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Ramification in the Division Fields of Elliptic Curves and an

Application to Sporadic Points on Modular Curves

HANSON SMITH

Abstract. Consider an elliptic curve E over a number field K and let p be a
prime of OK lying above a prime p of Z. Suppose E has supersingular reduction
at p. Fix a positive integer n and define L to be a minimal extension of K such
that E(L) has a point of exact order pn. If p is unramified over p, we show that
L/K is an extension of degree p2n − p2n−2 that is totally ramified over p. If p is
ramified over p, we are still able to show that ϕ(pn) properly divides [L : Q].

We apply our stronger bound to show that sporadic points on the modular
curve X1(p

n) cannot correspond to elliptic curves that are supersingular at p

with p unramified over p. Our methods are then generalized to X1(N) with N
composite. We also describe ramification at and away from p in the full pn-th
division field K(E[pn]). In the course of our investigation, we correct a theorem
of Cassels.

1. Previous Work and Motivation

Before we formally introduce our results, we would like to motivate them by
surveying previous work. Those immediately interested in our results are advised
to proceed to Section 2.

Previous work in the area we consider has a variety of different thrusts. Division
fields of elliptic curves have a strong analogy with cyclotomic fields. Motivated by
this analogy, one can work to describe splitting, ramification, and inertia explicitly
in division fields. To this end, Adelmann’s book [1] provides a nice introduction
culminating in criteria describing the decomposition of unramified primes in various
division fields. In [23], Kraus completely describes the p-adic valuation of the differ-
ent of the pth division field in terms of the p-adic valuation of j(E) and the reduction
type of E. With [3], Cali and Kraus describe the p-adic valuation of the different of
the lth division field when p 6= l. Between these two papers, the differents of prime
division fields have been completely described. In a recent paper [15], Freitas and
Kraus fully classify the degree of Qp(E[l]) over Qp when l 6= p.

In [22], Kida gives criteria for ramification in the division field K(E[pn]) for all
primes not equal to p. Kida also gives a criterion for wild ramification and, as
an application, classifies quadratic fields with class number divisible by 3. If E is
an elliptic curve over Q, González-Jiménez and Lozano-Robledo [16] classify and
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2 HANSON SMITH

parametrize all division fields Q(E[n]) that are contained within a cyclotomic field.
In other words, they classify the division fields that have an abelian Galois group.
In particular, they show this is only possible for n = 2, 3, 4, 5, 6, 8. Further, they
describe all the Galois groups which occur. With [25], Lozano-Robledo constructs
division fields with minimal ramification. That is, the author finds elliptic curves
such that Gal(Q(E[pn])/Q) ∼= GL2(Z/p

nZ) and the ramification index above p is
exactly ϕ(pn). Informally speaking, these division fields have Galois groups that
are as large as possible and ramification over p that is as small as possible. Duke
and Tóth’s explicit computation of the Frobenius in [14] describes the splitting of
primes not dividing n or the discriminant of the elliptic curve in the division field
K(E[n]). They then give an application to nonsolvable quintic extensions. In [7],
Centeleghe works to find the structure of the Tate module Tl(E) and uses this to
give a criterion for whether a prime splits completely in the n-division field.

Describing E(K)tors is another motivation for the study at hand. Consider the
following two questions.

Question 1.1. Fix a degree d or a Galois group G and suppose K has that degree
or that Galois group. What are the possibilities for the group E(K)tors?

Question 1.2. Is there an upper bound for |E(K)tors| depending on d?

With [29] and [30] Mazur showed E(Q)tors is isomorphic to one of the following
groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z× Z/2NZ with 1 ≤ N ≤ 4.

This answers Question 1.1 when d = 1.
For d = 2, Kamienny, Kenku, and Momose (culminating with [21] and [20]) show

that E(K)tors is isomorphic to one of the following groups:

Z/NZ with 1 ≤ N ≤ 16 or N = 18,

Z/2Z× Z/2NZ with 1 ≤ N ≤ 6,

Z/3Z× Z/3NZ with 1 ≤ N ≤ 2,

Z/4Z× Z/4Z.

The proofs of these results rely on carefully analyzing modular curves. In both
the d = 1 and d = 2 case, there are infinite families of elliptic curves having each
of the possible torsion subgroups. This means there are infinitely many points on
the corresponding modular curve of the given degree. For d ≥ 3, this is no longer
the case. That is, there are modular curves with only finitely many degree d points.
For example, let E be the elliptic curve with Cremona label 162b1. Najman [33]
has shown

E
(

Q(ζ9)
+
) ∼= Z/21Z.

However, it is known that only finitely many elliptic curves can have this torsion
subgroup over a cubic field. See Jeon, Kim, and Schweizer’s paper [19] for a list
of the possible torsion subgroups that can occur for infinitely many elliptic curves
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over a cubic field. The point on the modular curve X1(21) corresponding to E is an
example of a sporadic point. Briefly, if D is the minimal degree such that a curve
X has infinitely many points of degree D, then a sporadic point is any point with
degree less than D.

Recently, Derickx, Etropolski, van Hoeij, Morrow, and Zureick-Brown have an-
nounced that X1(21) is the only modular curve with cubic sporadic points [11].
Combined with the work of Jeon, Kim, and Schweizer [19], this shows that when
[K : Q] = 3 then E(K)tors is isomorphic to one of the following groups:

Z/NZ for 1 ≤ N ≤ 21 with N 6= 17, 19,

Z/2Z× Z/2NZ with 1 ≤ N ≤ 7.

Thus, in order to answer Question 1.1 more generally, it seems likely we will need
to have a better understanding of sporadic points on modular curves. To this end,
Bourdon, Ejder, Liu, Odumodu, and Viray [2] have recently shown that, assuming
Serre’s uniformity conjecture, the number of sporadic j-invariants (j-invariants cor-
responding to sporadic points on some modular curve X1(N)) in a given number
field is finite.

