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Abstract

A finite word w of length n contains at most n+ 1 distinct palin-
dromic factors. If the bound n + 1 is reached, the word w is called
rich. An infinite word w is called rich if every finite factor of w is rich.
Let w be a rich word (finite or infinite) over an alphabet with q > 1
letters, let F (w,n) be the set of factors of length n of the word w and
let Fp(w,n) ⊆ F (w,n) be the set of palindromic factors of length n

of the word w. We show that |Fp(w,n)| ≤ (q + 1)n(4q10n)log2 n and
|F (w,n)| ≤ (q + 1)2n4(4q10n)2 log2 n.

It is known that |Fp(w,n)| + |Fp(w,n + 1)| ≤ |F (w,n + 1)| −
|F (w,n)|+2, where w is an infinite word closed under reversal [Baláži,
Masáková, Pelantová, Theor. Comput. Sci., 380 (2007)]. We gener-
alize this inequality for finite words and consequently we derive that
|F (w,n)| ≤ 2(n−1)F̂p(w,n)−2(n−1)+q and |F (w,n)| ≤ 2(n−1)(q+
1)n(4q10n)log2 n − 2(n− 1) + q, where F̂p(w, k) = max{|Fp(w, j)| | 0 ≤
j ≤ k} and w is a rich word (finite or infinite) such that F (w,n + 1)
is closed under reversal. Moreover we prove that |F (w,n)| ≤ 2(2n −
1)(q+1)2n(8q10n)log2 2n − 2(2n− 1)+ q, where w is a finite rich word.
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1 Introduction

The field of combinatorics on words includes the study of palindromes and
rich words. In recent years there have appeared several articles concerning
this topic, [8, 5, 3, 17]. Recall that a palindrome is a word that yields the
same when being read backward and forward, for example “noon” and “level”.
Rich words (or also words having palindromic defect 0) are words containing
maximal number of palindromic factors (it is known that a word of length
n can contain at most n+ 1 palindromic factors, including the empty word,
[8]). An infinite word is called rich if its every finite factor is rich.

Rich words possess various properties, see for instance [9, 7, 4]. In this
article, we will use two of them. First one uses the notion of a complete
return: Given a word w and a factor r or w. We call the factor r a complete
return to u in w if r contains exactly two occurences of u, one as a prefix
and one as a suffix. A property of rich words is that all complete returns to
any palindromic factor u in w are palindromes, [9].
The second property of rich words, that we use, says that a factor r of a
rich word w is uniquely determined by its longest palindromic prefix and its
longest palindromic suffix, [7]. Some generalizations of this property may be
found in [13].

In this article we present upper bounds for the palindromic and factor com-
plexity of rich words, it means the number of palindromes and factors of
given length in a rich word w. There are already some related results:

Let us define F (w, n) to be the set of factors of length n of w and let
Fp(w, n) = |{v ∈ F (w, n) and v is a palindrome}|, where w is finite or in-
finite word. It is clear that |Fp(w, n)| ≤ |F (w, n)|. Some less obvious in-
equalities are known; one of the interesting inequalities is the following one,
[2], [4]: Given an infinite word w with F (w, n) closed under reversal, then
|Fp(w, n)|+|Fp(w, n+1)| ≤ |F (w, n+1)|−|F (w, n)|+2. In order to prove the
presented inequality the authors used the notion of Rauzy graphs; a Rauzy
graph is a subgraph of the de Bruijn graph, [16]. In section 3 we generalize
this result for finite words, what allows us to improve our upper bound for
the factor complexity of finite rich words.

In [1], another inequality has been proven for infinite non-ultimately peri-
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odic words:Fp(w, n) <
16
n
F (w, n+ ⌊n

4
⌋).

In [14], the authors show that a random word of length n contains, on ex-
pectation, Θ(

√
n) distinct palindromic factors.

Related to the palindromic and factor complexity of rich words is the number
of rich words of length n, denoted Π(n), since obviously |F (w, n)| ≤ Π(n),
where w is a rich word (finite or infinite). The number of rich words was
investigated in [18], where the author gives a recursive lower bound on the
number of rich words of length n, and an upper bound on the number of
binary rich words. Both these estimates seem to be very rough. In [11], the
authors construct for each n a large set of rich words of length n. Their
construction gives, currently, the best lower bound on the number of binary
rich words, namely Π(n) ≥ C

√

n

p(n)
, where p(n) is a polynomial and the constant

C ≈ 37.
Any factor of a rich word is rich too, see [9]. In other words, the language
of rich words is factorial. In particular it means that Π(n)Π(m) ≤ Π(n+m)
for any m,n, q ∈ N. Therefore, the Fekete’s lemma implies existence of the
limit of n

√

Π(n) and moreover

lim
n→∞

n
√

Π(n) = inf
{

n
√

Π(n) : n ∈ N

}

.

For a fixed n0, one can find the number of all rich words of length n0 and
obtain an upper bound on the limit. Using a computer Rubinchik counted
Π(n) for n ≤ 60, (see the sequence A216264 in OEIS). As 60

√

Π(60) < 1.605,
he obtained the upper bound for the binary alphabet: Π(n) < c1.605n for
some constant c, [11].
In [15], the author shows that Π(n) has a subexponential growth on any
alphabet. Formally lim

n→∞
n
√

Π(n) = 1. This result is an argument in favor

of a conjecture formulated in [11] saying that for some infinitely growing
function g(n) the following holds true for a binary alphabet:

Π(n) = O
( n

g(n)

)

√
n

.

