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Abstract

We show that if a permutation π contains two intervals of length 2,
where one interval is an ascent and the other a descent, then the Möbius
function µ[1, π] of the interval [1, π] is zero. As a consequence, we show
that the proportion of permutations of length n with principal Möbius
function equal to zero is asymptotically bounded below by (1 − 1/e)2 ≥
0.3995. This is the first result determining the value of µ[1, π] for an
asymptotically positive proportion of permutations π.

We also show that if a permutation φ can be expressed as a direct sum
of the form α⊕1⊕β, then any permutation π containing an interval order-
isomorphic to φ has µ[1, π] = 0; we deduce this from a more general result
showing that µ[σ, π] = 0 whenever π contains an interval of a certain form.
Finally, we show that if a permutation π contains intervals isomorphic to
certain pairs of permutations, or to certain permutations of length six,
then µ[1, π] = 0.

1 Introduction

Let σ and π be permutations of positive integers. We say that π contains σ
if there is a subsequence of elements of π that is order-isomorphic to σ. As
an example, 3624715 contains 3142 as the subsequences 6275 and 6475. If σ is
contained in π, then we write σ ≤ π.

The set of all permutations is a poset under the partial order given by con-
tainment. A closed interval [σ, π] in a poset is the set defined by {τ : σ ≤ τ ≤ π},
and a half-open interval [σ, π) is the set {τ : σ ≤ τ < π}. The Möbius function
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of an interval [σ, π] is defined recursively as follows:

µ[σ, π] =


0 if σ 6≤ π,
1 if σ = π,
−

∑
τ∈[σ,π)

µ[σ, τ ] otherwise.

From the definition of the Möbius function it follows that if σ < π, then∑
τ∈[σ,π] µ[σ, τ ] = 0.
In this paper, we are mainly concerned with the principal Möbius function

of a permutation π, written µ[π], defined by µ[π] = µ[1, π]. We focus on the
zeros of the principal Möbius function, that is, on the permutations π for which
µ[π] = 0. We show that we can often determine that a permutation π is a
Möbius zero by examining small localities of π. We formalize this idea using the
notion of an “annihilator”. Informally, an annihilator is a permutation α such
that any permutation π containing an interval copy of α is a Möbius zero. We
will describe an infinite family of annihilators.

We will also show that any permutation containing an increasing as well
as a decreasing interval of size 2 is a Möbius zero. Based on this result, we
show that the asymptotic proportion of Möbius zeros among the permutations
of a given length is at least (1 − 1/e)2 ≥ 0.3995. This is the first known result
determining the values of the principal Möbius function for an asymptotically
positive fraction of permutations. We will also show how our results on the
principal Möbius function can be extended to intervals whose lower bound is
not 1.

The question of computing the Möbius function in the permutation poset
was first raised by Wilf [19]. The first result was by Sagan and Vatter [11],
who determined the Möbius function on intervals of layered permutations. Ste-
ingŕımsson and Tenner [18] found pairs of permutations (σ, π) where µ[σ, π] = 0.

Burstein, Jeĺınek, Jeĺınková and Steingŕımsson [6] found a recursion for the
Möbius function for sum and skew decomposable permutations. They used this
to determine the Möbius function for separable permutations. Their results for
sum and skew decomposable permutations implicitly include a result that only
concerns small localities, which is that, up to symmetry, if a permutation π of
length greater than two begins 12, then µ[π] = 0.

Smith [13] found an explicit formula for the Möbius function on the interval
[1, π] for all permutations π with a single descent. Smith’s paper includes a
lemma stating that if a permutation π contains an interval order-isomorphic to
123, then µ[π] = 0. While the result in [6] requires that the permutation starts
with a particular sequence, Smith’s result is, in some sense, more general, as the
critical interval (123) can occur in any position. Smith’s lemma may be viewed
as the first instance of an annihilator result. Our results on annihilators provide
a common generalization of Smith’s lemma and the above mentioned result of
Burstein et al. [6].

Smith [14] has explicit expressions for the Möbius function µ[σ, π] when σ and
π have the same number of descents. In [15], Smith found an expression that de-
termines the Möbius function for all intervals in the poset, although the expres-
sion involves a rather complicated double sum, starting with

∑
τ∈[σ,π) µ[σ, τ ].

Brignall and Marchant [5] showed that if the lower bound of an interval is
indecomposable, then the Möbius function depends only on the indecomposable
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permutations contained in the upper bound, and used this result to find a fast
polynomial algorithm for computing µ[π] where π is an increasing oscillation.

2 Definitions and notation

We let Sn denote the set of permutations of length n. We represent a per-
mutation π ∈ Sn as a sequence π1, π2, . . . , πn of integers from the set [n] =
{1, 2, . . . , n} in which each element of [n] appears exactly once. We let ε denote
the unique permutation of length 0.

A sequence of numbers a1, a2, . . . , an is order-isomorphic to a sequence b1, b2,
. . . , bn if for every i, j ∈ [n] we have ai < aj ⇔ bi < bj . A permutation
π ∈ Sn contains a permutation σ ∈ Sk if π has a subsequence of length k
order-isomorphic to σ.

An interval of a permutation π is a non-empty set of contiguous indices
i, i + 1, . . . , j where the set of values {πi, πi+1, . . . , πj} is also contiguous. We
say that π has an interval copy of a permutation α if it contains an interval of
length |α| whose elements form a subsequence order-isomorphic to α.

An adjacency in a permutation is an interval of length two. If a permutation
contains a monotonic interval of length three or more, then each subinterval of
length two is an adjacency. As examples, 367249815 has two adjacencies, 67 and
98; and 1432 also has two adjacencies, 43 and 32. If an adjacency is ascending,
then it is an up-adjacency, otherwise it is a down-adjacency.

If a permutation π contains at least one up-adjacency, and at least one
down-adjacency, then we say that π has opposing adjacencies. An example of a
permutation with opposing adjacencies is 367249815, which is shown in Figure 1.

367249815

Figure 1: A permutation with opposing adjacencies.

A permutation that does not contain any adjacencies is adjacency-free. Some
early papers use the term “strongly irreducible” for what we call adjacency-free
permutations. See, for example, Atkinson and Stitt [3].

