), the minimum distance-d-dominating sets of G contain vertices only from [n]. By part
(b), the k-subsets in D distance-d-dominate G, so γd(G) ≤ k. By parts (b) and (c), we know
γd(G) ≥ k and the k-subsets of [n] which distance-d-dominate G are exactly the elements of D. It
follows that the minimum distance-d-dominating sets of G are exactly the elements of D.

Figure 3 illustrates the above proof using the example of d = 3 and D =
{

{1, 2, 3}, {1, 2, 4}
}

.
We set k = 3 and n = 4 and initialise G to be K4 with vertex labels 1, 2, 3, 4. The blocker of D is
B =

{

{1}, {2}, {3, 4}
}

. For the element {1} of B, we add vertices x1, y1 to G, add paths P (x1),
P (y1) of length 2 to G that terminate in vertices x1, y1 respectively, and join x1 and y1 to the
vertex 1. This ensures that [n] \ {1} = {2, 3, 4}, as well as each of its proper subsets, is not a
distance-3-dominating set of G. We repeat for each other element of B. The resulting graph G has
22 vertices and 26 edges. In general, the graph G constructed according to the proof of Theorem 1.5
has n+ 2d|B| vertices and

(

n

2

)

+ 2
∑

B∈B

|B|+ 2(d− 1)|B| edges.

In the special case d = 1, the constructed graph G has n + 2|B| vertices and
(

n

2

)

+ 2
∑

B∈B

|B|

edges. This special case is also proved constructively in [15, Theorem 2], by means of a different
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Figure 3: The graph G for d = 3 and D =
{

{1, 2, 3}, {1, 2, 4}
}

, as constructed in the proof of

Theorem 1.5. The blocker of D is B =
{

{1}, {2}, {3, 4}
}

.

graph containing

n+ (k + 1)

(

n

k − 1

)

+ (k + 1)

((

n

k

)

− |D|

)

vertices and
(

n

2

)

+ (k + 1)(n− k + 1)

(

n

k − 1

)

+ (k + 1)(n− k)

((

n

k

)

− |D|

)

edges. The construction presented here is both simpler and much more economical. For example,
for d = 1 and D =

{

{1, 2, 3}, {1, 2, 4}
}

(giving k = 3 and n = 4 and B =
{

{1}, {2}, {3, 4}
}

), the
graph constructed here contains 10 vertices and 14 edges whereas the graph constructed according
to the method of [15, Theorem 2] contains 36 vertices and 62 edges (see Figure 4). For a further
example, for d = 1 and D =

{

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 6}, {2, 3, 5, 7}, {3, 5, 7, 8}
}

(giving k = 4

and n = 8 and B =
{

{1, 3}, {1, 5}, {1, 7}, {2, 3}, {2, 5}, {2, 7}, {2, 8}, {3, 4}, {3, 6}, {4, 5}
}

), the graph
constructed here contains 28 vertices and 68 edges whereas the graph constructed according to the
method of [15, Theorem 2] contains 613 vertices and 2728 edges.

3 Previous results

In this section we summarise previous proven and claimed results on which graphs are labellable
and which are (minimally) unlabellable, taken primarily from the literature on induced subgraphs
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3
4

bi({3, 4})

bi({1, 2})

bi({1, 4})bi({2, 3})

bi({1, 3}) bi({2, 4})

bi({1, 3, 4})bi({2, 3, 4})

Figure 4: The graph G for d = 1 and D =
{

{1, 2, 3}, {1, 2, 4}
}

, as constructed in the proof of
Theorem 1.5 (left) and in the proof of [15, Theorem 2] (right, where each white vertex represents
a set of four vertices).

of Johnson graphs. In several cases, the consequences for γ1-graphs implied by Corollary 1.6 were
previously derived in the γ-graph literature only with considerable effort. Indeed, even the result
for 1-realisable graphs implied by Observation 1.4 was proved in [27, Theorem 2.1] only by means
of a complicated construction involving many vertices and edges.

We begin with some general constructions of labellable graphs.

Theorem 3.1.

(i) [24, Proposition 6] A graph is labellable if and only if each of its components is labellable.

(ii) [24, Proposition 7] The Cartesian product of two labellable graphs is labellable.