In this article we construct upper bounds for palindromic and factor com-
plexity. The proof uses the following idea: Let u be a palindromic factor
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of a rich word w on the alphabet A, such that aub is factor of w, where
a, b ∈ A and a 6= b. Then lpp(aub) and lps(aub) (the longest palindromic
prefix and suffix) determine uniquely the factor aub in w. We show that
a, b and lpps(u) (the longest proper palindromic suffix) determine uniquely
aub too. In addition we observe that either |lpps(u)| ≤ 1

2
|u| or u contains a

palindromic factor ū which determines uniquely u and such that |ū| ≤ 1
2
|u|.

Anyway we obtain a “short” palindrome and letters a, b which uniquely de-
termine the “long” palindrome u in case that aub is a factor of w. In these
“short” palindromes there are again another “shorter” palindromes and so on.
As a consequence we present an upper bound for the number of factors of
the form aub with |aub| = n.
The property of rich words that all complete returns to any palindromic
factor u in w are palindromes, [9], allows us to prove that if w contains
factors xux and yuy, where x, y ∈ A and x 6= y, then w must contain a
factor of the form aub (recall that a, b ∈ A and a 6= b). This property
brings the relation between the factors aub and palindromic factors xux.
Due to this we derive an upper bound for the palindromic complexity of
rich words. Knowing the upper bound for palindromic complexity and ap-
plying again the property from [7] (each factor is uniquely determined by its
longest palindromic prefix and its longest palindromic suffix) and the relation
|Fp(w, n)|+ |Fp(w, n+ 1)| ≤ |F (w, n+1)| − |F (w, n)|+ 2 from [2] we obtain
several upper bounds for the factor complexity.

2 Palindromic complexity of rich words

Consider an alphabet A with q letters, where q > 1. A+ denotes the set of
all non empty words over A.
Let ǫ denote the empty word and let A∗ = A+ ∪ {ǫ}.
Let Rn be the set of rich words of length n ≥ 0 over A. Let R+ =

⋃

j>0Rj

and R∗ = R+ ∪ {ǫ}. In addition we define R∞ to be the set of infinite rich
words.
Let lps(w) be the longest palindromic suffix of a word w ∈ A+ and lpp(w) the
longest palindromic prefix. In addition we introduce lpps(w) to be the longest
proper palindromic suffix and lppp(w) to be the longest proper palindromic
prefix, where |w| > 1 (proper means that lpps(w) 6= w and lppp(w) 6= w).
For a word w with |w| ≤ 1 we define lppp(w) = lpps(w) = ǫ.
Given a word w of length n, we can write w = w1w2 . . . wn, where wi ∈ A;
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then we define w[i] = wi and w[i, j] = wiwi+1 . . . wj, where 0 < i ≤ j ≤ n.

Moreover we define:
Pn : the set of palindromes of length n

P+ =
⋃

j>0 Pj, the set of all palindromes of length > 0
F (w) : the set of factors of the word w.
F (w, n) = {u | u ∈ F (w) and |u| = n} (the set of factors of length n)
Fp(w) = F (w) ∩⋃

j≥0 Pj (the set of palindromic factors)
Fp(w, n) = F (w, n) ∩ Pn (the set of palindromic factors of length n)

Definition 2.1. Let w ∈ A∗, we define:
Strip(w) = w[2, |w|−1], where |w| > 2. For |w| ≤ 2 we define Strip(w) = ǫ.
(the function Strip(w) takes off the first and last letter from w). For a set
of words S we define Strip(S) = {Strip(v) | v ∈ S}.

Example 2.2. w = 01123501
Strip(w) = 112350
Strip({12213, 112, 2, 344}) = {221, 1, ǫ, 4}

Definition 2.3. Let γ(w, n) = {aub | aub ∈ F (w, n) and u ∈ Fp(w, n −
2) and a 6= b and a, b ∈ A}, where w ∈ R∗ and n > 2. For n ≤ 2 we define
γ(w, 0) = γ(w, 1) = γ(w, 2) = ∅.
Let γ̄(w, n) =

⋃

aub∈γ(w,n){(u, a), (u, b)}, where a, b ∈ A (a couple (u, a) ∈
γ̄(w, n) if and only if there is b ∈ A such that aub ∈ γ(w, n) or bua ∈ γ(w, n)).
Let aub ∈ γ(w, n), where a, b ∈ A. We call the word aub a u-switch of w.
Alternatively we say that w contains a u-switch.

Example 2.4. A = {0, 1, 2, 3, 4, 5, 6}
w = 5112211311001131133114111146
γ(w, 8) = {51122113, 31133114, 14111146}
Strip(γ(w, 8)) = {112211, 113311, 411114}
γ̄(w, 8) = {(112211, 3), (112211, 5), (113311, 3), (113311, 4),
(411114, 1), (411114, 6)}
w does not contain 110011-switch, formally 110011 6∈ Strip(γ(w, 8))

Remark 2.5. The idea of a u-switch follows from the next lemma. If w

contains two different palindromic extensions aba, bub of u, where a, b ∈ A,
a 6= b and |aua| = n, then w contains a u-switch of length n. The u-switch
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“switches” from a to b. Note that aua, bub ∈ F (w) does not imply that
aub ∈ F (w) or bua ∈ F (w). It may be, for example, that auc, cub ∈ F (w).
Nonetheless (u, a), (u, b) ∈ γ̄(w, n). In addition the next lemma shows that
if aua, xuy ∈ F (w, n) then (u, a) ∈ γ̄(w, n), where x, y ∈ A and a 6= x or
a 6= y.