Regarding Question 1.2, Merel [31] answered it in the affirmative. Namely, Merel
showed that there is a uniform bound for |E(K)tors| that is independent of the curve
E/K and depends only on d. Further, Merel found that if p divides |E(K)tors|, then

p ≤ d3d
2
.

Oesterlé later improved the bound to

p ≤
(

1 + 3
d
2

)2
;

however, this work was unpublished. Thanks to the work of Derickx, a proof can
now be found in [10, Appendix A]. Parent [34] showed that if E has a point of order
pn, then

pn ≤ 129(5d − 1)(3d)6.

It is believed that the best possible bound on |E(K)tors| should be a polynomial in
d. To this end Lozano-Robledo has conjectured [27]:

Conjecture 1.3. There is a constant C depending only on d such that if E has a
point of order pn, then

ϕ(pn) ≤ C · d.
Lozano-Robledo has made significant strides toward this conjecture by consider-

ing ramification in the fields of definition of pn-torsion points. This investigation
culminates in [27, Theorem 1.9]:

Theorem 1.4. Fix a number field L and suppose E is defined over L. Further,
suppose p is odd and let K be a finite extension of L of degree d over Q. Then, there
is a constant CL, depending on L such that if pn divides |E(K)tors|, then

ϕ(pn) ≤ CL · d.
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In the case where E has potential supersingular reduction, Lozano-Robledo has
shown Conjecture 1.3 with C = 24. This work is initiated in [24] and completed
in [26]. With Theorem 5.4, we will show that when E has supersingular reduction
we can take C = 1. More precisely, when E has supersingular reduction at a prime
above p, we show ϕ(pn) is a proper divisor of d.

2. Results

We begin by establishing some notation and conventions. Let E be an elliptic
curve over a number field K and let p ∈ Z be a prime. Unless otherwise indicated,
p is a prime of K lying over p at which E has good supersingular reduction. If M is
an extension of K and pM is a prime of M lying over p, then the ramification index
of pM over p will be denoted e(pM | p).

Let n be a positive integer. Generally, we will denote a point of exact order pn

on E by P . We call a minimal extension of K over which E has a point of order pn

a minimal pn-torsion point field. Fix a minimal pn-torsion point field and denote it
L. We also fix a prime of L lying over p and denote it P. The pn-th division field
also known as the pn-th torsion field is K(E[pn]). We will denote this field by T .
The field T is the minimal extension of K over which all points of E of order pn are
defined. Again, fix any prime of T lying over P, hence also over p, and denote it P.
We summarize the situation:

T = K(E[pn]) P

L P

K p

Q p

Figure 1.

The local field obtained by completing K at p is denoted Kp. The normalized
valuation is denoted vp and πp is a uniformizer. We mirror these conventions for L
and T . The ring of integers of a local or global field M will be denoted OM and the
algebraic closure of a given field will be denoted M . We use the notation K(x(P ))
or Kp(x(P )) for the extension obtained by adjoining the x-coordinate of P , and the
notation K(P ) or Kp(P ) for the extension obtained by adjoining both the x and
y-coordinates of P .

Please be aware that in Section 8 we will let l be a prime and consider l-power
division fields. In Section 8, p is a prime distinct from l and p is a prime lying over
p at which E has potential multiplicative reduction.
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We are concerned with ramification in the extensions of K obtained by adjoining
torsion points of E. In Section 3 we will briefly review some facts about division
polynomials, and in Section 4 we will revisit Cassels’s paper [4]. Then, with Section
5 and Section 6 for the case when p = 2 and n = 1, we prove

Theorem 2.1. The ramification index e(P | p) is at least p2n − p2n−2, and the
ramification index e(P | p) is properly divisible by ϕ(pn) = pn − pn−1. Further, if p
is unramified in K, then L/K is an extension of degree p2n − p2n−2 that is totally
ramified at p. That is, if e(p | p) = 1, then e(P | p) = p2n − p2n−2.

In Section 7, we use our bound on [L : K] when p is unramified in K along with
an upper bound on the genus of the modular curve X1(N) to show the following:

Theorem 2.2. Let N > 12 be a positive integer and write N =
k
∏

i=1
peii for the prime

factorization. Suppose that for each pi there exists a prime pi of K at which E is
supersingular and with e(pi | pi) = 1. Then, E does not correspond to a sporadic
point on X1(N).

After proving Theorem 2.2, we demonstrate how our methods can be generalized
when one is interested in specific modular curves.

In Section 8, we change notation. Consider now the ln-th division field K(E[ln]).
We turn our attention to primes p distinct from l at which E has bad reduction that
eventually resolves to split multiplicative reduction. We show:

Theorem 2.3. Let l be a prime in Z and suppose p is a prime of K not lying
over l for which E has potential multiplicative reduction. Define ∆E,minp to be the
discriminant of a model of E that is minimal at p and denote vl(vp(∆E,minp)) by
m. Then the ramification indices of the primes of K(E[ln]) lying above p are ln−m

if E has multiplicative reduction at p and either 2ln−m or ln−m if E has additive
reduction at p.

The methods we use throughout are rather classical. It is likely that many of our
results are known, but to our knowledge they have not appeared in the literature.
Moreover, our application to sporadic points on modular curves appears novel.

3. Background on Division Polynomials

Let E be an elliptic curve over a number field K with Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

One can define division polynomials, Ψn ∈ Z[a1, a2, a3, a4, a6, x, y], recursively
starting with

Ψ1 = 1,

Ψ2 = 2y + a1x+ a3,

Ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

Ψ4 = Ψ2

(

2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ (b4b8 − b26)
)

,
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and using the formulas

Ψ2m+1 = Ψm+2Ψ
3
m −Ψm−1Ψ

3
m+1 for m ≥ 2 and

Ψ2mΨ2 = Ψ2
m−1ΨmΨm+2 −Ψm−2ΨmΨ2

m+1 for m ≥ 3.

