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Abstract

The combinatorial properties of double vertex graphs has been widely stud-
ied since the 90’s. However only very few results are know about the inde-
pendence number of such graphs. In this paper we obtain the independence
numbers of the double vertex graphs of fan graphs and wheel graphs. Also we
obtain the independence numbers of the pair graphs, that is a generalization of
the double vertex graphs, of some families of graphs.
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1 Introduction.

Let G be a graph of order n. The double vertex graph of G is defined as the graph with
vertex set all 2-subsets of V (G), where two vertices are adjacent in F2(G) whenever
their symmetric difference is an edge of G. This concept, and its generalization called
k-token graphs, has been redefined several times and with different names. The
double vertex graphs were defined and widely studied by Alavi et al. [1, 2, 3], but we
can find them earlier in a thesis of G. Johns [17], with the name of the 2-subgraph
graph of G. T. Rudolph [21] redefined the double vertex graphs with the name of
symmetric powers of graphs and used this graphs to studied the graph isomorphism
problem and to study some problems in quantum mechanics and has motivated several
works of different authors, see, e.g., [6, 7, 8, 13] and the references therein. Later,
R. Fabila-Monroy, et. al. [14] reintroduce this concept but now with the name of
token graphs, where the double vertex graphs are precisely the 2-token graphs, and
studied several combinatorial properties of this graphs such as: connectivity, diameter,
cliques, chromatic number and Hamiltonian paths. After this work, there are a lot
of results about different combinatorial parameters of token graphs, see for example
[4, 9, 11, 12, 15, 20, 19].

In H. de Alba, et. al. [5] began the study of the independence number of k-token
graphs and in particular for the double vertex graphs of some special graphs such as:
paths, cycles, complete bipartite graphs, star graphs, etc. A subset I of vertices of G
is an independent set if no two vertices in I are adjacent. The independence number
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α(G) of G is the number of vertices in a largest independent set in G. it is know that
to determine the independence number is an NP-hard [18] problem in its generality.

In this work we obtain the independence number of the double vertex graphs of
fan graphs and wheel graphs. The fan graph Fm,1 is defined as the join graph Pm+K1,
where Pm denote the path graph of order n and K1 the complete graph of order 1, and
wheel graph Wm,1 is defined as the joint graph Cm +K1, where Cm denote the cycle
of order m. Our main results about independence number of double vertex graphs
are the following:

Theorem 1.1. Let m ≥ 2 be an integer. Then

α
(
F

(2)
m,1

)
=

⌊
m2

4

⌋
.

Theorem 1.2. Let m ≥ 4 be and integer. Then

α
(
W

(2)
m,1

)
=
⌊m

2

⌊m
2

⌋⌋
.

1.1 Pair graph of graphs

Let G be a graph of order n ≥ 2. The pair graph C(G) of G is the graph whose
vertex set consists of all 2-multisets of V (G) where tho vertices {x, y} and {u, v} are
adjacent if and only if {x, y} ∩ {u, v} = {a} and if x = u = a, then y and v are
adjacent in G. The pair graphs, also called complete double vertex graph, of a graph,
were implicitly introduced by Chartrand et al. [10] and defined explicitly by Jacob et.
al. [16], were the first combinatorial properties were studied. The pair graphs are a
generalization of the double vertex graphs and G is always isomorphic to a subgraph
of C(G).

For the case of the independence number of complete double vertex graphs we
have the following results.

Theorem 1.3. If m ≥ 3 is an integer, then

α(C(Pm)) =

⌊
(m+ 1)2

4

⌋
.

Theorem 1.4. Let m ≥ 1 be an integer. Then

α(C(Fm,1)) = α(C(Pm)) + 1

Theorem 1.5. Let m ≥ 3 be an integer. Then

α(C(Cm)) =

{
k(k + 1) + b(k + 1)/2c m = 2k + 1

k(k + 1) m = 2k

Theorem 1.6. Let m ≥ 3 be an integer. Then

α(C(Wm,1)) = α(C(Cm)) + 1.

In the rest of the papers we prove all these results in different sections.
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2 Preliminary results

In the proofs of some of our results, we use the following known facts.

Lemma 2.1. If H is an induced subgraph of G, then α(H) ≤ α(G).

Let G�H denote the cartesian product of graphs G and H.

Proposition 2.2. Let r and s be positive integers. Then

α(Pr�Ps) =
⌈r

2

⌉ ⌈s
2

⌉
+
(
r −

⌈r
2

⌉)(
s−

⌈s
2

⌉)
Proposition 2.3. If G = ∪ki=1Gi, where Gi is a component of G with |Gi| ≥ 2, for
every i, then

G(2) =
⋃
i=1

G
(2)
i

k⋃
i,j=1
i 6=j

Gij,

where Gij ' Gi�Gj.

The following proposition appears in the proof of Lema 12 in [11].

Proposition 2.4. Let X be a subset of V (G) and G′ = G − X. Then Fk(G′) is
isomorphic to the graph obtained from Fk(G) by deleting all vertices in Fk(G) such
that have al least one element of X.