Given a permutation σ of length n, and permutations α1, . . . , αn, not all
of them equal to the empty permutation ε, the inflation of σ by α1, . . . , αn,
written as σ[α1, . . . , αn], is the permutation obtained by removing the element
σi if αi = ε, and replacing σi with an interval isomorphic to αi otherwise.
Note that this is slightly different to the standard definition of inflation, orig-
inally given in Albert and Atkinson [1], which does not allow inflation by the
empty permutation. As examples, 3624715[1, 12, 1, 1, 21, 1, 1] = 367249815, and
3624715[ε, 1, 1, ε, 1, ε, 1] = 3142.
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In many cases we will be interested in permutations where most positions
are inflated by the singleton permutation 1. If σ = 3624715, then we will write
σ[1, 12, 1, 1, 21, 1, 1] = 367249815 as σ2,5[12, 21]. Formally, σi1,...,ik [α1, . . . , αk]
is the inflation of σ where σij is inflated by αj for j = 1, . . . , k, and all other
positions of σ are inflated by 1. When using this notation, we always assume
that the indices i1, . . . , ik are distinct; however, we make no assumption about
their relative order.

Our aim is to study the Möbius function of the permutation poset, that
is, the poset of finite permutations ordered by containment. We are interested
in describing general examples of intervals [σ, π] such that µ[σ, π] = 0, with
particular emphasis on the case σ = 1. We say that π is a Möbius zero (or just
zero) if µ[π] = 0, and we say that π is a σ-zero if µ[σ, π] = 0.

It turns out that many sufficient conditions for π to be a Möbius zero can
be stated in terms of inflations. We say that a permutation φ is an annihilator
if every permutation that has an interval copy of φ is a Möbius zero; in other
words, for every τ and every i ≤ |τ | the permutation τi[φ] is a Möbius zero.
More generally, we say that φ is a σ-annihilator if every permutation with an
interval copy of φ is a σ-zero.

We say that a pair of permutations φ, ψ is an annihilator pair if for every
permutation τ and every pair of distinct indices i, j ≤ |τ |, the permutation
τi,j [φ, ψ] is a Möbius zero.

Observe that for an annihilator φ, any permutation containing an interval
copy of φ is also an annihilator. Likewise, if φ and ψ form an annihilator
pair then any permutation containing disjoint interval copies of φ and ψ is an
annihilator.

As our first main result, presented in Section 3, we show that the two per-
mutations 12 and 21 are an annihilator pair, or equivalently, any permutation
with opposing adjacencies is a Möbius zero. Later, in Section 5, we use this
result to prove that Möbius zeros have asymptotic density at least (1− 1/e)2.

We also show that for any two non-empty permutations α and β, the per-
mutation α ⊕ 1 ⊕ β = 123[α, 1, β] is an annihilator, and generalize this result
to a construction of σ-annihilators for general σ. These results are presented in
Section 4.

Finally, in Section 6, we give several examples of annihilators and annihilator
pairs that do not directly follow from the results in the previous sections.

2.1 Intervals with vanishing Möbius function

We will now present several basic facts about the Möbius function, which are
valid in an arbitrary finite poset. The first fact is a simple observation following
directly from the definition of the Möbius function, and we present it without
proof.

Fact 1. Let P be a finite poset with Möbius function µP , and let x and y be
two elements of P satisfying µP [x, y] = 0. Let Q be the poset obtained from P
by deleting the element y, and let µQ be its Möbius function. Then for every
z ∈ Q, we have µQ[x, z] = µP [x, z].

Next, we introduce two types of intervals whose specific structure ensures
that their Möbius function is zero.
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Figure 2: Examples of narrow-tipped (left) and diamond-tipped (right) posets.

Let [x, y] be a finite interval in a poset P . We say that [x, y] is narrow-tipped
if it contains an element z different from x such that [x, y) = [x, z]. The element
z is then called the core of [x, y].

We say that the interval [x, y] is diamond-tipped if there are three elements
z, z′ and w, all different from x, and such that [x, y) = [x, z] ∪ [x, z′] and
[x, z]∩ [x, z′] = [x,w]. The triple of elements (z, z′, w) is again called the core of
[x, y]. Figure 2 shows examples of narrow-tipped and diamond-tipped posets.

Fact 2. Let P be a poset with Möbius function µP , and let [x, y] be a finite
interval in P . If [x, y] is narrow-tipped or diamond-tipped, then µP [x, y] = 0.

Proof. If [x, y] is narrow-tipped with core z, then

µP [x, y] = −
∑

v∈[x,y)

µP [x, v] = −
∑

v∈[x,z]

µP [x, v] = 0.

If [x, y] is diamond-tipped with core (z, z′, w) then

µP [x, y] = −
∑

v∈[x,y)

µP [x, v]

= −
∑

v∈[x,z]∪[x,z′]

µP [x, v]

= −
∑

v∈[x,z]

µP [x, v]−
∑

v∈[x,z′]

µP [x, v] +
∑

v∈[x,z]∩[x,z′]

µP [x, v]

= −
∑

v∈[x,z]

µP [x, v]−
∑

v∈[x,z′]

µP [x, v] +
∑

v∈[x,w]

µP [x, v]

= 0.

2.2 Embeddings

An embedding of a permutation σ ∈ Sk into a permutation π ∈ Sn is a function
f : [k]→ [n] with the following properties:
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• 1 ≤ f(1) < f(2) < · · · < f(k) ≤ n.

• For any i, j ∈ [k], we have σi < σj if and only if πf(i) < πf(j).

We let E(σ, π) denote the set of embeddings of σ into π, and E(σ, π) denote
the cardinality of E(σ, π).

For an embedding f of σ into π, the image of f , denoted Img(f), is the set
{f(i); i ∈ [k]}. In particular, | Img(f)| = |σ|. The permutation σ is the source
of the embedding f , denoted srcπ(f). When π is clear from the context (as it
usually will be) we write src(f) instead of srcπ(f). Note that for a fixed π, the
set Img(f) determines both f and srcπ(f) uniquely.

We say that an embedding f is even if the cardinality of Img(f) is even,
otherwise f is odd. In our arguments, we will frequently consider sign-reversing
mappings on sets of embeddings (with different sources), which are mappings
that map an odd embedding to an even one and vice versa. A typical example
of a sign-reversing mapping is the so-called i-switch, which we now define. For
a permutation π ∈ Sn, let E(∗, π) be the set

⋃
σ≤π E(σ, π). For an index i ∈ [n],

the i-switch of an embedding f ∈ E(∗, π), denoted ∆i(f), is the embedding
g ∈ E(∗, π) uniquely determined by the following properties:

Img(g) = Img(f) ∪ {i} if i 6∈ Img(f), and

Img(g) = Img(f) \ {i} if i ∈ Img(f).

