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Abstract

In this paper, we study an interference alignment (IA) scheme with finite time extension and

beamformer selection method with low computational complexity for X channel. An IA scheme with

a chain structure by the Latin square is proposed for K × 3 multiple-input multiple-output (MIMO) X

channel. Since the proposed scheme can have a larger set of possible beamformers than the conventional

schemes, its performance is improved by the efficient beamformer selection for a given channel. Also,

we propose a condition number (CN) based beamformer selection method with low computational

complexity and its performance improvement is numerically verified.

Index Terms

Beamforming, degrees of freedom (DoF), interference alignment (IA), Latin square, multiple-input

multiple-output (MIMO), X channel.

I. INTRODUCTION

Interference alignment (IA) is an important technique to manage interference in the wireless

communication networks. To resolve the interference problem, an interference alignment scheme

was recently proposed and has become a subject of special interest in the area of wireless com-

munications. Cadambe and Jafar [1] showed that each user in a multi-user interference channel

can utilize half of all the network resources, which corresponds to achieving the maximum

degrees of freedom (DoF). The key idea of this result is the IA, which maximizes the overlap
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of all interference signal spaces at each receiver so that the dimension of the interference-free

space for the desired signals is maximized.

The idea of IA was further developed by many researchers [2]-[4]. In [2], an IA scheme for

M × N X channel was proposed and it was proved that the maximum DoF of the M × N

X channel is MN/(M + N − 1). However, an infinite time extension is required to achieve

this maximum DoF. In [3], an IA scheme for K ×K X channel was proposed without channel

extension, where the beamforming vectors were constructed only by a spatial signature over unit

time.

Although most of the studies for IA focus on network throughput, that is, DoF, reliability

is also an important performance measure of wireless communication systems. For reliability,

various selection schemes have been studied such as transmit antenna selection or equivalent

path selection based on singular value decomposition (SVD). Since signal to noise ratio (SNR)

at the receiver is the most critical factor, most of the selection schemes for IA are based on

SNR at receiver. However, obtaining the received SNR at the transmitter for beamformer design

is practically difficult due to the high computational complexity.

In this paper, we study an interference alignment (IA) scheme with finite time extension and

beamformer selection method with low computational complexity for X channel. An IA scheme

with a chain structure by the Latin square is proposed for K × 3 multiple-input multiple-output

(MIMO) X channel. Since the proposed scheme can have a larger set of possible beamformers

than the conventional schemes, its performance is improved by the efficient beamformer selection

for a given channel. Also, we propose a condition number (CN) based beamformer selection

method with low computational complexity and its performance improvement is numerically

verified.

The rest of this paper is organized as follows: In Section II, the system model of K × 3 MIMO

X channel is described. Then, an expanded beamformer set using a Latin square for K × 3

MIMO X channel is proposed in Section III. A couple of efficient beamformer selection methods

are proposed in Section IV and its performance is numerically analyzed in Section V. Finally,

conclusion is given in Section VI.
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Fig. 1: K × 3 MIMO X channel.

II. SYSTEM MODEL

We consider K × 3 MIMO X channel as Fig. 1, where each transmitter Tj , j = 1, ..., K,

transmits independent message to each receiver Ri, i = 1, 2, 3. All the nodes are equipped with

M = 2K antennas. The 2K × 1 transmit signal vector xj from the j-th transmitter can be

represented as a linear combination of three different beamforming vectors

xj =
3∑

i=1

vijsij, (1)

where sij denotes a transmitted message from the j-th transmitter to the i-th receiver and vij

denotes a 2K × 1 beamforming vector for the message sij . The transmit signal vector xj has

an average power constraint of Tr(xH
j xj) ≤ Pj , where Pj is the total transmit power of the j-th

transmitter, Tr(·) denotes the trace function, and (·)H indicates the Hermitian transpose.

Then, the received signal vector at the i-th receiver is given as

Yi =
K∑
j=1

Hijvijsij +
K∑
j=1

3∑
k=1
k ̸=i

Hijvkjskj + ni, (2)

where Hij is the 2K×2K channel matrix from the j-th transmitter to the i-th receiver generated

by identically distributed flat Rayleigh fading over one symbol period from a complex Gaussian

random variable with zero mean and unit variance and ni is the circularly symmetric white

Gaussian noise with zero mean and unit variance at the receiver Ri.