In [5] was proved that α(P
(2)
m ) = bm2/4c, m ≥ 2. This is sequence A002620(n) in

The On-Line Encyclopedia of Integer Sequences (OEIS) [22].

Proposition 2.5. Let a(n) = A002620(n), n ≥ 0.

1. a(n) = bn/2cdn/2e = bn2/4c.

2. a(n) = a(n− 1) + bn/2c = a(n− 1) + d(n− 1)/2e, n > 0, a(0) = a(1) = 0.

3. a(n) = a(n− 2) + n− 1, a(0) = 1, a(1) = 0, n ≥ 2.

3 Proof of Theorem 1.1

In Fm,1, we consider that V (Pm) = {1, . . . ,m}, E(Pm) = {{i, i+ 1} : 1 ≤ i ≤ m− 1}
and V (K1) = {m + 1}. We use some propositions in order to prove our main result
in this section.

If Tm is the set of all 2-subsets of V (Pm) and B = {{a,m+ 1} : a ∈ V (Pm)}, then

{Tm, B} is a partition of V (F
(2)
m,1). Notice that the subgraph of F

(2)
m,1 induced by Tm is

isomorphic to P
(2)
m and the subgraph induced by B is isomorphic to Pm. Sometimes

we use Tm and B as set of vertices or as the corresponding induced subgraph.
For q ∈ {1, . . . ,m}, we define the following subsets of vertices of F

(2)
m,1

Rq = {{q, i} : i ∈ {1, . . . ,m} − {q}}.

In fact, Rq ⊆ Tm, for every q ∈ {1, . . . ,m} (see Figure 1 for an example).
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Figure 1: Double vertex graph of F4,1. In this case B =

{{1, 5}, {2, 5}, {3, 5}, {4, 5}}, Tm = V (A
(2)
4,1)−B and R2 = {{1, 2}, {2, 3}, {2, 4}}.

Proposition 3.1. Let m ≥ 4 be an integer. Then α(Tm − Ri) = α(Tm−1), for all
i ∈ {1, . . . ,m}.

Proof. By proposition 2.4, Tm−Ri is isomorphic to the double vertex graph of Pm−i,
for every i ∈ {1, . . . ,m}. If i ∈ {1,m}, then Tm−Ri is isomorphic to Tm−1 and hence
α(Tm − Ri) = α(Tm−1). If i ∈ {2,m− 1}, then Tm − Ri consists of two components:
one isomorphic to Pm−2 and the other isomorphic to Tm−2. Therefore

α(Tm −Ri) = α(Pm−2) + α(Tm−2) = d(m− 2)/2e+ b(m− 2)2/4c = b(m− 1)2/4c.

Finally, if i ∈ {1, . . . ,m} − {1, 2,m− 1,m}, then Pm − i consists of two components:
Pm − {i, . . . ,m} and Pm − {1, . . . , i}. Then, by Proposition 2.3 it follows that the
double vertex graph of Pm − i, that is isomorphic to Tm −Ri, has three components.
The first one is the double vertex graph of Pm−{i, . . . ,m} and is isomorphic to Ti−1.
The second component is the double vertex graph of Pm−{1, . . . , i} and is isomorphic
to Tm−i. Finally, the third component is isomorphic to the grid graph Pm−i�Pi−1.
Therefore

α(Tm −Ri) = α(Tm−i) + α(Ti−1) + α(Pm−i�Pi−1),

and hence

α(Tm −Ri) = b(m− i)2/4c+ b(i− 1)2/4c+⌈
m− i

2

⌉⌈
i− 1

2

⌉
+

(
m− i−

⌈
m− i

2

⌉)(
i− 1−

⌈
i− 1

2

⌉)
=

⌊
(m− 1)2

4

⌋
.

In Figure 2 (a) and (b) we show the graphs T8 −R2 and T6 −R1, respectively.
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Figure 2: a) Graph T8 −R2, b) graph T6 −R1, c) graph T6 − (R2 ∪R5).

Proposition 3.2. Let m ≥ 4 be an integer. Let S be a nonempty subset of {1, . . . ,m}
such that in S there does not exist consecutive integers. Then α(Tm − ∪i∈SRi) ≤
α(Tm−1). Even more, if |S| ≥ 2, then α(Tm − ∪i∈SRi) < α(Tm−1).

Proof. If |S| = 1 the result follows from Proposition 3.1. If |S| ≥ 2 then Tm−∪i∈SRi

is an induced subgraph of Tm − Rx, for every x ∈ S and by Lemma 2.1 it follows
that α(Tm − ∪i∈SRi) ≤ α(Tm−1). In the view of Lemma 2.1, it is enough to prove
the second part of the affirmation for |S| = 2. The proof is by contradiction. Let
S = {i, j}, with 1 ≤ i < j. Suppose that α(Tm − Ri ∪ Rj) = α(Tm−1). Let I be an
independent set in Tm −Ri ∪Rj of cardinality α(Tm−1). We have two cases.