(iii) [24, Proposition 5] A graph G is labellable if and only if the graph obtained by repeatedly
deleting isolated vertices and pendant vertices from G is empty or labellable.

The result for 1-realisable graphs implied by Theorem 3.1 (ii) was proved in [1, Theorem 3.4].
We next describe several infinite families of labellable graphs. For a positive integer n, the

hypercube graph Qn has vertices labelled by the 2n binary n-tuples, and an edge joining two vertices
if and only if their corresponding labels differ in exactly one position. For an integer n ≥ 3, the
prism graph Πn on 2n vertices is formed by joining corresponding vertices of two cycle graphs Cn.

Theorem 3.2.

(i) [24, Proposition 4] The complete graph Kn on n ≥ 1 vertices is labellable.

(ii) [24, Proposition 4] The cycle graph Cn on n ≥ 3 vertices is labellable.

(iii) (Corollary of Theorem 3.1 (iii)) Every tree is labellable and every graph containing exactly
one cycle is labellable.

7



(iv) [22, Theorem 4.2] For each positive integer n, the hypercube graph Qn is labellable.

(v) [22, Theorem 4.1] For integer n ≥ 3, the prism graph Πn is labellable.

The result for 1-realisable graphs implied by Theorem 3.2 (ii), (iii), and (iv) was proved in [28,
Theorem 2.4], [28, Theorem 2.6], and [3, proof of Lemma 2.2], respectively. Theorem 3.2 (iv) can
alternatively be proved by noting that Q1 is trivially labellable, regarding Qn for n ≥ 2 as the
Cartesian product of Qn−1 and Q1, and then using Theorem 3.1 (ii).

We now specify all minimally unlabellable graphs on at most five vertices.

Theorem 3.3 ([28, Theorem 2.7], [1, Theorem 2.3], [27, Theorem 2.1]; independently [21, The-
orems 3.1, 3.2]). There are exactly four minimally unlabellable graphs on at most five vertices,
namely:

(i) U5

U1

U4

U2

U3

(ii) V2

V3 V4

V1

V5

(iii) Y2

Y3 Y4 Y5

Y1

(iv)

Z2 Z4

Z1

Z3 Z5

Malik and Ali [22, Theorem 4.3] proved that the complete bipartite graph Km,n is unlabellable
when the conditions m ≥ 2 and n ≥ 3 both hold, and that the graph Kn − e is unlabellable
for all n ≥ 5 and an arbitrary edge e; these results follow by combining Observation 1.4 with
Theorem 3.3 (i) and (iv), respectively.

We finally present several claims that are stated without proof in [22]. For an integer n ≥ 4,
the wheel graph Wn is formed by joining a single vertex to every vertex of a cycle graph on n− 1
vertices. For positive integers m and n, the fan graph Fm,n is formed by joining m isolated vertices
to every vertex of a path on n vertices.

Claim 3.4 ([22, p.453]). The wheel graph Wn is unlabellable for even n ≥ 6.

Claim 3.5 ([22, p.453]).

(i) The fan graph F1,n is labellable for all n ≥ 1.

(ii) The fan graph Fm,n is unlabellable when the conditions m ≥ 4 and n ≥ 2 both hold.

8



Claim 3.6 ([22, p.452]). There are exactly four minimally unlabellable graphs on six vertices,
namely:

(i) U6

U2

U3 U4

U5

U1

(ii) U4

U2 U3

U1 U5

U6

(iii)

U1

U2 U3U4

U5 U6 (iv)

Claim 3.7 ([22, p.453]). The following three graphs on seven vertices are minimally unlabellable:

(i) (ii) (iii) U6 U5

U1 U4

U2 U3

U7

However, parts (i) and (ii) of Claim 3.7 do not hold because these graphs are actually labellable:

234 245

123 145

126 146

135

245 235

246 356

126 136

346

9



In view of this discrepancy, and to remove uncertainty as to which results have been established,
we explicitly prove Claims 3.4 and 3.5 in Section 5, Claim 3.6 in Section 7, and Claim 3.7 (iii) in
Section 8.