For example, consider the permutations σ = 132 and π = 41253, and the
embedding f ∈ E(σ, π) satisfying f(1) = 2, f(2) = 4, and f(3) = 5. We then
have Img(f) = {2, 4, 5}. Defining g = ∆3(f), we see that Img(g) = {2, 3, 4, 5},
and src(g) is the permutation 1243. Similarly, for h = ∆5(g), we have Img(h) =
{2, 3, 4} and src(h) = 123.

Note that for any π ∈ Sn and any i ∈ [n], the function ∆i is a sign-reversing
involution on the set E(∗, π).

Consider, for a given π ∈ Sn, two embeddings f, g ∈ E(∗, π). We say that f
is contained in g if Img(f) ⊆ Img(g). Note that if f is contained in g, then the
permutation src(f) is contained in src(g), and if a permutation λ is contained
in a permutation τ , then any embedding from E(τ, π) contains at least one
embedding from E(λ, π). In particular, the mapping f 7→ src(f) is a poset
homomorphism from the set E(∗, π) ordered by containment onto the interval
[ε, π] in the permutation pattern poset.

2.3 Möbius function via normal embeddings

We will now derive a general formula which will become useful in several sub-
sequent arguments. The formula can be seen as a direct consequence of the
well-known Möbius inversion formula. The following form of the Möbius inver-
sion formula can be deduced, for example, from Proposition 3.7.2 in Stanley’s
book [17]. A poset is locally finite if each of its intervals is finite.

Fact 3 (Möbius inversion formula). Let P be a locally finite poset with maximum
element y, let µ be the Möbius function of P , and let F : P → R be a function.
If a function G : P → R is defined by

G(x) =
∑

z∈[x,y]

F (z),
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then for every x ∈ P , we have

F (x) =
∑

z∈[x,y]

µ[x, z]G(z).

As a consequence, we obtain the following result.

Proposition 4. Let σ and π be arbitrary permutations, and let F : [σ, π] → R
be a function satisfying F (π) = 1. We then have

µ[σ, π] = F (σ)−
∑

λ∈[σ,π)

µ[σ, λ]
∑

τ∈[λ,π]

F (τ). (1)

Proof. Fix σ, π and F . For λ ∈ [σ, π], define G(λ) =
∑
τ∈[λ,π] F (τ). Using

Fact 3 for the poset P = [σ, π], we obtain

F (σ) =
∑

λ∈[σ,π]

µ[σ, λ]G(λ).

Substituting the definition of G(λ) into the above identity and noting that
F (π) = 1, we get

F (σ) =
∑

λ∈[σ,π]

µ[σ, λ]
∑

τ∈[λ,π]

F (τ)

= µ[σ, π] +
∑

λ∈[σ,π)

µ[σ, λ]
∑

τ∈[λ,π]

F (τ),

from which the proposition follows.

In our applications, the function F (τ) will usually be defined in terms of the
number of embeddings of τ into π satisfying certain additional conditions. In
the literature, there are several definitions of such restricted embeddings, which
are usually referred to as normal embeddings.

The notion of normal embedding seems to originate from the work of Björner [4],
who defined normal embeddings between words, and showed that in the sub-
word order of words over a finite alphabet, the Möbius function of any interval
[x, y] is equal in absolute value to the number of normal embeddings of x into y.

Björner’s approach was later extended to the computation of the Möbius
function in the composition poset [11], the poset of separable permutations [6],
or the poset of permutations with a fixed number of descents [14]. In all these
cases, the authors define a notion of “normal” embeddings tailored for their
poset, and then express the Möbius function of an interval [x, y] as the sum of
weights of the “normal” embeddings of x into y, where each normal embedding
has weight 1 or −1.

For general permutations, this simple approach fails, since the Möbius func-
tion µ[σ, π] is sometimes larger than the number of all embeddings of σ into π.
However, Smith [15] introduced a notion of normal embedding applicable to ar-
bitrary permutations, and proved a formula expressing µ[σ, π] as a summation
over certain sets of normal embeddings.

For consistency, we adopt the term “normal embedding” in this paper, al-
though in our proofs, we will need to introduce several notions of normality,
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which are different from each other and from the notions of normality intro-
duced by previous authors. We will always use NE(τ, π) to denote the set of
embeddings of τ into π satisfying the definition of normality used in the given
context, and we let NE(τ, π) be the cardinality of NE(τ, π).

The next proposition provides a general basis for all our subsequent appli-
cations of normal embeddings.

Proposition 5. Let σ and π be permutations. Suppose that for each τ ∈ [σ, π]
we fix a subset NE(τ, π) of E(τ, π), with the elements of NE(τ, π) being referred
to as normal embeddings of τ into π. Assume that NE(π, π) = E(π, π), that is,
the unique embedding of π into π is normal. For each λ ∈ [σ, π), define the two
sets of embeddings

NEλ(odd, π) =
⋃

τ∈[λ,π]
|τ | odd

NE(τ, π) and

NEλ(even, π) =
⋃

τ∈[λ,π]
|τ | even

NE(τ, π).

If for every λ ∈ [σ, π) such that µ[σ, λ] 6= 0, we have the identity

|NEλ(odd, π)| = |NEλ(even, π)| , (2)

then µ[σ, π] = (−1)|π|−|σ|NE(σ, π).

Proof. The trick is to define the function F (τ) = (−1)|π|−|τ |NE(τ, π) and apply
Proposition 4. This yields

µ[σ, π] = F (σ)−
∑

λ∈[σ,π)

µ[σ, λ]
∑

τ∈[λ,π]

F (τ)

= F (σ)−
∑

λ∈[σ,π)

µ[σ, λ]
∑

τ∈[λ,π]

(−1)|π|−|τ |NE(τ, π)

= F (σ)−
∑

λ∈[σ,π)

µ[σ, λ](−1)|π|
(
|NEλ(even, π)| − |NEλ(odd, π)|

)
= F (σ)

= (−1)|π|−|σ|NE(σ, π),

as claimed.

We remark that the general formula of Proposition 4 can be useful even in sit-
uations where the more restrictive assumptions of Proposition 5 fail. An example
of such application of Proposition 4 will appear in an upcoming manuscript [8],
which is being prepared in parallel to this publication.

3 Permutations with opposing adjacencies

In this section, we show that if a permutation has opposing adjacencies, then
the value of the principal Möbius function is zero.