Lemma 2.6. Given u ∈ Fp(w, n − 2), where w ∈ R∗ ∪ R∞ and n > 2. If
aua, b1ub2 ∈ Fp(w, n), where a, b1, b2 ∈ A and |{a, b1, b2}| > 1 (it means that
at least one letter is different from others), then (u, a) ∈ γ̄(w, n).

Proof. Recall the definition of a complete return, [9]: Given a word w and a
factor r or w. We call the factor r a complete return to u in w if r contains
exactly two occurrences of u, one as a prefix and one as a suffix. A charac-
teristic property of rich words is that all complete returns to any palindromic
factor u in w are palindromes, [9]. The lemma is a simple consequence of
this characteristic property. Obviously there exist factors r, xuy ∈ F (w) such
that (xuy = b1ub2 if no other factors satisfy the conditions):

• x, y ∈ A

• |{x, y, a}| > 1

• r has exactly one occurrence of xuy

• r has exactly one occurrence of aua

• aua, xuy are prefix and suffix of r, without loss of generality let aua

be a prefix of r and xuy be a suffix of r

• r has exactly two occurrences of u

Then Strip(r) = ua . . . xu is a complete return to the palindrome u, which
has to be a palindrome, hence a = x and x 6= y (recall |{x, y, a}| > 1), in
consequence auy ∈ γ(w, n) and (u, a) ∈ γ̄(w, n).

To clarify the previous proof, let us see the two following examples:

Example 2.7. A = {1, 2, 3, 4, 5, 6}
w = 321234321252126
Let aua = 32123, b1ub2 = 52126, xuy = 32125, xuy 6= b1ub2
r = 32123432125, and Strip(r) = 212343212 is a complete return to 212.
Then (212, 3) ∈ γ̄(w, 5).
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Example 2.8. A = {1, 2, 3, 4, 5, 6}
w = 321234321252
Let aua = 32123, xuy = b1ub2 = 32125
r = 32123432125, and Strip(r) = 212343212 is a complete return to 212.
Then (212, 3) ∈ γ̄(w, 5).
We show that the number of palindromic factors and the number of u-
switches are related:

Proposition 2.9. For any rich word w ∈ R+ ∪ R∞ and n ≥ 2 it holds:
2|γ(w, n)|+ |Fp(w, n− 2)| ≥ |Fp(w, n)|
Proof. We define ω(w, n) = {aua|(u, a) ∈ γ̄(w, n)}, (ω(w, n) is a set of palin-
dromes of length n such that if w contains a u-switch aub then aua, bub ∈
ω(w, n)). Obviously |ω(w, n)| ≤ 2|γ(w, n)|.
Let us consider the following partition of Fp: Fp(w, n) = Ḟp(w, n)∪ F̈p(w, n).
Given a palindrome v ∈ Fp(w, n) with u = Strip(v), then there are two cases:

• v ∈ Ḟp(w, n) if w contains u-switch xuy,
formally u ∈ Strip(γ(w, n)). Lemma 2.6 implies that v ∈ ω(w, n)
(consider v = aua and the u-switch xuy, then (u, a) ∈ γ̄(w, n)). It
follows that |Ḟp(w, n)| ≤ |ω(w, n)| ≤ 2|γ(w, n)|

• v ∈ F̈p(w, n) if w does not contain u-switch,
formally u 6∈ Strip(γ(w, n)). Then u ∈ Fp(w, n − 2) \ Strip(γ(w, n)).
Given a palindrome u ∈ Fp(w, n − 2) \ Strip(γ(w, n)), then if w has
palindromic factors aua and bub, then a = b since w does not contain
a u-switch. It follows that |F̈p(w, n)| ≤ |Fp(w, n− 2)|

Then |Ḟp(w, n)|+ |F̈p(w, n)| = |Fp(w, n)| implies the proposition:
2|γ(w, n)|+ |Fp(w, n− 2)| ≥ |Fp(w, n)|
To clarify the previous proof, let us see the following example:
Example 2.10. A = {0, 1, 2, 3, 4, 5, 6, 7, 8}
w = 2110112333211011454110116110116778776
γ(w, 7) = {2110114, 4110116}
Fp(w, 7) = {1233321, 2110112, 1145411, 6110116, 6778776}
Ḟp(w, 7) = {2110112, 6110116}
F̈p(w, 7) = {1233321, 1145411, 6778776}
Fp(w, 5) = {23332, 11011, 14541, 77877}
2|γ(w, 7)|+ |Fp(w, 5)| ≥ |Fp(w, 7)|
4 + 4 > 5
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In the next proposition we show that the longest proper palindromic suffix
r and two different letters a, b ∈ A determine uniquely a palindromic factor
u ∈ Fp(w) such that lpps(u) = r and aub ∈ γ(w, |u|+ 2):

Proposition 2.11. Let w ∈ R+ ∪ R∞, u, v ∈ Fp(w), lpps(u) = lpps(v),
a, b ∈ A and a 6= b. Then aub, avb ∈ F (w) implies that u = v.

Proof. It is known that if r, t are two factors of a rich word w and lps(r) =
lps(t) and lpp(r) = lpp(t), then r = t, [7]. We will identify a u-switch by the
longest proper palindromic suffix of u and two distinct letters a, b instead of
the functions lps and lpp:

Given a u-switch aub where a 6= b, a, b ∈ A, we know that lps(aub) and
lpp(aub) determine uniquely the factor aub in w. We will prove that for
given a, b ∈ A, a 6= b, n ≥ 0 and a palindrome r there is at most one palin-
drome u ∈ Fp(w) such that lpps(u) = r and aub ∈ γ(w, |aub|).