For a reference see [38, Exercise 3.7]. If m is odd, we can write

1

m
Ψm =

∏

P

(x− x(P )), (1)

where the product is over the non-trivialm-torsion points with distinct x-coordinates.
If m is even and not 2, we have

2

mΨ2
Ψm =

∏

P

(x− x(P )), (2)

where now the product is over the non-trivial m-torsion points with distinct x-
coordinates that are not 2-torsion points. Since E[m] ∼= Z/mZ×Z/mZ, this defini-

tion makes it clear that when m is odd Ψm has degree
m2 − 1

2
. The even division

polynomials also have degree
m2 − 1

2
so long as we think of y as having degree 3

2 in
x.

Equations (1) and (2) show that if k | m, then Ψk | Ψm. In general, Ψm also
includes roots that are x-coordinates of points with order dividing m but not equal
tom. We wish to consider points with order exactly m. Define a primitive m-torsion
point to be a point with exact order m. We focus on the case when m = pn. If
p = 2, we require n > 1. We want a polynomial whose roots are exactly the distinct
x-coordinates of primitive pn-torsion points. To this end, we define the primitive
pn-th division polynomial to be

Ψpn,prim =
Ψpn

Ψpn−1

= p
∏′

P

(x− x(P )),

where the product is taken over the primitive pn-torsion points with distinct x-

coordinates. We note Ψpn,prim has degree p2n−p2n−2

2 . Our results on ramification
in the division fields of supersingular elliptic curves are obtained by an analysis of
Ψpn,prim, specifically the valuation of the constant coefficient.

Lemma 3.1. Let E be an elliptic curve over K with supersingular reduction at p,
a prime of K lying above the odd prime p. Writing c0 for the constant coefficient of
Ψpn, vp(c0) = 0 for all n ∈ Z>0.

Proof. Write kp for the residue field at p. Choose P ∈ E(kp) with x(P ) = 0. Note
that α is a root of Ψm if and only if points on E with x-coordinates equal to α
are m-torsion points. Thus Ψpn(0) = c0 ≡ 0 modulo p if and only if P has order
dividing pn. Since E has supersingular reduction at p, all of the pn-torsion points are
in the kernel of reduction. Thus P does not have order divisible by p. We conclude
vp(c0) = 0 for all n ∈ Z>0. �
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When p = 2, the proof of Lemma 3.1 goes through verbatim so long as we consider
Ψ2n

Ψ2
and exclude the n = 1 case.

Lemma 3.2. Let E be an elliptic curve over K with supersingular reduction at p, a

prime of K dividing 2. Write c0 for the constant coefficient of
Ψ2n

Ψ2
, then vp(c0) = 0

for all n ∈ Z>1.

Since Ψpn,prim =
Ψpn

Ψpn−1

, the valuations of the constant coefficients of Ψpn and

Ψpn−1 allow us to compute the valuation of the constant coefficient of Ψpn,prim. This,
in conjunction with supersingular reduction, is enough to describe ramification in
division fields and torsion point fields.

4. Cassels’s Note on the Division Values of ℘(u)

We begin by quoting Theorem IV of [4], Cassels’s note on the division values of
the Weierstrass ℘-function.

Theorem 4.1. Let F be a number field and E an elliptic curve over F . If P =
(x(P ), y(P )) ∈ E(F ) is a point of prime-power order pn with p 6= 2, then there is
an integral ideal t ⊂ OF such that x(P )t2 and y(P )t3 are integral and

tϕ(p
n) | p for p 6= 3, (3)

t3
2n−32n−2 | 3 for p = 3. (4)

When P is not in the kernel of reduction, we take t = OF .

Unfortunately, the second claim (4) is not technically correct. The second claim
relies on the supposition that all the coefficients of Ψ3n,prim, save for the constant
term, are divisible by 3. The following example illustrates that this may not be the
case.

Example 4.2. Consider the elliptic curve given by the Weierstrass equation

y2 + y = x3 − x2 + 16x− 2.

This elliptic curve has Cremona label 5131a1 and has good ordinary reduction at 3.
One computes

Ψ3,prim(x) = Ψ3(x) = 3x4 − 22x3 + 25 · 3x2 − 3 · 7x− 3 · 83.
In particular, 3 divides the constant coefficient but not the coefficient of x3.

Further, one can check that Ψ3,prim is irreducible. Thus, for any primitive 3-
torsion point P , the extensions Q(P ) are isomorphic. Using SageMath [12], one
finds that in OQ(P ), the ideal (3) factors as a2 · b3. Since there are some primitive
3-torsion points in the kernel of reduction, their denominators will be divisible by
either a or b. Thus claim (4) of Theorem 4.1 states that either a8 | 3 or b8 | 3. We
can explicitly see that this is not the case.
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With Theorem 5.4 we will show that, when E is supersingular at one of the primes
above p, (3) holds and the divisibility is proper. Further, if we suppose that there is
a prime p ⊂ OF at which E is supersingular and with e(p | p) = 1, then Theorem
5.1 and Theorem 6.1 will show that (4) holds. We remark that although there is a
corrigendum to Cassels’s work [5], the error we describe is not rectified there.

5. Ramification in the Division Fields and Torsion Point Fields of

Supersingular Elliptic Curves

In the case whereE has supersingular reduction, we can adapt Cassels’s argument.
We postpone the pn = 2 case until Section 6. Note the ideas here are also present
in Gupta’s paper [17] for elliptic curves with complex multiplication and in Serre’s
article [36], where the n = 1 case was all that his purposes necessitated.