The first term and the second term in (2) denote the desired signal and the interference signal
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for Ri, respectively. Clearly, the desired signals are composed of K received signals and the

interference signals are composed of 2K received signals.

We consider the zero-forcing (ZF) decoder to remove the interference signal at the receiver

Ri. The ZF based decoder can separate K × 3 X channel into 3K P2P channels. Therefore, the

sum-rate of the proposed IA scheme is given as

Rsum =
3∑

i=1

K∑
j=1

log2(1 + PjR†
ijHijvijv†

ijH
†
ijRij),

where R†
ij is ZF decoder for the desired symbol sij and Pj denotes the transmit power at the

transmitter j. It is well known that PjR†
ijHijvijv†

ijH
†
ijRij is considered as the SNR of the desired

signal sij at the receiver i.

III. EXPANDED BEAMFORMER SET USING LATIN SQUARE FOR K × 3 MIMO X CHANNEL

In this section, we propose an interference alignment scheme for K × 3 MIMO X channel,

which can achieve DoF 3K. At each receiver, M
2
(= K) DoF can be achieved, which means that

the interference signals are aligned in the half of the signal space.

A. Requirements on the Beamforming Vectors

We propose three requirements on the beamforming vectors in K × 3 MIMO X channel as

follows.

i) The 2K interference signals at each receiver should be aligned in M
2
(= K) dimensional signal

space as

span(Hijvkj) = span(Himvlm), where i, j, k, l, and m are all distinct, i = 1, 2, 3. (3)

ii) Any two received interference signals from the same channel should not be aligned along the

same dimensional signal space as

span(Hijvkj) ̸= span(Hijvlj), where i, k, and l are all distinct, i = 1, 2, 3. (4)

iii) Each interference pair at each receiver should be aligned as a chain structure, that is,

span(H1α1vδ1) = span(H1α2vδ2) for receiver 1

span(H2β1vδ2) = span(H2β2vδ3) for receiver 2 (5)

span(H3γ1vδ3) = span(H3γ2vδ1) for receiver 3,
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where the requirement iii) can be satisfied in the proposed IA scheme by the Latin square and

there are K chain structures.

By the requirement i), the 2K interference signals received by each receiver are aligned in the

K dimensional signal space, which is half of the signal space of each receiver. The requirement

ii) means that two beamformers experiencing the same channel are not aligned in the same

direction. If the requirement ii) is not satisfied, the corresponding beamformer will be aligned in

the same signal space as the desired signal at the other receiver. When two interference signals

satisfying the requirements i) and ii) are aligned in the same signal space, the available set of

beamformers for the IA scheme can be expanded by using the chain structure in (5). In the next

section, we will discuss the design of beamformers to satisfy the above three requirements.

B. Design the Beamforming Vectors Using Latin Square

First, we introduce the Latin square for beamformer design. The Latin square is a K × K

array filled with K different symbols, each occurring exactly once in each row and exactly once

in each column. For example, if the first row is fixed as [A B C], two different 3 × 3 Latin

squares are given as 
A B C

B C A

C A B

 ,


A B C

C A B

B C A

 .

Let V be the K × 3 beamforming matrix given as

V =


v11 v21 v31

v12 v22 v32

...
...

...

v1K v2K v3K

 ,

where vij is a 2K×1 beamforming column vector for signal from the j-th transmitter to the i-th

receiver. The i-th column of V represents the beamforming vectors of the signals transmitted

to the i-th receiver. That is, in the i-th receiver, the remaining two columns except for the i-

th column represent the beamforming vectors of 2K interference signals. By the requirement

i), 2K interference signals in each receiver should be aligned in K dimensions so that two

interference signals should be aligned in the same dimensional signal space. By the requirement

ii), the beamformers in the same row should not be aligned in the same signal space because
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they experience the same channel to the i-th receiver. Also, the beamformers in the same column

should not be aligned in the same signal space to have a chain structure of the requirement iii).

