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NICK EARLY

Abstract. This paper studies two families of piecewise constant functions which are deter-
mined by the (n − 2)-skeleta of collections of honeycomb tessellations of Rn−1 with standard
permutohedra. The union of the codimension 1 cones obtained by extending the facets which
are incident to a vertex of such a tessellation is called a blade.

We prove ring-theoretically that such a honeycomb, with 1-skeleton built from a cyclic se-
quence of segments in the root directions ei − ei+1, decomposes locally as a Minkowski sum
of isometrically embedded components of hexagonal honeycombs: tripods and one-dimensional
subspaces. For each triangulation of a cyclically oriented polygon there exists such a factoriza-
tion. This consequently gives resolution to an issue proposed and developed by A. Ocneanu,
to find a structure theory for an object he discovered during his investigations into higher Lie
theories: permutohedral blades.

We introduce a certain canonical basis for a vector space spanned by piecewise constant func-
tions of blades which is compatible with various quotient spaces appearing in algebra, topology
and scattering amplitudes. Various connections to scattering amplitudes are discussed, giving
new geometric interpretations for certain combinatorial identities for one-loop Parke-Taylor fac-
tors. We give a closed formula for the graded dimension of the canonical blade basis. We
conjecture that the coefficients of the generating function numerators for the diagonals are sym-
metric and unimodal.
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1. Introduction

1.1. Preface. For any permutation σ = (σ1, . . . , σn), choose a point v in the interior of one of
the fundamental Weyl alcoves

0 ≤ xσ1 − xσn ≤ 1
0 ≤ xσn − xσn−1 ≤ 1

...
0 ≤ xσ2 − xσ1 ≤ 1,

and take the orbit obtained by reflecting v across all affine hyperplanes xi − xj = k, where k
is any integer. As shown in [37], the orbit of v then consists of the vertices of a honeycomb
tessellation of space with weight permutohedra. Then v has n neighbors v1, . . . , vn, one for each
hyperplane xσi+1 − xσi

= 0. In this paper we study the complete fan obtained from the union of
the convex hulls ⋃

1≤i<j≤n
convex hull (v, v1, . . . , v̂i, . . . , v̂j, . . . , vn)

by extending each convex hull to a simplicial cone and translating v to the origin. This complete
fan has an (n− 2)-skeleton

((σ1, . . . , σn)) :=
⋃

1≤i<j≤n

 ∑
k 6∈{i,j}

tk(vk − v) : tk ≥ 0


in the hyperplane {x ∈ Rn : x1 + · · · + xn = 0}, which is a particular instance of a blade. The
portion of the blade ((1, 2, 3, 4)) inside a unit tetrahedron is shown in Figure 2.

1.2. Context and history. In order to construct the geometric foundation for his work on
higher representation theory, in his Fall, 2017 Harvard lectures [33] A. Ocneanu has introduced
permutohedral blades, to study the underlying geometry, combinatorics and representation the-
ory of local aspects of a problem with which for him had a physical motivation, concerning what
he has called the “cracks” in spacetime arising in the boundary of a tessellation of space with
permutohedra, as in Figure 2. However, a significant portion of the algebraic and combinatorial
foundations and framework remained elusive and incomplete. Ocneanu calls the core geometric
objects blades due to their explicit appearance in dimensions 2 and 3 as widening the cracks
between by a set of cones in a polyhedral fan, see Figures 1 and 2 for the cases n = 3, 4.

The first steps towards assembling a general framework were taken by the author in [16], con-
structing a new canonical basis for a vector space spanned by characteristic functions of certain
permutohedral cones called (tectonic) plates. In this paper, we first establish the analogous basis
result for blades, proving that blades are generated in the Minkowski algebra of polyhedral cones
by embeddings of tripods1 of type A2 roots.

In Fall, 2015, we conjectured privately to Ocneanu that higher codimension blades could be
naturally expressed as Minkowski sums of blades in fewer coordinates. In this paper we go
further towards a structure theory for blades using convolutions.

Let us comment briefly on forthcoming joint work of Norledge and Ocneanu, where blades
are formulated and studied in a somewhat different way involving certain derivatives defined
on functions that are piecewise constant on the faces of the (restricted) all-subset hyperplane

1We thank Tamas Kalman for spontaneously suggesting the apt terminology, tripod.
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Figure 1. Local (uniform) hexagonal hon-
eycomb tessellation: part of the blade
((1, 2, 3)) near a vertex of a Voronoi hon-
eycomb. Edges in the tiling are segments
parallel to the three root directions ei − ej.
Each (n = 3)-valent vertex has a neighbor-
hood which intersects the 1-skeleton of the
honeycomb in either ((1, 2, 3)) or ((1, 3, 2))

Figure 2. Part of
the blade ((1, 2, 3, 4)).
It is the 2-skeleton of
a complete fan, here
viewed inside a tetrahe-
dral frame. Note that
here the edges in the
1-skeleton of the blade
are not perpendicular
to the facets of the
tetrahedron, but are
rather parallel to the
edges of a Hamiltonian
cycle on the edges of
the tetrahedron.

arrangement. In their setup, blades are shown to be determined by a set of linear equations
which follow from a conservation principle. It would be very interesting to ask for an analog of
the conservation principle, but now for the space spanned by characteristic functions of plates.
For a possible starting point, one might try to start with Appendix B.

1.3. Overview and connections. In this paper, we prove that the characteristic function
of any blade factorizes into characteristic functions of tripods and 1-dimensional subspaces.
However, it turns out that the factorization of a blade into tripods is not unique; indeed, we
prove that the blade factorizations correspond naturally triangulations of a cyclically-oriented
polygon with vertices labeled by an ordered set partition, or equivalently to the blow-ups of an
n-valent vertex of a graph into trivalent vertices. We prove that such products are invariant
under changes in triangulation and therefore depend only on the cyclic order on the boundary,
and we derive their expansions using sums of elementary symmetric functions in characteristic
functions of infinite rays in the direction of the collection of n cyclic roots eσi

− eσi+1 .
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We observe that the linear relations which characterize the subspace spanned by characteristic
functions of blades in dimension 1 are partially captured by the balancedness condition on
weighted directed graphs studied by T. Lam and A. Postnikov in their work on polypositroids
[27]. By comparison with the results of [5], blades are also related to zonotopal algebras [2, 5, 24],
through Gale duality for the type A reflection arrangement.

In terms of representation theory of the symmetric group, modules spanned by characteristic
functions of blades are constructed plethystically using the higher Eulerian representations,
which arise as restrictions to Sn of representations of Sn+1 of dimensions the Stirling numbers
of the first kind, as studied by S. Whitehouse in [39]. For further historical discussion we refer to
the introduction of [15], where together with V. Reiner we studied the cohomology ring, denoted
there Vn, of the configuration space of n points in SU(2), modulo the diagonal action of SU(2).
In fact, it turns out that this cohomology ring is related to (a degeneration of) the Minkowski
algebra of blades. The discovery of this geometric connection to blades helped to determine the
presentation of Vn in [15].

The main construction involves characteristic functions of certain embeddings of the type A2
root system. The characteristic functions of elementary (one-dimensional) tripods, are denoted
by γi,j,k and satisfy the cyclic index relation γi,j,k = γk,i,j. More generally, lumped tripods are
labeled by cyclic classes of 3-block ordered set partitions (S1, S2, S3), of the subset S1∪S2∪S3 of
{1, . . . , n}. Additionally we have generators 1S for any proper nonempty subset S of {1, . . . , n}.
These satisfy the fundamental relation

γS1,S2,S3 + γS1,S3,S2 = 1S1∪S2 + 1S2∪S3 + 1S3∪S1 − 1S11S21S3 .

A detailed definition of plates and blades will be given later, but let us give an abbreviated
version here.

The prototypical plate is the cone spanned by a system of simple roots,
〈e1 − e2, e2 − e3, . . . , en−1 − en〉+ := {t1(e1 − e2) + · · ·+ tn−1(en−1 − en) : ti ≥ 0}

The prototypical blade is the complement of the unions of the interiors of the n cones
〈e1 − e2, . . . , en−1 − en〉+, 〈e2 − e3, . . . , en − e1〉+, . . . , 〈en − e1, . . . , en−2 − en−1〉+,

where

〈v1, . . . , vk〉+ =
{

k∑
i=1

tivi : ti ≥ 0
}
.

Let us express this directly, as follows (see Definition 14 below). For an ordered set partition
(S1, . . . , Sk) of {1, . . . , n} with k ≥ 3, we define the blade ((S1, . . . , Sk)) to be the set-theoretic
union of the Minkowski sums of cones,⋃

1≤i<j≤k
[S1, S2]⊕ · · · ⊕ ̂[Si, Si+1]⊕ · · · ⊕ ̂[Sj, Sj+1]⊕ · · · ⊕ [Sk, S1],

where the hat means that the corresponding term has been omitted, and where we adopt the
convention Sk+1 = S1. See [33, 34].

We conclude by summarizing briefly some of the many additional possible directions for future
work.

A key observation is that as these n (closed) cones can be seen to cover the whole ambient
space (see Corollary 11), coinciding only on common facets, they form what is called a complete
fan. In the case of the blade ((1, 2, . . . , n)) it can be obtained as the normal fan to the simplex
with vertices e1 − en, en − en−1, . . . , e2 − e1. Further, one could develop blades using Bergman
fans for matroid polytopes; we leave this to future work.
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Figure 3. The n = 4 blade ((1, 2, 3, 4)): it is the normal fan to the
simplex with vertex set (−1, 1, 0, 0), (0,−1, 1, 0), (0, 0,−1, 1), (1, 0, 0,−1); this
means that it is the union of the convex hulls of pairs of rays selected from
{(1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1,−1), (−1, 0, 0, 1)}

In [16] and here we study modules of plates and blades modulo higher codimensions; it would
be very interesting to search for a compatible Lie algebra in the direction of [38], see also [8], of
certain rational functions modulo products. Such products correspond in our setting to higher
codimension faces of the all-subset arrangement.

We point out an interesting apparent connection between blades and certain elliptic functions
which appear in string theory [29], where the blade relations are analogous to certain limits of the
so-called Fay identities2. We would like also to mention another connection, with the related work
[28]. Here, modulo the Fay identities, the canonicalization relations among pseudoinvariants.
These will correspond in our setting to straightening relations into the canonical basis for higher
codimension blades which are piecewise constant functions on Minkowski sums of blades.

The utility and beauty of the exponential map used for the cohomology ring of the configura-
tion space of points in SU(2), in Section 9, suggests a connection to some of the combinatorial
properties of certain exponential generating functions from [7]. Finally, the examples and discus-
sion in Appendix A suggest a new class of identifications for non-planar on-shell diagrams beyond
the well-known square move which deserves further study [9]. Our paper [9] is in preparation.

1.4. Discussion of main results. To each blade ((S1, . . . , Sk)), where S1, . . . , Sk is an or-
dered partition of (a subset of) {1, . . . , n} we assign two piecewise-constant surjective functions:

2We thank Oliver Schlotterer for this observation.
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characteristic functions of blades

ΓS1,...,Sk
: V n

0 → {0, 1}

and graduated functions of blades

[(S1, . . . , Sk)] : V n
0 → {1, . . . , k}.

These functions capture essentially different but interdependent aspects of the blades ((S1, . . . , Sk)),
as reflected in our results; both will be useful and deserve further study. See Section 11 for a
detailed discussion of which properties of these two families remain to be established.

Our main technical results are Theorem 20 and Theorem 27, using the latter to introduce
the canonical basis for the graduated blades. In Theorem 20, we prove that the characteristic
function ΓS1,S2,...,Sk

of the blade ((S1, . . . , Sk)) with k blocks factors as a convolution product of
k − 2 tripods, using the flag factorization:

ΓS1,S2,...,Sk
= ΓS1,S2,S3ΓS1,S3,S4 · · ·ΓS1,Sk−1,Sk

.

We deduce in Corollary 24 the set-theoretic identity for the Minkowski sum: we prove that any
blade can be expressed (not uniquely) as a Minkowski sum of tripods.

We prove that the factorization is independent of the triangulation; this shows that the fac-
torizations of a blade can be represented by with the triangulations of a cyclically oriented
n-gon.

