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CLASSES OF GAP BALANCING NUMBERS

JEREMIAH BARTZ, BRUCE DEARDEN, AND JOEL IIAMS

Abstract. Gap balancing numbers are a certain generalization of bal-
ancing and cobalancing numbers that arise from studying the equation
T (L) + T (B) = T (m) where T (i) is the ith triangular number. In this paper,
we survey early results, attempt to unify existing terminology, and extend
prior findings. In addition, we further investigate the structure of classes of
gap balancing numbers and related sequences, presenting new results and a
conjecture regarding the number of classes based on the gap size.

1. Introduction

Let k ≥ 0 be an integer. A positive integer B is called an upper k-gap balancing
number with upper k-gap balancer r if

(1) 1 + 2 + 3 + · · ·+ (B − k) = (B + 1) + · · ·+ (B + r)

for some integer r ≥ 0. The upper k-gap balancing numbers are the balancing
numbers (A001109) and cobalancing numbers (A053141) when k = 1 and k = 0,
respectively. It follows from (1) that B is a upper k-gap balancing number if and
only if

(2) T (B − k) + T (B) = T (B + r)

where T (i) = i(i+1)
2 is the ith triangular number.

Interest in balancing numbers [1] and their generalizations [2, 3, 5, 6, 7, 10, 11,
12, 13, 14, 15] stems from contemporary investigations into the properties of square
triangular numbers and related expressions. A central theme is studying a geomet-
rically motivated sequences through solutions to associated Pell-like equations. In
this paper, we study (2) and its associated Pell-like equations to present several
new results regarding the structure of classes of upper k-gap balancing numbers
and related sequences. Along the way, we survey early results, attempt to unify
existing terminology, and extend prior findings. We also give a conjecture regarding
the number of classes of k-gap balancing numbers based on the gap size k.

2. Upper gap balancing and related numbers

In this section, we define upper k-gap balancing and related numbers and give
some examples.

Definition 2.1. Let k ≥ 0 be an integer. Define a positive integer B to be an
upper k-gap balancing number if

1 + 2 + 3 + · · ·+ (B − k) = (B + 1) + · · ·+ (B + r)
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for some integer r ≥ 0. We refer to r as the upper k-gap balancer corresponding to
the upper k-gap balancing number B.

It follows from (1) that B is an upper k-gap balancing number if and only if

T (B − k) + T (B) = T (B + r)

where T (i) = i(i+1)
2 is the ith triangular number. Thus upper k-gap balancing

numbers are the largest index of the triangular numbers occurring on the left side
of (2) and also the largest number of the k consecutive numbers deleted to form
the gap in (1). Solving (2) for r and B, respectively, gives

(3) r =
−(2B + 1) +

√
8B2 + 8(1− k)B + (2k − 1)2

2
and

(4) B =
(2r + 2k − 1) +

√
8r2 + 8kr + 1

2
where we take the positive square roots so that r ≥ 0 and B > 0. Thus B

is an upper k-gap balancing number with upper k-gap balancer r if and only if
8B2 + 8(1− k)B + (2k − 1)2 is a perfect square if and only if 8r2 + 8kr + 1 is a
perfect square. Due to these latter expressions we make the following definitions.

Definition 2.2. Let B be an upper k-gap balancing number with upper k-gap
balancer r. Define its upper k-gap Lucas-balancing number to be

C =
√
8B2 + 8(1− k)B + (2k − 1)2

and its upper k-gap Lucas-balancer r̂ to be

r̂ =
√
8r2 + 8kr + 1.

We refer to (B,C) as an upper k-gap balancing pair and (r, r̂) as its upper k-gap
balancer pair.

It follows from Definition 2.2 that an upper k-gap balancing pair (B,C) is a
solution to the Pell-like equation

(5) y2 = 8x2 + 8(1− k)x+ (2k − 1)2.

Moreover, an upper k-gap balancer pair (r, r̂) is a solution to

(6) y2 = 8x2 + 8kx+ 1.

Remark 2.3. Using the substitutions z = 2x+1− k and z = 2r+ k, respectively,
(5) and (6) can be expressed as

(7) y2 − 2z2 = 2k2 − 1

and

(8) y2 − 2z2 = −(2k2 − 1).

We are also interested in the index of the triangular number appearing on the
right side of (2) and make the following definition.

Definition 2.4. The counterbalancer m of an upper k-gap balancing number B

with upper k-gap balancer r is defined to be m = B + r.