Considering these conditions, the method to make K pairs of the 2K interference signals,

where each pair of interference signals are aligned into one signal space is proposed by using

three columns in the K ×K Latin square, where one column corresponds to the desired signal

and the other two columns correspond to the interference signals. Since the order of aligned

interference signals is irrelevant, the order of symbols in the first row of the K×K Latin square

can be fixed. Thus, the number of K×K Latin squares with the first row fixed is (K−1)!L(K,K),

where L(K,K) is the value referenced in the online encyclopedia of integer sequences (OEIS)

A000315, that is, L(3, 3) = 1, L(4, 4) = 4, L(5, 5) = 56, L(6, 6) = 9408, etc. [15]. The

interference alignment pairs of the beamforming vectors are obtained from three columns in the

K ×K Latin square with the first row fixed and thus the total number of IA schemes is lower

bounded by (K − 1)!L(K,K).

For simplicity, we design the beamforming vectors for one of the available IA schemes as

follows. In each IA scheme with K chain structures, each chain structure in (5) is rewritten as

span(H−1
3γ2

H3γ1H−1
2β2

H2β1H−1
1α2

H1α1vδ1) = span(vδ1)

vδ2 = H−1
1α2

H1α1vδ1 (6)

vδ3 = H−1
3γ1

H3γ2vδ1 ,

where vδ1 is obtained from the eigenvectors of H−1
3γ2

H3γ1H−1
2β2

H2β1H−1
1α2

H1α1 and vδ2 and vδ3 can

be obtained as in (6). Since the size of H−1
3γ2

H3γ1H−1
2β2

H2β1H−1
1α2

H1α1 is 2K × 2K, vδ1 can be

selected among 2K eigenvectors. Since there are K chain structures, we have (2K)K eigenvector

sets, where each eigenvector set is composed of K eigenvectors. Let B be the beamformer set

for each IA scheme and let b be the beamforming vector set, where each element consists of

3K beamforming vectors as

b = {v11, v21, v31, · · · , v1K , v2K , v3K} ∈ B.

In each IA scheme, there are (2K)K beamforming vector sets derived from (2K)K eigenvector

sets, that is, |B| = (2K)K . Let LK be the expanded beamformer sets by the Latin squares, where

each element is beamformer set Bi. The proposed IA scheme for K × 3 MIMO X channel has
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at least (K − 1)!L(K,K) available IA schemes and thus we have at least (K − 1)!L(K,K)

beamformer sets as

LK = {Bi|i = 1, · · · , (K − 1)!L(K,K)}. (7)

In fact, (K − 1)!L(K,K) is large enough for the number of IA schemes and thus we will use

it as the number of IA schemes. Since each beamformer set contains the (2K)K beamforming

vector sets, there are at least (K − 1)!L(K,K)(2K)K expanded beamforming vector sets. In

order to select the best beamforming vector set, we have to compute performance measure such

as symbol error rate (SER) or sum-rate for (K − 1)!L(K,K)(2K)K beamforming vector sets.

Clearly, it requires tremendous amount of computation. Thus, we propose how to efficiently

select the beamforming vector sets to improve performance of SER and sum-rate for the K × 3

MIMO X channel in Section IV.

C. Example of the Proposed Scheme: 3× 3 MIMO X Channel

The proposed IA scheme is applied to the 3 × 3 MIMO X channel which satisfies three

requirements in (3), (4), and (5). In the 3 × 3 MIMO X channel, the received signals at three

receivers are given as

Y1 = H11v11s11 + H12v12s12 + H13v13s13

+ H11v21s21 + H11v31s31 + H12v22s22

+ H12v32s32 + H13v23s23 + H13v33s33 + n1

Y2 = H21v21s21 + H22v22s22 + H23v23s23

+ H21v11s11 + H21v31s31 + H22v12s12 (8)

+ H22v32s32 + H23v13s13 + H23v33s33 + n2

Y3 = H31v31s31 + H32v32s32 + H33v33s33

+ H31v11s11 + H31v21s21 + H32v12s12

+ H32v22s22 + H33v13s13 + H33v23s23 + n3.