Case 1. If j = m, then {m− 1,m} ∈ Rj, and hence {m− 1,m} 6∈ I. Also {m−
1,m} 6∈ Ri because i 6= j− 1, by hypothesis. Therefore the set I ′ = I ∪{{m− 1,m}}
will be another independent set of Tm − Ri of cardinality greater than α(Tm−1), a
contradiction.

Caso 2. 1 < j < m. Let X = {j − 1, j} and Z = {j, j + 1}. As the vertices X
and Z belong to Rj, then both vertices does not belong to I. The open neighborhood
of {X,Z} is a subset of {{j − 2, j}, {j − 1, j + 1}, {j, j + 2}}. Of this vertices, only
{j − 1, j + 1} could be in I. Therefore, the set I ′ = (I − {{j − 1, j + 1}}) ∪ {X,Z}
is and independent set in Tm − Ri (because i 6∈ {j − 1, j + 1}) of cardinality greater
than α(Tm−1), a contradiction.

In Figure 2 (c) we show the graph T6 − (R2 ∪R5).
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It is clear that α(F
(2)
1,1 ) = 1. We are ready to prove our result.

Theorem 1.1. Let m ≥ 2 be an integer. Then

α(F
(2)
m,1) = bm2/4c

Proof. The case m = 3 can be checked by hand or by computer. We suppose that
m ≥ 4. As Tm is isomorphic to P

(2)
m it follows from Lemma 2.1 that α(P

(2)
m ) ≤ α(F

(2)
m,1).

We will show that α(F
(2)
m,1) ≤ α(P

(2)
m ). We use the fact that the subgraph of F

(2)
m,1

induced by the vertex set B is isomorphic to Pm and α(Pm) = dm/2e.
Let I be an independent set in F

(2)
m,1. We have the following cases.

Case 1. If I ⊆ Tm, then |I| ≤ α(P
(2)
m ).

Case 2. If I ⊆ B, then |I| ≤ dm/2e ≤ bm2/4c because m ≥ 4.
Case 3. I = I

′ ∪ I ′′
, with I

′ ⊂ Tm, I
′′ ⊂ B, and I

′
, I

′′
both non-empty. Let

S = {i : {i,m + 1} ∈ I ′′}. As I ′′ is an independent set, in S there does not exists
any two consecutive integers. We claim that ∪i∈SRi ∩ I ′ = ∅. Indeed, suppose that
{x, y} ∈ ∪i∈SRi ∩ I ′. Then {x, y} ∈ Ri, for some i ∈ S. Without lost of generality
we can suppose that {x, y} = {i, y}, with y ∈ {1, . . . ,m} − {i}. By definition of S,
vertex {i,m + 1} belong to I ′′. Now {i, y}4{i,m + 1} = {y,m + 1} that is an edge

in Fm,1, and hence {i, y} ∼ {i,m + 1} in F
(2)
m,1. But this is a contradiction, since I is

an independent set. This shows that I ′ is a subset of Tm − ∪i∈SRi and hence

|I ′| ≤ α(Tm − ∪i∈SRi). (1)

Now we show that |I| ≤ bm2/4c. If |I ′′| = 1, then |S| = 1 and by Proposition 3.1

|I| = α(Tm−1) + 1 ≤ α(Tm−1) + bm/2c = bm2/4c,

where the last inequality follows from Proposition 2.5(2). Finally, consider that 2 ≤
|I ′′| ≤ dm/2e. As |I ′′| ≥ 2, then |S| ≥ 2. By Proposition 3.2 and Equation (1) we
have that que

| I | ≤ α(Tm − Ui∈SRi) + |I ′′|
< α(Tm−1) + dm/2e
≤ α(Tm−1) + dm/2e − 1

≤ α(Tm−1) + bm/2c
≤ bm2/4c.

4 Proof of Theorem 1.2

For the wheel graph Wm,1 we consider that V (Cm) = {1, . . . ,m}, E(Cm) = {{i, i +
1} : 1 ≤ i ≤ m−1}∪{{1,m}} and V (K1) = {m+1}. Let Hm denote the subgraph of
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W
(2)
m,1 induced by all 2-subsets of V (Cm). Let D denote the subgraph of W

(2)
m,1 induced

by the vertex set {{i,m + 1} : i ∈ {1, . . . ,m}}. The graph Hm is isomorphic to C
(2)
m

and D is isomorphic to Cm. We also use Hm and D as vertex sets. It is well-known
that α(Cm) = bm/2c and in [5] was proved that α(C

(2)
m ) = bmbm/2c/2c, m ≥ 3.

It can be checked by computer that α(W
(2)
3,1 ) = 2. We now prove our main result

in this section.

Theorem 1.2. Let m ≥ 4 be and integer. Then

α(W
(2)
m,1) = α(C(2)

m ).

Proof. As Hm is isomorphic to C
(2)
m , then every independent set I in Hm satisfies

|I| ≤ α(C
(2)
m ) ≤ α(W

(2)
m,1). We will show that α(W

(2)
m,1) ≤ α(C

(2)
m ) .