Theorem 5.1. If p = 2, suppose n > 1. The ramification index e(P | p) is at
least p2n − p2n−2. Further, if e(p | p) = 1, then [L : K] = p2n − p2n−2 with
e(P | p) = p2n − p2n−2.

Proof. Because E has supersingular reduction at p, each pn-torsion point P ∈
E(TP)[p

n] is in the kernel of reduction modulo P. We see that each x(P ), con-
sidered as an element of TP, has a power of πP in the denominator. Symbolically,
vP(x(P )) < 0.

For each primitive pn-torsion point P , write x(P ) =
P ∗

πmP

P

with vP(P
∗) = 0 and

mP > 0. Consider a Weierstrass equation for E over K evaluated at P

y(P )2+a1

(

P0

πmP

P

)

y(P )+a3y(P ) =

(

P0

πmP

P

)3

+a2

(

P0

πmP

P

)2

+a4

(

P0

πmP

P

)

+a6. (5)

Multiplying both sides of equation (5) by π3mP

P , we see that the P-adic valuation
of the right hand side is 0. Considering the left hand side, mP must be even and
vP(y(P )) = −3mP

2 . Thus we may write mP = 2kP with kP > 0. Now vP(x(P )) =
−2kP and vP(y(P )) = −3kP .

From Lemmas 3.1 and 3.2, the constant coefficients of Ψpn−1 and Ψpn both have
valuation 0. Since

Ψpn = Ψpn,prim ·Ψpn−1 ,

the constant coefficient, c0, of Ψpn,prim has valuation 0. Recall that

1

p
Ψpn,prim(x) =

∏′

P

(x− x(P )),

where the product is over the primitive pn-torsion points with distinct x-coordinates.
Thus, considering only the constant coefficient,

c0
p

=

∏′ P ∗

π
∑

′ 2kP
P

,
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where again the sum and the products are over the primitive pn-torsion points with

distinct x-coordinates. Because there are
p2n − p2n−2

2
primitive pn-torsion points

with distinct x-coordinates and since kP > 0 for each primitive P ,
∑′

P

2kP ≥ p2n − p2n−2.

Thus vP(p) ≥ p2n − p2n−2 and e(P | p) ≥ p2n − p2n−2.

Now suppose e(p | p) = 1. Regardless of the ramification of p in K, the primitive
pn-th division polynomial has the shape

Ψpn,prim = px
p2n−p2n−2

2 + · · · + c0.

Recall that vp(c0) = 0 and that all the roots of Ψpn,prim have negative valuation over
T .

We claim Ψpn,prim is irreducible in OKp [x]. Since e(p | p) = 1, one has vp(p) = 1.
By way of contradiction, suppose we have the non-trivial factorization Ψpn,prim =

(axd + · · ·+ a0)(bx
e + · · ·+ b0). Without loss of generality, vp(a) = 1 and vp(b) = 0.

Since the roots of Ψpn,prim have negative valuation, vp(b0) < 0. Considering that
vp(c0 = a0b0) = 0, one sees vp(a0) > 0. Thus, because vp(a) = 1, vp

(

a0
a

)

≥ 0.
However, since a0

a is a product of roots of Ψpn,prim, all of which have negative

valuation over T , we have vp
(

a0
a

)

< 0. We have a contradiction. Hence Ψpn,prim is
irreducible.

As above, let P be a primitive pn-torsion point. Since Ψpn,prim is irreducible,

Kp(x(P )) is an extension of degree p2n−p2n−2

2 . If v is the normalized valuation of

Kp(x(P )), one has v(x(P )) = −1 and v(p) = p2n−p2n−2

2 . To see this, note that
v(x(P )) must be negative since P is in the kernel of reduction. However,

[K(x(P )) : K] =
p2n − p2n−2

2
,

so v(x(P )) cannot be less than −1. The argument used with equation (5) shows
that v(x(P )) must be even if P is defined over Kp(x(P )). Hence Kp(P ) is a ramified
quadratic extension of Kp(x(P )). Therefore Kp(P ) and LP coincide; the result
follows. �

To understand why p must be unramified in K to obtain [L : K] = p2n − p2n−2,
it is useful to repurpose an example that can be found in Lozano-Robledo’s papers
[24] and [26]. We would like to illustrate that if p is ramified, then Ψpn,prim may be
reducible.

Example 5.2. Let E/Q be the elliptic curve with Cremona label 121c2. The j-
invariant is −11 · 1313 and the global minimal model over Q is

E : y2 + xy = x3 + x2 − 3632 + 82757.

At p = 11 the curve E has bad additive reduction. Over Q( 3
√
11) the bad additive

reduction resolves to good supersingular reduction and the curve has global minimal
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model

E : y2 +
3
√
11xy = x3 +

3
√
112x2 + 3

3
√
11 + 2.

Using SageMath [12], one can compute the factorization

Ψ11,prim = 11

(

x5 +
3
√
112x4 + 3

3
√
11x3 + 3x2 − 1

3
√
112

)(

x55 + · · ·+ 303271
3
√
11

)

.

In particular, Ψ11,prim is reducible and there is a degree 10 extension of Q( 3
√
11)

over which E has a point of exact order 11.
Informally speaking, this example shows that some pn-torsion points are “more

supersingular” than others, meaning the x-coordinates have a larger negative valua-
tion. In general, not all x-coordinates of pn-torsion points have the same valuation.
For more general discussions of this phenomenon, the reader should consult [28]
and [8]. In the proof of Theorem 5.4, we will show that x-coordinates of primitive
pn-torsion points that are multiples of one another have the same valuation.