Six interference signals are received at each receiver and each pair of interference signals are

aligned in the same dimensional signal space to satisfy the requirement i). The choice for two

interference signals aligning into one dimensional signal space can be determined by the Latin
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square, where there are two distinct 3× 3 Latin squares. In other words, interference alignment

pair can be determined by the 3× 3 Latin squares as
v11 v21 v31

v12 v22 v32

v13 v23 v33

←−


A B C

B C A

C A B

 or


A B C

C A B

B C A

 . (9)

Each transmitter beamforms to align two interference signals into one dimensional signal space

at each receiver. For example, the signals s11, s12, and s13 are desired signals at the receiver 1 and

the other six signals are interference signals in (8). Thus, the first column of the beamforming

matrix in (9) is the beamforming vectors for the desired signals of the receiver 1. Each pair of

interference signals corresponding to each pair of the same symbols in the second and the third

columns in the Latin squares in (9) are aligned in the one dimensional interference signal space,

that is, for the first Latin square, each pair of (v23, v32) from A, (v21, v33) from B, and (v22, v31)

from C is aligned in the one dimensional interference signal space. That is, the interference

signal pairs of three receivers can be obtained from
v21 v31

v22 v32

v23 v33

←−


B C

C A

A B

 for receiver 1


v11 v31

v12 v32

v13 v33

←−


A C

B A

C B

 for receiver 2


v11 v21

v12 v22

v13 v23

←−


A B

B C

C A

 for receiver 3

and thus the three pairs of interference signals at each receiver are given as

Receiver 1; (v23, v32), (v21, v33), (v22, v31)

Receiver 2; (v11, v32), (v12, v33), (v13, v31)

Receiver 3; (v11, v23), (v12, v21), (v13, v22).
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By aligning the interference signals in the form of the first Latin square in (9), the following

IA condition is obtained from (8) as

span(H31v11) = span(H33v23)

span(H21v11) = span(H22v32)

span(H13v23) = span(H12v32)

span(H31v21) = span(H32v12)

span(H11v21) = span(H13v33) (10)

span(H22v12) = span(H23v33)

span(H21v31) = span(H23v13)

span(H11v31) = span(H12v22)

span(H33v13) = span(H32v22).

Using (10), the beamforming vectors for the IA scheme are obtained from

span(H−1
21 H22H−1

12 H13H−1
33 H31v11) = span(v11)

v23 = H−1
33 H31v11 (11)

v32 = H−1
22 H21v11

span(H−1
11 H13H−1

23 H22H−1
32 H31v21) = span(v21)

v12 = H−1
32 H31v21 (12)

v33 = H−1
13 H11v21

span(H−1
11 H12H−1

32 H33H−1
23 H21v31) = span(v31)

v13 = H−1
23 H21v31 (13)

v22 = H−1
12 H11v31.

Clearly, v11 is obtained from the eigenvectors of H−1
21 H22H−1

12 H13H−1
33 H31(= E1) and v23 and

v32 are also obtained from (11). Also, v21 and v31 are obtained from the eigenvectors of

H−1
11 H13H−1

23 H22H−1
32 H31(= E2) and H−1

11 H12H−1
32 H33H−1

23 H21(= E3), respectively. Therefore, the
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nine beamforming vectors can be obtained from (11), (12), and (13). Since the size of Ei is

6× 6, the number of eigenvectors that can be selected for each of v11, v21, and v31 is 6. There

are 63 beamforming vector sets derived from 63 eigenvector sets. Thus, the selectable number

of beamforming vector sets for the IA scheme is 63.

Also, by aligning the interference signals in the form of the second Latin square matrix in

(9), the following IA condition is obtained as three chain structures

span(H31v11) = span(H32v22)

span(H21v11) = span(H23v33)

span(H12v22) = span(H13v33)

span(H11v21) = span(H12v32)

span(H31v21) = span(H33v13) (14)

span(H22v32) = span(H23v13)

span(H11v31) = span(H13v23)

span(H21v31) = span(H22v12)

span(H32v12) = span(H33v23)

and we have

span(H−1
21 H23H−1

13 H12H−1
32 H31v11) = span(v11)

v22 = H−1
32 H31v11 (15)

v33 = H−1
23 H21v11

span(H−1
31 H33H−1

23 H22H−1
12 H11v21) = span(v21)

v13 = H−1
33 H31v21 (16)

v32 = H−1
12 H11v21

span(H−1
11 H13H−1

33 H32H−1
22 H21v31) = span(v31)

v12 = H−1
22 H21v31 (17)
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v23 = H−1
13 H11v31.