Let I be an independent set in W
(2)
m,1. If I ⊂ Hm, then |I| ≤ α(C

(2)
m ). If I ⊂ D,

then
|I| ≤ bm/2c ≤ bmbm/2c/2c = α(C(2)

m ).

Now suppose that I = I ′ ∪ I ′′, where I ′ ⊂ Hm, I ′′ ⊂ D, and with I ′, I ′′ both non-
empty sets. As D is isomorphic to Cm then |I ′′| ≤ bm/2c. For q ∈ {1, . . . ,m}, let Rq

defined as in previous section. Let

U = {i ∈ {1, . . . ,m} : {i,m+ 1} ∈ I ′′}.

In a similar way that in the proof of Theorem 1.1, it can be showed that ∪i∈URi∩I ′ =
∅.

Therefore we have |I ′| ≤ α(Hm − ∪i∈URi).
By Proposition 2.4, the graph Hm −Rq is isomorphic to the double vertex graph

of Cm − q, for every q ∈ {1, . . . ,m}. But as Cm − q is isomorphic to Pm−1 then
Hm − Rq ' Tm−1. We like to bound |I| using that |I ′| ≤ α(Hm − ∪i∈URi). First,
consider that U = {x}, for some x ∈ {1, . . . ,m}, that is I ′′ = {{x,m + 1}}. By the
previous paragraphs we have that

|I| ≤ α(Hm −Rx) + 1 = α(Tm−1) + 1 = b(m− 1)2/4c+ 1 ≤ bmbm/2c/2c,

where the last inequality holds because m ≥ 4.
Now, suppose that |U | ≥ 2. First note that if q ∈ V (Cm), then the double vertex

graph of Wm,1 − q is isomorphic to the double vertex graph of Fm−1,1. Therefore, by
Proposition 2.4 it follows that

W
(2)
m,1 − (Rq ∪ {{q,m+ 1}} ' (Wm,1 − q)(2) ' F

(2)
m−1,1. (2)

We like to obtain α(Hm − ∪i∈URi). By Equation (2), after we delete one set Rq and

the vertex {q,m+ 1} from W
(2)
m,1, for q ∈ U , we obtain an isomorphic copy of F

(2)
m−1,1,

which in turn contains isomorphic copies of the remaining sets Ri, for i ∈ U − {q}.
Then we are in Case (3) of the proof of Theorem 1.1 for F

(2)
m−1,1 and S = U − {x}
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(with the corresponding relabeling given by the isomorphism between (Wm,1 − q)(2)
and Fm−1,1). Therefore, for any x ∈ U

Hm − ∪i∈URi = (Hm −Rx)− ∪i∈U−{x}Ri ' Tm−1 − ∪i∈SRi,

Using Proposition 3.2 for F
(2)
m−1,1 and S we have that

α(Hm − ∪i∈URi) = α(Tm−1 − ∪i∈SRi) ≤ α(Tm−2).

And hence

|I| ≤ α(Hm − ∪i∈URi) + |I ′′|
≤ α(Tm−2) + bm/2c
≤ b(m− 2)2/4c+ bm/2c
≤ bmbm/2c/2c
= α(C(2)

m ).

5 Proof of Theorem 1.3

The proof of Theorem 1.3 follows directly from the following result.

Theorem 5.1. For any non negative integer n ≥ 3 we have

C(Pn) ' P
(2)
n+1

Proof. Without loss of generality we can suppose that for {a, b} ∈ V (C(Pn)), a ≤ b,

and for {a, b} in P
(2)
m , a < b. Let φ : C(Pn) → P

(2)
n+1 be the function given by

φ({i, j}) = {i, j + 1}. It is an exercise to show that this function is a graph iso-

morphism between C(Pn) and P
(2)
n+1.

6 Proof of Theorem 1.4

The vertex set of C(Fm,1) can be partitioned in {Tm+1, B} where Tm+1 (as induced

graph) is isomorphic to C(Pm) (that is isomorphic to P
(2)
m+1 by Theorem 5.1) and

B = {{i,m+ 1} : 1 ≤ i ≤ m+ 1}.

Notice that the subgraph of C(Fm,1) induced by B is isomorphic to Fm,1.
We define the following subset of vertices of C(Fm,1).

Ri = {{i, j} : j ∈ {1, . . . ,m}},

The following proposition will be useful in the proof of Theorem 1.4

8



Proposition 6.1. For m ≥ 2, we have that α(Tm+1 − Ri) ≤ bm2/4c + 1, for any
i ∈ {1, . . . ,m}.

Proof. Notice that for i ∈ {1, . . . ,m}, the graph Tm+1−Ri is isomorphic to the graph
C(Pm − i). We have several cases.

Case 1. If i ∈ {1,m}, then the graph Tm+1 − Ri is isomorphic to C(Pm−1), that

it is isomorphic to P
(2)
m (by Theorem 5.1), and hence α(Tm+1 −Ri) = bm2/4c.