Theorem 6. If π has opposing adjacencies, then µ[π] = 0.
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For this theorem, we are able to give two proofs. One of them is based
on the notion of diamond-tipped intervals, and the other uses the approach of
normal embeddings. As both these approaches will later be adapted to more
complicated settings, we find it instructive to include both proofs here.

Proof via diamond-tipped posets. For contradiction, suppose that the theorem
fails, and let π be a shortest permutation with opposing adjacencies such that
µ[π] 6= 0. Since π has opposing adjacencies, there is a permutation τ and indices
i, j ≤ |τ | such that π = τi,j [12, 21]. Define φ = τi,j [1, 21] and φ′ = τi,j [12, 1].

We claim that the interval [1, π] can be transformed into a diamond-tipped
interval with core (φ, φ′, τ) by deleting a set of Möbius zeros from the interior of
[1, π]. Since by Fact 1, the deletion of Möbius zeros does not affect the value of
µ[1, π], and since diamond-tipped intervals have zero Möbius function by Fact 2,
this claim will imply that µ[1, π] = 0, a contradiction.

To prove the claim, note first that any permutation λ ∈ [1, π) with oppos-
ing adjacencies is a Möbius zero, since π is a minimal counterexample to the
theorem. Choose any λ ∈ [1, π). Observe that if λ has no up-adjacency, then
λ ≤ φ, and symmetrically, if λ has no down-adjacency, then λ ≤ φ′. Thus, any
λ ∈ [1, π) not belonging to [1, φ] ∪ [1, φ′] has opposing adjacencies and can be
deleted from [1, π].

Next, suppose that a permutation λ is in [1, φ] ∩ [1, φ′] but not in [1, τ ].
Observe that any permutation in [1, φ] \ [1, τ ] has a down-adjacency, while any
permutation in [1, φ′]\ [1, τ ] has an up-adjacency. It follows that λ has opposing
adjacencies and can again be deleted from [1, π].

After these deletions, the remaining poset is diamond-tipped with core (φ, φ′, τ)
as claimed, hence µ[1, π] = 0, a contradiction.

Proof via normal embeddings. Suppose again that π ∈ Sn is a shortest coun-
terexample. Suppose that π has an up-adjacency at positions i, i + 1, and a
down-adjacency at positions j, j + 1. Note that the positions i, i + 1, j and
j + 1 are all distinct, and in particular n ≥ 4.

We will say that an embedding f ∈ E(∗, π) is normal if Img(f) is a superset
of [n]\{i, j}. In other words, Img(f) contains all positions of π with the possible
exception of i and j. Thus, there are four normal embeddings.

We will use Proposition 5 with the above notion of normal embeddings and
with σ = 1. Clearly, we have E(π, π) = NE(π, π). The main task is to verify
equation (2), that is, to show that for every λ ∈ [1, π) such that µ[λ] 6= 0 we
have |NEλ(odd, π)| = |NEλ(even, π)|. To prove this identity, we let NEλ(∗, π)
denote the set NEλ(odd, π)∪NEλ(even, π), and we will provide a sign-reversing
involution on NEλ(∗, π).

Choose a λ ∈ [1, π) with µ[λ] 6= 0. It follows that λ does not have opposing
adjacencies, otherwise it would be a counterexample shorter than π. Without
loss of generality, assume that λ has no up-adjacency. We will show that the
i-switch operation ∆i is a sign-reversing involution on NEλ(∗, π).

It is clear that ∆i is sign-reversing. We need to show that for every f ∈
NEλ(∗, π), the embedding g = ∆i(f) is again in NEλ(∗, π). It is clear that g
is normal. It remains to argue that src(g) contains λ, or in other words, that
there is an embedding of λ into π contained in g. Let h be a (not necessarily
normal) embedding of λ into π contained in f . If i is not in Img(h), then h
is also contained in g, and we are done. Suppose now that i ∈ Img(h). Then
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i + 1 6∈ Img(h), because i and i + 1 form an up-adjacency in π while λ has no
up-adjacency. We modify the embedding h so that the element mapped to i
will be mapped to i+ 1 instead, and the mapping of the remaining elements is
unchanged; let h′ be the resulting embedding (formally, we have ∆i(∆i+1(h)) =
h′). Since i and i + 1 form an adjacency in π, we have src(h′) = src(h) = λ.
Since i+ 1 is in the image of all normal embeddings, we see that h′ is contained
in g, and so g ∈ NEλ(∗, π). This shows that ∆i is the required sign-reversing
involution on NEλ(∗, π), verifying the assumptions of Proposition 5.

Proposition 5 then shows that µ[1, π] = (−1)n−1NE(1, π). Since every nor-
mal embedding into π contains both i+ 1 and j+ 1 in its image, there is clearly
no normal embedding of 1 into π and therefore we get µ[1, π] = 0.

4 A general construction of σ-annihilators

Let σ be a fixed non-empty lower bound permutation (the case σ = 1 being the
most interesting). Recall that a permutation φ is a σ-zero if µ[σ, φ] = 0, and φ
is a σ-annihilator if every permutation with an interval copy of φ is a σ-zero.
Clearly, any σ-annihilator is also a σ-zero. Our goal in this section is to present
a general construction of an infinite family of σ-annihilators.

A permutation φ is σ-narrow if φ contains a permutation φ− of size |φ| − 1
such that every permutation in the set [1, φ) \ [1, φ−] is a σ-annihilator. In such
situation, we call φ− a σ-core of φ.

Note that if φ is σ-narrow with σ-core φ−, then the interval [1, φ] can be
transformed into a narrow-tipped interval by a deletion of σ-annihilators. Our
first goal is to show that, with a few exceptions, all σ-narrow permutations are
σ-annihilators.

Proposition 7. If a permutation φ is σ-narrow with a σ-core φ−, and if σ has
no interval copy of φ or of φ−, then φ is a σ-annihilator.

Proof. Let φ be σ-narrow with a σ-core φ−. Let π be a permutation with an
interval copy of φ, that is, π = τi[φ] for some τ and i. We show that µ[σ, π] = 0.
We may assume that σ ≤ π, otherwise µ[σ, π] = 0 trivially. Let π− be the
permutation τi[φ

−]. Note that σ 6= π and σ 6= π−, since σ has no interval copy
of φ or of φ−.