Similarly, the nine beamforming vectors can also be obtained from (15), (16), and (17) and the

selectable number of beamforming vector sets for the IA scheme is also 63. In the 3× 3 MIMO

X channel, there are 2 available IA schemes, where each IA scheme has 63 beamforming vector

sets. Thus, there are 2× 63 expanded beamforming vector sets by two Latin squares.

D. Example of the Proposed Scheme: 4× 3 MIMO X Channel

For 4×3 MIMO X channel, one of the available IA schemes is considered. Eight interference

signals are received at each receiver and each pair of interference signals are aligned in the same

dimensional signal space to satisfy the requirement i). The choice for two interference signals

aligning into one dimensional signal space can be determined by the 4× 4 Latin square, where

there are at least 3! Latin squares. Interference alignment pair can be determined by any three

columns of the 4× 4 Latin squares given as


v11 v21 v31

v12 v22 v32

v13 v23 v33

v14 v24 v34

←−


A B C

B C D

C D A

D A B

 , (18)

where one column corresponds to the desired signal and the other two columns correspond to

the interference signals. Each transmitter beamforms to align two interference signals into one

dimensional signal space at each receiver. Thus, the first column of the beamforming matrix

is the beamforming vectors for the desired signals of the receiver 1. Each pair of interference

signals corresponding to each pair of the same symbols in the second and the third columns are

aligned in the one dimensional interference signal space, that is, for the Latin square matrix in

(18), each pair of (v24, v33) from A, (v21, v34) from B, (v22, v31) from C, and (v23, v32) from D

is aligned in the one dimensional interference signal space at the receiver 1.

By aligning the interference signals in the form of the Latin square matrix in (18), the following

IA condition is obtained as four chain structures

span(H14v24) = span(H13v33)

span(H21v11) = span(H23v33)
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span(H31v11) = span(H34v24)

span(H11v21) = span(H14v34)

span(H22v12) = span(H24v34) (19)

span(H32v12) = span(H31v21)

span(H12v22) = span(H11v31)

span(H23v13) = span(H21v31)

span(H33v13) = span(H32v22)

span(H13v23) = span(H12v32)

span(H24v14) = span(H22v32)

span(H34v14) = span(H33v23).

Using (19), the beamforming vectors for the IA scheme are obtained from

span(H−1
31 H34H−1

14 H13H−1
23 H21v11) = span(v11)

v33 = H−1
23 H21v11 (20)

v24 = H−1
34 H31v11

span(H−1
31 H32H−1

22 H24H−1
14 H11v21) = span(v21)

v34 = H−1
14 H11v21 (21)

v12 = H−1
32 H31v21

span(H−1
21 H23H−1

33 H32H−1
12 H11v31) = span(v31)

v22 = H−1
12 H11v31 (22)

v13 = H−1
23 H21v31

span(H−1
34 H33H−1

13 H12H−1
22 H24v14) = span(v14)

v32 = H−1
22 H24v14 (23)

v23 = H−1
33 H34v14.
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Here, v11 is obtained from the eigenvectors of H−1
31 H34H−1

14 H13H−1
23 H21(= E1) and v21, v31, and

v14 are obtained from the eigenvectors of H−1
31 H32H−1

22 H24H−1
14 H11(= E2),

H−1
21 H23H−1

33 H32H−1
12 H11(= E3), and H−1

34 H33H−1
13 H12H−1

22 H24(= E4), respectively. Therefore, the

12 beamforming vectors can be obtained from (20), (21), (22), and (23). Since the size of Ei

is 8 × 8, the number of eigenvectors that can be selected for each of v11, v21, v31, and v14 is

8. There are 84 beamforming vector sets derived from 84 eigenvector sets. Thus, the selectable

number of beamforming vector sets for the IA scheme is 84. In the 4×3 MIMO X channel, there

are at least 3! IA schemes, where each IA scheme has 84 beamforming vector sets. Therefore,

there are 3!84 expanded beamforming vector sets by the Latin squares.

IV. EFFICIENT BEAMFORMER SELECTION METHODS

We can select the beamforming vector set b∗ ∈ B by using the following methods:

• MinMax SNR based beamformer selection method;

b∗ = argmax
b∈B

min
i
|(R†Hv)i|, i = 1, 2, · · · , 3K, (24)

where R†, H, and v denote the zero-forcing matirix, the channel matrix, and the beamforming

vector for the desired signal i, respectively.