We arrive at the punchline of our paper by combining Proposition 13, which identifies the
blade ((1, 2, . . . , n)) with the neighborhood of a vertex of the tessellation of V n

0 with standard
permutohedra, with Theorem 20: the honeycomb tessellation by standard permutohedra factor-
izes locally as Minkowski sums of tripods, where each factorization is encoded by a triangulation
of the cyclically oriented n-gon.

In Theorem 27 we derive the expansion of an element in the canonical (candidate) basis as a
signed sum of graduated functions of blades. In Theorem 35 we remove the word “candidate”
by showing that each can be obtained from an upper-unitriangular transformation from a set of
graduated blades which we know is linearly independent.

Remark that one could find other possible choices of bases for the space spanned by charac-
teristic functions of plates; for inspiration one could look toward the forkless monomial basis
from [23] for the so-called subdivision algebra [30]. The case of interest here consists of forkless
monomials which would here encode generalized permutohedral cones, labeled by directed trees
{(i1, j1), . . . , (im, jm)} with ia < ja, having the property no node of the tree has two outgoing
branches: ia 6= ib whenever a 6= b.

In Section 8, Proposition 38, we enumerate the canonical basis and then ask about a possible
interpretation of the coefficients of the generating functions for the diagonals in terms of labeled
binary rooted trees, (2n)!

n! . Indeed, by way of a simple counting argument we have for the
enumeration of the canonical basis of characteristic functions of blades,

Tn,k =
n∑
i=1

S(n, i)s(i− 1, k − 1),

where S(n, i) is the Stirling number of the second kind, and s(i, k) is the (unsigned) Stirling
number of the first kind.
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For n = 1, 2, . . . , 6 we have
1
1 1
1 4 1
1 15 9 1
1 66 66 16 1
1 365 500 190 25 1

Note that the rows sum (as they should) to the necklace numbers, which count ordered set
partitions up to cyclic block rotation.

The generating function numerators for its diagonals appear to be symmetric and unimodal,
and to have coefficients that sum to (2n)!/n!, O.E.I.S. A001813, [32]. The coefficients themselves
agree with A142459 for the first four rows, and their sums agree, (2n)!/n!, but for n ≥ 5 the
coefficients are different. See Section 8 below for more details, as well as a conjecture.

Finally, it turns out that there is an interesting dual grading cyclic ordered set partitions which
would be dual to the grading coming from the canonical blade basis. Grouping cyclic ordered
set partitions by the number of blocks one obtains the sequence given by O.E.I.S. A028246 [32]:

a(n, k) = S(n, k) ∗ (k − 1)!.

This gives for n = 1, 2, . . . , 6,
1
1 1
1 3 2
1 7 12 6
1 15 50 60 24
1 31 180 390 360 120

Remark that this table appeared has in the enumeration of the basis for a certain quotient word
Hopf algebra, see [12].

We shall encounter this enumeration quite naturally in Section 10, where it is observed to
count degenerate cyclic orders of n points on the circle.

2. Permutohedral Plates

Let us fix some notation.
We denote xS = ∑

i∈S xi for any proper nonempty subset S of {1, . . . , n}, and abbreviate
xS1∪···∪Sk

as xS1···Sk
for k disjoint subsets S1, . . . , Sk of {1, . . . , n}. Set V n

0 = {x ∈ Rn : ∑n
i=1 xi =

0}. Let ēJ = ∑
j∈J ej − |J |n (∑n

i=1 ei), if J is a nonempty subset of {1, . . . , n}, be the projection of
eJ onto the plane V n

0 . Denote by π1 ⊕ π2 = {u+ v : u ∈ π1, v ∈ π2} the Minkowski sum of the
polyhedra π1, π2 ⊆ V n

0 . Put

[Si, Sj] =

 ∑
a∈Si∪Sj

taēa ∈ V n
0 : tSi

≥ 0

 ,
that is the upper half of the subspace spanned by {ēa : a ∈ Si ∪ Sj}.

Recall that a polyhedral cone is a subset of some Rn which is out by a set of inequalities of
the form {x ∈ V n

0 : ∑n
j=1 aijxj ≥ 0, i = 1, . . . ,m} for a given coefficient matrix (aij) ∈ Rm×n.

An ordered set partition (OSP) is an ordered list S = (S1, . . . , Sk) of disjoint subsets of
{1, . . . , n} such that ⋃ki=1 Si.
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Definition 1. A polyhedral cone Π in V n
0 is permutohedral if it can expressed as a Minkowski

sum of subspaces [Ti] and a sequence of half subspaces [Sa, Sa+1],
Π = [T1]⊕ · · · ⊕ [T`]⊕ [S1]⊕ · · · ⊕ [Sk],

for disjoint subsets T1, . . . , T` and ordered set partitions {S1, . . . ,Sk} of disjoint subsets U1, . . . , Uk
of {1, . . . , n} \

(⋃k
i=1 Ti

)
. In the terminology from below, it is a Minkowski sum of tangent cones

to the regular permutohedron.
Further, Π is generalized permuhedral if it is a Minkowski sum

Π = [T1]⊕ · · · ⊕ [T`]⊕ [Si1 , Sj1 ]⊕ · · · ⊕ [Sik , Sjk ],
where Sia ∩ Sja = ∅ for a = 1, . . . , k and where {T1, . . . , T`} is a set partition of the complement
in {1, . . . , n} of the union of all subsets Sia , Sja ,

{1, . . . , n} \
(

k⋃
a=1

Sia ∪ Sja
)
.

In Definition 1, without loss of generality we could further require that the Minkowski sum
be reduced, that is, we have the property that for each pair {S`, Sm}, the sets S`, Sm are either
disjoint or equal. For without this assumption, we would have for example the simplification

[135, 246]⊕ [127, 345] = [1234567].
For detailed examples of generalized permutohedral cones and their functional representations,
see Appendix A.2 in [16].

Recall that the tangent cone C of a polyhedron to a face F of a polyhedron P is defined by
C = {x+ λ(y − x) : x ∈ F, y ∈ P, and λ ≥ 0}.

We single out the set of tangent cones to faces of the regular permutohedron, which were
studied as plates by Ocneanu. See [16] for details of our construction and related results for per-
mutohedral cones, as well as a canonical basis for the space spanned by characteristic functions
of such tangent cones. Let (S1, . . . , Sk) be an ordered set partition of {1, . . . , n}. Namely, we
recall the notation [S1, . . . , Sk] for the subset in V n

0 which is cut out by the system of inequalities
xS1 ≥ 0

xS1S2 ≥ 0
...

xS1S2···Sk−1 ≥ 0
n∑
i=1

xi = 0.

This is a permutohedral cone, since it can be expressed as the Minkowski sum of half spaces
[S1, S2]⊕ [S2, S3]⊕ · · · ⊕ [Sk−1, Sk].

It is a standard result that this is the tangent cone to the face of the usual permutohedron
labeled by the ordered set partition (S1, . . . , Sk) of {1, . . . , n}, see for example [37]. In [16] the
same was proved for tree graphs.

Proposition 2. Let Π be a generalized permutohedral cone which is labeled by a directed tree
graph with edge set {(i1, j1), . . . , (ik, jk)} for some k ≤n, with Minkowski sum decomposition

Π = [Si1 , Sj1 ]⊕ · · · ⊕ [Sik , Sjk ].
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Then it can be expanded as a signed sum of characteristic functions of tangent cones to faces of
the usual permutohedron.

In fact the expansion result can be extended to the expansion of generalized permutohedral
cones as signed sums of permutohedral cones.

Recall from [16] the notation P̂n for the complex linear span of all characteristic func-
tions [[S1, . . . , Sk]] of plates [S1, . . . , Sk], as (S1, . . . , Sk) ranges over all ordered set partitions
of {1, . . . , n}.

Definition 3. Let C be a polyhedral cone in V n
0 . The dual cone to C, denoted C?, is defined

by the equation
C? = {y ∈ V n

0 : y · x ≥ 0 for all x ∈ C}.

In [16] it was an essential property that the plate [S1, . . . , Sk] is dual (in the sense of convex
geometry, see [4]) to the face of the arrangement of type An−1 reflection hyperplanes, given by

{x ∈ V n
0 : x(S1) ≥ · · · ≥ x(Sk)},

where x(S) is shorthand notation for xi1 = · · · = xi|S| , given that S = {i1, . . . , i|S|}
Let us collect two important results from [4]. It is immediate from Definition 1 that the conical

hull of two permutohedral cones is a permutohedral cone; therefore in Theorem 5 the convolution
product • in (2) is defined on the subring of characteristic functions of permutohedral cones,
P̂n.

Definition 4. A linear transformation P̂n → V , where V is a vector space, is called a valuation.

We shall need Theorem 2.5 of [4], which defines the convolution of two polyhedral cones with
respect to the Euler characteristic, to prove relations with respect to the convolution product •.

Theorem 5 ([4], Theorem 2.5). There is a unique bilinear operation, denoted here • : P̂n×P̂n →
P̂n, called convolution, such that

[π1] • [π2] = [π1 ⊕ π2]
for any two permutohedral cones π1, π2.

The proof given in [4] of Theorem 5 relies a linear map called the Euler characteristic, which
is proven there to be the unique valuation µ : P̂n → Q, such that µ([π]) = 1 for any nonempty
polyhedron π.

Finally, we need a result from [4], which is a statement about the wider class of all polyhedral
cones.

Theorem 6 ([4], Theorem 2.7). There exists a valuation D on the space of characteristic func-
tions of polyhedral cones such that

D([π]) = [π?].

We shall usually abuse notation and use ? for the valuation D, so the relation of Theorem 6
becomes

[π]? = [π?].
The essential property here is that ? interchanges convolution with pointwise product:

([C1] • [C2] • · · · • [C`])? = ([C1 ⊕ · · · ⊕ C`])? = [C?
1 ∩ · · · ∩ C?

` ] = [C1]? · [C2]? · · · [C`]?,
where • is convolution and · is the pointwise product of characteristic functions.

We have the following important identity.
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Proposition 7. For any ordered set partition (S1, S2, . . . , Sk) of (any subset of) {1, . . . , n}, we
have

[[S1, S2]] • [[S2, S3]] • · · · • [[Sk, S1]] = [[S1 ∪ · · · ∪ Sk]].

Proof. It is convenient to check this by dualizing. Then, ? gives [Si, Si+1]? = {x ∈ V n
0 : x(Si) ≥

x(Si+1)}, where x(S) is shorthand for xi1 = · · · = xi` if S = {i1, . . . , i`}. As ? interchanges
convolution and pointwise product of characteristic functions, we have

([[S1, S2]] • [[S2, S3]] • · · · • [[Sk, S1]])? =
{
x ∈ V n

0 : x(S1) ≥ x(S2) ≥ · · · ≥ x(Sk) ≥ x(S1)
}

= [{(0, . . . , 0)}]
= [[S1 ∪ · · · ∪ Sk]]?,

and since ? is an involution for closed convex cones, applying ? again completes the proof. �

3. Open plates

For any ordered pair of disjoint subsets (S1, S2) of {1, . . . , n}, define

µS1,S2 = [[S1, S2]]− [[S1]] • [[S2]],

the characteristic function of the set ∑
i∈S1∪S2

tiei ∈ V n
0 : tS1 > 0

 ,
where the inequality is strict. It will be understood that unless indicated otherwise, all products
of µ’s are convolution, using the Euler characteristic as the measure, see Theorem 5.

Further denote by 1S the characteristic function of the subspace

[S] =
{∑
i∈S

tiei ∈ V n
0 : ti ∈ R

}
.

Then for any disjoint nonempty subsets S1, . . . , S` of {1, . . . , n}, 1S11S2 · · · 1Sk
is the characteristic

function of the subspace

{x ∈ V n
0 : xSi

= 0 and xj = 0 whenever j 6∈ S1 ∪ · · · ∪ S`}.

Proposition 8. We have

µ2
S1,S2 = −µS1,S2 , and µS1,S2µS2,S1 = 0.

More generally, we have the cycle identities

µS1,S2µS2,S3 · · ·µSk−1,Sk
µSk,S1 = 0

for any ordered set partition (S1, . . . , Sk) of a subset of {1, . . . , n}.

Proof. We supply the algebraic proofs for the identities µ2
S1,S2 = −µS1,S2 and µS1,S2µS2,S1 = 0.