The next theorem collects several relationships which follow directly from equa-
tions (3) and (4) and the definitions given above.
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Theorem 2.5. Suppose (B,C) is an upper k-gap balancing pair with associated
upper k-gap balancer pair (r, r̂) and counterbalancer m. Then

(a) r = −2B+C−1
2 ;

(b) r̂ = 2B − 2r + 1− 2k;
(c) r̂ = 4B − C + 2− 2k;
(d) m = C−1

2 .

Example 2.6. The identity T (11)+T (20) = T (23) shows that (20, 47) is an upper
9-gap balancing pair with upper 9-gap balancer pair (3, 17) and counterbalancer 23.
The upper 0-gap and 1-gap balancing numbers are cobalancing [12] and balancing
numbers [1], respectively. In addition, the upper 1-gap balancing numbers are the
sequence balancing numbers [11] corresponding to the sequence of positive integers
((i))i≥1 and the (a, b)-type balancing numbers [5] with a = b = 1. More generally,
the upper k-gap balancing numbers are shifts of the t-sequence balancing numbers
[2] of ((i))i≥1 with t = k.

Example 2.7. The identity T (0)+T (k) = T (k) shows that (k, 2k+1) is an upper
k-gap balancing pair with upper k-gap balancer pair (0, 1) and counterbalancer 0.
In consideration of (2), we take k to be the smallest upper k-gap balancing number
and consider 0 to be an upper 0-gap balancing number.

Example 2.8. For k > 0 the identity T (3k − 3) + T (4k − 3) = T (5k − 4) shows
(4k − 3, 10k − 7) is an upper k-gap balancing number with upper k-gap balancer
pair (k − 1, 4k − 3) and counterbalancer 5k − 4.

Remark 2.9. Various terminology has been used when studying (1) and closely
related equations. We attempt to unify the existing terminology in our choice
of nomenclature. The smallest index, namely B − k, of the triangular numbers
appearing on the left side of (2) can be considered a lower k-gap balancing number.
Let L = B− k. Dash, Ota, and Dash [3] referred to such L as t-balancing numbers
where t = k is the gap size. Alternatively, Panda and Rout [13] defined k-gap
balancing numbers using the parity of k. When k is odd, a positive integer gk is a
k-gap balancing number if

1 + 2 + · · ·+
(
gk −

k + 1

2

)
=

(
gk +

k + 1

2

)
+

(
gk +

k + 3

2

)
+ · · ·+ (gk + rk)

for some integer rk ≥ 1. When k is even, a positive integer gk = 2n+ 1 is a k-gap
balancing number if

1 + 2 + · · ·+
(
n− k

2

)
=

(
n+

k

2
+ 1

)
+

(
n+

k

2
+ 2

)
+ · · ·+ (n+ rk)

for some integer rk ≥ 0. Then gk is the median of the deleted gap when k is odd,
and gk is the sum of the two surviving numbers forming the edge of the gap when
k is even. These three notions of gap balancing numbers are related. Specifically, a
k-gap balancing number gk with k-gap balancer rk corresponds to the upper k-gap
balancing number B with upper k-gap balancer r by

(9) B =

{
gk +

k+1
2 , if k is odd;

gk−1
2 + k

2 , if k is even;
and r =

{
rk − k−1

2 , if k is odd;

rk − k
2 , if k is even.

From (2) we see that a lower k-gap balancing number L corresponds to the upper
k-gap balancing number B = L+ k and the corresponding lower and upper k-gap
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balancers coincide. It is convenient for our purposes to study (2) using upper k-
gap balancing numbers since they appear as indices of triangular numbers with
balancing and cobalancing numbers being special cases. Nonetheless, results about
upper k-gap balancing numbers correspond to results about lower k-gap and k-gap
balancing numbers and vice versa via (9) and the relation B = L+ k.

3. Classes of upper gap balancing and related numbers

We present functions which generate a class of upper k-gap balancing and bal-
ancer pairs from known ones.

Theorem 3.1. Let y =
√
8x2 + 8(1− k)x+ (2k − 1)2 and

(10)

[
fk(x)
gk(x)

]
=

[
3 1
8 3

] [
x

y

]
+

[
1− k

4− 4k

]
.

If (x, y) is an upper k-gap balancing pair, then so is (fk(x), gk(x)).

Proof. The identity

8f2
k (x)+8(1−k)fk(x)+(2k−1)2 = (8x+3

√
8x2 + 8(1− k)x+ (2k − 1)2+4−4k)2

shows fk(x) is an upper k-gap balancing number with associated upper k-gap Lucas-
balancing number gk(x) by the comments following Definition 2.1. �

Theorem 3.2. Let y =
√
8x2 + 8kx+ 1 and

(11)

[
Fk(x)
Gk(x)

]
=

[
3 1
8 3

] [
x

y

]
+

[
k

4k

]
.