Case 2. If i ∈ {2,m− 1}, then Tm+1−Ri consists of three components as follows.
One component that is isomorphic to K1. Such component K1 is either the vertex
{1, 1}, or the vertex {m,m} if i = 2 or i = m− 1, respectively. Another component
consists either, in the subgraph generated by the vertices R1 − {{1, 2}, {1, 1}}, when
i = 2, or Rm−{{m− 1,m}, {m,m}} when i = m− 1. This component is isomorphic
to Pm−2. The last component is isomorphic to Tm−1: when i = 2, Tm−1 will be the
subgraph generated by the set of vertices Tm+1 − (R1 ∪ R2), and when i = m − 1,
Tm−1 will be the subgraph generated by the set of vertices Tm+1−(Rm−1∪Rm). Then

α(Tm+1 −Ri) = α(Tm−1) + α(Pm−2) + 1

= b(m− 1)2/4c+ d(m− 2)/2e+ 1

≤ b(m− 1)2/4c+ d(m− 1)/2e+ 1

≤ bm2/4c+ 1,

where, for the last inequality, we use the fact that d(m − 2)/2e ≤ d(m − 1)/2e and
part 2 of Proposition 2.5.

Case 3. If i ∈ {1, . . . ,m} − {1, 2,m − 1,m}, then Tm+1 − Ri consists of three
components that came from the double vertex graph of Pm − i. The first component
is isomorphic to C(Pm − {1, . . . , i}), that in fact is isomorphic to Tm−i+1. The other
component is isomorphic to C(Pm−{i, . . . ,m}) that is isomorphic to C(Pi−1), which
in turn is isomorphic to Ti. The last component of Tm+1 − Ri is the subgraph of
Tm+1 induced for the set of vertices of the form {a, b} with a ∈ {1, . . . , i − 1} and
b ∈ {i+ 1, . . . ,m}. This last component is isomorphic to the grid graph Pm−i×Pi−1.
Therefore

α(Tm+1 −Ri) = α(Tm−i+1) + α(Ti) + α(Pm−i × Pi−1).

Therefore

α(Tm+1 −Ri) = b(m− i+ 1)2/4c+ bi2/4c+⌈
m− i

2

⌉⌈
i− 1

2

⌉
+

(
m− i−

⌈
m− i

2

⌉)(
i− 1−

⌈
i− 1

2

⌉)
≤

⌊
m2

4

⌋
+ 1.

Corollary 6.2. α(Tm+1 − ∪i∈SRi) ≤ bm2/4c+ 1, for every S ⊆ {1, . . . ,m}, S 6= ∅.

9



Figure 3: Graph T10 −R2 ∪R5

Proof. For every j ∈ S, Tm+1 −∪i∈SRi is an induced subgraph of Tm+1 −Rj and the
result follows by Lemma 2.1 and by Proposition 6.1.

In Figure 3 we show graph T9+1 −R2 ∪R5.

Theorem 1.4. Let m ≥ 3 be an integer. Then

α(C(Fm,1)) = α(C(Pm)) + 1

Proof. Let I be an independent set in Tm+1 of cardinality |I| = α(C(Pm)). As
I∪{{m+1,m+1}} is an independent set in C(Fm,1) then α(C(Fm,1)) ≥ α(C(Pm))+1.

We will show that α(C(Fm,1)) ≤ α(C(Pm)) + 1. The case m = 3 is easy so that
we suppose that m ≥ 4. Let I be an independent set in C(Fm,1). We have several
cases.

Case 1. If I ⊆ Tm+1, then |I| ≤ α(C(Pm)).
Case 2. If I ⊆ B, then |I| ≤ b(m+ 1)/2c ≤ b(m+ 1)2/4c, because B ' F1,m and

m ≥ 4.
Case 3. If I = I

′ ∪ I ′′
, such that I

′ ⊂ Tm+1, I
′′ ⊂ B, with I

′
e I

′′
non empty

sets. Let S = {i : {i,m + 1} ∈ I ′′}. In a similar way that in the proof of Case 3 of
Theorem 1.1 we can show that ∪i∈SRi ∩ I ′ = ∅. This shows that I ′ is a subset of
Tm+1 − ∪i∈SRi. By corollary 6.2 we have that |I ′| ≤ bm2/4c + 1 and as B ' Cm+1

then |I ′′| ≤ b(m+ 1)/2c. Therefore

|I| ≤ bm2/4c+ b(m+ 1)/2c+ 1

= b(m+ 1)2/4c+ 1

= α(C(Pm)) + 1,

where we are using part (2) of Proposition 2.5.

10



7 Proof of Theorem 1.5

We proof Theorem 1.5 by mean of Propositions 7.3 and 7.5. For q = 1, . . . ,m, let

Lq := {{j,m− (q − j)} : 1 ≤ j ≤ q}.