We have

µ2
S1,S2 = ([[S1, S2]]− [[S1]] • [[S2]])2 = ([[S1, S2]]2 − 2[[S1, S2]] + [[S1]]2 • [[S2]]2)

= ([[S1, S2]]− 2[[S1, S2]] + [[S1]] • [[S2]]) = −([[S1, S2]]− [[S1]] • [[S2]])
= −µS1,S2 ,
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and
µS1,S2µS2,S1 = ([[S1, S2]]− [[S1]] • [[S2]])([[S2, S1]]− [[S1]] • [[S2]])

= [[S1, S2]] • [[S2, S1]]− ([[S1, S2]] + [[S2, S1]]) + [[S1]] • [[S2]]
= [[S1 ∪ S2]]− ([[S1 ∪ S2]] + [[S1]] • [[S2]]) + [[S1]] • [[S2]]
= 0.

The cycle identities can be seen in general through an application of duality for polyhedral cones.
Then, as the dual µ?Si,Sj

’s are open half-spaces through the origin in V n
0 , and the intersection

of the supports of the characteristic functions of the duals µ?S1,S2 , . . . , µ
?
Sk,S1 ’s is empty, their

(pointwise) product is identically zero. Further, as ? is an involution on the closed cones [S1, S2]
and 1S, we have

(µ?S1,S2)? = ([[S1, S2]]? − 1?S11?S2)?

= ([[S1, S2]]?)? − (1?S1)?(1?S2)?

= [[S1, S2]]− 1S11S2

= µS1,S2 .

It follows that
µS1,S2 · · ·µSk,S1 = (µ?S1,S2 · · ·µ

?
Sk,S1)?

= 0
�

Denote by ej(x1, . . . , xk) the jth elementary symmetric function in the variables x1, . . . , xk,
obtained from the generating function

(1 + tx1)(1 + tx2) · · · (1 + txk) =
k∑
j=0

ej(x1, . . . , xk)tj

Corollary 9. We have

[(S1, . . . , Sk)] = [[S1 ∪ · · · ∪ Sk]] +
k−1∑
j=0

(−1)(k−2)−jej([[S1, S2]], [[S2, S3]], . . . , [[Sk, S1]]).

Proof. By Proposition 8, we have the cycle identity µ12µ23 · · ·µk1 = 0, hence
0 = µS1S2µS2S3 · · ·µSkS1

= ([[S1, S2]]− 1)([[S2, S3]]− 1) · · · ([[Sk, S1]]− 1),
which expands to an alternating sum of the elementary symmetric functions in the variables

[[S1, S2]], . . . , [[Sk, S1]].
Noting that the piecewise constant function [(S1, . . . , Sk)] can be expressed as an elementary
symmetric function of degree k − 1, as

[(S1, . . . , Sk)] = ek−1([[S1, S2]], . . . , [[Sk, S1]]),
we conclude the proof by solving for ek−1([[S1, S2]], . . . , [[Sk, S1]]). �

In particular, for any three disjoint nonempty subsets S1, S2, S3 ⊂ {1, . . . , n} we have the
fundamental relation

[[S1, S2, S3]] + [[S2, S3, S1]] + [[S3, S1, S2]] = 1S1∪S2∪S3 + µS1,S2 + µS2,S3 + µS3,S1 − 1S11S21S3 .
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Example 10. In the cases n = 3, 4 we have the functional representations of characteristic
functions of plates, respectively

[[1, 2, 3]] 7→ 1
x1 (x1 + x2) (x1 + x2 + x3)

[[1, 2, 3, 4]] 7→ 1
x1 (x1 + x2) (x1 + x2 + x3) (x1 + x2 + x3 + x4)

while for blades we obtain, after partial fraction identities,

[(1, 2, 3)] = [[1, 2, 3]] + [[2, 3, 1]] + [[3, 1, 2]]

7→ 1
y1 (y1 + y2) (y1 + y2 + y3) + 1

y2 (y2 + y3) (y1 + y2 + y3) + 1
y3 (y1 + y3) (y1 + y2 + y3)

= 1
y1 (y1 + y2) y3

+ 1
y2 (y2 + y3) y1

+ 1
y3 (y3 + y1) y2

− 1
y1y2y3

,

and

[(1, 2, 3, 4)] = [[1, 2, 3, 4]] + [[2, 3, 4, 2]] + [[3, 4, 1, 2]] + [[4, 1, 2, 3]]

7→ 1
y1 (y1 + y2) (y1 + y2 + y3) (y1 + y2 + y3 + y4) + 1

y2 (y2 + y3) (y2 + y3 + y4) (y1 + y2 + y3 + y4)

+ 1
y3 (y3 + y4) (y1 + y3 + y4) (y1 + y2 + y3 + y4) + 1

y4 (y1 + y4) (y1 + y2 + y4) (y1 + y2 + y3 + y4)

= 1
y1 (y1 + y2) (y1 + y2 + y3) y4

+ 1
y2y3 (y3 + y4) (y1 + y3 + y4) + 1

y3y4 (y1 + y4) (y1 + y2 + y4)

+ 1
y3y4 (y1 + y4) (y1 + y2 + y4) + 1

y1 (y1 + y2) y3 (y3 + y4) + 1
y2 (y2 + y3) y4 (y1 + y4)

− 1
y1 (y1 + y2) y3y4

− 1
y1y2 (y2 + y3) y4

− 1
y1y2y3 (y3 + y4) −

1
y2y3y4 (y1 + y4)

+ 1
y1y2y3y4

Corollary 11. Let (S1, . . . , Sk) be an ordered set partition. Then, modulo characteristic func-
tions of cones of codimension ≥ 1, we have the cyclic sum relation

[[S1, S2, . . . , Sk]] + [[S2, S3, . . . , S1]] + · · ·+ [[Sk, S1, . . . , Sk−1]] ≡ [[S1 · · ·Sk]],

that is the union of the cyclic block rotations of the plate [S1, . . . , Sk] is the whole ambient space
V n

0 .

Proof. We have

0 = µS1,S2 · · ·µSk,S1

= ([[S1, S2]]− 1)([[S2, S3]]− 1) · · · ([[Sk, S1]]− 1)
= [[S1S2 · · ·Sk]]− ([[S1, S2, . . . , Sk]] + [[S2, S3, . . . , S1]] + [[Sk, S1, . . . , Sk−1]]) +O(k − 2),

and it follows that

[[S1S2 · · ·Sk]] ≡ [[S1, S2, . . . , Sk]] + [[S2, S3, . . . , S1]] + · · ·+ [[Sk, S1, . . . , Sk−1]],

where we have modded out by O(k − 2), which is an alternating sum of only characteristic
functions of cones of dimension k − 2 ≤ n− 2, those with codimension at least 1 in V n

0 . �
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The identity of Proposition 12 can be recognized as a deformation of the fundamental identity
in the so-called subdivision algebra, see [23, 30].

Proposition 12. We have the triangulation identity for closed cones
([[S1, S2]] + [[S2, S3]]) • [[S1, S3]] = [[S1, S2]] • [[S2, S3]] + [[S1, S3]],

while for open cones we have
(µS1,S2 + µS2,S3)µS1S3 = µS1S2µS2S3 − µS1S3 .

Proof. It suffices to verify the identity in the plane V 3
0 , where the two cones 〈e1 − e3, e2 − e3〉+

and 〈e1− e2, e1− e3〉+ intersect on the common line 〈e1− e3〉+. Therefore by inclusion/exclusion
we have for their characteristic functions the identity

[〈e1 − e3, e2 − e3〉+] + [〈e1 − e2, e1 − e3〉+] = [〈e1 − e2, e2 − e3〉+] + [〈e1 − e3〉+],
or in the bracket notation,

[[1, 3]] • [[2, 3]] + [[1, 2]] • [[1, 3]] = [[1, 2]] • [[2, 3]] + [[1, 3]].
For characteristic functions of cones generated by open half lines, µi,j = [[i, j]] − 1, where 1 is
the characteristic function of the point at the origin, the identity can similarly be seen to be

(µij + µjk)µik = µijµjk − µik.
�

4. Locality for permutohedral honeycombs

Ocneanu was originally partly motivated to study blades by the desire to model moduli spaces
of honeycomb tessellations; indeed, this was the guiding principle for the present work as well.
With an eye toward future work, we now sketch part of this connection as we see it. See Figure
1.

The vertices of the honeycomb tiling of V n
0 with weight permutohedra, denoted Hn have a

natural construction using the affine Weyl group; we shall use the discussion in Proposition
16.6 in [37] for inspiration. Choose a generic point x ∈ Rn/R(1, . . . , 1) off the affine reflection
hyperplanes, that is such that xi− xj 6∈ Z for all i 6= j. Then there exists a unique permutation
σ and integers a1, . . . , an such that

a1 < xσ1 − xσ2 < a1 + 1
a2 < xσ2 − xσ3 < a2 + 1

...
an < xσn − xσ1 < an + 1.

Then, the n vertices in the honeycomb tiling adjacent to x are obtained by reflecting across
hyperplanes parallel to xσi

= xσi+1 , that is by translation from x in the n directions respectively
eσ1 − eσ2 , . . . , eσn − eσ1 . From Corollary 9 we see that the union of the conical hulls of n − 1
at a time gives n cones that intersect only on common boundaries, thereby forming a complete
fan; taking the union of conical hulls of n − 2 at a time we obtain the (n − 2)-skeleton of the
honeycomb tiling near the vertex x. This part of the (n− 2)-skeleton coincides up to translation
with the blade ((σ1, . . . , σn)), the complement of the unions of the interiors of the n cones
〈eσ1 − eσ2 , . . . , eσn−1 − eσn〉+, 〈eσ2 − eσ3 , . . . , eσn − eσ1〉+, . . . , 〈eσn − eσ1 , . . . , eσn−2 − eσn−1〉+.
We have proved Proposition 13.
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Proposition 13. Let p be a vertex of the honeycomb tiling Hn of V n
0 . Then, there is an

open neighborhood of p which intersects Hn in a translation of a blade ((σ1, . . . , σn)), for some
permutation σ ∈ Sn.

Informally, looking forward to Theorem 20, we summarize Proposition 13, as follows: we say
that the honeycomb tessellation by standard permutohedra factorizes locally in the convolution
algebra as a product of characteristic functions of tripods and 1-dimensional subspaces.

5. Blades from symmetric functions on edges of a cyclic Dynkin graph

Recall that for any nonempty subsets S1, S2 ⊂ {1, . . . , n} with S1 ∩ S2 = ∅, we denote by
µS1,S2 = [[S1, S2]]− [[S1] ∩ [S2]]

the characteristic function of the set
{x ∈ V n

0 : xS1 > 0, xS1∪S2 = 0, xi = 0 for i 6∈ S1 ∪ S2},

where the equality is strict, and we define the convolution product
µS1,...,Sk

= µS1,S2 · · ·µSk−1,Sk
.

If (S1, . . . , Sk) is an ordered set partition, the blade ((S1, S2, . . . , Sk)) is the complement in V n
0

of the union of the interiors of the plates
[S1, . . . , Sk], [S2, . . . , Sk, S1], . . . , [Sk, S1 . . . , Sk−1].

This union of interiors has characteristic function
µS1,S2µS2,S3 · · ·µSk−1,Sk

+ µS2,S3µS3,S4 · · ·µSk,S1 + · · ·µSk,S1µS1,S2 · · ·µSk−2,Sk−1 .

Definition 14. For an ordered set partition (S1, . . . , Sk) of {1, . . . , n} with k ≥ 3, we define the
blade ((S1, . . . , Sk)) to be the set theoretic union of the Minkowski sums of cones,

((S1, . . . , Sk)) =
⋃

1≤i<j≤k
[S1, S2]⊕ · · · ⊕ ̂[Si, Si+1]⊕ · · · ⊕ ̂[Sj, Sj+1]⊕ · · · ⊕ [Sk, S1],

where the hat means that that corresponding term has been omitted, and where we adopt the
convention Sk+1 = S1. When k = 2 and S1 t S2 = {1, . . . , n}, then we set

((S1, S2)) = [[S1]]⊕ [[S2]].
Finally, when k = 1 we set

((12 · · ·n)) = V n
0 .

When the blocks in the ordered set partition are singlets, we have the following interesting
interpretation.

Proposition 15. The (nondegenerate) blade ((σ1, σ2, . . . , σn)) is the union of the codimension
1 facets to the normal fan to the simplex with vertices

eσ1 − eσn , eσ2 − eσ1 , . . . , eσn − eσn−1 .