If (x, y) is an upper k-gap balancer pair, then so is (Fk(x), Gk(x)).

Proof. The identity

8F 2
k (x) + 8kFk(x) + 1 = (8x+ 3

√
8x2 + 8kx+ 1 + 4k)2

shows Fk(x) is an upper k-gap balancer with associated upper k-gap Lucas-balancer
Gk(x). �

Alternatively, the functions in Theorems 3.1 and 3.2 can be derived computing
a class of solutions to (7) and (8) and rewriting in terms of x and y. Dash et al. [3]
exhibit similar functions to those in Theorems 3.1 and 3.2 for lower k-gap balancing
and balancer pairs. The next theorem shows that these functions for the upper k-
gap balancing and balancer pairs work in tandem, a result tacitly understood but
not proven previously in the literature.

Theorem 3.3. If (r, r̂) is the upper k-gap balancer pair associated to the upper
k-gap balancing pair (B,C), then (Fk(r), Gk(r)) is the upper k-gap balancer pair
associated to the upper k-gap balancing pair (fk(B), gk(B)).

Proof. Since C and r̂ are expressions in terms of k, B, and r respectively, it suffices
to show Fk(r) is the upper k-gap balancer associated to the upper k-gap balancing
number fk(B). Using Theorem 2.5 with (11), we see

Fk(r) = 3r + r̂ + k =
2B + C + 1− 2k

2
.

On the other hand, the balancer of fk(B) using Theorem 2.5 is

−2fk(B) + gk(B) − 1

2
=

2B + C + 1− 2k

2



CLASSES OF GAP BALANCING NUMBERS 5

since fk(B) = 3B+C+1−k and gk(B) = 8B+3C+4− 4k using (10). The result
now follows. �

Since fk and gk are strictly increasing on [k,∞), their inverses f−1
k and g−1

k exist.
Similarly we see that Fk and Gk are strictly increasing on [0,∞), so their inverses
F−1
k and G−1

k exist. A straightforward computation shows

(12)

[
f−1
k (x)
g−1
k (x)

]
=

[
3 −1

−8 3

] [
x

y

]
+

[
1− k

4k − 4

]

and [
F−1
k (x)

G−1
k (x)

]
=

[
3 −1

−8 3

] [
x

y

]
+

[
k

−4k

]
.

Given an upper k-gap balancing pair (x0, y0) the functions fk, gk, and their
inverses can be applied iteratively to form a class of solutions ((xi, yi))i∈Z to (5).
Moreover, Fk, Gk, and their inverses can be used iteratively to form the class of
associated upper k-gap balancer pairs by Theorem 3.3.

The On-line Encyclopedia of Integer Sequences [9] contains several sequences
related to upper k-gap balancing numbers. These include the upper 2-gap
Lucas-balancing numbers (A077443), 2-gap counterbalancers (A124124), upper 2-
gap Lucas-balancer numbers (A077446), upper 5-gap Lucas-balancing numbers
(A275797), and upper 5-gap Lucas-balancer numbers (A076293).

4. Structure of classes of upper gap balancing numbers

In this section, we present three new theorems and a conjecture regarding the
structure of classes of upper k-gap balancing numbers. We begin by showing that
it is possible to reindex each class of solutions to (5) so that the terms with non-
negative index correspond to upper k-gap balancing numbers.

Proposition 4.1. Every upper k-gap balancing pair lies in a class of solutions
((xi, yi))i∈Z of (5) generated by applying (10) and (12) to a unique upper k-gap
balancing pair (x0, y0) satisfying k ≤ x0 < 4k + 2. Moreover (xi, yi) is an upper
k-gap balancing pair whenever i ≥ 0.

Proof. Assume (B,C) is an upper k-gap balancing pair. Let ((bi, ci))i∈Z be the
class of solutions to (5) generated by (b0, c0) = (k, 2k + 1) via (bi+1, ci+1) =
(fk(bi), gk(bi)). Then B ≥ k by minimality of b0. Suppose bk ≤ B < bk+1 for
some k ≥ 0. Applying f−1

k k times we obtain b0 ≤ (f−1
k )(k)(B) < b1 = 4k + 2.

Thus (B,C) lies in the class of solutions generated by the upper k-gap balancing
pair (x0, y0) where x0 = (f−1

k )(k)(B) and y0 = (g−1
k )(k)(B).