The key step of the proof is to show that any permutation in [σ, π) \ [σ, π−]
is a σ-zero. After we show this, we may use Fact 1 to remove all such σ-zeros
from the interval [σ, π] without affecting the value of µ[σ, π]; note that σ itself is
clearly not a σ-zero, so it will not be removed, implying that σ < π−. After the
removal of [σ, π) \ [σ, π−], the remainder of the interval [σ, π] is a narrow-tipped
poset with core π−, yielding µ[σ, π] = 0 by Fact 2.

Therefore, to prove that µ[σ, π] = 0 for a particular π = τi[φ], it is enough
to show that all the permutations in [σ, π) \ [σ, π−] are σ-zeros. We prove this
by induction on |τ |.

If |τ | = 1, we have π = φ and π− = φ−. Then all the permutations in [1, π)\
[1, π−] are σ-annihilators (and therefore σ-zeros) by definition of σ-narrowness,
and in particular, restricting our attention to permutations containing σ, we see
that all the permutations in [σ, π) \ [σ, π−] are σ-zeros, as claimed.

Suppose that |τ | > 1. Consider a permutation γ ∈ [σ, π) \ [σ, π−]. Since γ
is contained in π = τi[φ], it can be expressed as γ = τ∗j [φ∗] for some ε ≤ φ∗ ≤ φ
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and 1 ≤ τ∗ ≤ τ , where τ∗ has an embedding into τ which maps j to i. Note
that φ∗ cannot be contained in φ−, because in such case we would have γ ≤ π−.
Moreover, if φ∗ = φ, then necessarily τ∗ < τ , and by induction γ is a σ-zero.
Finally, if φ∗ is in [1, φ) \ [1, φ−], then φ∗ is a σ-annihilator by the σ-narrowness
of φ, and hence γ is a σ-zero.

With the help of Proposition 7, we can now provide an explicit general
construction of σ-annihilators.

Proposition 8. Let α and β be non-empty permutations. Assume that σ does
not contain any interval copy of a permutation of the form α′ ⊕ β′ with 1 ≤
α′ ≤ α and 1 ≤ β′ ≤ β (in particular, σ has no up-adjacency). Then α⊕ 1⊕ β
is σ-narrow with σ-core α⊕ β, and α⊕ 1⊕ β is a σ-annihilator.

Proof. We proceed by induction on |α| + |β|. Suppose first that α = β = 1.
Then trivially α ⊕ 1 ⊕ β = 123 is σ-narrow with σ-core α ⊕ β = 12, since the
set [1, 123) \ [1, 12] is empty. Moreover, by assumption, σ has no interval copy
of 12, and therefore also no interval copy of 123, hence 123 is a σ-annihilator by
Proposition 7.

Suppose now that |α|+ |β| > 2. Define φ = α⊕ 1⊕ β and φ− = α⊕ β. To
prove that φ is σ-narrow with σ-core φ−, we will show that any permutation
γ ∈ [1, φ) \ [1, φ−] is a σ-annihilator. Such a γ has the form α′ ⊕ 1 ⊕ β′ for
some 1 ≤ α′ ≤ α and 1 ≤ β′ ≤ β, with |α′|+ |β′| < |α|+ |β|; note that we here
exclude the cases α′ = ε and β′ = ε, because in these cases γ would be contained
in φ−. By induction, γ is σ-narrow, with σ-core γ− = α′ ⊕ β′. Moreover, σ has
no interval isomorphic to γ or γ−: observe that if σ had an interval isomorphic
to γ, it would also have an interval isomorphic to α′ ⊕ 1, which is forbidden by
our assumptions on σ. Thus, we may apply Proposition 7 to conclude that γ
is a σ-annihilator, and in particular φ is σ-narrow with σ-core φ−, as claimed.
Proposition 7 then shows that φ is a σ-annihilator.

Focusing on the special case σ = 1, which satisfies the assumptions of Propo-
sition 8 trivially, we obtain the following result.

Corollary 9. For any non-empty permutations α and β, the permutation α⊕
1⊕ β is an annihilator.

5 The density of zeros

Our goal is to find an asymptotic positive lower bound on the proportion of
permutations of length n whose principal Möbius function is zero. The key step
is the following lemma.

Lemma 10. Let sn be the number of permutations of size n with opposing
adjacencies. Then

sn
n!

=

(
1− 1

e

)2

+O

(
1

n

)
.

Proof. Let an be the number of permutations of size n that have no up adja-
cency, and let bn be the number of permutations of size n that have neither an
up adjacency nor a down adjacency.
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The numbers an (sequence A000255 in the OEIS [12]) have already been
studied by Euler [7], and it is known [10] that they satisfy an/n! = e−1+O(n−1).

The numbers bn (sequence A002464 in the OEIS [12]) satisfy the asymptotics
bn/n! = e−2 + O(n−1), which follows from the results of Kaplansky [9] (see
also Albert et al. [2]).

We may now express the number sn of permutations with opposing adja-
cencies by inclusion-exclusion as follows: we subtract from n! the number of
permutations having no up-adjacency and the number of permutations having
no down-adjacency, and then we add back the number of permutations having
no adjacency at all. This yields sn = n! − 2an + bn, from which the lemma
follows by the above-mentioned asymptotics of an and bn.

Combining Theorem 6 with Lemma 10 we obtain the following consequence,
which is the main result of this section.

Corollary 11. For a given n and for π a uniformly random permutation of
length n, the probability that µ[π] = 0 is at least(

1− 1

e

)2

−O
(

1

n

)
.

6 More complicated examples

We will now construct several specific examples of annihilators and annihilator
pairs, which are not covered by the general results obtained in the previous
sections. We begin with a construction of two new annihilator pairs, which we
will later use to construct new annihilators.

Theorem 12. The two permutations 213 and 2431 form an annihilator pair.

Proof. Our proof is based on the concept of normal embeddings and follows a
similar structure as the normal embedding proof of Theorem 6.

Suppose for contradiction that there is a permutation π that contains an
interval isomorphic to 213 as well as an interval isomorphic to 2431, and that
µ[π] 6= 0. Fix a smallest possible π, and let n be its length. Note that an interval
isomorphic to 213 is necessarily disjoint from an interval isomorphic to 2431,
and in particular, n ≥ 7.