4 Induced subgraphs of a labellable graph

In this section we derive a series of lemmas that constrain the form of the labelling of an induced
subgraph of a labellable graph G. These are useful either for determining a labelling of G, or for
proving that G is unlabellable. In these lemmas, we use 123X , for example, to mean the label set
{1, 2, 3} ∪ X where X is a (possibly empty) set disjoint from {1, 2, 3}. Vertices labelled as 123X
and 257X , for example, involve the same set X . We write ℓ(U) to mean the label of vertex U .

Lemma 4.1 specifies the possible labellings of the path P3 occurring as an induced subgraph of
a labellable graph.

Lemma 4.1. If the path P3 occurs as an induced subgraph of a labellable graph, then the labelling
of its vertices takes the form

u1u2T ℓ(U) u′
1u

′
2T

for some set T and distinct u1, u2, u
′
1, u

′
2. The four values of ℓ(U) consistent with this labelling are:

(i) u1u
′
1T ; (ii) u1u

′
2T ; (iii) u′

1u2T ; (iv) u2u
′
2T .

Proof. Let the vertices of the induced subgraph be

U1 U2 U3

Since vertices U1 and U3 are joined by a path of length two but are not adjacent, their labels differ
in exactly two elements. We may therefore write ℓ(U1) = u1u2T and ℓ(U3) = u′

1u
′
2T for some set

T and distinct u1, u2, u
′
1, u

′
2. Since the label ℓ(U2) must differ from each of u1u2T and u′

1u
′
2T in

exactly one element, this label takes one of the four values (i) to (iv).

Lemmas 4.2, 4.3, 4.4 describe the possible labellings of an induced subgraph of a labellable
graph, where the induced subgraph is K3, K4 − e, K1,3, respectively.

Lemma 4.2. If the complete graph K3 occurs as an induced subgraph of a labellable graph, then
without loss of generality and for some set X its labelling is exactly one of the two graphs:

12X

13X 23X

α

1X

3X 2X

β

Proof. Let the vertices of the induced subgraph be

10



U1

U3 U2

and let ℓ(U1) = {u1, u2, u3, . . . , uk} and ℓ(U2) = {u′
1, u2, u3, . . . , uk}, where u′

1, u1, u2, u3, . . . , uk are
all distinct and k ≥ 1. Since U3 is adjacent to U1 and U2, if ℓ(U3) contains both u1 and u′

1 then
we may take ℓ(U3) = {u1, u

′
1, u3, . . . , uk} where k ≥ 2. The resulting graph has the form α with

(u1, u2, u
′
1) = (1, 2, 3) and {u3, . . . , uk} = X .

Otherwise, we may assume that u1 /∈ ℓ(U3). Since U3 is adjacent to U1 and distinct from U2,
we have ℓ(U3) = {u′′

1 , u2, u3, . . . , uk} where u′′
1 /∈ {u′

1, u1, u2, u3, . . . , uk}. The resulting graph has
the form β with (u1, u

′
1, u

′′
1) = (1, 2, 3) and {u2, . . . , uk} = X .

Lemma 4.3. If K4 − e occurs as an induced subgraph of a labellable graph (where e is an arbitrary
edge of K4), then without loss of generality and for some set X its labelling is

12X

13X 23X

α

β

34X

in which the types α, β of the two induced K3 subgraphs are as depicted in Lemma 4.2.

Proof. Let the vertices of the induced subgraph be

U1

U2 U4

U3

By Lemma 4.1, we may take ℓ(U1) = {u1, u2, u3, . . . , uk}, ℓ(U2) = {u′
1, u2, u3, . . . , uk}, ℓ(U3) =

{u′
1, u

′
2, u3, . . . , uk}, where u′

1, u
′
2, u1, u2, u3 . . . , uk are all distinct and k ≥ 2. Since U4 is adjacent

to both U1 and U3, its possible labellings are determined by Lemma 4.1 with T = {u3, . . . , uk};
because U4 is distinct from and adjacent to U2, only cases (i) and (iv) of Lemma 4.1 can occur.

In case (i), we have ℓ(U4) = {u1, u
′
1, u3, . . . , uk}. The resulting graph has the given form with

(u1, u2, u
′
1, u

′
2) = (2, 1, 3, 4) and {u3, . . . , uk} = X .

In case (iv), we have ℓ(U4) = {u2, u
′
2, u3, . . . , uk}. The resulting graph (after reflection through

a horizontal axis) has the given form with (u1, u2, u
′
1, u

′
2) = (4, 3, 1, 2) and {u3, . . . , uk} = X .