Denote by ΓS1,...,Sk
the characteristic function of the blade ((S1, . . . , Sk)).

For compactness we further denote
ΓS = 1S and ΓS1,S2 = [[S1, S2]].

We distinguish the case of blades which are labeled by 3-block ordered set partitions.
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Definition 16. For a triple of disjoint subsets (S1, S2, S3) of {1, . . . , n}, the (characteristic)
function

γS1,S2,S3 = 1S11S21S3 + µS1,S2 + µS2,S3 + µS3,S1

is called a tripod.

e1 -e2

e2 -e3

e3 -e1

Figure 4. Blade in three coordinates, characteristic function γ1,2,3 = 1 + µ12 +
µ23 +µ31. Arrows indicate that the rays extend to infinity. The µij’s are character-
istic functions of open rays extending from (0, 0, 0), while “1” is the characteristic
function of the point (0, 0, 0) itself.

Informally, a blade is the union of the facets of the complete fan built from the k cyclic
rotations of the plate [S1, . . . , Sk]. Note that when the blocks Si are not singlets, the cones in
the fan are not in general pointed.

We show now that lumped blades, labeled by standard ordered set partitions with at least
one block of size ≥ 2, reduce naturally.
Proposition 17. The characteristic function ΓS1,...,Sk

of any blade ((S1, . . . , Sk)) with k ≥ 3 is a
convolution product of characteristic functions of (one-dimensional) tripods γi,j,k and sticks 1ab
labeled by respectively triples (i, j, k) of integers with i < j < k and a < b, where i, j, k, a, b ∈
{1, . . . , n}.
Proof. Choose elements ij ∈ Sj for j = 1, . . . , k. Then, applying the identities 1i1i2 · · · 1is−1is = IS
and 1Tγi,j,k = γT,j,k whenever respectively S = {i1, . . . , is} and i ∈ T , we have

ΓS1,...,Sk
= 1S11S2 · · · 1Sk

γi1,i2,i3γi1,i3,i4 · · · γi1,ik−1,ik

�

Corollary 18. The characteristic function of the blade ((S1, . . . , Sk)) has the expansion in terms
of convolution products, as
ΓS1,...,Sk

= 1S1∪···∪Sk
−
(
µS1,S2,...,Sk

+ µS2,S3,...,S1 + · · ·+ µSk,S1,...,Sk−1

)
= 1S1∪···∪Sk

−
(
(µS1,S2 · · ·µSk−1,Sk

) + (µS2,S3 · · ·µSk,S1) + · · ·+ (µSk,S1 · · ·µSk−2,Sk−1)
)
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Figure 5. The characteristic function of the n = 4 blade as a sum of elementary
symmetric functions:
Γ1,2,3,4 = 1 + (µ12 + µ23 + µ34 + µ41) + (µ12µ23 + µ12µ34 + µ12µ41 + µ23µ34 + µ23µ41 + µ34µ41).

Proposition 19. We have

ΓS1,...,Sk
= 1S11S2 · · · 1Sk

+
k−2∑
j=1

ej(µS1,S2 , . . . , µSk,S1),

where ej is the jth elementary symmetric function.

Proof. In the following computation, we shall abuse notation and write 1 for the product of
characteristic functions of any subcollection of the subspaces [Si] for i = 1, . . . , k. By Proposition
8 we have µS1,S2 · · ·µSk,S1 = 0; but 1 + µS1,S2 = [[S1, S2]], hence

[[12 · · ·n]] = [[S1, S2]] • [[S2, S3]] • · · · • [[Sk, S1]]
= (1 + µS1,S2)(1 + µS2,S3) · · · (1 + µSk,S1)

= 1 +
k−1∑
j=1

ej(µS1,S2 , . . . , µSk,S1)

= 1 +
k−2∑
j=1

ej(µS1,S2 , . . . , µSk,S1) + ek−1(µS1,S2 , . . . , µSk,S1),

the where ej is the jth elementary symmetric function, and ek−1(µS1,S2 , . . . , µSk,S1) is the char-
acteristic function of the complement of the blade [(S1, . . . , Sk)]. The first equality follows since
[[S1, S2]] • · · · • [[Sk, S1]] = [[S1 ∪ · · · ∪ Sk]].
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Consequently we have

ΓS1,...,Sk
= 1 +

k−2∑
j=1

ej(µS1,S2 , . . . , µSk,S1).

�

Theorem 20. The characteristic function of the blade ΓS1,...,Sk
labeled by a standard ordered set

partition (S1, . . . , Sk) of {1, . . . , n} admits the “flag” factorization
ΓS1,...,Sk

= γS1,S2,S3γS1,S3,S4 · · · γS1,Sk−1,Sk
.

Proof. To improve readability, let us temporarily adopt the notation µSi,Sj
= µi,j and γSi,Sj ,Sk

=
γi,j,k, and

µS1,S2µS2,S3 · · ·µSk−1,Sk
= µ1,2,...,k.

We shall induct on k, using the identities

ΓS1,...,Sk
= [[S1∪· · ·∪Sk]]−

(
(µS1,S2 · · ·µSk−1,Sk

) + (µS2,S3 · · ·µSk,S1) + · · ·+ (µSk,S1 · · ·µSk−2,Sk−1)
)
,

that is
ΓS1,...,Sk

= 1S1∪···∪Sk
−
(
µ12···k + µ23···k1 + · · ·+ µk1···(k−1)

)
.

For the base case we have
(Γ1,2,3 =)γ1,2,3 = 1123 − (µ1,2µ2,3 + µ2,3µ3,1 + µ3,1µ1,2) = 11(k−1)(k) − µ1,k−1,k − µk−1,k,1 − µk,1,k−1.

Computing in the flag triangulation gives
γ1,2,3γ1,3,4 · · · γ1,k−2,k−1γ1,k−1,k

= (γ1,2,3γ1,3,4 · · · γ1,k−2,k−1)γ1,k−1,k

= (112···(k−1) − µ1,2,...,k−1 − µ2,3,...,1 − · · · − µk−1,1,...,k−2)(11(k−1)(k) − µ1,k−1,k − µk−1,k,1 − µk,1,k−1)
= 112···k

− 112···(k−1)(µ1,k−1,k + µk−1,k,1 + µk,1,k−1)
− 11(k−1)(k)(µ1,2,...,k−1 + µ2,3,...,1 + · · ·+ µk−1,1,...,k−2)
+ (µ1,k−1,k + µk−1,k,1 + µk,1,k−1)(µ1,2,...,k−1 + µ2,3,...,1 + · · ·+ µk−1,1,...,k−2)

We aim to prove that the lines 2 and 3 are zero.
We first establish some essential (but easily verified) identities. First, we have

µp,qµi,...,j = −µi,...,j
for any i ≤ p < q ≤ j, as can be checked geometrically by dualizing with ?, in which case the
convolution • becomes the pointwise product of characteristic functions. In the dual, µ?p,q takes
the value −1 on an open half space containing the support of µ?i,i+1,...,p,...,q,...,i−1, (and is zero on
the complement), hence the pointwise product acts by switching the sign of µ?i,i+1,...,p,...,q,...,i−1.

Whenever p, q ∈ {1, . . . , j} we have
112···jµp,q = 112···j(1pq − [[p, q]]) = 112···j − 112···j = 0.

Now on the other hand, if p ∈ {1, 2, . . . , j} but q 6∈ {1, 2, . . . , j} then we have
112···jµp,q = 112···j([[p, q]]− 1) = [[12 · · · j, q]]− 112···j.

Moreover, using
0 = µS1,S2µS2,S1 = ([[S1, S2]]− 1S11S2)([[S2, S1]]− 1S11S2)
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it follows that
112···(k−1)(µ1,k−1µk−1,k + µk−1,kµk,1 + µk,1µ1,k−1)

= 0 · µk−1,k

+ ([[12 · · · k − 1, k]]− 112···k−1)([[k, 12 · · · k − 1]]− 112···k−1)
+ µk,1 · 0
= 0.

This shows that the second line vanishes. Proving that for the third line we have
11(k−1)(k)(µ1,2,...,k−1 + µ2,3,...,1 + · · ·+ µk−1,1,...,k−2) = 0

is similar and we omit the computation.
It remains to prove the identity

(µ1,k−1,k + µk−1,k,1 + µk,1,k−1)(µ1,2,...,k−1 + µ2,3,...,1 + · · ·+ µk−1,1,...,k−2)

= −
(
µ12···k + µ23···k1 + · · ·+ µk1···(k−1)

)
.

Indeed, while
µ1,k−1µk−1,k(µ1,2,...,k−1 + µ2,3,...,1 + · · ·+ µk−1,1,...,k−2)

= (−µ1,...,k−1µk−1,k) + (−µ2,3,...,k−1,1µ1,k−1 + · · · )
= (−µ1,...,k−1µk−1,k) + (0 + · · ·+ 0)
= −µ1,2,...,k

and
µk,1µ1,k−1(µ1,2,...,k−1 + µ2,3,...,k−1,1 + · · ·+ µk−1,1,...,k−2) = −(µk,1,...,k−1),

we have the remaining k − 2 nonzero contributions from µk−1,kµk,1:
µk−1,kµk,1(µ1,2,...,k−1 + µ2,3,...,k−1,1 + · · ·+ µk−1,1,...,k−2)

= −(µ1,2,...,k−1µk−1,kµk,1) + µ2,3,...,k−2,k−1(µk−1,1µk−1,kµk,1) + · · ·+ (µk−1,1µk−1,kµk,1)µ1,...,k−2

= −(µ2,3,...,k,1 + µ3,...,k,1,2 + · · ·+ µk−1,1,...,k−2),
and we finally obtain

γ1,2,3γ1,3,4 · · · γ1,k−2,k−1γ1,k−1,k = 112···k −
(
µ1,2,...,k + µ2,3,...,k,1 + · · ·+ µk,1,...,(k−1)

)
,

which, after substituting back in the notation i 7→ Si, becomes exactly ΓS1,...,Sk
, as desired.

�

6. Blades from triangulations, and factorization independence

Choose a cyclic (counterclockwise, say) order on the vertices of a polygon with vertices labeled
by the (standard) ordered set partition S = (S1, . . . , Sk) of {1, . . . , n}, where we assume that
1 ∈ S1. Let

T = {((Sa1 , Sb1 , Sc1)), . . . , ((Sak−2 , Sbk−2 , Sck−2))}
be any set of (cyclically oriented) triangles forming a triangulation of the k-gon, labeled such
that each (ai, bi, ci) satisfies ai < bi < ci or bi < ci < ai or ci < ai < bi.

Definition 21. We shall say that (Sai
, Sbi

, Sci
) is a cyclic subword of (S1, . . . , Sk) if it satisfies

the above condition, ai < bi < ci or bi < ci < ai or ci < ai < bi.
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Proposition 22. The product
ΓT = γSa1 ,Sb1 ,Sc1

γSa2 ,Sb2 ,Sc2
· · · γSak−2 ,Sbk−2 ,Sck−2

is independent of the triangulation T .

Proof. As any two triangulations of an n-gon are related by a sequence of flips, as in Figures 6
and 7, replacing the pair {(Si, Sj, Sk), (Si, Sk, S`)} with {(Si, Sj, S`), (Sj, Sk, S`)}, it suffices to
verify directly that γSi,Sj ,Sk

γSi,Sk,S`
= γSi,Sj ,S`

γSj ,Sk,S`
. Abbreviating µSiSj

as µij and γSi,Sj ,Sk
as

γijk, and replacing all products of the characteristic functions of subspaces, [[S`]], with 1, we
have

γijkγik` = (1 + µij + µjk + µki) (1 + µik + µk` + µ`i)
= 1 + (µij + µjk + µk` + µ`i) + (µki + µik)
+ (µij + µjk)µik + µki(µk` + µ`i) + (µijµk` + µijµ`i + µjkµk` + µjkµ`i) + µikµki

Using the triangulation identity for a three-block (open) plate, (µij +µjk)µik = µijµjk−µik and
µki(µk` + µ`i) = µk`µ`i − µki, as well as µikµki = 0, after cancellation we obtain
γijkγik` = 1 + (µij + µjk + µk` + µ`i) + (µijµjk + µijµk` + µijµ`i + µjkµk` + µjkµ`i + µk`µ`i).