Suppose a contradiction: there are u, v ∈ Fp(w), u 6= v, a, b ∈ A, a 6= b

such that lps(aub) = bpb, lps(avb) = bsb, lpp(aub) = axa, lpp(avb) = aya,
lpps(u) = lpps(v) = r and aub, avb ∈ ⋃

j>0 γ(w, j). It implies that p, s, x, y

are prefixes of r. Thus if x 6= y, then |x| 6= |y|. Without loss of generality,
let |x| < |y|. Since y is a prefix of r, then either ya is a prefix of r or r = y,
consequently aya is a prefix of both aub and avb; and it contradicts the
supposition that lpp(aub) = axa (aya is a prefix of aub and |aya| > |axa|).
Analogously if p 6= s. It follows that x = y and p = s, in consequence
lpp(aub) = lpp(avb) and lps(aub) = lps(avb), which would imply that u = v,
which is a contradiction.

Hence we conclude that a, b ∈ A, a 6= b, and a palindrome r determine
uniquely at most one palindrome u ∈ Fp(w) such that lpps(u) = r and
u ∈ Strip(γ(w, |u|+ 2)).

In the following we derive an upper bound for the number of u-switches.
Before we need one more definition in order to be able to partition the set
Strip(γ(w, n+2)) into subsets based on the longest proper palindromic suffix:

Definition 2.12. Let w ∈ R+ ∪ R∞, r ∈ R+ and n ≥ 0, then we define:
Υ(w, n, r) = {u | u ∈ Strip(γ(w, n + 2)) and lpps(u) = r}. (Υ(w, n, r) is
the set of palindromic factors u of length n of the word w having the longest
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proper palindromic suffix equal to r and such that w contains u-switch.)
Obviously

⋃

r∈Fp(w) Υ(w, n, r) = Strip(γ(w, n)) and Υ(w, n, r)∩Υ(w, n, r̄) =

∅ if r 6= r̄.

Example 2.13. A = {0, 1, 2, 3, 4, 5}
w = 5112211311001131133114
γ(w, 6) = {51122113, 31133114}
Υ(w, 6, 11) = {112211, 113311}
110011 6∈ Υ(w, 6, 11), because w does not contain 110011-switch

A simple corollary of the previous proposition is that the size of the set
Υ(w, n, r) is limited by the constant q(q − 1) (recall that q is the size of the
alphabet A).

Corollary 2.14. For any rich words w ∈ R+ ∪ R∞, r ∈ R+ and n ≥ 0 it
holds: |Υ(w, n, r)| ≤ q(q − 1).

Proof. From Proposition 2.11 follows that |Υ(w, n, r)| ≤ |{(a, b) | a, b ∈
A and a 6= b}| = q(q − 1) (the number of couples (a, b)).

We define Γ̄(w, n) = max{|γ(w, i)| | 0 ≤ i ≤ n}, where w ∈ R+ ∪ R∞ and
n > 0. Next we define Γ(w, n) = max{1, Γ̄(w, n)}.
Remark 2.15. We defined Γ(w, n) as the maximum from the set of sizes
of γ(w, i), where 0 < i ≤ n. In addition we defined that Γ(w, n) ≥ 1
(hence it cannot be zero); this is just for practical reason: in this way we
can find a constant c such that Γ(w, n1) = cΓ(w, n2) for any n1, n2 ≥ 0.
The function Γ(w, n) will allow us to present another relation between the
number of palindromic factors of length n and the number of u-switches, this
time without using Fp(w, n− 2):

Lemma 2.16. (q+1)nΓ(w, n) ≥ |Fp(w, n)|, where w ∈ R+∪R∞ and n > 0.

Proof. Let φ̄(n) = 2 if n is even and φ̄(n) = 1 if n is odd and let φ(n) =
{2+φ̄(n), 4+φ̄(n), . . . , n}; for example φ(8) = {4, 6, 8} and φ(9) = {3, 5, 7, 9}.

Proposition 2.9 states that 2|γ(w, n)|+ |Fp(w, n− 2)| ≥ |Fp(w, n)|, it follows
2|γ(w, n− 2)|+ |Fp(w, n− 4)| ≥ |Fp(w, n− 2)| and consequently 2|γ(w, n)|+
2|γ(w, n − 2)| + Fp(w, n − 4)| ≥ |Fp(w, n)|. (we replaced |Fp(w, n − 2)| by
2|γ(w, n− 2)|+ |Fp(w, n− 4)|).

9



By iterating the process of replacing |Fp(w, n−i)| by 2|γ(w, n−i)|+|Fp(w, n−
2i)| we achieve:

∑

j∈φ(n)
2|γ(w, j)|+ |Fp(w, φ̄(n))| ≥ |Fp(w, n)| (1)

Note that |Fp(w, φ̄(n))| ≤ q (the number of palindromes of length 1 or 2).
Recall that Γ(w, n) ≥ |γ(w, j)| for 2 < j < n and note that |φ(n)| ≤ ⌊n

2
⌋,

then it follows 2⌊n
2
⌋Γ(w, n) + q ≥ |Fp(w, n)| and since 2⌊n

2
⌋ ≤ n we obtain

from (1) that nΓ(w, n) + q ≥ |Fp(w, n)|.