To establish uniqueness, suppose (B,C) also lies in the class of solutions gen-
erated by the upper k-gap balancing pair (x′

0, y
′
0) with k ≤ x′

0 < 4k + 2. Then

B = f
(i)
k (x′

0) for some i ≥ 0 so bk ≤ f
(i)
k (x′

0) < bk+1. Apply f−1
k i times to see

bk−i ≤ x′
0 < bk+1−i. Thus i = k which implies x0 = x′

0 and y0 = y′0 since f
(k)
k is

strictly increasing on [k,∞). �

The last proposition shows that upper k-gap balancing numbers lying in
[k, 4k + 2) can be used to generate all upper k-gap balancing numbers using (10).
Panda and Ray [12] showed that all cobalancing numbers lie in the class generated
by the upper 0-gap balancing pair (0, 1). Similarly, Behera and Panda [1] showed
that all balancing numbers lie in the class generated by the upper 1-gap balancing

http://oeis.org/A077443
http://oeis.org/A124124
http://oeis.org/A077446
http://oeis.org/A275797
http://oeis.org/A076293
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pair (1, 3). For the remainder of the paper, a class of upper k-gap balancing pairs
((Bi, Ci))i≥0 refers to the sequence of upper k-gap balancing pairs generated from
(B0, C0) using (10) and (12) with k ≤ B0 < 4k + 2.

For k > 1, determining the number of classes of upper k-gap balancing numbers
generated using (10) is a subtle problem as recognized by Rout and Panda [14].
Dash et al. [3] considered cases when there are at most two classes. Fortunately the
search for initial upper k-gap balancing pairs (x0, y0) guaranteed by Proposition
4.1 can be made more efficient. For k > 0, observe (x−1, y−1) = (f−1

k (x0), g
−1
k (x0))

are also solutions of (5) with 0 ≤ x−1 < k and y−1 > 0. Thus the number of classes
is the same as the number of integer solutions (x−1, y−1) of (5) with 0 ≤ x−1 < k

and y−1 > 0. For convenience we refer to such a pair (x−1, y−1) as the seed of the
class of upper k-gap balancing numbers ((xi, yi))i≥0.

Rout and Panda [14] exhibited the existence of two classes of k-gap balancing
numbers for k > 1 and a third class when 2k2−1 is a perfect square. Dash et al. [3]
also observed these first two classes. We present these results in terms of upper
k-gap balancing numbers in the following three examples.

Example 4.2. For k ≥ 0, a class of upper k-gap balancing pairs is generated from
the seed (0, 2k−1). The initial upper k-gap balancing pair is given in Example 2.7.

Example 4.3. For k > 0 the seed (k − 1, 2k− 1) generates a class of upper k-gap
balancing pairs. The initial upper k-gap balancing pair is given in Example 2.8.
This class coincides with the class presented in Example 4.2 when k = 1 .

Example 4.4. When 2k2−1 is a perfect square, then k is odd and
(
k−1
2 ,

√
2k2 − 1

)

is a solution in the integers to (5). Thus we obtain the class of upper k-gap balancing

pairs generated from the seed (k−1
2 ,

√
2k2 − 1). For k = 1, this class coincides with

the classes presented in Examples 4.2 and 4.3. The initial values for which this
class appears are k = 1, 5, 29, 169, 985.

Examples 4.2 and 4.3 show there are at least two classes of upper k-gap balancing
numbers when k > 1. Depending on the value of k > 1, there can be additional
classes. By the prior discussion, there are at most k candidates for seeds when
k > 0. These observations lead to the following elementary upper bound for the
number of classes.

Theorem 4.5. The number of classes of upper k-gap balancing numbers is at most
max{1, k}.

The theory of Pell equations (cf. Nagell [8, pp. 204–205]) shows that classes of
solutions appear in pairs of conjugate classes. The classes described in Examples 4.2
and 4.3 form such a conjugate pair and are said to be conjugates of each other. It
is possible to describe conjugate pairs for (5) more precisely in terms of their seeds.
We use this description to show that the classes of upper k-gap balancer pairs
corresponding to conjugate classes of upper k-gap balancing pairs are conjugate.

Theorem 4.6. Let k > 0. If (x, y) is a seed to (5), then (k − 1 − x, y) is also a
seed. Furthermore, the corresponding classes of solutions are conjugate.