Performing an analogous computation for γij`γjk` yields the same result. �

1 2

34

1 2

34

Figure 6. Independence of triangulation of the polygon for Proposition 22
{(1, 2, 4), (2, 3, 4)} ↔ {(1, 2, 3), (1, 3, 4)}.

Remark 23. Proposition 22 justifies our usual omission of the triangulation, using instead the
notation ΓS1,...,Sk

for the characteristic function of the blade labeled by the (standard) ordered
set partition (S1, . . . , Sk).

From the ring-theoretic identities for characteristic functions of blades in Theorem 20 and
Proposition 22, we derive the corresponding set-theoretic identity for blades themselves, using
Minkowski sums.

Corollary 24. For a blade ((S1, . . . , Sk)) labeled by a standard ordered set partition (S1, . . . , Sk),
and any triangulation {(Sa1 , Sb1 , Sc1), . . . , (Sak−2 , Sbk−2 , Sck−2)} of the cyclically-oriented polygon
with vertices labeled S1, . . . , Sk, where ai < bi < ci for all i, we have

((S1, . . . , Sk)) = ((Sa1 , Sb1 , Sc1))⊕ · · · ⊕ ((Sak−2 , Sbk−2 , Sck−2)).
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Figure 7. Alternate schematic representation for factorization independence,
dual to that of Figure 6.

Proof. By Theorem 20 and Proposition 22 we have the identity of piecewise constant functions
ΓS1,...,Sk

= ΓSa1 ,Sb1 ,Sc1
· · ·ΓSak−2 ,Sbk−2 ,Sck−2

.

Using the homomorphism property of the convolution product from Theorem 5, we express this
as

[((S1, . . . , Sk))] = ΓS1,...,Sk
= [((Sa1 , Sb1 , Sc1))⊕ · · · ⊕ ((Sak−2 , Sbk−2 , Sck−2))],

which is a relation of ({0, 1}-valued) characteristic functions which holds identically. In particular
the preimages of 1 on both sides are the same, hence

((S1, . . . , Sk)) = ((Sa1 , Sb1 , Sc1))⊕ · · · ⊕ ((Sak−2 , Sbk−2 , Sck−2)),
proving that a blade ((S1, . . . , Sk)) can be express (non-uniquely) as a Minkowski sum of tripods
((Sat , Sbt , Sct)). �

7. Graduated blades

Definition 25. To each ordered set partition S = (S1, . . . , Sk) we assign a piecewise-constant
function

[(S1, . . . , Sk)] = [[S1, S2, . . . , Sk]] + [[S2, . . . , Sk, S1]] + · · ·+ [[Sk, S1, . . . , Sk−1]].
Denote by B̂n the complex linear span of all such functions, as (S1, . . . , Sk) varies over all standard
ordered set partitions of {1, . . . , n}.

As the k cyclic block rotations of the standard plate are intersecting, the sum of their char-
acteristic functions surjects onto the set {1, 2, . . . , k} and therefore [(S1, . . . , Sk)] is not itself a
characteristic function, see Figure 8. This justifies our new term graduated.

Proposition 26. The set
{[(S1, . . . , Sk)] : (S1, . . . , Sk) is a standard ordered set partition of {1, . . . , n}}

is linearly independent.

Proof. By Proposition 12 of [16], the set of characteristic functions of plates [[S1, . . . , Sk]] labeled
by ordered set partitions is linearly independent; it follows that the set of functions [(S1, . . . , Sk)],
which are cyclic sums over block rotations of plates, is linearly independent as well, since each
plate occurs in precisely one of the cyclic rotations of a unique standard ordered set partition. �
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Figure 8. Level sets of the function
[(1, 2, 3)] = 3 + 2(µ1,2 + µ2,3 + µ3,1) + (µ1,2,3 + µ2,3,1 + µ3,1,2).

Recall from [16] that an ordered set partition (S1, . . . , Sk) of the set {1, . . . , n} is standard if
S1 contains the minimal element in S1∪· · ·∪Sk. A (standard) composite ordered set partition is
a set of ordered set partitions {S1, . . . ,S`} of a set {1, . . . , n}, if each Si is a (standard) ordered
set partition of a subset Ti with T1, . . . T` an (unordered) set partition of {1, . . . , n}.

Theorem 27. Let T be a (possibly empty) subset of {1, . . . , n} and let S1, . . . ,S` be a (standard)
composite ordered set partition of the set {1, . . . , n} \ T . Denote by m = 1 + |S1|+ · · ·+ |S`| the
total number of blocks in the ordered set partitions S1, . . . ,S`, together with the set T .
Then we have

[(T,S1)] • · · · • [(T,S`)] =
∑
U

(−1)m−|U|[(U)],

where the sum is over all standard ordered set partitions U = (U1, . . . , Uk), say, such that each
of the ordered set partitions

(T,S1), . . . , (T,S`)
is a subword of some cyclic rotation of the ordered set partition (U1, . . . , Uk).

Proof. We shall apply Theorem 21 of [16] to express
[(T,S1)] • · · · • [(T,S`)]

as a signed sum of graduated functions of plates, labeled by ordered set partitions of {1, . . . , n}.
By definition we have

[(T,S1)] • · · · • [(T,S`)] =
∑

j

[[T,S1]](j)
 • · · · •

∑
j

[[T,S`]](j)
 ,

where the superscript (j) denotes the jth block rotation,

[[V1, . . . , Va]](j) = [[Vj, Vj+1, . . . , Vj−1]]
for (V1, . . . , Va) any ordered set partition. This expands as

[(T,S1)] • · · · • [(T,S`)] =
∑

j1,...,j`

(
[[T,S1]](j1) • · · · • [[T,S`]](j`)

)
,

where we remark now that [[T,Si]](ji) is standard only when ji = 1. Applying Theorem 21 in
[16] to expand each summand as a signed sum of characteristic functions of plates, we obtain
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[[T,S1]](j1) • · · · • [[T,S`]](j`) =
∑

U(j1,...,j`)

(−1)m−|U(j1,...,j`)|[[U(j1,...,j`)]]

and summing both sides over all (j1, . . . , j`), after factorization we recover

[(T,S1)] • · · · • [(T,S`)] =
∑

(j1,...,j`)
[[T,S1]](j1) • · · · • [[T,S`]](j`)

=
∑

(j1,...,j`)

∑
U(j1,...,j`)

(−1)m−|U(j1,...,j`)|[[U(j1,...,j`)]]

=
∑
U

(−1)m−|U|[(U)].

�

Remark 28. It is interesting to note in Theorem 27 the similarity in the case when T is empty
and all blocks (S1, . . . , Sn) are singlets, with the so-called Generalized BDDK relations for the
full one-loop Parke-Taylor factors from [1]. See also Example 29 below.

Example 29. By Lemma 27, the characteristic function Γ1,2,3Γ1,4,5 has the following expansion:

[(1, 2, 3)] • [(1, 4, 5)]
= [(1, 2, 3, 4, 5)] + [(1, 2, 4, 3, 5)] + [(1, 2, 4, 5, 3)] + [(1, 4, 2, 3, 5)] + [(1, 4, 2, 5, 3)] + [(1, 4, 5, 2, 3)]
− [(1, 2, 4, 35)]− [(1, 2, 34, 5)]− [(1, 4, 2, 35)]− [(1, 4, 25, 3)]− [(1, 24, 3, 5)]− [(1, 24, 5, 3)]
+ [(1, 24, 35)].

In the functional representation [[i, j]] 7→ 1
1−xi/xj

(See [16] for well-definedness) we have

[(1, 2, 3, 4, 5)] 7→ x2x3x4x5

(x1 − x2) (x2 − x3) (x3 − x4) (x4 − x5)+ x3x4x5x1

(x2 − x3) (x3 − x4) (x4 − x5) (x5 − x1)+· · ·

= x3x4x5x
2
1 + x2x3x

2
4x1 + x2x

2
3x5x1 + x2

2x4x5x1 − 5x2x3x4x5x1 + x2x3x4x
2
5

(x1 − x2) (x2 − x3) (x3 − x4) (x4 − x5) (x5 − x1) ,

and one can verify that by partial fraction identities, modulo non-pointed cones (these are labeled
by ordered set partitions having a block of size bigger than 1) we have

[(1, 2, 3)] • [(1, 4, 5)]
= [(1, 2, 3, 4, 5)] + [(1, 2, 4, 3, 5)] + [(1, 2, 4, 5, 3)] + [(1, 4, 2, 3, 5)] + [(1, 4, 2, 5, 3)] + [(1, 4, 5, 2, 3)]

7→ x3x4x5x
2
1 + x2x3x

2
4x1 + x2x

2
3x5x1 + x2

2x4x5x1 − 5x2x3x4x5x1 + x2x3x4x
2
5

(x1 − x2) (x2 − x3) (x3 − x4) (x4 − x5) (x5 − x1) + · · ·

= (x3x
2
1 + x2

2x1 − 3x2x3x1 + x2x
2
3) (x5x

2
1 + x2

4x1 − 3x4x5x1 + x4x
2
5)

(x1 − x2) (x2 − x3) (x3 − x1) (x1 − x4) (x4 − x5) (x5 − x1) .

Substituting xi = e−εyi and series expanding in ε, truncating at order O(ε1) we obtain a sum of
elementary symmetric functions:

[(1, 2, 3, 4, 5)] 7→
3∑
j=0

1
(4− j)!ej

(
1

y1 − y2
, . . . ,

1
y5 − y1

)
ε−j +O(ε),
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where O(ε) contains powers of εp for p ≥ 1, and where the right-hand side of the shuffle identity
becomes

(−y2
1 + y2y1 + y3y1 − y2

2 − y2
3 + y2y3) (−y2

1 + y4y1 + y5y1 − y2
4 − y2

5 + y4y5)
(y1 − y2) (y2 − y3) (y3 − y1) (y1 − y4) (y4 − y5) (y5 − y1) ε−2

+ 1
2

(
1

y1 − y2
+ 1
y2 − y3

+ 1
y3 − y1

+ 1
y1 − y4

+ 1
y4 − y5

+ 1
y5 − y1

)
ε−1

+1
4 +O(ε).

Warning: in the expansions of the functional representation built from

[[i, j] 7→ 1
1− xi/xj

above, we have drastically truncated an infinite series; as we have seen that elementary symmetric
functions appear in the expansion of the characteristic function of a blade, it is not surprising
that it appears for generating functions. However for larger n the structure of the expansion is
considerably more complex and interesting, due to the nature of the well-known function

1
1− e−z ,

see for example [6]. We leave such questions to future work.
Note that in the functional representation of type [[i, j]] 7→ 1

xi−xj
, since characteristic functions

of both non-pointed cones and higher codimension cones are in the kernel of the Laplace transform
valuation, we have trivially

[(1, 2, 3, 4, 5)] 7→ 1
(x1 − x2)(x2 − x3) · · · (x4 − x5) + 1

(x2 − x3) · · · (x4 − x5)(x5 − x1) + · · · = 0.

Remark 30. Consider now one of the other functional representations mentioned in [16],

[[S1, . . . , Sk] 7→
k∏
i=1

1
1−∏j∈Si

xj
,(1)

for example

[[1, 2, 3, 4, 5]] 7→ 1
(1− x1) (1− x1x2) (1− x1x2x3) (1− x1x2x3x4) (1− x1x2x3x4x5) .

The functional representation of Equation (1) is quite complicated and the numerator for the
expansion of [(1, 2, 3)] • [(1, 4, 5)] appears not to factor nicely into the product of two irreducible
polynomials similar to

(x3x
2
1 + x2

2x1 − 3x2x3x1 + x2x
2
3) (x5x

2
1 + x2

4x1 − 3x4x5x1 + x4x
2
5)

(x1 − x2) (x2 − x3) (x3 − x1) (x1 − x4) (x4 − x5) (x5 − x1) ,

but rather the numerator is a monstrous polynomial with 14781 monomials which likely doesn’t
factor at all. The complexity here likely arises because the blades ((1, 2, 3)) and ((1, 4, 5)) are not
in orthogonal subspaces. On the other hand, the expansion using Equation (1) of for example
[(1, 2, 3)] • (4, 5)] and [(1, 2, 3)] • [(4, 5, 6)] both can be seen to have numerators which factor as
products of two irreducible polynomials.