In both cases, the types α, β of the two induced K3 subgraphs are as depicted in Lemma 4.2.

11



Lemma 4.4. If the complete bipartite graph K1,3 occurs as an induced subgraph of a labellable
graph, then without loss of generality and for some set X its labelling is

123X

234X 135X 126X

Proof. Let the vertices of the induced subgraph be

U1

U2 U3 U4

By Lemma 4.1, we may take ℓ(U2) = {u1, u2, u3, . . . , uk}, ℓ(U1) = {u′
1, u2, u3, . . . , uk}, ℓ(U3) =

{u′
1, u

′
2, u3, . . . , uk}, where u′

1, u
′
2, u1, u2, u3, . . . , uk are all distinct and k ≥ 2. Since U4 is ad-

jacent to U1 but not to U2 and not to U3, we may take ℓ(U4) = {u′
1, u2, u

′
3, u4, . . . , uk} where

u′
3 /∈ {u′

1, u
′
2, u1, u2, u3, u4 . . . , uk} and k ≥ 3. The resulting graph has the given form with

(u1, u2, u3, u
′
1, u

′
2, u

′
3) = (4, 2, 3, 1, 5, 6) and {u4, . . . , uk} = X .

5 Wheel graphs and fan graphs

In this section we firstly determine the values of n ≥ 4 for which the wheel graph Wn is labellable,
and show that for all other n it is minimally unlabellable. We then determine the pairs (m,n) for
which the fan graph Fm,n is labellable, minimally unlabellable, and unlabellable (not minimally).

The proof of Theorem 5.1 (i) is illustrated for W9 in Figure 5.

Theorem 5.1.

(i) The wheel graph Wn is labellable for n = 4 and for odd n ≥ 5.

(ii) The wheel graph Wn is minimally unlabellable for even n ≥ 6.

Proof.

(i) W4 is isomorphic to K4, which is labellable by Theorem 3.2 (i).

To show that W2m+1 is labellable for each integer m ≥ 2, form W2m+1 by joining a vertex v
to every vertex of a cycle on vertices v1, v2, . . . , v2m. Assign the label [m] := {1, 2, . . . ,m}
to vertex v and, for 1 ≤ i ≤ m, assign the label [m] \ {i} ∪ {m + i} to v2i−1 and the label
[m] \ {i} ∪ {m+ 1 + (i mod m)} to v2i.

(ii) Let m ≥ 3 and suppose, for a contradiction, that W2m is labellable. Form W2m by joining a
vertex v to every vertex of a cycle on vertices v1, v2, . . . , v2m−1. Each of the 2m− 1 triples of
vertices

{v, v1, v2}, {v, v2, v3}, . . . , {v, v2m−2, v2m−1}, {v, v2m−1, v1} (3)

12



{2, 3, 4, 5} {2, 3, 4, 6}

{1, 3, 4, 6}

{1, 3, 4, 7}

{1, 2, 4, 7}{1, 2, 4, 8}

{1, 2, 3, 8}

{1, 2, 3, 5}

{1, 2, 3, 4}

Figure 5: A labelling of the wheel graph W9 according to the proof of Theorem 5.1 (i).

then induces a subgraph K3 in W2m, and the labelling of each of these induced subgraphs has
exactly one of the two types α, β specified in Lemma 4.2. Since m ≥ 3, the vertices of two
adjacent triples in the list (3) (viewed as a cyclic sequence) induce a subgraph of the form
K4−e, and moreover by Lemma 4.3 each such induced subgraphK4−e comprises one induced
subgraph K3 of type α and one of type β. Therefore the types of the induced subgraphs K3

resulting from the cyclic sequence of 2m− 1 triples (3) alternate between α and β, which is
a contradiction.

We conclude that W2m is unlabellable. To show that W2m is minimally unlabellable, by
Observation 1.4 it is sufficient to show that all subgraphs obtained by removing a single vertex
of W2m are labellable. The graph W2m − v is the cycle graph C2m−1, which is labellable by
Theorem 3.2 (ii); the graph W2m − vi is an induced subgraph of W2m+1, and so is labellable
by applying Observation 1.4 to the result of part (i).