For our application to sporadic points on modular curves, we would like to con-
sider composite division fields. Luckily, ramification is quite controlled in division
fields. Specifically, Q(E[pn]) is only ramified at p and at primes for which E has
bad reduction. To see this one notes that reduction modulo p is injective on l-power
torsion for primes l 6= p at which E has good reduction. The utility of the following
corollary will be seen in Section 7.

Corollary 5.3. Let N ∈ Z>1. Factoring N into primes, we write N =
k
∏

i=1
pni

i . Let

E be an elliptic curve over Q that has supersingular reduction at all the pi. If L is a
minimal N -torsion point field, then any prime above pi in L has ramification index
p2ni

i − p2ni−2
i and

[L : Q] =

k
∏

i=1

(

p2ni

i − p2ni−2
i

)

.

We have stated Corollary 5.3 over Q for simplicity; however, the proof is valid
over any number field K in which the primes dividing N are unramified. Note, we
will establish the bound used when v2(N) = 1 in Theorem 6.1.

Proof. Let Li be a minimal extension of Q containing a point of exact order pni

i . If
pi 6= pj, note that pj is unramified in Li. Observe that the compositum of the Li

for 1 ≤ i ≤ k is a minimal N -torsion point field.
For i 6= j, consider the compositum LiLj . The primes pi and pj have respective

ramification indices p2ni

i − p2ni−2
i and p

2nj

j − p
2nj−2
j . However, pi is unramified in

Lj and pj is unramified in Li. One sees that LiLj has degree p
2nj

j − p
2nj−2
j over

Li so as to attain the necessary ramification. The equivalent statement holds over

Lj. Thus LiLj has degree
(

p
2nj

j − p
2nj−2
j

)(

p2ni

i − p2ni−2
i

)

over Q. The situation is

summarized in Figure 2. Repeating the above argument for each prime dividing N
we obtain the result. �
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LiLj

p
2ni
i −p

2ni−2
i

❈❈
❈❈

❈❈
❈❈p

2nj
j −p

2nj−2

j

④④
④④
④④
④④

Li

p
2ni
i −p

2ni−2
i

❉❉
❉❉

❉❉
❉❉

❉
Lj

p
2nj
j −p

2nj−2

j③③
③③
③③
③③
③

Q

Figure 2.

Theorem 5.4. As above, if p = 2 assume n > 1. We make no assumptions
regarding the ramification of p in K. Then, the ramification index e(P | p) is
properly divisible by ϕ(pn). In particular, [L : Q] is properly divisible by ϕ(pn).

Proof. Fix a primitive pn-torsion point in P ∈ E(L). Immediately, we have ϕ(pn)
other primitive pn-torsion points in E(L), since [j]P is a primitive pn-torsion point

if j is relatively prime to p. This yields at least
ϕ(pn)

2
roots of Ψpn,prim in L. For

ease of notation, denote [j]P by Pj . Similarly to the proof of Theorem 5.1, each Pj

can be written





P ∗
j

π
2kPj

P

,
P ∗
j,y

π
3kPj

P



 with vP(P
∗
j ) = vP(P

∗
j,y) = 0. Let Ê(πPOLP

) be the

formal group associated to E over LP. Denoting the kernel of reduction by E1(LP),
we have an isomorphism

Θ : E1(LP) → Ê(πPOLP
),

given by (x, y) 7→ −x/y. One can consult [38, Chapter IV] for a reference. We see

Θ(Pj) = P ∗
j,yπ

kPj

P
/P ∗

j . Hence vP(Θ(Pj)) = kPj
. Denote Θ(P ) by z and note z ∈ P.

The multiplication by j map in Ê, denoted [j]Ê , has the form

[j]Ê(z) = jz + (terms of degree 2 and higher).

Thus if gcd(j, p) = 1, then kP = vP(z) = vP([j]Ê(z)) = kPj
. Therefore, the x-

coordinates of all the multiples of P that are primitive pn-torsion points have the
same valuation.

Now consider the polynomial

χ(x) =
∏

0<j<pn

gcd(j,p)=1

(x− x(Pj)),

where the product is taken over 1 ≤ j < pn with j relatively prime to p. By
construction, χ(x) is the product of the linear factors of Ψpn,prim that are coming
from multiples of P . The constant coefficient of χ(x) is

∏

0<j<pn

gcd(j,p)=1

P ∗
j

π
2kPj

P

=
∏

0<j<pn

gcd(j,p)=1

P ∗
j

π
ϕ(pn)kP
P

,
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since kP = kPj
for any j relatively prime to p. We may factor Ψpn,prim

1

p
Ψpn,prim = χ(x)ω(x), (6)

where ω(x) is the product of all the x-coordinates of primitive pn-torsion points
that are not multiples of P . From equation (6), one sees that the constant coefficient
of χ(x) is a proper divisor of c0

p , where c0 is the constant coefficient of Ψpn,prim.

Recall, from Lemma 3.1 or Lemma 3.2, vP(c0) = 0. Thus p is divisible by π
kPϕ(pn)
P

.

Further, π
kPϕ(pn)
P

divides a proper factor of p, since the constant coefficient of ω(x)
will also have some factor of p in the denominator. �

Remark 5.5. From real uniformization [37, Corollary V.2.3.1], the group E(R) con-
tains at least ϕ(pn) primitive pn-torsion points. Let P ∈ E(R)[pn] be primitive.
When K admits a real embedding, K(P ) also admits a real embedding. Recall, the
Weil pairing shows that µpn ⊂ T . Hence, when K admits a real embedding, L is
always properly contained in T . The obvious exception to this is when pn = 2. Since
−1 is the primitive 2nd root of unity, there is no obstruction to T being embedded
in R.

6. The pn = 2 Case

To begin, suppose

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

is an elliptic curve with good supersingular reduction at a prime p ⊂ K lying above
2. Recall,

Ψ2 = 2y + a1x+ a3.