See Examples 47 and 48 in [16] for work with this functional representation for generalized
permutohedral cones that are encoded by directed trees.
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The leading order term, the coefficient of ε−5 in its analogous approximation using xi = e−εyi ,

[[1, 2, 3, 4, 5]] 7→ 1
y1 (y1 + y2) (y1 + y2 + y3) (y1 + y2 + y3 + y4) (y1 + y2 + y3 + y4 + y5)ε

−5+O(ε−4),

is also quite interesting, but it also appears to lack a meaningful factorization property for
convolutions involving non-orthogonal subspaces.

Example 31.

Recall the definition of the Parke-Taylor factor

PT (i1, . . . , in) = 1
(xi1 − xi2)(xi2 − xi3) · · · (xin − xi1) ,

where x1, . . . , xn are complex variables, see [36]. There is a so-called U(1)-decoupling identity,

PT (i1, i2 . . . , in) + PT (i1, i3 . . . , in, i2) + · · ·+ PT (i1, in, i2, . . . , in−1) = 0,

which has an analog for blades. Let us illustrate what it looks like in the first nontrivial case.
In the functional representation

[[S1, . . . , Sk]] 7→
k∏
i=1

1
1−∏j∈S1∪···∪Si

xj
,

for example

[[1, 23, 4]] 7→ 1
(1− x1) (1− x1x2x3) (1− x1x2x3x4) ,

we have

[(2, 3, 4)] 7→ 1
(1− x4) (1− x2x4) (1− x2x3x4) + 1

(1− x3) (1− x3x4) (1− x2x3x4)

+ 1
(1− x2) (1− x2x3) (1− x2x3x4)

= 1
(1− x2) (1− x2x3) (1− x4) + 1

(1− x3) (1− x4) (1− x2x4)

+ 1
(1− x2) (1− x3) (1− x3x4) + 1

1− x2x3x4
− 1

(1− x2) (1− x3) (1− x4) .

Recall that

[(1, 2, 3, 4)] = [[1, 2, 3, 4]] + [[2, 3, 4, 1]] + [[3, 4, 1, 2]] + [[4, 1, 2, 3]].

Summing over all standard ordered set partitions which contain (1), (2, 3, 4) as cyclic subwords,
after many partial fraction identities we obtain the same, but multiplied by 1

1−x1
:

[(1, 2, 3, 4)] + [(1, 3, 4, 2)] + [(1, 4, 2, 3)]− [(12, 3, 4)]− [(13, 4, 2)]− [(14, 2, 3)]

7→ 1
(1− x1)(1− x2)(1− x2x3)(1− x4) + 1

(1− x2)(1− x3)(1− x3x4)(1− x2)

+ 1
(1− x1)(1− x4)(1− x4x2)(1− x3) + 1

(1− x1)(1− x2x3x4)

− 1
(1− x1) (1− x2) (1− x3) (1− x4) .
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Definition 32. We call an ordered set partition (S1, S2, . . . , Sk) of {1, . . . , n} 2-standard if both
(S1, S2, . . . , Sk) and (S2, . . . , Sk) are standard ordered set partitions of respectively {1, . . . , n}
and {1, . . . , n} \ S1.

The set {(T,S1), . . . , (T,S`)} is a 2-standard composite ordered set partition of {1, . . . , n} if
each (T,Si) is 2-standard.

In other words, for an ordered set partition of {1, . . . , n} the condition is that S1 contains
1, and S2 contains the minimal element in the complement of S1 in {1, . . . , n}. For example,
(1, 2, 4, 3, 5) and (15, 2, 4, 3) are 2-standard, but (125, 4, 3) is not.

In what follows, after proving in Theorem 35 that it spans and is linearly independent, we
shall call the set

{[(T,S1)] • · · · • [(T,S`)] : each (T,Si) is a 2-standard ordered set partition}.

the canonical basis for B̂n. If the set {(T,S1), . . . , (T,S`)} contains only 2-standard ordered set
partitions, then it shall be called a blade-canonical composite ordered set partition.

Following the procedure of [16], we define an endomorphism on B̂n, taking the given basis of
functions [(S1, . . . Sk)] labeled by standard ordered set partitions to the canonical one, labeled
by 2-standard composite ordered set partitions. This will prove linear independence for the
canonical basis.

The bijection UB, say, between standard ordered set partitions and 2-standard composite
ordered set partitions, is closely related to the bijection from [16] between ordered set partitions
and standard composite ordered set partitions.

Let (S1, . . . , Sk) be a standard ordered set partition of {1, . . . , n}. Setting T = S1, we apply
the bijection in [16] to the ordered set partition (S2, . . . , Sk) of {1, . . . , n} \ S1.

We first recall the algorithm from Proposition 25 in [16]. Define {i1, . . . , im} ⊆ {2, . . . , k}
with i1 > i2 > · · · > im, if Si1 contains the smallest label in the set Si1 ∪ Si1+1 ∪ · · · ∪ Sk, and in
general Sip contains the smallest label in the set Sip ∪ Sip+1 ∪ · · · ∪ Sip−1−1.

Now set
UB(S1, . . . , Sk) = {(S1,Si1), (S1,Si2) . . . , (S1,Sim)},

where Sia = (Sia , Sia+1, . . . , Sia−1−1).

Remark 33. If (S1, . . . , Sk) is not standard but Sa, say, contains its minimal element, then define
UB(S1, . . . , Sk) = UB(Sa, Sa+1, . . . , Sa−1).

Example 34. We have

UB(3, 4, 5, 1, 2) = UB(1, 2, 3, 4, 5) = {(1, 2, 3, 4, 5)}
UB(1, 234, 5, 67) = {(1, 234, 5, 67)}
UB(1, 5, 4, 3, 2) = {(1, 2), (1, 3), (1, 4), (1, 5)}
UB(12345) = {(12345)}

UB(1 5, 10, 4, 10, 2, 9, 3, 6 7) = {(1 5, 2, 9, 3, 6 7), (1 5, 4, 10), (1 5, 10)}

Recall from [16] the lexicographic ordered on ordered set partitions: given two ordered
set partitions (S1, . . . , Sk) and (T1, . . . , T`) of {1, . . . , n} define two sequences (p1, . . . , pn) and
(q1, . . . , qn) whenever i ∈ Spi

and j ∈ Tqj
we say that in the lexicographic order (S1, . . . , Sk) ≺

(T1, . . . , T`) if the sequence (p1, . . . , pn) is lexicographically smaller than (q1, . . . , qn).
In Theorem 35 finally establishes linear independence for the canonical basis for graduated

functions of blades.
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Theorem 35. The linear map induced by the bijection UB is invertible. The set

{[(T,S1)] • · · · • [(T,S`)] : each (T,Si) is a 2-standard ordered set partition}.

is linearly independent (and hence is a basis).

Proof. The proof that the bijection UB is upper-unitriangular with respect to the lexicographic
order follows the same procedure which was used in the proof of Theorem 28 in [16].

Indeed, if (S1, . . . , Sk) is a standard ordered set partition of {1, . . . , n} and we apply Theorem
27 to expand UB ([(S1, . . . , Sk)]), then every blade (except for [(S1, . . . , Sk)], which appears) in the
expansion is labeled by a standard ordered set partition that is lexicographically strictly smaller
than (S1, . . . , Sk). It follows that the matrix for UB is upper unitriangular, hence invertible. �

8. Canonical blades, graduated and characteristic: enumeration and a
conjecture

Recall that

γi,j,k = 1 + µi,j + µj,k + µk,i = 1 + ([[i, j]]− 1) + ([[j, k]]− 1) + ([[k, i]]− 1)

and that 1ab is the characteristic function of the one-dimensional subspace

{t(ea − eb) : t ∈ R}.

Note: in Theorem 27 we established the linear independence of the set of canonical graduated
blades [(S1, . . . , Sk)]. In what follows we give the set of canonical characteristic functions of
blades ΓS1,...,Sk

. We conjecture that these are linearly independent and span the same space as
the graduated blades; however the proofs of these two assertions is left to future work.

Example 36. Note that the characteristic function labeled by any set partitions with only
singlets is the identity, [(j)] = 1.

Then for n = 3, the set of canonical characteristic functions of blades consists of the 1+4+1 = 6
elements

1
Γ1,2,3, 112, 123, 113

1123

For n = 4, the canonical set is as follows:

1
Γ1,2,3,Γ1,2,4,Γ1,3,4, 112, 113, 114, 123, 124, 134

Γ1,2,3,4,Γ1,2,4,3,Γ1,2,34,Γ1,23,4,Γ12,3,4,Γ1,24,3,Γ13,2,4,Γ14,2,3, 112134, 113124, 114123, 1123, 1124, 1134, 1234

11234.

Note that the total count is 1 + 9 + 15 + 1 = 26, the necklace number for n = 4, which counts
the number of standard ordered set partitions of {1, 2, 3, 4}.

For n = 5 the first 2-standard composite ordered set partitions appear. The new elements are

Γ1,2,3Γ1,4,5, Γ1,2,4Γ1,3,5, Γ1,2,5Γ1,3,4.

Using the same labeling, but replacing ΓS1,S2,S3 with [(S1, S2, S3)] everywhere, we obtain the
canonical basis for the space of graduated functions of blades, B̂n for n = 3, 4, 5.
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Remark 37. In Corollary 31 of [16] we found for the count of number Tn,k of characteristic
functions of plates of dimension n− k in the canonical plate basis, the formula

Tn,k =
n∑
i=1

S(n, i)s(i, k − 1).

Rows n = 1, . . . , 6 are given below.
1
2 1
6 6 1
26 36 12 1
150 250 120 20 1
1082 2040 1230 300 30 1

By counting elements in the canonical basis of B̂n, it is easy to obtain the formula in Propo-
sition 38, by shifting one of the indices from the formula for the canonical plate basis, reflecting
the 2-standardness condition.
Proposition 38. The number of blades of dimension (n−k) in the canonical basis of graduated
blades is

TBn,k =
n∑
i=1

S(n, i)s(i− 1, k − 1),

where S(n, i) is the Stirling number of the second kind, and s(i, k) is the (unsigned) Stirling
number of the first kind.

For n = 2, 3, . . . , 7 we have
1
1 1
1 4 1
1 15 9 1
1 66 66 16 1
1 365 500 190 25 1

Note that the rows sum (correctly) to the necklace numbers, which count ordered set partitions
up to cyclic block rotation.

The numbers that are easy to remember are as follows: the left column counts the occurrence of
the whole space 112···n. For the rightmost two diagonals, there is always the characteristic function
of the unique point at the origin, and there are (n − 1)2 linearly-independent characteristic
functions of blades each of dimension 1, corresponding to the

(
n−1

2

)
tripod generators γijk as in

Figure 4 together with the
(
n
2

)
characteristic functions of the one-dimensional subspaces, 1ab.

The generating functions for the first few diagonals of the triangle in Proposition 38 are
1

1− x,
x+ 1

(1− x)3 ,
x2 + 10x+ 1

(1− x)5 ,
x3 + 59x2 + 59x+ 1

(1− x)7 ,
x4 + 356x3 + 966x2 + 356x+ 1

(1− x)9 ,

x5 + 2517x4 + 12602x3 + 12602x2 + 2517x+ 1
(1− x)11 ,

x6 + 21246x5 + 161967x4 + 298852x3 + 161967x2 + 21246x+ 1
(1− x)13 ,

and the coefficients of the numerators sum to the sequence
1, 2, 12, 120, 1680, 30240,
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which appears to be given by O.E.I.S. sequence A001813, a(m) = (2m)!
m! , [32]. Clearly, a combi-

natorial proof and explanation for this formula would be highly desirable.
A vector of real numbers (b1, . . . , bm) is symmetric if bi = bm−i. It is unimodal if it there exists

an index i such that b1 ≤ b2 ≤ · · · ≤ bi ≥ bi+1 ≥ · · · ≥ bm.

Conjecture 39. The coefficients of the polynomial numerators of the generating functions for
the diagonals of the array TBn,k are symmetric and unimodal, and sum to the sequence a(m) =
(2m)!
m! .

The conjecture has been verified numerically in Mathematica: through the 24th diagonal.
The sequence a(m) = (2m)!

m! itself is already suggestive; for example, it can expressed as
a(m) = (m + 1)!

(
(2m)!

(m+1)!(m!)