Theorem 5.1 (ii) provides an infinite family of minimally unlabellable graphs. In particular, it
establishes Claim 3.4.

Theorem 5.2.

(i) The fan graphs F2,2, F2,3, Fm,1 and F1,n are labellable for all m,n ≥ 1.

(ii) The fan graph F3,2 is minimally unlabellable.

(iii) The fan graph Fm,n is unlabellable (not minimally) for all (m,n) not specified in (i) and (ii).

Proof. (i) The graphs F2,2 and F2,3 are labellable:

13



12

13 23

34

12

24
23

13

34

We next show that Fm,1 is labellable for all m ≥ 1. Form Fm,1 by joining m isolated vertices
v1, v2, . . . , vm to a single vertex v. Assign the label [m] := {1, 2, . . . ,m} to vertex v and, for
1 ≤ i ≤ m, assign the label [m] \ {i} ∪ {m+ i} to vi.

We finally show that F1,n is labellable for all n ≥ 1. It is sufficient by Observation 1.4 to
show that F1,2r is labellable for all r ≥ 1, because F1,2r−1 is an induced subgraph of F1,2r.
Form F1,2r by joining a vertex v to every vertex of a path on vertices v1, v2, . . . , v2r. Assign
the label [r] to vertex v and, for 1 ≤ i ≤ r, assign the label [r] \ {i}∪ {r+ i} to v2i−1 and the
label [r]\{i}∪{r+1+ i} to v2i. (This is a slight modification of the proof of Theorem 5.1 (i).
In the case r = 4, the labelling described here is obtained by removing the edge joining the
vertices labelled {1, 2, 3, 5} and {2, 3, 4, 5} in Figure 5, and then replacing the vertex label
{1, 2, 3, 5} by {1, 2, 3, 9}.)

(ii) The graph F3,2 is graph (ii) of Theorem 3.3, which is minimally unlabellable.

(iii) By Observation 1.4, the graph F2,4 is unlabellable (not minimally) because it contains graph
(iii) of Theorem 3.3 as a proper induced subgraph:

Y2

Y3
Y4 Y5

Y1

The result follows from the observation that the fan graph Fm,n is a proper induced subgraph
of Fm+1,n and of Fm,n+1.

In particular, Theorem 5.2 establishes Claim 3.5.

6 Minimally unlabellable graphs on at most five vertices

Theorem 3.3 specifies that there are exactly four minimally unlabellable graphs on at most five
vertices. In this section we use the results of Section 4 to verify briefly that these four graphs are

14



indeed unlabellable. Appendix A demonstrates explicitly that all the other 27 connected graphs on
at most five vertices are labellable, which by Theorem 3.1 (i) then implies Theorem 3.3.

Consider each of the graphs (i) to (iv) in Theorem 3.3 in turn, and suppose for a contradiction
that the graph is labellable.

(i) By Lemma 4.4 applied to the subgraph induced by vertices U1, U3, U4, U5, we may assign
labels

126X

123X
135X

ℓ(U2)

234X

for some set X . Apply Lemma 4.1 with T = {3} ∪X to the induced path P3 on the vertices
lablled 234X , ℓ(U2), 135X . None of the cases (i) to (iv) of Lemma 4.1 is consistent with
the condition that ℓ(U2) should be distinct from 123X and differ from 126X in exactly one
element.

(ii) By Lemma 4.3 applied to the subgraph induced by vertices V1, V2, V3, V4, we may assign labels

23X

12X 34X

13X

ℓ(V5)

for some set X . Apply Lemma 4.2 to the induced subgraph K3 on the vertices labelled 13X ,
ℓ(V5), 23X . Neither of the outcomes in Lemma 4.2 is consistent with the condition that ℓ(V5)
should be distinct from 12X and differ from 34X in more than one element.

(iii) By Lemma 4.3 applied to the subgraph induced by vertices Y1, Y2, Y3, Y4, we may assign labels
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34X

13X 23X ℓ(Y5)

12X

for some set X . Apply Lemma 4.1 to the induced path P3 on the vertices labelled 12X , ℓ(Y5),
34X . None of the cases (i) to (iv) of Lemma 4.1 is consistent with the condition that ℓ(Y5)
should differ from both 13X and 23X in more than one element.