It is easy to see that (q + 1)nΓ(w, n) ≥ nΓ(w, n) + q for n > 0, then the
lemma follows. We prefer to use (q + 1)nΓ(w, n) instead of nΓ(w, n) + q,
because it will be easier to handle in Corollary 2.22, even if it makes the
upper bound “a little bit worse”.

We need to cope with the longest proper palindromic suffixes that are
“too long”. We show that if the longest proper palindromic suffix lpps(v)
is longer the half of the length of v, then v contains a “short” palindromic
factor, that uniquely determines v. Some similar results can be found in [12].

Lemma 2.17. Let u, v ∈ P+ be palindromes, where u is a prefix of v and
1
2
|v| ≤ |u| < |v|.

Let n = ⌈ |v|
2
⌉ if |v| is odd or n = |v|

2
if |v| is even.

Let k = ⌈ |u|
2
⌉ if |u| is odd or k = |u|

2
+ 1 if |u| is even.

We define ρ̄(u, v) = v[k, n] = vkvk+1 . . . vn−1vn and we define ρ(u, v) as fol-
lows:

• if |u| is even, then ρ(u, v) = vnvn−1 . . . vk+1vkvkvk+1 . . . vn−1vn

• if |u| is odd, then ρ(u, v) = vnvn−1 . . . vk+1vkvk+1 . . . vn−1vn

The palindrome ρ(u, v) and the length |v| determine uniquely v.

Proof. Given n, j such that 1 ≤ j ≤ n, we define mirror(n, j) = n− j + 1.
Example: mirror(10, 3) = 8, mirror(10, 8) = 3, mirror(9, 5) = 5.
It is easy to see that mirror(n,mirror(n, j)) = j.
Given a palindrome w with |w| = t, then clearly w[i] = w[mirror(t, i)] for
1 ≤ i ≤ t.
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Given u, v, k, n as described in the lemma. We will show that for any 1 ≤ j <

k, there is j̄ such that j < j̄ ≤ n and v[j] = v[j̄]. Let i = mirror(|u|, j), then
v[j] = v[i], since the prefix u is a palindrome. Clearly i ≥ k; if i ≤ n, then
we are done: i = j̄. If i > n, then let j̄ = mirror(|v|, i). Clearly j < j̄ ≤ n,
since |u| < |v|. Thus we showed that for any 1 ≤ j < k there is a position
j̄ which is “closer to the center of v” and such that v[j] = [j̄]. Repeating
the process, we can show that for any index j there is an index j̃ such that
k ≤ j̃ ≤ n and v[j] = v[j̃]. Then it is a simple exercise to reconstruct v from
ρ(u, v) and the length |v| (note that from |ρ(u, v)| you can determine if |u| is
odd or even).

Let us have a look on the next examples that illuminate the proof:
Example 2.18. Let v = 12321232123212321, |v| = 17, u = 1232123212321,
|u| = 13. Then n = 9, k = 7, ρ̄(u, v) = 321, and ρ = 12321.
Let j = 2, then v[2] = 2, mirror(|u|, 2) = mirror(13, 2) = 12, v[12] = 2,
j̄ = mirror(|v|, 12) = mirror(17, 12) = 6, v[6] = 2.
Let j = 6, then v[6] = 2, j̄ = mirror(|u|, 6) = mirror(13, 6) = 8, v[8] = 2.
Example 2.19. Let v = 211221122112, |v| = 12, u = 21122112, |v| = 8. Then
n = 6, k = 5, ρ̄(u, v) = 21, and ρ = 1221.
We derive an upper bound for the number of u-switches:

Proposition 2.20. Γ(w, n) ≤ q5(⌈n
2
⌉)2Γ(w, ⌈n

2
⌉), where w ∈ R+ ∪ R∞ and

n > 0.

Proof. For a word w with a palindromic factor v, where v has a palindromic
suffix u with 1

2
|v| ≤ |u| < |v|, the longest proper palindromic suffix lpps(v)

would be longer than the half of v, formally |lpps(u)| ≥ 1
2
|v|. In such a case

the ρ(u, v) is defined and |ρ(u, v)| ≤ 1
2
|v|. Anyway, we have a “short” palin-

drome (ρ(u, v) or the longest proper palindromic suffix lpps(v)) that uniquely
identifies at most q(q − 1) distinct palindromes v of length n. It means that
we need only to take into account palindromic factors of length ≤ ⌈n

2
⌉. Let

us express this idea formally:

It is clear that the proposition holds for n ∈ {1, 2}. Thus in the proof we
consider n > 2. We partition Strip(γ(w, n)) into sets ∆ρ(w, n),∆lpps(w, n)
as follows: given v ∈ Strip(γ(w, n)), then v ∈ ∆ρ(w, n) if 1

2
|v| ≤ |lpps(v)|,

otherwise v ∈ ∆lpps(w, n). Obviously Strip(γ(w, n)) = ∆ρ(w, n)∪∆lpps(w, n)
and ∆ρ(w, n) ∩∆lpps(w, n) = ∅. Let us investigate the size of ∆ρ(w, n) and
∆lpps(w, n).
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• ρ(u, v) and |v| determine uniquely the palindrome v, see Lemma 2.17;
in addition note that |ρ(u, v)| ≤ ⌈ |v|

2
⌉. Hence the sum over the number

of all palindromic factors of w of length ≤ ⌈n
2
⌉ must be bigger or equal

to the size of ∆ρ(w, n).

|∆ρ(w, n)| =
⌈n
2
⌉

∑

j=1

|Fp(w, j)| (2)

• the longest proper palindromic suffix lpps(v) identifies at most q(q −
1) distinct palindromic factors of w, see Corollary 2.14; by definition
|lpps(v)| < 1

2
|v|. Hence the sum over the number of all palindromic

factors of w of length ≤ ⌈n
2
⌉ multiplied by q(q − 1) must be bigger or

equal to the size of ∆lpps(w, n)

|∆lpps| = q(q − 1)

⌈n
2
⌉

∑

j=1

|Fp(w, j)| (3)

Actually the sets ∆ρ(w, n) and ∆lpps(w, n) contain palindromes of length
n − 2, thus it would be sufficient to sum up to the length ⌈n−2

2
⌉ instead of

⌈n
2
⌉, but again in Corollary 2.22, it will be more comfortable to handle ⌈n

2
⌉.