)
, which is (m + 1)! times the Catalan number, suggesting the

possibility of a relation to labeled (rooted) binary trees (as noted in the comments in sequence
A001813), with some additional statistic explaining the numerator coefficients for the generating
series. It seems plausible to ask about the possibility of a directly geometric and/or ring-theoretic
interpretation of the sequence a(m) and the numerator coefficients in terms of blades or other
geometric of physical objects. We leave this question to future research.

9. The graded cohomology ring of a configuration space

In what follows, we connect with joint work with V. Reiner in [15] on the cohomology ring
H?(Xn), where Xn is the configuration space of n distinct points in SU(2) modulo the diagonal
action of SU(2). The presentation of the cohomology ring in Definition 40 suggests that this
ring is analogous to a graded analog of the space of characteristic functions of blades labeled
by nondegenerate ordered set partitions of {1, . . . , n}, having n singleton blocks. We leave the
detailed exploration of the connection to future work.

Definition 40. Let Un be the commutative algebra on
(
n
2

)
generators uij = −uji with i 6= j,

subject to the relations
u2
ij = 0

and
uijujk + ujkuki + ukiuij = 0.

Define vijk = uij + ujk + uki, and denote by Vn the subalgebra of Un generated by the vijk.

Theorem 41 ([15], Theorem 3). We have an isomorphism of graded rings

Vn ' H?(Xn).

In the algebra Vn we have the very useful relation of Proposition 42. It is interesting to
compare its relative simplicity to the complexity of the proof of Theorem 20.

Proposition 42. In Un we have the relation

(1 + ui1,i2) · · · (1 + uik,i1) = (1 + vi1,i2,i3) · · · (1 + vi1,ik−1,ik),

for any sequence {i1, . . . , ik} selected from {1, . . . , n} with k ≥ 2 (k = 2 being trivial), and
additionally the identities

vijk = vjki = −vikj
v2
ijk = 0.
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Proof. As u2
ij = 0 and

uijujk + ujkuki + ukiuij = 0,
we have

v2
ijk = u2

ij + u2
jk + u2

ki + 2 (uijujk + ujkuki + ukiuij) = 0.
Now let us prove the first assertion by induction.

Since u2
i,j = 0 we have

(1 + uij)(1 + uji) = (1− u2
ij) = 1.

Then,

(1 + ui1i2) · · · (1 + uiki1) = (1 + ui1i2)(1 + ui2i3) · · · (1 + uik−1i1)(1 + uik−1ik)(1− uik−1i1)(1 + uiki1)
= (1 + ui1i2)(1 + ui2i3) · · · (1 + uik−1i1)(1 + ui1ik−1 + uik−1ik + uiki1)
= (1 + ui1i2)(1 + ui2i3) · · · (1 + uik−1i1)(1 + v1,k−1,k)
= (1 + vi1i2i3)(1 + vi1i3i4) · · · (1 + vi1ik−1ik).

Here we have used the induction step, u2
ij = 0 and the Jacobi identity to express

(1 + uik−1ik)(1− uik−1i1)(1− uiki1) = (1 + u1ik−1)(1 + uik−1ik)(1 + uiki1)
= (1 + ui1ik−1 + uik−1ik + uiki1)
= 1 + v1ik−1ik .

�

Note that the identity is unchanged if we deform with a formal parameter t to keep track of
degree: replace (1 + uij) 7→ (1 + tuij) and accordingly (1 + vijk) 7→ (1 + tvijk).

Then Proposition 42 becomes

(1 + tui1i2)(1 + tui2i3) · · · (1 + tuiki1) = (1 + tvi1i2i3)(1 + tvi1i3i4) · · · (1 + tvi1ik−1ik).

Corollary 43. We have

ui1,i2 · · ·uik−1,ik + ui2,i3 · · ·uik−1,ik + · · ·+ uik,i1 · · ·uik−2,i3 = 0

and
ui1,i2 · · ·uik,i1 = 0,

for any sequence {i1, . . . , ik} of elements in {1, . . . , n}.

Proof. We need to check that the coefficients of tk and tk−1 in the following expression are zero:

(1 + tui1i2)(1 + tui2i3) · · · (1 + tuiki1).

But by Proposition 42 this equals

(1 + tvi1i2i3)(1 + tvi1i3i4) · · · (1 + tvi1ik−1ik)

and the highest power of t which appears with nonzero coefficient is tk−2. �

It is interesting to compare the elegance of exponentiation in Example 44 with the relative
complexity of the same formally equivalent identity in Proposition 22:

(γ1,2,3γ1,3,4 = γ1,2,4γ2,3,4) ⇔ (v123v134 = v124v234).
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Example 44. In Un we have the relations
exp (v123) exp (v134) = exp (v123 + v134) = exp (u12 + u23 + u34 + u41) ,

hence the full exponential is an invariant of the boundary 1-skeleton of the polygon! See also
Appendix A for a more general construction involving triangulations of polygons. Continuing,

exp (u12 + u23 + u34 + u41)

= 1 + (u12 + u23 + u34 + u41) + 1
2 (u12 + u23 + u34 + u41)2 + 1

3! (u12 + u23 + u34 + u41)3 + · · ·

= 1 + (u12 + u23 + u34 + u41) + (u12u23 + u12u34 + u12u41 + u23u34 + u23u41 + u34u41) ,
where the degree 3 term vanishes by direct computation, or by Proposition 42. The sum is
in termwise bijection with the expression for Γi,j,k,` from Proposition 22 and in particular the
expression for Γ1,2,3,4 as a sum of elementary symmetric functions, as depicted in Figure 5.

By way of a specialization of the canonical basis from Theorem 35 to ordered set partitions
having only singleton blocks, one would hope to have the following graded basis for the coho-
mology ring of the configuration space of points in SU(2) modulo the diagonal action, from [15].
It may be possible to construct an argument using the so-called nbc basis, cf [35]; however a
self-contained combinatorial proof would be desirable.

Problem 45. Writing each cycle C of w uniquely as C = (c1c2 · · · c`) with convention c1 =
min{c1, c2, . . . , c`}, show that (Un−1)j and (Vn)j have the bases respectively∏

cycles C of w
uc1,c2 uc2,c3 · · ·uc`−1c`

and
∏

cycles C of w
vc1,c2,n vc2,c3,n · · · vc`−1c`,n,

where w runs through all permutations in Sn−1 with n− 1− j cycles.

10. Configuration space of points on the circle

Let us denote by
On = U(1)n/U(1) ⊂ Cn/U(1)

the configuration space of n points on the unit circle U(1) = {z ∈ C : |z| = 1}, modulo
simultaneous rotation. In this section we record a convenient labeling and parameterization of
the configuration space of n points on the circle modulo simultaneous rotation.

Denote by ∆n
1 = {x ∈ [0, 1]n : ∑n

i=1 xi = 1} the unit simplex.

Definition 46. Let S = (S1, . . . , Sk) be an ordered set partition of {1, . . . , n}. For x ∈ ∆n
1 ,

define
ϕS(x1, . . . , xn) = e2πixS1···SkeS1 + e2πixS2···SkeS2 + · · ·+ e2πixSkeSk

= eS1 + e2πixS2···SkeS2 + · · ·+ e2πixSkeSk
,

and denote the equivalence class of ϕS(x1, . . . , xn) modulo simultaneous rotation by U(1) by
ϕS(x1, . . . , xn). We further define [S1, . . . , Sk]~ = ϕS(∆n

1 ), and as usual denote by [[S1, . . . , Sk]]~
the characteristic function of [S1, . . . , Sk]~.

Then it is easy to see that the image ϕS(∆n
1 ) ⊂ On fills out the closure of the unique cyclic

order of points on the circle3 which is oriented counterclockwise (i.e. with increasing angle) as
x(S1) ← x(S2) ← · · · ← x(Sk) ← x(S1),

where we recall the shorthand notation x(S) which stands for (xi1 = · · · = xis) for S = {i1, . . . , is}.
3i.e. we include all possible additional collisions
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In Proposition 47 we show that the set of composite maps ϕS : V n
0 → On identifies all subsets

of On which are labeled by cyclic rotations of the same ordered set partition.

Proposition 47. For any ordered set partition (S1, . . . , Sk) of {1, . . . , n} we have invariance
under cyclic block rotation:

[S1, S2, . . . , Sk]~ = [S2, S3, . . . , Sk, S1]~.

Proof. Let S = (S1, . . . , Sk) be an ordered set partition of {1, . . . , n}, and let us denote S(j) =
(Sj, Sj+1, . . . , Sj−1). It suffices to check pointwise that ϕS(1)(x) and ϕS(2)(x) differ only by a
phase.

For each (x1, . . . , xn) ∈ ∆n
1 we have

ϕ(S1,...,Sk)(x1, . . . , xn) = eS1 + e2πixS2···SkeS2 + e2πixS3···SkeS2 + · · · e2πixSkeSk

= e2πixS2···Sk

(
e2πixS1eS1 + eS2 + e2πixS3···SkS1eS3 + · · ·+ e2πixSkS1eSk

)
= e2πixS2···Sk

(
eS2 + e2πixS3···SkS1eS3 + · · ·+ e2πixSkS1eSk

+ e2πixS1eS1

)
= e2πixS2···Skϕ(S2,...,Sk,S1)(x1, . . . , xn),

which differs from ϕ(S2,...,Sk,S1)(x1, . . . , xn) only by the phase e2πixS2···Sk , hence we have pointwise
ϕ(S1,...,Sk)(x1, . . . , xn) = ϕ(S2,...,Sk,S1)(x1, . . . , xn),

and since (S1, . . . , Sk) was arbitrary, the identity follows. �

It is natural for On to enumerate the set of degenerate cyclic orders of n particles on the circle,
{[S1, . . . , Sk]~ : (S1, . . . , Sk) is a standard ordered set partition of {1, . . . , n}} ,

by the number of blocks, that is by the number of distinct uncollided particles in a given
configuration. One easily finds O.E.I.S. sequence A028246, see also A053440:

Tn,k = S(n, k)(k − 1)!,
where S(n, k) is the Stirling number of the second kind. The number triangle begins with

1
1 1
1 3 2
1 7 12 6
1 15 50 60 24
1 31 180 390 360 120

Here the rows total to the necklace numbers, as in Proposition 38.

11. Concluding remarks

In this paper, we have studied a new factorization property for permutohedral honeycomb
tessellations: using ring theoretic calculations with characteristic functions of blades, we proved
that honeycomb tessellations are locally Minkowski sums of 2-dimensional permutohedral hon-
eycombs. We have also established a certain canonical basis for graduated functions of blades.

(1) For graduated functions of blades we prove linear independence for the canonical basis
(in Theorem 35), but we do not establish any factorization property. Indeed, it turns out
that due to the larger integer multiplicities on shared faces of the cyclic sum the simple
factorization property does not hold for graduated blades.



32 NICK EARLY

(2) On the other hand, for characteristic functions of blades, which are {0, 1}-valued, we
prove the factorization property. We leave all linear independence proofs to future work.

(3) Further, we expect, but it was beyond the scope of the paper to prove, that graduated
and characteristic functions of blades and span the same space.

Basis? Simple factorization into tripods?
{0, 1}-valued, standard Expected X
{0, 1}-valued canonical Expected X
n̄-valued, standard X No
n̄-valued, canonical X No

(4) Proving the closed formula for the general straightening relations for both characteristic
and graduated functions of blades is beyond the scope of the present work we defer the
exposition to future work. Toric posets may be relevant for the general proof, see [13].

However, modulo both characteristic functions of non-pointed and higher codimension
cones the solution is very manageable, especially for the top-degree component. In fact
in this case it turns out that the straightening relations are combinatorially identical to
the Kleiss-Kuijf relations for the Parke-Taylor factors, see [25], and have already been
formulated graph-theoretically in Section 3.2 of [3], which we can see by way of the
homomorphism

Γi1,...,in 7→ PT (i1, . . . , in),
where

PT (i1, . . . , in) = 1
(xi1 − xi2)(xi2 − xi3) · · · (xin − xi1) ,

x1, . . . , xn being complex variables. Seeing that this is a homomorphism is not difficult,
but it partially involves structures studied in [9] and we leave the proof to future work.
See also Example 31 for an analog of the U(1)-decoupling identity, for a functional
representation of graduated functions of blades. For related straightening relations, see
the so-called canonicalization of pseudoinvariants in [28].