It is clear that |Lq| = q, for every q, and that {L1 . . . , Lq} is a partition of V (C(Cm)).
The following proposition shows that most of the sets Lq are independent sets in
C(Cm).

Proposition 7.1. If Lq is not an independent set in C(Cm), then m = 2q− 1, where
2 ≤ q ≤ m− 1.

Proof. Clearly L1 = {{1,m}} and Lm = {{1, 1}, {2, 2}, . . . , {m,m}} are independent
sets and hence 2 ≤ q ≤ m− 1. As Lq is not an independent set and q ≥ 2, then there
exists two adjacent vertices, say {i,m−(q−i)} and {j,m−(q−j)}, in Lq. Notice that
i 6= j and i 6= m− (q− i). Therefore i = m− (q− j) and |m− (q− i)− j| ∈ {1,m−1}.
From these equations we obtain that |m − (q − i) − j| = |2(m − q)|, which implies
that m = 2q − 1.

Let G be a graph and let A and B subsets of V (G). We say that A and B are
linked in G, and is denoted by A ≈ B, if G has an edge ab such that a ∈ A and b ∈ B.

Proposition 7.2. Let m ≥ 4. The subsets Li of V (C(Cm)) previously defined are
linked as follows:

1. Li ≈ Li+1, for i ∈ {1, . . . ,m− 1}.

2. Li ≈ Lm−i+1, for i ∈ {1, . . . ,m− 1}.

3. All the links between the elements in {L1 . . . , Lm} are given by (1) and (2).

Proof. (1) For 1 ≤ i ≤ m = 1, the sets Li and Li+1 are linked because {i,m} ∈
Li, {i+ 1,m} ∈ Li+1 and [{i,m}, {i+ 1,m}] is an edge in C(Cm).
(2) By definition of Lq it follows that {{i,m} and {1,m− (i− 1)} belongs to Li, and
the vertices {1, i} and {m− (i− 1),m} belongs to Lm−(i−1). As [{{i,m}, {1, i}] and
[{1,m− (i− 1)}, {m− (i− 1),m}] are edges in C(Cm) we obtain that Li ≈ Lm−i+1.
(3) If Li is linked with a set Lj, with |i− j| 6= 1, then, by the construction of C(Cm),
the unique possible vertices in Li that could be adjacent with vertices in Lj are
{1,m− i + 1} and {i,m}. But this would implies that j = m− i + 1 and we are in
Case 2.

Proposition 7.3. Let k ≥ 2 be an integer. Then

α(C(C2k)) = k(k + 1).
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Proof. By Propositions 7.1 and 7.2 we have that

I = L2 ∪ L4 ∪ · · · ∪ Lm−2 ∪ Lm

is an independent set in C(Cm)). Now

|I| = |L2|+ |L4|+ · · ·+ |L2k−2|+ |L2k|
= 2 + 4 + · · ·+ 2k − 2 + 2k

= k(k + 1).

Therefore α(C(C2k)) ≥ k(k + 1).
Now, as C(Pm) is a subgraph of C(Cm) with V (C(Pm)) = V (C(Cm)) andE(C(Pm)) ⊂

E(C(Cm)), then α(C(Cm)) ≤ α(C(Pm)). Using Corollary ?? we obtain

α(C(C2k)) ≤ α(C(P2k))

= α(P
(2)
2k+1))

= b(2k + 1)2/4c
= k(k + 1).

The following proposition will be useful for the case k odd.

Proposition 7.4. Let n = 2k+1 be an odd positive integer. Let I be and independent
set of C(Cn). If the vertex {1, n} belongs to I, then there exist an independent set I ′

such that {1, n} 6∈ I ′ and |I ′| ≥ |I|.

Proof. Let I = I1 ∪ I2, where I2 = Ln ∩ I and I1 = I − I2. If {1, n} ∈ I, then the
vertices {1, 1} and {n, n} does not belongs to I. Let m = |Ln−1 ∩ I|. Then, there are
at least m vertices in Ln − {{1, 1}, {n, n}} such that does not belongs to I. That is,
|Ln ∩ I| ≤ n − 2 −m, and hence |I| ≤ |I1| + n − 2 −m. We construct I ′ = I ′1 ∪ I ′2
as follows, I ′1 = I1 − (Ln−1 ∩ I) ∪ {{1, n}} and I ′2 = Ln. Clearly I ′ is an independent
set. Therefore

|I ′| = |I ′1|+ |I ′2| = |I1| −m− 1 + n ≥ |I|.

If x is a vertex in V (C(Cn)) of the form {1, j} or {j, n}, for some j, then x is
called an extreme vertex in C(Cn). Let {i, j} ∈ V (C(Cn)), with i < j. We say that
x ∈ {{i, j + 1}, {i + 1, j}} (resp. x ∈ {{i − 1, j}, {i, j − 1}}) is a right neighbor of
{i, j} (resp. left neighbor) if x is adjacent to {i, j} in C(Cn).

Proposition 7.5. Let k ≥ 1 be an integer. Then

α(C(C2k+1)) = k2 + k + b(k + 1)/2c.
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Proof. The case k = 1 is easy so we assume that k ≥ 2.