(iv) By Lemma 4.3 applied to the subgraph induced by vertices Z1, Z2, Z3, Z5, may assign labels

23X ℓ(Z4)

13X

12X 34X

for some set X . Apply Lemma 4.1 to the induced path P3 on the vertices labelled 12X , ℓ(Z4),
34X . None of the cases (i) to (iv) of Lemma 4.1 is consistent with the condition that ℓ(Z4)
should differ from both 13X and 23X in exactly one element.

7 Minimally unlabellable graphs on six vertices

Claim 3.6 states that there are exactly four minimally unlabellable graphs on six vertices. In this
section we use the results of Section 4 to prove that these four graphs are indeed unlabellable. It
follows that these graphs are minimally unlabellable: each of their proper induced subgraphs is
labellable, by Theorem 3.3. Appendix B demonstrates explicitly that of the other 108 connected
graphs on six vertices, 69 are labellable and 39 contain as a proper induced subgraph some un-
labellable five-vertex graph specified in Theorem 3.3. Together with Theorem 3.1 (i), this proves
Claim 3.6.

Graph (iv) in Claim 3.6 is W6, which is unlabellable by Theorem 5.1 (ii). Consider each of the
other graphs (i) to (iii) in Claim 3.6 in turn, and suppose for a contradiction that the graph is
labellable.

(i) By Lemma 4.4 applied to U1, U2, U3, U6, we may assign labels
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234X

123X
135X ℓ(U4)

ℓ(U5)

126X

for some set X . Apply Lemma 4.1 with T = {2} ∪X to the induced path P3 on the vertices
labelled 126X , ℓ(U5), 234X . The only case of Lemma 4.1 that is consistent with the condition
that ℓ(U5) should differ from 123X in more than one element occurs when ℓ(U5) = 246X . But
then the vertices labelled 135X and 246X are joined by a path of length two but their labels
differ in three elements, which is a contradiction.

(ii) By Lemma 4.3 applied to U1, U2, U3, U4, we may assign labels

34X

13X 23X

12X ℓ(U5)

ℓ(U6)

for some set X . By applying Lemma 4.1 to the induced path P3 on the vertices labelled 23X ,
34X , ℓ(U6), we may take ℓ(U6) = 45X . Then apply Lemma 4.1 to the induced path P3 on
the vertices labelled 12X , ℓ(U5), 45X . None of the cases (i) to (iv) of Lemma 4.1 is consistent
with the condition that ℓ(U5) should differ from both 13X and 23X in more than one element.

(iii) By Lemma 4.4 applied to U1, U2, U3, U4, we may assign labels

123X

234X 126X135X

ℓ(U5) ℓ(U6)
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for some set X . Apply Lemma 4.1 with T = {3} ∪X to the induced path P3 on the vertices
labelled 234X , ℓ(U5), 135X . The only case of Lemma 4.1 that is consistent with the condition
that ℓ(U5) should differ from 123X in more than one element occurs when ℓ(U5) = 345X . But
then the vertices labelled 126X and 345X are joined by a path of length two but their labels
differ in three elements, which is a contradiction.

8 Proof of Claim 3.7 (iii)

In this section we prove that graph (iii) in Claim 3.7 is unlabellable. It follows that this graph is
minimally unlabellable, as claimed, because each of its proper induced subgraphs is labellable by
Theorem 3.3 and Claim 3.6 (which was established in Section 7).

Suppose, for a contradiction, that graph (iii) in Claim 3.7 is labellable. Then by Lemma 4.4
applied to U1, U2, U6, U7, we may assign labels

234X ℓ(U5)

123X ℓ(U4)

126X ℓ(U3)

135X

for some set X . The label ℓ(U4) differs from 135X in exactly one element. This element cannot
belong toX , because ℓ(U4) must differ from 126X in exactly two elements. Therefore ℓ(U4) contains
13X or 15X or 35X ; the first possibility is excluded because ℓ(U4) must differ from 123X in exactly
two elements, and for the same reason ℓ(U4) does not contain 2. So we may take ℓ(U4) to be the
union of one element of {4, 6, 7} with either 15X or 35X . We need consider only the union with
15X because the mapping that interchanges 1 with 3, and 4 with 6, maps the partially labelled
graph to (a reflection through a horizontal axis of) itself. This leaves ℓ(U4) as one of 145X , 156X ,
157X . The only one of these possibilities that is consistent with the condition that ℓ(U4) should
differ from 234X in exactly two elements is ℓ(U4) = 145X .