(5) As one can derive by simply counting multiplicities obtained by summing the charac-
teristic functions of the blade ((1, 2, 3)), see Figure 4, and its mirror image ((1, 3, 2)), in
dimension ≤ 1, the fundamental blade relations for characteristic functions take the form

Γ1,2,3 + Γ1,3,2 = 112 + 123 + 131 − 111213.

On the other hand, for graduated functions (see Figure 8) on V 3
0 the analogous expression

takes the form
[(1, 2, 3)] + [(1, 3, 2)] = [(1, 23)] + [(12, 3)] + [(13, 2)]− 1123 + 111213.

(a) Modulo characteristic functions of cones of codimension ≥ 2 in V 3
0 , the fundamental

blade relations take the form respectively
Γ1,2,3 + Γ1,3,2 = 112 + 123 + 131

and
[(1, 2, 3)] + [(1, 3, 2)] = [(1, 23)] + [(12, 3)] + [(13, 2)]− 1123.

(b) Modulo characteristic functions of non-pointed cones, the fundamental blade rela-
tions take the form respectively

Γ1,2,3 + Γ1,3,2 = −111213.
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and
[(1, 2, 3)] + [(1, 3, 2)] = 111213.

(c) Modulo both we have antisymmetry, respectively
Γ1,2,3 + Γ1,3,2 = 0

and
[(1, 2, 3)] + [(1, 3, 2)] = 0.

One could compare these with the antisymmetry of the generator vijk in the coho-
mology ring of Section 9.
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Appendix A. Symmetries of a leading singularity

In Theorem 35 we saw that factorizations of characteristic functions of blades correspond to
the triangulations of a cyclically-oriented polygon. It is natural to ask about products which do
not correspond to triangulations, but rather to graphs embedded in higher dimensional objects;
indeed, it turns out that this case is similar to something in the scattering amplitudes literature
known as a leading singularity. Further, the examples and discussion which follows suggests a
new class of identifications for non-planar on-shell diagrams beyond the well-known square move
which deserves further study [9]. Our paper [9] is in preparation.

While our computations rely on relations which hold in the cohomology ring Un, namely
vijk = −vikj, v2

ijk = 0 and vijkvik` + vik`vi`j + vi`jvijk = 0, it makes sense to ask whether the
leading singularities deform manageably when the formal generator vijk is “replaced” with the
characteristic function γi,j,k. The practical difficulty is that the above relations on the vijk’s are
degenerations of the relations on the γi,j,k, so there are many more moving parts. For example,
the relation v123 + v132 = 0 now deforms to the fundamental identity

γ1,2,3 + γ1,3,2 = 112 + 123 + 131 − 112123131.

However, in the algebra Dn the relations are very simple, and due to the nilpotence of the
generators ∆2

ijk = 0 one has the exponential map.

1 2

3

45

6

1 2

3

45

6

Figure 9. Triangulation change:
{(1, 2, 3), (3, 4, 5), (5, 6, 1), (1, 3, 5)} ⇔ {(1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6)}.

Internal arrows overlap in opposite directions and cancel (triangulation succeeds),
see Example 48

Example 48. The simplest example of a triangulation of a polygon that is not a flag occurs for
a hexagon at n = 6, see Figure 9. This central triangulation corresponds to the coefficient of t4
in the following expression:

v123v345v561v135 = coefft4 ((1 + tv123)(1 + tv345)(1 + tv561)(1 + tv135))
= coefft4((1 + tv123)(1 + tu13)(1 + tv345)(1 + tu35)(1 + tv561)(1 + tu15))
= coefft4 ((1 + tu12)(1 + tu23)(1 + tu34)(1 + tu45)(1 + tu56)(1 + tu61))
= coefft4 ((1 + tv123)(1 + tv134)(1 + tv145)(1 + tv156))
= v123v134v145v156,

having used
(1 + tvabc) = (1 + tuab)(1 + tubc)(1 + tuca),
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or, directly, the flip move v135v345 = v134v145, as also holds for characteristic functions of blades,
γ135γ345 = γ134γ145. On the other hand, we have the interesting product which does not cor-
respond to a triangulation, but which does have meaning as a certain leading singularity, as
seen in [3]. In the derivation we shall make use of the identities exp (tuij) = 1 + tuij and
exp (tvijk) = 1 + tvijk, as u2

ij = 0 and v2
ijk = 0.

Then, for the set of triples {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 6, 4)} we have
(1 + v123)(1 + v345)(1 + v561)(1 + v264) = exp ((v123 + v345 + v561 + v264))

= exp (u12 + u23 + u31 + u34 + u45 + u53 + u56 + u61 + u15 + u26 + u64 + u42)
= exp (u12 + u23 + u34 + u56 + u61) exp (v153 + v264) .

1 2

3

45

6

Figure 10. No internal edge cancellation occurs (triangulation fails) for the lead-
ing singularity of Example 48: {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 6, 4)}. For further
discussion see [9].

Here each uij corresponds to an oriented edge, as in Figure 10.

It is easy to check that the expansion here is invariant under rotation by the cycle (123456),
which would not be obvious from the factorization into triples.



36 NICK EARLY

Appendix B. Combinatorial scattering equations and balanced graphs

In this somewhat speculative section, let us look toward scattering amplitudes for inspiration
and future work, specifically toward the one-loop worldsheet functions from [20]. The story
began in [10], where the scattering equations were introduced. These are a system of n highly
nonlinear equations in the n complex variables σ1, . . . , σn:∑

b 6=a
Gab = 0

for each a = 1, . . . , n, where we define Gab = sab

σa−σb
.

Above the numerators sab = sba for 1 ≤ a < b ≤ n are known as the generalized Mandelstam
invariants; for the present purposes, we may assume that they are complex numbers. Remark
that we regard these only as combinatorial objects. We shall not here think about the usual
linear fractional action of the gauge group SL2 on the variables σa.

Remark that the functions Gab are obtained as limits of Kronecker-Eisenstein series, see [26]
and [40]. In the context of scattering amplitudes, a good starting point would be [29] and the
references therein. The same functions arise in elliptic solutions to the Classical Dynamical
Yang-Baxter equation, see [18] and [17] and the references therein.

The purely combinatorial approach which motivates this section is inspired in part by Ap-
pendix A of [20], where the one-loop analog of the scattering equations were in effect considered
to generate an ideal in a certain ring of one-loop worldsheet functions. That is, one considers
the ring generated formally by the functions Gab and mods out by the ideal generated by the
one-loop scattering equations, see [21]).

Our aim here is to study a combinatorial interpretation of the quotient ring from [20]: it turns
out that this quotient ring is combinatorially temptingly close to (a filtered analog of) Vn, and
thus to blades. It is interesting to note that a combinatorially similar quotient ring was studied
in [31], where it was conjectured to be isomorphic to the cohomology ring of the configuration
space Xn of n distinct points in SU(2), modulo the simultaneous action of SU(2). See Section
9 above.

As we saw in Example 44, the exponential map can be used to efficiently encode the combina-
torial structure of the k-skeleta of a blade uniquely from its 1-skeleton. But is there a criterion
to determine when a given polynomial is in the subalgebra Vn of Un? We give a partial answer
which consists of a set of linear relations on the coefficients of the argument of the exponential
map exp : (Un)1 → Un, which restricts nicely as exp : (Vn)1 → Vn. Clearly any monomial in
the vijk is the leading order coefficient of an exponential map, suggesting the possibility that the
result could be extended.
Proposition 49. Let constants mij ∈ C, 1 ≤ (i 6= j) ≤ n be given; define αij = mij − mji.
Then, the product ∏

1≤(i 6=j)≤n
(1 + uij)mij ∈ Un

is in the subalgebra Vn if and only if the constants αij satisfy what we call the combinatorial
scattering equations,

α12 + α13 + · · ·+ α1n = 0
α21 + α23 + · · ·+ α2n = 0
α31 + α23 + · · ·+ α3n = 0

...
αn1 + αn2 + · · ·+ αn n−1 = 0.
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Proof. First note that u2
ij = 0 implies the identity∏
1≤(i 6=j)≤n

(1 + uij)mij =
∏

1≤i<j≤n
exp (αijuij)

= exp
 ∑

1≤i<j≤n
αijuij

 .
Now, the linear span of all the uij’s decomposes into a direct sum of two irreducible symmetric
group representations:

(Un)(1) ' V(n−1,1) ⊕ V(n−2,1,1),

with spanning sets respectively
{zi : i = 1, . . . , n} and {vijk = uij + ujk + uki : 1 ≤ i < j < k ≤ n} ,

and bases
{zi : i = 1, . . . , n− 1} and {v1jk = u1i + ujk + uk1 : 2 ≤ j < k ≤ n} ,

say, where we define zi = ∑
j 6=i uij.

It is easy to see that the combinatorial scattering equations express the condition on the
coefficients αij for a linear combination ∑

1≤i<j≤n
αijuij

to be in V(n−2,1,1). Indeed, in light of the decomposition

uij = 1
n

(zi − zj) + 1
n

∑
k 6=i,j

vi,j,k

 ∈ V(n,1,1) ⊕ V(n−2,1,1),

we have ∑
1≤i<j≤n

αijuij = 1
n

∑
1≤i<j≤n

αij

zi − zj +
∑
k 6=i,j

vijk


= 1

n

n∑
i=1

∑
k 6=i

αi,k

 zi + 1
n

∑
1≤i<j≤n

αij

∑
k 6=i,j

vijk

 ,
where we have used αij = −αji. Evidently, this is in Vn if and only if all coefficients in the first
term,

1
n

∑
k 6=i

αik

 ,
vanish for each i. This set coincides with exactly the combinatorial scattering equations for the
αij. �

Given any element
C ∈ LUn = {−1, 0, 1}(

n
2),

we have

exp
 ∑

1≤i<j≤n
Cijuij

 ∈ Un.
In particular, any canonical basis element for Un, (or Vn), is obtained as the coefficient of the
highest power of t of exp

(
t
∑

(i,j)∈C uij
)
∈ Un for some C ∈ {−1, 0, 1}(

n
2). It seems tempting to
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interpret the combinatorial scattering equations as describing the restriction (of exp) to an
(
n−1

2

)
-

dimensional subspace of (Un)1. In particular, for integer-valued weights, we obtain inside the
subspace an

(
n−1

2

)
-dimensional sublattice LVn ⊂ LUn . Thus, of particular interest for scattering

amplitudes are elements C ∈ LVn such that ∑(i,j)∈C uij = ∑n−2
a=1 vrasata for some list of triples

{(r1, s1, t1), . . . , (rn−2, sn−2, tn−2)}.
There appears to be some graph-theoretic machinery at hand. We now prove that to each

balanced weighted graph (in the sense of [27]) there exists an element of the algebra Vn.
Let Gn be an unoriented graph on n vertices 1, . . . , n. Let us choose edge orientations (i1 →

j1), . . . , (i` → j`) such that ia < ja for all a = 1, . . . , `.

Definition 50. A graph Gn, with each edge i → j equipped with a flow mij (which could be
in C) from i to j, for 1 ≤ i 6= j ≤ n, is said to be balanced provided that the net flux at every
vertex is zero. That is, for each a ∈ {1, . . . , n}, the total flow entering a is the same as the total
flow leaving a: ∑

b: b 6=a
mab =

∑
b: b 6=a

mba,

or ∑
b: b 6=a

(mab −mba) = 0.

We recover immediately at a graph theoretic form of the combinatorial scattering equations.

Corollary 51. Let Gn be a graph on vertices {1, . . . , n}, with flow mij on the edge i→ j for all
distinct i, j ∈ {1, . . . , n}.

If G is balanced then the product ∏
1≤(i 6=j)≤n

(1 + uij)mij

is in the subalgebra Vn.

Proof. Suppose that Gn is balanced. Then for the product
∏

1≤(i 6=j)≤n
(1 + uij)mij =

∏
1≤i<j≤n

(1 + (mij −mji)uij) = exp
 ∑

1≤i<j≤n
(mij −mji)uij

 ,
at each vertex a = 1, . . . , n we have the total flux∑

b: b6=a
(mab −mba) =

∑
b: b 6=a

αab = 0.

These are the combinatorial scattering equations with coefficients αab = mab −mba. �

Of course, one can easily see that the same will be true for the graph of any leading singularity.

Example 52. Assigning the weight mij = +1 to each directed edge (i, j), then the graphs in
Figures 9 and 10 are all balanced!
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