• Sum-rate maximization based beamformer selection method;

b∗ = argmax
b∈B

(Rsum), (25)

where Rsum denotes the sum-rate at the given system.

• Condition number (CN) based beamformer selection method;

b∗ = argmin
b∈B

(F (κ(b))), (26)

where κ(b) is the CN for the IA scheme with b and F (·) is a function mapping from CN

to MinMax SNR or sum-rate.

A. Utilization of Condition Number

Instead of measuring the SNR or sum-rate with high computational complexity, we introduce

other measurements for the beamformer selection deriving suboptimal solutions with less com-

putational complexity. That is, we use the CN as a measurement to estimate SNR or sum-rate
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for the K × 3 MIMO X channel. The CN is defined as a ratio of the maximum singular value

to the minimum singular value, where the singular value is a weight that indicates how much

the range space in the matrix is biased in the given direction. That is, the CN is the ratio of

the singular value in the most biased direction to that in the least biased direction of the matrix.

When the CN reaches the minimum value of 1, it becomes an orthogonal matrix. Therefore,

the closer the CN is to 1 (the smaller), the closer to the orthogonality of the matrix. In general,

it is known that the orthogonalization of the received signals can achieve the improvement of

performance in the interference channel.

For each receiver, the signal space matrix is defined as

Ai = [D1,D2, · · · ,DK , I1, I2, · · · , IK ], i = 1, 2, 3, (27)

where Di and Ii are 2K × 1 desired signal vectors and aligned interference signal vectors,

respectively. Each receiver decodes the desired signal by zero-forcing. However, the desired

signal is attenuated by zero-forcing, which is measured by the CN of the signal space matrix in

(27). In order to consider the orthogonality relation rather than the magnitude of the signal space

matrix, we use a normalized signal space matrix by normalizing each signal for an orthogonality

measure as

Āi = [
D1

|D1|
,

D2

|D2|
, · · · , DK

|DK |
,

I1
|I1|

,
I2
|I2|

, · · · , IK
|IK |

], i = 1, 2, 3. (28)

Then, the CN is obtained for each normalized signal space matrix of each receiver and used

as a measure of the performance evaluation, whose computational complexity can be reduced

compared to the SNR or sum-rate computation.

B. Correlation between Condition Number and Minimum SNR

For the case of 3 × 3 MIMO X channel, there are |B| = 63 beamforming vector sets for an

IA scheme. For each beamforming vector set, the minimum SNR and the estimated minimum

SNR from CN are computed as follows:

• Find the minimum SNR.

– For each of the 63 beamforming vector sets, sort min
i
|(R†Hv)i|2, i = 1, 2, · · · , 9, in

the descending order.

• Estimate the minimum SNR from CN.
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Fig. 2: Comparison of the directly obtained minimum SNR and the estimated minimum SNR

from CN in the 3× 3 X channel.

– For each bj ∈ B, compute CN by max
i∈(1,2,3)

(κi(bj)), j = 1, 2, · · · , 63 of the normalized

signal space matrix obtained from 63 beamforming vector sets, where κi(bj) is the CN

of the i-th receiver with the beamforming vector set bj in B.

– Let b̄j be the sorted beamforming vector in the ascending order of max
i

(κi(bj)).

– For each of b̄j , obtain min
i
|(R†Hv)i|2, i = 1, 2, · · · , 9.

• Compare the minimum SNR and the estimated minimum SNR from CN.

Some reasons for the fluctuation in Fig. 2 are as follows. First, CN can be considered as a

measurement of orthogonality among received signals. Second, we need only the orthogonality

between the desired signal and the interference signal. But CN also computes a measure of

orthogonality among the interference signals. By considering the beamforming vector sets within

a certain range of the minimum SNR estimated from CN, it is possible to compromise the

fluctuation in estimating the minimum SNR by CN as follows:

• Choose a set of b̄j’s with the smallest u CN’s and compute the minimum SNR of each b̄j

among them.

• Select the b̄∗ that gives the maximum SNR among them.