Now apply Lemma 4.1 with T = {1}∪X to the induced path P3 on the vertices labelled 126X ,
ℓ(U3), 145X . The only case of Lemma 4.1 that is consistent with the condition that ℓ(U3) should
differ from both 123X and 135X in more than one element is ℓ(U3) = 146X . Then apply Lemma 4.1
with T = {4} ∪ X to the induced path P3 on the vertices labelled 234X , ℓ(U5), 145X . The only
case of Lemma 4.1 that is consistent with the condition that ℓ(U5) should differ from both 123X
and 135X in more than one element is ℓ(U5) = 245X . But then ℓ(U3) and ℓ(U5) differ in more than
one element, which is a contradiction.

9 Conclusion

We have extended the definition of the γ-graph γ · G from distance-1-domination to distance-d-
domination, and have shown in Corollary 1.6 that the existence of such a generalised γ-graph H

18



depends only on whether H is labellable.
We have completely determined the wheel graphs and fan graphs that are labellable. We have

verified for graphs on at most five vertices, and established for graphs on six vertices, precisely
which graphs are minimally unlabellable. We have also given an explicit labelling of all connected
labellable graphs on at most six vertices. A similar classification procedure could in principle be
applied to the 853 connected graphs on seven vertices, and even the 11117 connected graphs on
eight vertices [26], although the procedure should be automated as much as possible to avoid errors.

We have exhibited an infinite family of minimally unlabellable graphs in Theorem 5.1 (ii). One
might hope to uncover further such families by examining the minimally unlabellable graphs on at
most six (and, in future, seven or eight) vertices. At first sight the form of graph (i) in Theorem 3.3
and graph (i) in Claim 3.6 suggests such a family, but the next member of this presumed family is
in fact labellable (as are all subsequent members):

234

123
135 145 456

246

126
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Appendix A: Classification of labellable graphs on at most
five vertices

In this appendix we classify the 31 connected graphs on at most five vertices [7] as comprising 27
which are labellable, and 4 which are minimally unlabellable by the results of Section 6. The letter
labelling of the four minimally unlabellable graphs follows that shown in Theorem 3.3. Graphs with
the same number of vertices are arranged (from top to bottom within each column) in increasing
order of the number of edges.

1

1 2

12 23 34

1

2 3

12 23 34 45

123

234 135 126

12 13

3424

12

13 14

25

12 23

3413

1

2 3

4

1234

2345 1346 1247 1238

123 135126

234247

12 23 34 45 56

125 135

345245

246

13 14

12

35 46

136 146

126256 127

15 23

12

45 34

13 14

12

25

56

12 13

15

24 34
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125

235

345

135

236

34

13

12

23

45

14 25

2613

12

U5

U1

U4

U2

U3

123

135 125 124 234

12

13

14

15

26

V2

V3 V4

V1

V5

Y2

Y3 Y4 Y5

Y1

12 13

3424

23

12 13

23

15 14

Z2 Z4

Z1

Z3 Z5

5 2

1

4 3

23



Appendix B: Classification of labellable graphs on six vertices

In this appendix we classify the 112 connected graphs on six vertices [6] as comprising: 69 which
are labellable, as demonstrated; 39 which are unlabellable because they contain as a proper induced
subgraph one of the four minimally unlabellable graphs on five vertices (indicated using Ui, Vi, Yi,
or Zi as shown in Theorem 3.3); and 4 which are minimally unlabellable by the results of Section 7
(left unlabelled). The graphs are arranged (from top to bottom within each column) in increasing
order of the number of edges.

12 23 34 45 56 67

123
234 345 456

136

125

126
123

135

234

157

247

123234

346

245

135

126

345623451234
1246

1347

1238

12458

1234A12345

13457

23456

12359

12 23

34

4556

16

156 236
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456 346
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125

135

345

245

126

267
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135

345

245

126

346

125

135

345

245

126
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1257
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3457
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1267 1258

13 14
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25
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137 147
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357 145
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135 345 346
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