Squaring and substituting for y2, we obtain

Ψ2
2 = 4x3 + (4a2 + a21)x

2 + (4a4 + 2a1a3)x+ 4a6 + a23.

We may write
1

4
Ψ2

2 =
∏

P

(x− x(P )),

where the product is over the three non-trivial 2-torsion points. Over F2 the unique
supersingular elliptic curve is

Esup : y2 + y = x3.

See [38, Chapter V.4] for a reference. Thus, the reduction of E mod p admits a
change of coordinates over F2 to Esup. Recall, the admissible changes of coordinates
have the form

x = u2x′ + r and y = u3y′ + u2sx′ + t,

where r, s, t ∈ F2 and u ∈ F2
∗
. Also recall, ua′1 = a1+2s and u3a′3 = a3+ra1+2t. We

see a′1 and a1 are either both 0 or both non-zero. Considering Esup, we have a1 ≡ 0
modulo p. Hence, a3 6≡ 0 modulo p. Therefore we can see, rather explicitly, that the
constant coefficient of Ψ2, hence also of Ψ2

2, has p-adic valuation 0. Alternatively,
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we could mirror the argument in Lemma 3.1 with Ψ2
2 to obtain vp(a3) = 0. This, in

conjunction with supersingular reduction, is enough for our result.

Theorem 6.1. If e(p | 2) = 1, then [L : K] is an extension of degree 3 with
e(P | p) = 3. Further, the ramification index e(P | 2) is at least 3 regardless of the
ramification of p in K.

Proof. Let P be a primitive 2-torsion point in E(L). As before, write

P =

(

P ∗

π2kP
P

,
P ∗
y

π3kP
P

)

,

with vP(P
∗) = vP(P

∗
y ) = 0. Note P satisfies Ψ2, so we have

0 = 2
P ∗
y

π3kP
P

+ a1
P ∗

π2kP
P

+ a3.

Recall, vp(a1) ≥ 1. Since vp(2) = 1, the fraction a1
2 has non-negative p-adic valua-

tion. Hence, vP(
a1
2 ) ≥ 0. Reorganizing,

−a3 =
2

π3kP
P

(

P ∗
y +

a1
2
πkP
P

P ∗
)

.

We see vP(−a3) = vP(P
∗
y + a1

2 π
kP
P

P ∗) = 0. Hence, vP(2) = 3kP .

To see that [L : K] ≤ 3, let α be a root of Ψ2
2. We claim K(α) contains a primitive

2-torsion point. Let P be the primitive 2-torsion point with x-coordinate x(P ) = α.
The y-coordinate, y(P ), satisfies

Ψ2(α, y(P )) = 2y(P ) + a1α+ a3 = 0.

We have y(P ) =
−a1α− a3

2
∈ K(α). Therefore, [L : K] = 3 with e(P | p) = 3.

Considering Ψ2
2 and using an argument very similar to that used in the proof of

Theorem 5.1 yields the result for e(P | 2). �

The analogue of Theorem 5.4 is not particularly troublesome.

7. An Application to Sporadic Points on Modular Curves

Our exposition follows Sutherland’s notes, “Torsion Subgroups of Elliptic Curves
over Number Fields” [39]. Let K be a number field. The K-gonality, γK(X), of a
curve X/K is the minimum degree among all dominant morphisms φ : X → P1

K .
Recall, a dominant morphism is a morphism with dense image. We are interested in
the Q-gonality of the modular curve X1(N). For ease, we will denote γQ(X1(N)) by
γ(X1(N)). Another definition we will need is the degree of a point. If Q ∈ X1(N)
is a point, define the degree of Q to be the least degree of a number field K such
that Q is defined over K.

Given a dominant morphism φ : X1(N) → P1
Q of degree d, one can construct

infinitely many points of X1(N) defined over number fields of degree d. As an
example, let [a, 1] ∈ P1

Q. In some affine neighborhood containing [a, 1], φ is given by

[f(x1, . . . , xm), g(x1, . . . , xm)] where f and g are homogeneous polynomials of degree
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d. Solving f(x1, 1, . . . , 1) = a and g(x1, 1, . . . , 1) = 1, we obtain a degree d extension
of Q over which a point in φ−1([a, 1]) is defined.

Continuing, let g(X1(N)) be the genus of X1(N) and define δ(X1(N)) to be the
smallest positive integer k such that there are infinitely many points of degree k
on X1(N). From the above example, one has δ(X1(N)) ≤ γ(X1(N)). A point on
X1(N) of degree strictly less than δ(X1(N)) is called a sporadic point. Non-cuspidal
sporadic points on X1(N) correspond to finite families of elliptic curves with a point
of order N defined over a number field of “small” degree. Let h be a Weber function
for E. Recall, a Weber function is a map

h : E → E/Aut(E) ∼= P1.

Except for j-invariants 0 and 1728, taking the x-coordinate of a point is a Weber
function. The degree of a point x ∈ X1(N)(Q) corresponding to an isomorphism
class of an elliptic curve E and a marked point P of order N is [Q(j(E), h(P )) : Q].
For a reference, see [13, Chapter 7.6].

Now suppose N > 12 so that g(X1(N)) > 1. For the modular curve X1(N) we
have the bounds

δ(X1(N)) ≤ γ(X1(N)) ≤ g(X1(N)) ≤ N2 − 1

24
. (7)

To see that the gonality is bounded above by the genus, consult [35, appendix A].
A reference for the upper bound on the genus is [32, chapter 4].

We apply our work in Sections 5 and 6 to show:

Theorem 7.1. Let N ∈ Z>12, and write N =
k
∏

i=1
pni

i for the factorization of N

into primes. Let E be an elliptic curve defined over a number field K in which
there is a prime pi above each pi at which E has supersingular reduction and with
e(pi | pi) = 1. Then, E does not correspond to a sporadic point on X1(N).