Let i, i + 1 and i + 2 be three positions of π containing an interval copy of
213, and let j, j + 1, j + 2 and j + 3 be four positions containing an interval
copy of 2431. We will apply the approach of Proposition 5, with σ = 1. We
will say that an embedding f ∈ E(∗, π) is normal if Img(f) is a superset of
[n] \ {i+ 2, j + 2, j + 3}. Informally, the image of a normal embedding contains
all the positions of π, except possibly some of the three positions that correspond
to the value 3 of 213 or the values 3 and 1 of 2431 in the chosen interval copies
of 213 and 2431, as shown in Figure 3. In particular, there are eight normal
embeddings.

We now verify the assumptions of Proposition 5. We obviously haveNE(π, π) =
E(π, π). The main task is to verify, for a given λ ∈ [1, π) with µ[λ] 6= 0, the iden-
tity (2) of Proposition 5, that is, the identity |NEλ(odd, π)| = |NEλ(even, π)|.

Fix a λ ∈ [1, π) such that µ[λ] 6= 0, and letNEλ(∗, π) be the setNEλ(odd, π)∪
NEλ(even, π). We will describe a sign-reversing involution Φλ on NEλ(∗, π).

12



Figure 3: The intervals 213 and 2431 in Theorem 12. Normal embeddings may
omit some of the hollow points.

The involution Φλ will always be equal to a switch operation ∆k, where the
choice of k will depend on λ.

Suppose first that λ does not contain any down-adjacency. We claim that
∆j+2 is an involution on the set NEλ(∗, π). To see this, choose f ∈ NEλ(∗, π)
and define g = ∆j+2(f). It is clear that g is a normal embedding.

To prove that g belongs to NEλ(∗, π), it remains to show that src(g) con-
tains λ, or equivalently, that there is an embedding of λ into π that is contained
in g. Let h be an embedding of λ into π which is contained in f . If j+2 6∈ Img(h),
then h is also contained in g and we are done.

Suppose then that j + 2 ∈ Img(h). This means that j + 1 is not in Img(h),
because π has a down-adjacency at positions j + 1 and j + 2, while λ has no
down-adjacency. We now modify h in such a way that the element previously
mapped to j + 2 will be mapped to j + 1, while the mapping of the remaining
elements remains unchanged. Let h′ be the embedding obtained from h by this
modification; formally, we have h′ = ∆j+1(∆j+2(h)). Since the two elements
πj+1 and πj+2 form an adjacency, we have src(h′) = src(h) = λ. Moreover, h′

is contained in g (recall that g is normal, and therefore Img(g) contains j + 1).
Consequently, g is in NEλ(∗, π), as claimed.

We now deal with the case when λ contains a down-adjacency. Since µ[λ] 6=
0, it follows by Theorem 6 that λ has no up-adjacency. We distinguish two
subcases, depending on whether λ contains an interval copy of 2431.

Suppose that λ contains an interval copy of 2431. We will show that in this
case, ∆i+2 is a sign-reversing involution on NEλ(∗, π). We begin by observing
that λ has no interval copy of 213, otherwise λ would be a counterexample to
Theorem 12, contradicting the minimality of π. Fix again an embedding f ∈
NEλ(∗, π), and define g = ∆i+2(f). As in the previous case, g is clearly normal,
and we only need to show that there is an embedding of λ into π contained in g.
Let h be an embedding of λ into π contained in f . If i+ 2 6∈ Img(h), then h is
contained in g and we are done, so suppose i+2 ∈ Img(h). If at least one of the
two positions i and i + 1 belongs to Img(h), then λ contains an up-adjacency
or an interval copy of 213, contradicting our assumptions. Therefore, we can
modify h so that the element mapped to i+ 2 is mapped to i instead, obtaining
an embedding of λ contained in g and showing that g ∈ NEλ(∗, π).

Finally, suppose that λ has no interval copy of 2431. In this case, we show
that ∆j+3 is the required involution on NEλ(∗, π). As in the previous cases,
we fix f ∈ NEλ(∗, π), define g = ∆j+3(f), and let h be an embedding of λ
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contained in f ; we again want to modify h into an embedding λ contained in g.
Let α be the subpermutation of λ formed by those positions that are mapped
into the set J = {j, j + 1, j + 2, j + 3} by h. Recall that the positions in J
induce an interval copy of 2431 in π. In particular, α ≤ 2431, and λ has an
interval copy of α. We know that α 6= 2431, since we assume that λ has no
interval copy of 2431. Also, α 6= 321, since 321 is an annihilator by Corollary 9,
while µ[λ] 6= 0. Finally, α 6= 231, since λ has no up-adjacency. This implies
that α ≤ 132, and we can modify h so that all the positions originally mapped
into J will get mapped into J \ {j + 3}, obtaining an embedding of λ into π
contained in g.

Having thus verified the assumptions of Proposition 5, we can conclude that
µ[π] = (−1)|π|−1NE(1, π) = 0, a contradiction.

Theorem 13. The two permutations 2143 and 2431 form an annihilator pair.

Proof. The structure of the proof is very similar to the proof of Theorem 12,
except we will use a different form of normal embeddings. Let π be again a
smallest counterexample, and let n be its size. Since the interval copy of 2143
is disjoint from the interval copy of 2431, we know that n ≥ 8.

Let I = {i, i+ 1, i+ 2, i+ 3} be a set of positions inducing an interval copy
of 2143 in π, and let J = {j, j + 1, j + 2, j + 3} be set of positions inducing an
interval copy of 2431. We will say that an embedding f ∈ E(∗, π) is normal if
Img(f) is a superset of [n] \ {i, j + 3}, as illustrated in Figure 4. In particular,
there are four normal embeddings.

Figure 4: The intervals 2143 and 2431 in Theorem 13. Normal embeddings may
omit some of the hollow points.

In order to apply Proposition 5, we need to verify its assumptions, in par-
ticular the identity (2). Choose a λ ∈ [1, π) with µ[λ] 6= 0. Let NEλ(∗, π) again
be the union of NEλ(odd, π) and NEλ(even, π). We will show that, depending
on the choice of λ, ∆i or ∆j+3 is an involution on NEλ(∗, π).

Suppose that λ has no down-adjacency. It follows that an embedding of λ
into π cannot contain both i and i + 1 in its image. We will show that ∆i is
a sign-reversing involution on NEλ(∗, π). To see this, choose f ∈ NEλ(∗, π),
define g = ∆i(f), and let h be an embedding of λ contained in f . If Img(h)
does not contain i, than h is contained in g, otherwise we modify h so that the
element mapped to i will get mapped to i+ 1 instead, and the newly obtained
embedding is an embedding of λ contained in g.