It is easy to see that |γ(w, n)| ≤ q(q − 1)|Strip(γ(w, n))| (for every u ∈
Strip(γ(w, n)) and a, b ∈ A, where a 6= b there can be aub ∈ γ(w, n)). It
follows:

|γ(w, n)| ≤ q(q−1)|Strip(γ(w, n))| = q(q−1)(|∆ρ(w, n)|+|∆lpps(w, n)|) (4)

Then it follows from (2), (3) and (4) that

|γ(w, n)| ≤ q(q − 1)(q(q − 1) + 1)

⌈n
2
⌉

∑

j=1

|Fp(w, j)| (5)

From Lemma 2.16 we know that |Fp(w, j)| ≤ (q + 1)jΓ(w, j), thus we have:

⌈n
2
⌉

∑

j=1

|Fp(w, j)| ≤
⌈n
2
⌉

∑

j=1

(q + 1)jΓ(w, j) ≤ ⌈n
2
⌉(q + 1)⌈n

2
⌉Γ(w, ⌈n

2
⌉) (6)

12



From (5) and (6):
|γ(w, n)| ≤ q(q − 1)(q(q − 1) + 1)(q + 1)(⌈n

2
⌉)2Γ(w, ⌈n

2
⌉).

To simplify the formula we apply q(q−1)(q(q−1)+1)(q+1) = q(q2−1)(q2−
q + 1) < q5, as a result we have |γ(w, n)| ≤ q5(⌈n

2
⌉)2Γ(w, ⌈n

2
⌉).

Recall the definition of Γ, which is in this case lower of equal to the maximal
upper bound from the set {q5(⌈ j

2
⌉)2Γ(w, ⌈ j

2
⌉) | 0 ≤ j ≤ n}:

Γ(w, n) ≤ max{q5(⌈ j

2
⌉)2Γ(w, ⌈ j

2
⌉) | 0 ≤ j ≤ n} = q5(⌈n

2
⌉)2Γ(w, ⌈n

2
⌉).

For the next corollary we will need the following lemma.

Lemma 2.21.
∏k

j≥1⌈ n
2j
⌉ ≤ (2

√
n)log2 n, where k = ⌊log2 n⌋

Proof.
∏k

j≥1⌈ n
2j
⌉ = ⌈n

2
⌉⌈n

4
⌉⌈n

8
⌉ . . . ⌈ n

2k−1 ⌉⌈ n
2k
⌉ ≤

(n
2
+ 1)(n

4
+ 1)(n

8
+ 1) . . . ( n

2k−1 + 1)( n
2k

+ 1) =

(n+2
2
)(n+4

4
)(n+8

8
) . . . (n+2k−1

2k−1 )(n+2k

2k
) =

∏k
j=1(n+2j)
∏k

j=1 2
j

hence we have:
k
∏

j≥1

⌈ n
2j
⌉ ≤

∏k

j=1(n+ 2j)
∏k

j=1 2
j

(7)

Next we investigate the both products on the right side from (7)

k
∏

j=1

(n+ 2j) = (n + 2)(n+ 4)(n+ 8) . . . (n+ 2k−1)(n+ 2k) ≤ (2n)k (8)

(note that n+ 2j ≤ 2n, where j ≤ k)

k
∏

j=1

2j = 22223 . . . 2k−12k = 2
∑k

j=1 j = 2
k(k+1)

2 (9)

Then from (7), (8) and (9):
∏k

j≥1⌈ n
2j
⌉ ≤

∏k
j=1(n+2j)
∏k

j=1 2
j

≤ (2n)k

2
k(k+1)

2

=

(

2n

2
(k+1)

2

)k

Since 2k+1 ≥ n:

(

2n

2
(k+1)

2

)k

≤
(

2n

n
1
2

)k

= (2n
1
2 )k ≤ (2

√
n)log2 n
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Corollary 2.22. Γ(w, n) ≤ (4q10n)log2 n, where w ∈ R+ ∪ R∞ and n > 0..

Proof. Proposition 2.20 states that

Γ(w, n) ≤ q5(⌈n
2
⌉)2Γ(w, ⌈n

2
⌉).

By replacing Γ(w, ⌈n
j
⌉) by q5(⌈ n

2j
⌉)2Γ(w, ⌈ n

2j
⌉), we obtain

Γ(w, n) ≤ q5(⌈n
2
⌉)2Γ(w, ⌈n

2
⌉) ≤ q5(⌈n

2
⌉)2q5(⌈n

4
⌉)2Γ(w, ⌈n

4
⌉) ≤

q5(⌈n
2
⌉)2q5(⌈n

4
⌉)2q5(⌈n

8
⌉)2Γ(w, ⌈n

8
⌉) ≤ . . . .