Case k odd. Let

L = L2 ∪ L4 ∪ · · · ∪ Lk−1 ∪ Lk+2 ∪ Lk+4 · · · ∪ L2k+1,

which is an independent set of C(C2k+1) (by Propositions 7.1 and 7.2). We have that

|L| = 2 + 4 + · · ·+ (k − 1) + (k + 2) + (k + 4) + · · ·+ (2k + 1)

= k2 +
3

2
k +

1

2

= k2 + k +

⌊
k + 1

2

⌋
,

which shows that α(C(C2k+1)) ≥ k2 + k + b(k + 1)/2c.
Now we prove that α(C(C2k+1)) ≤ k2 + k +

⌊
k+1
2

⌋
.

Let n = 2k + 1. Let A = L1 ∪ L2 ∪ · · · ∪ Lk and B = Lk+1 ∪ Lk+2 ∪ · · · ∪ Ln.
Let I be and independent set in C(C2k+1). By Proposition 7.4 we can assume that
{1, n} 6∈ I. Let I1 = I ∩ A and I2 = I ∩B.

Claim 7.6. There exists an independent set I ′2 such that I ′2 ⊆ Lk+2∪Lk+4∪· · ·∪L2k+1

and |I ′2| ≥ |I2|.

Proof. Let W = {k + 1, k + 3, . . . , 2k}. Let i1 be the greatest integer in W such that
Li1 ∩ I2 6= ∅. That is, Lj ∩ I2 = ∅, for every j ∈ W with j > i1. To construct I ′2
from I2 by interchanging all the vertices in Li1 ∩ I2 with its right neighbors in Li1+1

(this can be made by the selection of i1). To repeat this process, but now with the
greatest integer i2 in W − {i1} such that Li2 ∩ I2 6= ∅. To continue in this way until
W − {i1, . . . , ir} = ∅ or Lj ∩ I2 = ∅, for any j ∈ W − {i1, . . . , ir}. That is, we will
finish until all the vertices in I2∩(Lk+1 ∪ Lk+3 ∪ · · · ∪ L2k) has been interchanged with
vertices in Lk+2 ∪Lk+4 ∪ · · · ∪L2k+1. In this way, we have obtained and independent
set I ′2 from I2 with I ′2 ⊂ Lk+2 ∪ Lk+4 ∪ · · · ∪ L2k+1 and |I ′2| ≥ |I2|.

We will construct and independent set I ′ of C(C2k+1) such that |I ′| ≥ |I| and
I ′ ⊆ L with the following steps:

Step 1. To construct an independent set I ′2 from I2 as in the proof of Claim 7.6.

Step 2. To construct a set I ′′ from I1 ∪ I ′2 by interchanging every vertex {i, n} ∈ I ∩
(L1 ∪ L3 ∪ · · · ∪ Lk) (if any) with {1, i}.

Step 3. To construct I ′ from I ′′ by interchanging every vertex in I ′′ that belongs to
L3 ∪L5 ∪ · · · ∪Lk with a vertex in L2 ∪L4 ∪ · · · ∪Lk−1 in such a way that I ′ is
an independent set and I ′ ⊂ L.

Now we prove that we can obtain the desired independent set I ′ with these steps.
By Claim 7.6, I ′2 is an independent set. Notice that I1∪I ′2 could not be an independent
set, for example if {1, n− 2} ∈ I1 and {n− 2, n} was added to I ′2 with the procedure
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in the proof of Claim 7.6. But, as k is odd and by Proposition 7.2, if u ∈ I1 and
v ∈ I ′2 are vertices such that u ∼ v, then u and v are extreme vertices of C(C2k+1)
with u ∈ L3 ∪ L5 ∪ · · · ∪ Lk and v ∈ Lk+2 ∪ Lk+4 ∪ · · · ∪ L2k−1. But this problem
is arranged in Steps 2 and 3. The proof that we can do Step 2 is as follows: let
X = L1 ∪ L3 ∪ · · · ∪ Lk. Let {i, n} ∈ I1 ∩ X. Then {i, n} ∈ Li with i odd. As
{i, n} ∈ I1 then {1, i} 6∈ I2. By construction of I ′2, {1, i} 6∈ I ′2. Therefore we can
obtain I ′ from I1 ∪ I ′2 by interchanging every {i, n} ∈ I1 ∩X with {1, i}. Notice that
{1, i} belongs to L2k+2−i and hence {1, i} ∈ Lk+2 ∪ Lk+4 ∪ · · · ∪ L2k+1. .