Suppose next that λ contains a down-adjacency, and therefore it has no up-
adjacency. We will distinguish two subcases, depending on whether λ contains

14



an interval copy of 2431. If λ contains an interval copy of 2431, then by Theo-
rem 12, λ has no interval copy of 213. By minimality of π, we also know that
λ has no interval copy of 2143. We will show that ∆i is again an involution
on NEλ(∗, π). Let f , g and h be as in the previous case. Let α be the subper-
mutation of λ induced by those positions that are mapped into I by h. Since
α is neither 2143 nor 213, we know that α ≤ 132, and in particular, h can be
modified into an embedding of λ that does not have i in its image, without af-
fecting the values not mapped into I, and the modified embedding is contained
in g.

Suppose finally that λ has no interval copy of 2431. Here, by the same
argument as in the corresponding part of the proof of Theorem 12, we conclude
that ∆j+3 is the required involution on NEλ(∗, π).

By Proposition 5, µ[π] = (−1)|π|−1NE(1, π) = 0, a contradiction.

Theorem 14. The permutations 312 and 23514 form an annihilator pair.

Proof. The basic approach is the same as in the proofs of Theorem 12 and 13,
so we only focus on the ideas specific to this proof. Let us write α = 312,
β = 23514, and β− = 2314. Let π ∈ Sn be the smallest counterexample, and
suppose that it contains an interval copy of α at positions I = {i, i+1, i+2} and
an interval copy of β at positions J = {j, . . . , j+ 4}. We say that an embedding
f ∈ E(∗, π) is normal if Img(f) is a superset of [n] \ {i, j}, as illustrated in
Figure 5. To prove the theorem, it is enough to show that for every λ ∈ [1, π)
such that µ[λ] 6= 0, either ∆i or ∆j is an involution on NEλ(∗, π).

Figure 5: The intervals 312 and 23514 in Theorem 14. Normal embeddings may
omit some of the hollow points.

Choose λ as above. Suppose first that λ contains neither β nor β− as interval
copy. Observe that any non-annihilator subpermutation of β other than β or
β− is contained in 2413. This implies that for any embedding h ∈ E(λ, π), the
positions in Img(h)∩J form a subpermutation of 2413. We can therefore modify
h inside J so that its image avoids the position j. We easily conclude that ∆j

is an involution on NEλ(∗, π).
Suppose therefore that λ contains β or β− as an interval. Then λ has an

up-adjacency, and therefore has no down-adjacency. It also follows that λ has
no interval copy of α, otherwise we get a contradiction with the minimality of
π (if λ has an interval copy of β) or with Theorem 12 (if λ has an interval copy
of β−). Since λ contains neither 21 nor 312 as interval, we easily conclude that
∆i is an involution on NEλ(∗, π).
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Theorem 15. The permutations 25134 and 23514 form an annihilator pair.

Proof. Let α = 25134, α− = α3[ε] = 1423, β = 23514, and β− = β3[ε] = 2314.
We again fix a minimal counterexample π ∈ Sn, with interval copies of α and β
at positions I = {i, . . . , i+4} and J = {j, . . . , j+4}, respectively. An embedding
f ∈ E(∗, π) is normal if [n] \ {i+ 4, j} ⊆ Img(f), as illustrated in Figure 6. We
claim that for any λ ∈ [1, π) with µ[λ] 6= 0, at least one of ∆i+4, ∆j is an
involution on NEλ(∗, π).

Figure 6: The intervals 25134 and 23514 in Theorem 15. Normal embeddings
may omit some of the hollow points.

Choose λ as above. In the same way as in the previous proof, we see that if
λ contains neither β nor β− as an interval, ∆j is an involution on NEλ(∗, π).
Symmetrically, if λ contains neither α nor α− as intervals, then ∆j+4 is an
involution on NEλ(∗, π).

Finally, suppose λ contains at least one of {α, α−} and at least one of {β, β−}
as interval. Then either λ contradicts the minimality of π (if it contains α and
β), or it is a Möbius zero by Theorem 12 (if it contains α− and β−) or by
Theorem 14 (if it contains α− and β, or α and β−). This is a contradiction.

With the help of the new annihilator pairs established in Theorems 12 to 15,
we are able to present several new examples of annihilators.

Theorem 16. Each of the three permutations 215463, 236145 and 214653 is a
Möbius annihilator.

Proof. We first present the proof for the permutation 215463. Let α = 215463,
β = α1[ε] = 14352, β′ = α6[ε] = 21435 and γ = α1,6[ε, ε] = 1324. From Figure 7
(left) we see that, after the removal of the annihilators α3[ε], α4[ε] and α5[ε], the
interval [1, α] becomes diamond-tipped with core (β, β′, γ). Hence by Facts 1
and 2 we have µ[1, α] = 0.

Let π be a permutation of the form τi[α] for some τ and i ≤ |τ |. We will
show, by induction on |τ |, that π is a zero. The case |τ | = 1 has been proved in
the previous paragraph.

Assume that |τ | > 1. We will show that we can remove some zeros from the
interval [1, π] to end up with a diamond-tipped interval with core (τi[β], τi[β

′], τi[γ]).
Choose a λ ∈ [1, π). We can then write λ as λ = τ∗j [α∗] for some τ∗ ≤ τ and
some (possibly empty) α∗ ≤ α, where τ∗ has an embedding into τ mapping j
to i.
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1

12 21

231 213 132

3241 1342 1324 2143

14352 21435

215463

1

12 21

132 312 213 231

1423 2413 2314

25134 23514

236145

1

12 21

231 132 213

2431 1342 2143

13542

214653

Figure 7: The three annihilators from Theorem 16, and the posets of their
subpermutations. The figures omit the permutations with opposing adjacencies,
as well as the permutations with an interval copy of a permutation of the form
α⊕ 1⊕ β.

If α∗ is an annihilator, then λ is a zero and can be removed. If α∗ = α,
then |τ∗| < |τ |, and by induction, λ is a zero and can be removed. In all
the other cases, we have α∗ ≤ β or α∗ ≤ β′, and in particular, λ belongs to
[1, τi[β]] ∪ [1, τi[β

′]].
Suppose now that λ is in [1, τi[β]] ∩ [1, τi[β

′]] but not in [1, τi[γ]]. Since
λ ≤ τi[β], we can write it as λ = τLj [βL], for some τL ≤ τ and βL ≤ β,

where τL has an embedding into τ mapping j to i. Since λ 6≤ τi[γ], we know
that βL 6≤ γ. This means that βL ∈ [1, β] \ [1, γ] = {14352, 3241, 1342, 231}.
Similarly, λ ∈ [1, τi[β

′]] \ [1, τi[γ]] means that λ can be written as λ = τRk [βR],
with βR ∈ {21435, 2143}. Since λ has an interval copy of βL as well as an
interval copy of βR, Theorem 6 shows that λ is a zero if βL ∈ {1342, 231}, and
Theorem 13 shows that λ is a zero if βL ∈ {14352, 3241} (using that 3241 is a
diagonal reflection of 2431). Therefore λ can be removed.