Recall that ⌈ ⌈m⌉
2
⌉ = ⌈m

2
⌉, where m ≥ 0 is a real constant (see [10] in chapter

3.2 Floor/ceiling applications).
Finally after ⌊log2 n⌋ steps:

Γ(w, n) ≤





⌊log2 n⌋
∏

j≥1

q5⌈ n
2j
⌉





2

Γ(w, h(n)),

where h(n) ∈ {1, 2} depending on n. Knowing that Γ(w, 1) = Γ(w, 2) = 1
and using Lemma 2.21 we obtain

Γ(w, n) ≤
(

(q52
√
n)log2 n

)2
Γ(w, 1) = (4q10n)log2 n.

From Lemma 2.16 and Corollary 2.22 it follows easily:

Corollary 2.23. |Fp(w, n)| ≤ (q + 1)n(4q10n)log2 n where w ∈ R+ ∪ R∞ and
n > 0.

We can simply apply the upper bound for the palindromic complexity to
construct an upper bound for factor complexity:

Corollary 2.24. |F (w, n)| ≤ (q + 1)2n4(4q10n)2 log2 n where w ∈ R+ ∪ R∞

and n > 0.

Proof. We apply again the property of rich words that every factor is de-
termined by its longest palindromic prefix and its longest palindromic suf-
fix, [7]. Hence if there are at most t palindromic factors in w of length
≤ n, than clearly there can be at most t2 different factors of length n. Let
F̂p(w, k) = max{|Fp(w, j)| | 0 ≤ j ≤ k}. From Lemma 2.23 we can deduce
that t ≤ ∑n

i=1 |Fp(w, i)| ≤ nF̂p(w, n) ≤ n(q + 1)n(4q10n)log2 n. The lemma
follows.
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3 Rich words closed under reversal

Given a word w = w1w2 . . . wn−1wn ∈ A∗, where wi ∈ A, let wR denote the
reversal of w, formally wR = wnwn−1 . . . w2w1. We say that the set S ∈ A∗

is closed under reversal if w ∈ S implies that wR ∈ S.

We can achieve an another improvement for the factor complexity if we use
the inequality |Fp(w, n)|+ |Fp(w, n+1)| ≤ |F (w, n+1)| − |F (w, n)|+2 from
[2], [4]. This inequality was proven for infinite words closed under reversal.
The next proposition generalizes the existing proof to allow us to use the
result for any word w with F (w, n+1) closed under reversal (including finite
words).

Proposition 3.1. Let w ∈ R+ ∪ R∞ be a rich word such that F (w, n + 1)
is closed under reversal and |w| ≥ n+ 1. Then |Fp(w, n)|+ |Fp(w, n+ 1)| ≤
|F (w, n+ 1)| − |F (w, n)|+ 2.

Proof. The inequality |Fp(w, n)|+|Fp(w, n+1)| ≤ |F (w, n+1)|−|F (w, n)|+2
is shown in [2] for infinite words closed under reversal. However, inspecting
the proof of Theorem 1.2 (ii) we conclude that the inequality is satisfied if
the Rauzy graph Γn is strongly connected and if Ln+1(w) (or F (w, n + 1)
with our notation) is closed under reversal, since the map ρ is then defined
for all vertices and edges of the Rauzy graph Γn. (See in [2] for the details
of a construction of the Rauzy graph). Because we require F (w, n + 1) to
be closed under reversal, we need only to prove that the Rauzy graph Γn is
strongly connected. For an infinite word w the set Ln+1 closed under reversal
implies that w is recurrent (any factor has at least two occurrences) and in
consequence that the Rauzy graph Γn is strongly connected.

For a finite word w with Ln+1(w) closed under reversal, the Rauzy graph Γn

is not necessarily strongly connected. Therefore we have to show that we can
still apply the existing proof: Let B denote the alphabet B = A∪{x} (with-
out loss of generality suppose that x 6∈ A). Consider the word w̃ = wxwR

on the alphabet B, then w̃ is closed under reversal (w̃ is a palindrome) and
it is easy to see that F (w̃, k) = F (w, k) ∪ F̄ (w, k), where k ∈ {n, n+ 1} and
F̄ (w, k) = {uxv | u is a suffix of w and v is a prefix of wR and |uxv| = k}
(u, v may be the empty words). Obviously |F̄ (w, k)| = k. It follows that
F (w, n) ⊂ F (w̃, n), F (w, n+ 1) ⊂ F (w̃, n+ 1) and

|F (w̃, n)| = |F (w, n)|+ n (10)
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|F (w̃, n+ 1)| = |F (w, n+ 1)|+ n+ 1 (11)

There is just one palindrome in F̄ (w, n)∪ F̄ (w, n+1), because every word in
F̄ (w, n)∪ F̄ (w, n+1) has exactly one occurrence of x, consequently only one
word z ∈ F̄ (w, n) ∪ F̄ (w, n+ 1) has the form uxuR (uxuR is of odd length).
Therefore it follows:

|Fp(w, n)|+ |Fp(w, n+ 1)|+ 1 = |Fp(w̃, n)|+ |Fp(w̃, n+ 1)| (12)

The Rauzy graph Γ̃n of w̃ = wxwR is strongly connected: realize that
F (w, n + 1) closed under reversal implies that F (w, n + 1) = F (wR, n + 1)
and F (w, n) = F (wR, n). Hence for w̃ it holds |Fp(w̃, n)| + |Fp(w̃, n + 1)| ≤
|F (w̃, n + 1)| − |F (w̃, n)| + 2. It follows then from (10), (11) and (12) that
|Fp(w, n)|+ |Fp(w, n+ 1)| ≤ |F (w, n+ 1)| − |F (w, n)|+ 2.