Fig. 3 compares the MinMax SNR distribution for the sets of b̄j with the smallest CN’s, denoted

by CNu with set size u, u = 1, 3, 10, 20. For CN10, the shape of the SNR distribution is
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Fig. 3: Comparison of the MinMax SNR distribution for various CNu in the 3× 3 X channel.

similar to that of the optimal case and it is nearly optimal for CN20. Thus, MinMax SNR by

CN20 is almost the same as the Optimal MinMax SNR.

C. Interference Orthogonalized Condition Number

With a large number of users, the number of beamforming vector sets increases exponentially

and thus the set size CNu should be large. Thus we propose a modified CN that improves the

method to obtain CN from signal space. In order to avoid computation of the orthogonality

between the interference signals, a new signal space matrix can be made, which considers only

the orthogonality between the desired and interference signals. Thus, the signal space matrix

can be constructed by pre-orthogonalizing the interference signal space [ I1
|I1| ,

I2
|I2| , · · · ,

IK
|IK | ] in the

signal space matrix in (28) using Gram-Schmidt orthogonalization. Then, its condition number

is called orthogonalized condition number (OCN), which is useful for the large K.

In Fig. 4, compared to the fluctuation of the estimated minimum SNR from CN, the fluctuation

of the estimated minimum SNR from the OCN is reduced.

D. Correlation between Condition Number and Sum-Rate

As in the previous case, the procedure to obtain the maximum sum-rate among all beamforming

vector sets can be replaced by the CN based beamformer selection with less computational
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Fig. 4: Comparison of the directly obtained minimum SNR and the estimated minimum SNRs

from CN and OCN in the 3× 3 X channel.

complexity.

For the case of 3×3 MIMO X channel, there are |B| = 63 beamforming vector sets for an IA

scheme. For each beamforming vector set, the maximum sum-rate and the estimated maximum

sum-rate from CN are computed as follows:

• Find the sum-rate.

– For the 63 beamforming vector sets, sort the sum-rates for all beamforming vector sets

in the descending order.

• Estimate the sum-rate from CN.

– For each bj ∈ B, compute CN by
∑3

i=1(κi(bj)), j = 1, 2, · · · , 63 of the normalized

signal space matrix obtained from 63 beamforming vector sets, where κi(bj) is the CN

of the i-th receiver with the beamforming vector set bj in B.

– Let b̄j be the sorted beamforming vector in the ascending order of
∑3

i=1(κi(bj)).

– For each of b̄j , obtain the sum-rate.

• Compare the sum-rate and the estimated sum-rate from CN.

Comparing the directly obtained sum-rate with the estimated sum-rate from CN, there are some

fluctuations for estimating the maximum sum-rate from CN as in Fig. 5. By considering the

beamforming vector sets within a certain range of the sum-rate estimated from CN, it is possible
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Fig. 5: Comparison of the directly obtained sum-rate with the estimated sum-rate from CN in

the 3× 3 X channel.

to compromise the fluctuation in estimating the maximum sum-rate by CN as follows:

• Choose a set of b̄j with the smallest CN’s and compute the sum-rate of each b̄j among

them.

• Select the b̄∗ that gives the maximum sum-rate among them.

E. Comparison of Computational Complexity

The singular values σmax, σmin of the signal space matrix for CN can be obtained from its SVD.

A null space for each desired signal in the signal space matrix can also be obtained from the SVD

of the signal space matrix. Therefore, the computational complexity of the MinMax SNR based

beamformer selection method or the sum-rate maximization based beamformer selection method

is equivalent to calculating the SVD approximately 3K times because there are 3K desired

signal spaces. On the other hand, the computational complexity of the CN based beamformer

selection method is equivalent to calculating the SVD approximately 3 times because there are

3 signal space matrices. Thus, the proposed CN based beamformer selection method reduces its

computational complexity compared to the MinMax SNR based beamformer selection method

or the sum-rate maximization based beamformer selection method by 1
K

.
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Fig. 6: SER comparison between the CN based beamformer selection method and the MinMax

SNR based beamformer selection method for a Latin square in the case of 3 × 3 MIMO X

channel.