After the removal described above, [1, π] is transformed into a diamond-
tipped interval, showing that π is a zero.

The arguments for the other two permutations are completely analogous.
For 236145 we have α = 236145, β = 25134, β′ = 23514, γ = 2413, βL ∈
{25134, 1423} and βR ∈ {23514, 2314}, and use Theorems 12, 14 and 15. For
214653 we have α = 214653, β = 13542, β′ = 2143, γ = 132, βL ∈ {13542, 2431,
1342, 231} and βR ∈ {2143, 213}, and use Theorems 6, 12 and 13.

The annihilator 215463 of Theorem 16 can be written as a sum of two inter-
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vals, namely 215463 = 21⊕3241. One might wonder whether the two summands
are in fact an annihilator pair. This, however, is not the case, as shown by the
permutation 32417685 = 3241⊕3241, which is not a Möbius zero. An analogous
example applies to 214653 = 21⊕ 2431.

In the proof of Theorem 16, it was crucial that for each α ∈ {215463, 236145,
214653}, the interval [1, α] becomes diamond-tipped after the removal of some
annihilators. However, this property alone is not sufficient to make a permuta-
tion α an annihilator. Consider, for instance, the permutation α = 214635. We
may routinely check that by removing some annihilators, the interval [1, α] can
be made diamond-tipped with core (β = 13524, β′ = 21435, γ = 1324). This
implies that α is a Möbius zero by Facts 1 and 2; however, it does not imply
that α is an annihilator. In fact, α is not an annihilator, as demonstrated by
the permutation

π = 5827419362,4,5[β, α, β′]

= 9, 17, 19, 21, 18, 20, 2, 12, 11, 14, 16, 13, 15, 5, 4, 7, 6, 8, 1, 22, 3, 10,

whose principal Möbius function is 1, not 0. This example also shows that not
all Möbius zeros are annihilators.

In fact, among permutations of size at most 6, there are up to symmetry
four Möbius zeros that are not annihilators. Apart from the permutation 214635
pointed out above, there are these three more examples: 235614, 254613 and
465213. To see that these three permutations are not annihilators, it suffices to
check that for any α ∈ {235614, 254613, 465213}, the permutation 241532[α] has
non-zero principal Möbius function. We verified, with the help of a computer,
that all the Möbius zeros of size at most 6 that are not symmetries of the four
examples above can be shown to be annihilators by our results. This data is
available at https://iuuk.mff.cuni.cz/~jelinek/mf/zeros.txt.

7 Concluding remarks

Permutations with non-opposing adjacencies

Given Theorem 6, it is natural to wonder if we can find a similar result that
applies to a permutation with multiple adjacencies, but no opposing adjacencies.
One difficulty here is that there are permutations that have multiple adjacencies,
and do not have opposing adjacencies, where the principal Möbius function value
is non-zero. As an example, any permutation π = 2, 1, 4, 3, . . . , 2k, 2k − 1 =⊕k

21 has µ[π] = −1 by the results of Burstein et al. [6, Corollary 3].

The asymptotic density of zeros

Let dn be the “density of zeros” of the Möbius function, that is, the probability
that µ[π] = 0 for a uniformly random permutation π of size n. The asymptotic
behaviour of dn is still elusive.

Problem 17. Does the limit limn→∞ dn exist? And if it does, what is its value?

Corollary 11 implies that lim infn→∞ dn ≥ (1− 1/e)2 ≥ 0.3995. We have no
upper bound on dn apart from the trivial bound dn ≤ 1, but computational data
suggest that simple permutations very often (though not always) have non-zero
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principal Möbius function, where a permutation π is simple if all its intervals
have size 1 or |π|. Since a random permutation is simple with probability
approaching 1/e2 [2], this would suggest that lim supn→∞ dn is at most 1 −
1/e2 ≈ 0.8647.

n dn

1 0.0000
2 0.0000
3 0.3333
4 0.4167
5 0.4833
6 0.5361

n dn

7 0.5742
8 0.5942
9 0.6019
10 0.6040
11 0.6034
12 0.6021

Table 1: The density of Möbius zeros among permutations of length n, with
n = 1, . . . , 12.

Table 1 shows the values of dn for n = 1, . . . , 12. The values are based on
data supplied by Jason Smith [16] for 1 ≤ n ≤ 9, and calculations performed by
the fourth author. Data files with the values of the principal Möbius function
for all permutations of length eleven or less are available from https://doi.

org/10.21954/ou.rd.7171997.v1. Based on this somewhat limited numeric
evidence, we make the following conjecture:

Conjecture 18. The values dn are bounded from above by 0.6040.

It is natural to look for further ways to identify Möbius zeros. Characterizing
all the Möbius zeros would be an ambitious goal, since µ[π] might be zero
as a result of “accidental” cancellations with no deeper structural significance
for π. Moreover, recognizing permutations π with µ[π] = 0 might be NP-
hard. Characterizing the Möbius annihilators might be a more tractable goal.
It seems natural to characterize the annihilators in terms of minimal Möbius
annihilators, which we may define as Möbius annihilators that have no interval
copy of a Möbius annihilator of smaller size, and likewise no interval copy of an
annihilator pair, triple or a larger annihilator multiset. We may define minimal
annihilator pair, triple or a multiset analogously.

Problem 19. Which permutations are Möbius annihilators? Are there in-
finitely many minimal Möbius annihilators that are not of the form α⊕ 1⊕ β?

It seems likely to us that the proofs of Theorems 12–15 might be extended
to give several more annihilator pairs, such as (312, 235614). However, we do
not see any general pattern in these examples yet.

Problem 20. Are there infinitely many minimal annihilator pairs?

Problem 21. Is there any minimal annihilator triple or a larger multiset?
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[8] V. Jeĺınek, I. Kantor, J. Kynčl, and M. Tancer. On the growth of the Möbius
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