Finally we show how to realize Step 3. Let I ′1 = I ′′ ∩X. We interchange all the
remaining vertices in I ′′ that belong to I ′1 as follows: first to select the smallest integer
i in {3, 5, . . . , k} such that I ′1 ∩ Li 6= ∅ and I ′1 ∩ Lj = ∅, for every j ∈ {3, 5, . . . , k}
with j < i. As I ′1 is an independent set, and by the selection of i, we can interchange
all the vertices in I ′1 ∩ Li with its respective right neighbors in Li−1. To repeat this
process but now with the smallest integer in {3, 5, . . . , k}−{i1} such that I ′1∩Li 6= ∅
and I ′1 ∩Lj = ∅, for every j ∈ {3, 5, . . . , k}−{i1} with j < i. To continue in this way
until all the vertices in I ′1∩X has been interchanged by vertices in L2∪L4∪· · ·∪Lk−1
Notice that I ′ ⊆ L and that |I ′| = |I ′′1 ∪ I ′′2 | ≥ |I| and hence |I| ≤ |L| as desired.

Case k even.
First we show that α(C(C2k+1)) ≥ k2 + k + b(k + 1)/2c. Let

L = L2 ∪ L4 ∪ · · · ∪ Lk ∪ Lk+3 ∪ Lk+5 ∪ · · · ∪ L2k+1,

which is an independent set of C(C2k+1). We have that

|L| = 2 + 4 + · · ·+ k + (k + 3) + (k + 5) + · · ·+ (2k + 1)

=
1

4
k(k + 2) +

1

4
(4k + 3k2)

= k2 +
3

2
k = k2 + k +

⌊
k + 1

2

⌋
.

Now we prove that α(C(C2k+1)) ≤ k2 + k + b(k + 1)/2c.
Let I be any independent set of C(C2k+1). By Proposition 7.4 we can assume that

{1, n} 6∈ I. We will obtain an independent set I ′ such that I ′ ⊆ L and |I| ≤ |I ′|.
Let I1 = I ∩ (L2 ∪ L3 ∪ · · · ∪ Lk+1) and I2 = I ∩ (Lk+2 ∪ Lk+3 ∪ · · · ∪ L2k+1). The
following claim can be proved in a similar way that Claim 7.6.

Claim 7.7. There exists an independent set I ′2 such that I ′2 ⊆ Lk+3∪Lk+5∪· · ·∪L2k+1

and |I ′2| ≥ |I2|. Evermore, I ′2 can be obtained from I2 by interchanging every vertex
x ∈ I2 ∩ Li with its right neighbor in Li+1, for every i ∈ {k + 2, k + 4, . . . , 2k}.

Now we obtain I ′ with the following steps.

Step 1. To obtain I ′2 from I2 as in Claim 7.7.

Step 2. To obtain I ′′ from I1 ∪ I ′2 by interchanging all the vertices of the form {a, n} ∈
I ∩ Li with i ∈ {3, 5, . . . , k − 1} (if any) with {1, i}.
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Step 3. To obtain I ′′′ from I ′′ by interchange the remaining vertices in I ∩ Li, for i ∈
{3, 5, . . . , k − 1} with its right neighbor in Li−1.

Step 4. To obtain I ′ from I ′′′ by interchange the vertices in I ∩ Lk+1 as follows. As
Lk+1 is linked with Lk+1 by the edge [{1, k + 1}, {k + 1, n}], then only one of
this vertices can be in I. If {{1, k + 1}, {k + 1, n}} ∩ I = ∅, then move all the
vertices in I ′′′ ∩ Lk+1 to its right neighbors in Lk. If {1, k + 1} ∈ I, then move
all the vertices in I ′′′ ∩ Lk+1 to its right neighbors in Lk and if {k + 1, n} ∈ I,
then move all the vertices in I ′′ ∩ Lk+1 to its left neighbors in Lk.

8 Proof of Theorem 1.6

We use Um to denote the subgraph C(Cm) of C(Wm,1.

Proposition 8.1. Let m ≥ 2 be an integer. For any S we have that α(Um−∪i∈SRi) ≤
bm2/4c, for any i ∈ {1, . . . ,m}.

Proof. We known that Um − x ' C(Pm−1) ' P
(2)
m , for any x ∈ S. Therefore

α(Um − x) = α(P (2)
m ) = bm2/4c

and the result follows because Um−∪i∈SRi is an induced subgraph of Um+1−Rx, for
any x ∈ S.

Theorem 1.6. Let m ≥ 3. Then

α(C(Wm,1)) = α(C(Cm)) + 1.

Proof. When |S| = 1 If m even then

bm2/4c+ 1 ≤ m/2(m/2 + 1)

If m is odd
bm2/4c+ 1 ≤

When |S| ≥ 2 it can be showed that

α(Um − ∪i∈SRi) ≤ b(m− 1)2/4c

in a similar way that in the case of the double vertex graph of the wheel graph. de
manera similar que en la rueda pero para double vertex. Therefore

|I| ≤ b(m− 1)2/4c+ bm/2c

If m = 2k, then

|I| ≤ b(2k − 1)2/4c+ b2k/2c ≤ k(k + 1) + 1.

If m = 2k + 1, then

|I| ≤ b(2k)2/4c+ b(2k + 1)/2c ≤ k2 + k +

⌊
k + 1

2

⌋
+ 1,

and the proof is completed.
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