Proof. If L is a minimal extension of K over which E has a point of exact order N ,

then Corollary 5.3 shows [L : K] =
∏k

i=1

(

p2ni

i − p2ni−2
i

)

. Suppose for the moment

that j(E) 6= 0, 1728. If P ∈ E(L) is a point of exact order N , we have

[K(h(P ), j(E)) : Q] ≥ 1

2

k
∏

i=1

(

p2ni

i − p2ni−2
i

)

.

Taking the two leading terms we obtain

1

2

k
∏

i=1

(

p2ni

i − p2ni−2
i

)

≥ 1

2
N2 − 1

2

k
∑

i

N2

p2i
. (8)

Let P (s) be the the prime zeta function,
∑

p prime
p−s. The value of P (s) has been

computed for various s. For s = 2, P (2) ≈ 0.45225. More relevant to our goals,
P (2) < 0.45225. The decimal expansion of P (2) is sequence A085548 in the OEIS
[18].
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In order to show that E does not correspond to a sporadic point on the modular
curve X1(N), we wish to show [K(h(P ), j(E)) : Q] ≥ g(X1(N)), since g(X1(N)) ≥
δ(X1(N)). Recall, we have the bound g(X1(N)) ≤ N2 − 1

24
<

N2

24
. Hence, using

equation (8), our problem is implied by the middle inequality of

[K(h(P ), j(E)) : Q] ≥ 1

2
N2 − 1

2

k
∑

i

N2

p2i
≥ N2

24
≥ g(X1(N).

Thus, it is enough to show
k
∑

i

N2

p2i
≤ 11

12
N2.

The result is obtained by the following string of inequalities:

k
∑

i

N2

p2i
< N2

∞
∑

p prime

1

p2
< N2(0.45225) <

11

12
N2.

For j-invariants 0 and 1728, one conducts the same analysis as above, but with an
additional factor of 1

3 or 1
2 respectively. In these cases, it boils down to showing

k
∑

i

N2

p2i
≤ 3

4
N2

and
k
∑

i

N2

p2i
≤ 5

6
N2

respectively. �

Remark 7.2. Being supersingular at some prime above a large prime dividing N is a
relatively strong constraint. In [9, page 57], Derickx and van Hoeij mention that one

can obtain δ(X1(N)) ≤ 11N2

840
. If one uses this upper bound and conducts a finer

analysis of
∏k

i=1

(

p2ni

i − p2ni−2
i

)

, then one can deal with more general situations

where E may not have supersingular reduction at any of the primes of K lying
above some of the primes dividing N . In these cases one should consult Lozano-
Robledo’s paper [27] for bounds to replace p2n − p2n−2 when E has ordinary or bad
reduction.

Example 7.3. As an example of how one might deal with non-supersingular primes,
suppose E does not have supersingular reduction at any of the primes above 2. Note
j-invariants 0 and 1728 are supersingular at 2. Consider N = 2N0 where N0 is odd.
The degree of the smallest extension of K over which E has a point P of order N

is at least N2
0 −

k
∑

i

N2
0

p2i
. Hence [K(h(P ), j(E)) : Q] ≥ 1

2N
2
0 − 1

2

k
∑

i

N2
0

p2i
. We wish to
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show that

N2 − 1

24
=

4N2
0 − 1

24
<

N2
0

6
≤ 1

2
N2

0 − 1

2

k
∑

i

N2
0

p2i
.

This amounts to showing 1
2

k
∑

i

1

p2i
≤ 1

3 . Using that
∞
∑

p prime

1

p2
< 0.45225, the in-

equality is clear. Thus we have shown that, if v2(N) = 1, sporadic points on X1(N)
cannot correspond to elliptic curves that are supersingular at at least one unramified
prime above each of the odd primes dividing N .

8. Ramification in K(E[ln]) away from l.

We change notation in this section. As before E will be an elliptic curve
over a number field K. However, let l be a prime, and consider the ln-th division
field K(E[ln]). We would like to reserve p for primes not equal to l at which E has
bad reduction. Suppose p is a prime of K lying over p for which E has potential
multiplicative reduction. In other words, the bad reduction of E at p eventually
resolves to split multiplicative reduction. Similarly to before, we denote K(E[ln])
by T and let P be a prime of T above p. Other than these changes, we keep the
previous conventions.

Before we begin our investigation into the ramification of primes away from l in
T , we remark that our methods are quite well-known. Our proof revolves around
the fact that if E has split multiplicative reduction at p, then

TP ⊆ Kp

(

µln , q
1/ln
)

where q is the Tate parameter for E over Kp. This has been noted by numerous
authors, especially when n = 1. However, the case we describe here does not appear,
to our knowledge, in the literature.

Theorem 8.1. Denote the discriminant of a model of E that is minimal at p by
∆E,minp. Define m := vl (vp (∆E,minp)). In other words, m is l-adic valuation of
the number of components of the special fiber of the Néron model. Then e(P | p) is
ln−m if E has multiplicative reduction at p, while e(P | p) is either 2ln−m or ln−m

if E has additive reduction at p.

Intuitively speaking, the ramification index of p in T is just enough so that
ln divides vP(∆E,minp). This is what one would expect, since when ln divides
vP(∆E,min p), the group of components of the special fiber of the Néron model has
an order that can accommodate a subgroup of order ln.