To clarify the previous proof, let us have a look on the example below:

Example 3.2. Consider the rich word w = 1100100010011001010.
Then F (w, 3) = {110, 100, 001, 010, 000, 011, 101}, |F (w, 3)|= 7
F (w, 4) = {1100, 1001, 0010, 0100, 1000, 0001, 0011, 0110, 0101, 1010},
|F (w, 4)| = 10
Fp(w, 3) = {010, 000, 101}, |Fp(w, 3)| = 3
Fp(w, 4) = {1001, 0110}, |Fp(w, 4)| = 2
It follows that |Fp(w, 3)|+ |Fp(w, 4)| = |F (w, 4)| − |F (w, 3)|+ 2
3 + 2 = 10− 7 + 2
B = {0, 1, x}
w̃ = wxwR = 1100100010011001010x0101001100100010011
F̄ (w̃, 3) = {10x, 0x0, x01}
F̄ (w̃, 4) = {010x, 10x0, 0x01, x010}
(F̄ (w̃, 3) ∪ F̄ (w̃, 4)) ∩ Fp(w̃) = {0x0}
|Fp(w̃, 3)|+ |Fp(w̃, 4)| = |F (w̃, 4)| − |F (w̃, 3)|+ 2
Thus 4 + 2 = 14− 10 + 2.

For rich words the inequality may be replaced with equality:

Lemma 3.3. Let w ∈ R+∪R∞ be a rich word such that F (w, n+1) is closed
under reversal, |w| ≥ n + 1 and n > 0. Then |Fp(w, n)| + |Fp(w, n + 1)| =
|F (w, n+ 1)| − |F (w, n)|+ 2.

Proof. Note in the proof of Proposition 3.1 that w̃ = wxwR is rich if w is
rich. To see this, note that wx is rich, because lps(wx) = x which is a
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unioccurrent palindrome in wx and wxwR is a palindromic closure of wx,
which preserves richness, [9]. Then the equality follows from Proposition 3
in [6] (the proposition uses the palindromic defect D(w) of a word, which is,
by definition, equal to zero for a rich word).

Based on Lemma 3.3 we can present a new relation for palindromic and factor
complexity:

Proposition 3.4. Let F̂p(w, k) = max{|Fp(w, j)| | 0 ≤ j ≤ k}. Let w ∈
R+ ∪ R∞ be a rich word such that F (w, n + 1) is closed under reversal,
|w| ≥ n + 1 and n > 0. Then |F (w, n)| ≤ 2(n− 1)F̂p(w, n)− 2(n− 1) + q.

Proof. Using Lemma 3.3:
|Fp(w, n)|+ |Fp(w, n+ 1)| = |F (w, n+ 1)| − |F (w, n)|+ 2
|Fp(w, n)|+ |Fp(w, n+ 1)| − 2 = |F (w, n+ 1)| − |F (w, n)|
Since F (w, n+ 1) closed under reversal implies that F (w, i) is closed under
reversal for i ≤ n+ 1, we can sum over all lengths i ≤ n:
∑n−1

i=1 (|Fp(w, i)|+ |Fp(w, i+ 1)| − 2) =
∑n−1

i=1 (|F (w, i+ 1)| − |F (w, i)|),
where the sums may be expressed as follows:

∑n−1
i=1 (|F (w, i + 1)| − |F (w, i)|) = F (w, 2)− F (w, 1) + F (w, 3) − F (w, 2) +

F (w, 4)−F (w, 3)+ · · ·+F (w, n−1)−F (w, n−2)+F (w, n)−F (w, n−1) =
F (w, n)− F (w, 1)

∑n−1
i=1 (|Fp(w, i)|+ |Fp(w, i+ 1)| − 2) ≤ (n− 1)(F̂p(w, n− 1) + F̂p(w, n)− 2).

It follows: F (w, n)− F (w, 1) ≤ (n− 1)(F̂p(w, n− 1) + F̂p(w, n)− 2)

F (w, n) ≤ (n− 1)(2F̂p(w, n)− 2) + F (w, 1)

F (w, n) ≤ 2(n− 1)F̂p(w, n)− 2(n− 1) + F (w, 1)
obviously F (w, 1) ≤ q, then:
F (w, n) ≤ 2(n− 1)F̂p(w, n)− 2(n− 1) + q

The next proposition improves our upper bound for the factor complexity
for rich words with F (w, n+ 1) closed under reversal:

Corollary 3.5. |F (w, n)| ≤ 2(n−1)(q+1)n(4q10n)log2 n−2(n−1)+q, where
w ∈ R+ ∪ R∞, F (w, n+ 1) is closed under reversal and |w| ≥ n+ 1, n > 0.
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Proof. From Proposition 3.4 and Lemma 2.23 we achieve the result:
|F (w, n)| ≤ 2(n− 1)(q + 1)n(4q10n)log2 n − 2(n− 1) + q

Since the palindromic closure of finite rich words is closed under reversal, we
can improve the upper bound for factor complexity for finite rich words.

Corollary 3.6. |F (w, n)| ≤ 2(2n− 1)(q+ 1)2n(8q10n)log2 2n − 2(2n− 1) + q,
where w ∈ R+.

Proof. Palindromic closure ŵ ∈ R+ of a word w ∈ R+ preserves richness, ŵ
is closed under reversal, F (w) ⊆ F (ŵ) and |w̃| ≤ 2|w|, [9]. Hence we can
apply Corollary 3.5 where we replace n with 2n.
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