V. PERFORMANCE ANALYSIS OF EXPANDED BEAMFORMER SETS WITH CN BASED

BEAMFORMER SELECTION

In this section, the performance of SER and sum-rate of the K × 3 MIMO X channel with

CN based beamformer selection method are analyzed. For simplicity, we consider the case of

K = 3 and assume that each transmitter has the same transmit power constraint P .

A. SER by CN Based Beamformer Selection

For the case of 3×3 MIMO X channel, the proposed CN based beamformer selection method

for SER has the following four steps.

• For each bj ∈ B, compute CN by max
i∈(1,2,3)

(κi(bj)), j = 1, 2, · · · , 63 of the normalized signal

space matrix obtained from 63 beamforming vector sets, where κi(bj) is the CN of the i-th

receiver with the beamforming vector set bj in B.

• Let b̄j be the sorted beamforming vector in the ascending order of max
i

(κi(bj)).

• Choose a set of b̄j’s with the smallest u CN’s.

• b∗ = argmax
b̄

min
i
|R†Hv|i, i = 1, 2, · · · , 9.

In Fig. 6, Optimal MinMax SNR uses the method to obtain the minimum SNR for each

beamforming vector set and select the maximum SNR among them for a Latin square. Randomu
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uses the method to obtain the minimum SNR for each of randomly selected u beamforming

vector sets and select the maximum SNR among them. For CN13, it has almost similar SER

performance to Optimal MinMax SNR. Also, compared to Randomu, it is very effective to

select the beamforming vector sets by CN. Therefore, it can be seen that good SER performance

can be achieved by the CN based beamformer selection without obtaining the SNR of all the

beamforming vector sets.

B. Sum-Rate by CN Based Beamformer Selection

For the case of 3×3 MIMO X channel, the proposed CN based beamformer selection method

for the sum-rate is obtained as

b∗ = argmin
bj∈B

(
3∑

i=1

(κi(bj))), j = 1, 2, · · · , 63. (29)

In Fig. 7, Optimal sum-rate uses the method to obtain the sum-rate for each beamforming

vector sets and select the maximum sum-rate among them. Randomu uses the method to obtain

the sum-rate of randomly selected u beamforming vector sets and select the maximum sum-

rate among them. For CN1, it has almost similar sum-rate performance to Optimal sum-rate.

Also, compared to Randomu, it is very effective to select the beamforming vector sets by CN.

Therefore, it can be seen that high sum-rate performance can be achieved by the CN based

beamformer selection without obtaining the sum-rate of all the beamforming vector sets.

C. Latin Square Expansion Gain

The proposed IA scheme for K×3 MIMO X channel has at least (K−1)!L(K,K) IA schemes

by the K×K Latin squares. Since there are (2K)K beamforming vector sets for each IA scheme,

the total number of the expanded beamforming vector sets is at least (K − 1)!L(K,K)(2K)K .

If computational power is sufficient, the selectable range of beamforming vector sets for the

proposed IA scheme can be expanded by the Latin square.

Fig. 8 shows the SER performance for the beamforming vector sets by the Latin square

expansion, where Prop216 and Prop432 stand for a 3 × 3 Latin square and two 3 × 3 Latin

squares, respectively. The Latin square expansion provides more beamforming vector sets and
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Fig. 7: Sum-rate comparison between the CN based beamformer selection method and the sum-

rate maximization based beamformer selection method for a Latin square in the case of 3 × 3

MIMO X channel.

Fig. 8: SER comparison of the proposed IA scheme with the Latin square expansion and the

conventional scheme for the case of 3× 3 MIMO X channel.

thus SER performance is improved compared to the conventional one. As a further work, it can

be researched how to choose the best IA scheme among at least (K− 1)!L(K,K) IA schemes.
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VI. CONCLUSIONS

In this paper, we proposed an IA scheme using the Latin square and CN based beamformer

selection method with low computational complexity in the K × 3 MIMO X channel. It is

shown that the proposed IA scheme can be expanded by the K × K Latin squares. Since the

proposed IA scheme has a chain structure, the proposed scheme has a larger beamforming vector

sets than the conventional IA scheme. To select the good beamforming vector sets among many

beamforming vector sets, the CN based beamformer selection with low computational complexity

was proposed. SER and sum-rate performance can be improved by the proposed IA scheme using

the Latin squares with the CN based beamformer selection.
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