Proof. From p-adic uniformization, there exists a p-adic analytic isomorphism

Φ : E(Kp) ∼= K∗
p/q

Z,

with q ∈ K∗
p and vp(q) = vp(∆E,min p) > 0. See [37, Theorem V.3.1] for a refer-

ence. Considering TP, one sees Φ extends to Φ′ : E(TP) ∼= T ∗
P/q

Z with vP(q) =

vP(∆E,min p) > 0.
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We investigate the image of E[ln]. Part of the ln-torsion maps to µln ⊂ T ∗
P;

however, this only accounts for half the story since E[ln] ∼= Z/lnZ × Z/lnZ. An
ln-torsion point in T ∗

P/q
Z satisfies either xl

n − 1 or xl
n − qt for some t ∈ Z. As µln

accounts for the roots of xl
n − 1, there is some u ∈ T ∗

P that is a root of xl
n − qt. We

note that u generates the other half of the ln-torsion and vP(u) > 0.
Henceforth make the following identifications:

P ∈ E[ln] ∼ (1, 0) ∈ Z/lnZ× Z/lnZ ∼ u ∈ T ∗
P/q

Z

and

Q ∈ E[ln] ∼ (0, 1) ∈ Z/lnZ× Z/lnZ ∼ ζln ∈ T ∗
P/q

Z.

Since ζln and u form a basis for the ln-torsion of T ∗
P/q

Z, it is clear every element of

T ∗
P that reduces to uk ∈ T ∗

P/q
Z with 1 ≤ k < ln has non-zero valuation. In other

words, if 1 ≤ k < ln, then no element of O∗
TP

can reduce to uk ∈ T ∗
P/q

Z.

Now let E0(TP) be the points of E(TP) with non-singular reduction. From the
theory of Néron models, we have the following isomorphisms:

E(TP)/E0(TP) ∼= T ∗
P/q

Z
O

∗
TP

∼= Z/vP(q)Z = Z/vP(∆E,min p)Z. (9)

For a reference, see [37, Chapter IV]. We see that the image of u generates a subgroup
of order ln in Z/vP(q)Z. In order to accommodate this subgroup of order ln in
Z/vP(q)Z, the valuation vp must have ramification index at least ln−m .

To see that ln−m is the largest possible ramification index, note Kp(ζlm) is an
unramified extension of Kp. Further, Kp(ζln)

∗/qZ has a subgroup isomorphic to

Z/lnZ. Recalling that πp denotes a uniformizer for Kp, we write q = zπlms
p , where

vp(z) = 0 and gcd(s, l) = 1. Consider f(x) = xl
n − z, and let z

1
ln be a root. We

claim Kp

(

ζlm , z
1/ln
)

is an unramified extension of Kp.

It is clear that Kp

(

ζlm , z
1/ln
)

is the splitting field of f(x), as the roots of f(x)

are ζ ilnz
1/ln for 0 ≤ i < ln. Using the Vandermonde determinant, the discriminant

of f is

(−1)
ln(ln−1)

2

∏

i 6=j

(

ζ ilnz
1
ln − ζjlnz

1
ln

)

= (−1)
ln(ln−1)

2 z
ln−1

2

∏

i 6=j

(

ζ iln − ζjln
)

= z
ln−1

2

n
∏

k=1

disc(φlk(x)),

where disc(φlk(x)) is the discriminant of the lk-th cyclotomic polynomial. Since
∏n

k=1 disc(φlk(x)) is a power of l and z is a unit in Kp, the discriminant of f is not
divisible by p. Thus the extension is unramified.

Now let π
1/ln−m

p be a root of xl
n−m − πp and define

Wp := Kp

(

ζln , z
1/ln , π

1/ln−m

p

)

.
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Note Wp is ramified over Kp of degree ln−m. We have built Wp so that xl
n − q

splits completely. To see this, observe the roots of xl
n − q are ζ ilmz

1/lnπ
s/ln−m

p with
0 ≤ i < ln.

By construction W ∗
p /q

Z has a subgroup isomorphic to Z/lnZ × Z/lnZ. Thus by
equation (9), replacing TP with Wp, the group E(Wp) contains all the ln-torsion.
Since vp has ramification index ln−m in Wp, identifying TP with a subfield of Wp, we
see vp has at most ramification index ln−m in TP. Hence TP has ramification index
ln−m over Kp.

Note that if E has non-split multiplicative or additive reduction at p, the above
argument holds after first passing to a quadratic extension, K ′

p, over which E will
have split multiplicative reduction. If E has non-split multiplicative reduction over
Kp, then K ′

p is an unramified quadratic extension. We observe that K ′
p(E[ln]) and

TP have the same ramification indices over Kp. Likewise, if E has additive reduction
over Kp, then K ′

p is a ramified quadratic extension. We observe that the ramification

index of K ′
p(E[ln]) over Kp divides 2[TP : Kp] and is at least [TP : Kp]. �

In cases where Z/pZ ∼= Ok/pOK , we can use the theory of cyclotomic extensions
to describe inertia. Note that the ideas below give a lower bound on inertia when p

has inertia degree greater than 1 over p.

Corollary 8.2. Let p ⊂ K be a prime at which E has multiplicative reduction.
Suppose Z/pZ ∼= Ok/pOK . Then the residue degree of p in T is the smallest f such
that pf ≡ 1 modulo ln.

Proof. Adjoining a root of xl
n−m − πp to Kp(ζln) is a totally ramified extension and

corresponds to a trivial extension of residue fields. Thus any extension of the residue
field is coming from adjoining a primitive ln-th root of unity. From the theory of
cyclotomic fields, the residue degree is the smallest f such that pf ≡ 1 modulo ln.
For a reference, see [6, Chapter III]. �

Remark 8.3. Let l be a prime of K lying above l. When E has multiplicative
reduction at l, we can parrot the proof of Theorem 8.1 to show that l has ramification
index divisible by ϕ(ln) in K(E[ln]). One can attempt to use these ideas to obtain
a lower bound for the ramification in a minimal ln-torsion point field L. This works
well unless ln divides m = vl(vl(∆E,min l)).
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