Proof. The identity

8(k − 1− x)2 + 8(1− k)(k − 1− x) + (2k − 1)2 = 8x2 + 8(1− k)x+ (2k − 1)2
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shows that (k−1−x, y) is a solution to (5) whenever (x, y) is a solution. Furthermore
0 ≤ x < k since (x, y) is a seed which implies 0 ≤ k− 1−x < k. Thus (k− 1−x, y)
is also a seed.

Using the substitution given in Remark 2.3, the seeds (x, y) and (k − 1 − x, y)
correspond to the solutions (y, z) and (y,−z) of (7) whose classes are conjugate by
the theory of Pell equations [8, p. 205]. It follows that the classes corresponding to
(x, y) and (k − 1− x, y) are conjugate. �

Theorem 4.7. The classes of upper k-gap balancer pairs corresponding to conjugate
classes of upper k-gap balancing pairs are conjugate.

Proof. The result holds for k = 0 since there is a unique class of upper 0-gap balanc-
ing pairs which is conjugate to itself. Suppose k > 0. Let (x, y) and (k − 1− x, y)
be the seeds associated to the conjugate classes of upper k-gap balancing pairs.
Applying Theorem 2.5 to these seeds yields the associated values of (r, r̂) as

P1 =

(−2x+ y − 1

2
, 4x− y + 2− 2k

)

and

P2 =

(
2x+ y + 1− 2k

2
,−4x− y − 2 + 2k

)

respectively. Using (11) on P2 gives the pair

P ′
2 =

(−2x+ y + 1

2
,−(4x+ y + 2− 2k)

)

which lies the same class as P2. Employing the substitution given in Remark 2.3
shows P1 and P ′

2 correspond to the solutions

(4x− y + 2− 2k,−2x+ y − 1 + k) and (−(4x− y + 2− 2k),−2x+ y − 1 + k)

of (8), respectively. Since −(2k2 − 1) < 0 in (8) it follows that the classes of upper
k-gap balancer pairs which contain P1 and P ′

2, respectively, are conjugate by the
theory of Pell equations. �

When the classes of a conjugate pair of solutions coincide, the class is referred
to as an ambiguous class. The class from Example 4.4 is an example of an ambigu-
ous class. By the proof of Theorem 4.6, conjugate classes of solutions to (5) are
ambiguous when x = k − 1 − x or equivalently x = k−1

2 . Thus the class described
in Example 4.4 is the only possible ambiguous class for (5) when k > 0. It follows
that there is an even number of classes of upper k-gap balancing numbers whenever
k > 1 and 2k2 − 1 is not a perfect square. On the other hand, there are an odd
number of classes of upper k-gap numbers when k = 0 or 2k2−1 is a perfect square.
Note that Theorem 4.6 also reduces the search for seeds. For k > 0, seeds consist
of integer solutions (x−1, y−1) of (5) with 0 ≤ x−1 ≤ k−1

2 and y−1 > 0 along with
their conjugate seeds.

There appears to be no uniform upper bound on the number of possible classes
for all k ≥ 0. Table 1 lists the smallest value of k with n classes of upper k-gap
balancing numbers which appear for k ≤ 10000. Numerical evidence suggests the
following conjecture.

Conjecture 4.1. The number of classes of upper k-gap balancing numbers is equal

to the number of positive divisors of 2k2 − 1.
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Table 1. Smallest k with n classes of upper k-gap balancing num-
bers for selected n.

n 1 2 3 4 6 8 9 10 12 16 18 20 24 32 48
k 0 2 5 9 44 37 985 1083 152 275 1034 3719 779 3414 8335

It is known that Conjecture 4.1 is true for odd k ≥ 2 such that 2k2 − 1 is prime
as a consequence of the work of Tekcan, Tayat, and Özbek [16].

5. Transition functions

Panda and Rout [13] exhibited functions between the two classes of 2-gap bal-
ancing numbers. In this section, we present general functions which map upper
k-gap balancing and balancer pairs from one class to another class. Moreover, we
establish that a transition function between two classes coincides with the transi-
tion function between the two corresponding conjugate classes in reversed order.
As before, we let y =

√
8x2 + 8(1− k)x+ (2k − 1)2.

Theorem 5.1. Let ((Bi, Ci))i≥0 and ((B′
i, C

′
i))i≥0 be two classes of upper k-gap

balancing pairs generated by (10). Then the transition function given by

(13)

[
t(x)
t̂(x)

]
=

[
a b

8b a

] [
x

y

]
+

[
c

(4− 4k)b

]

where

a = −8B0B
′
0 + 4(1− k)(B0 +B′

0) + (2k − 1)2 − C0C
′
0 − 2k2 + 1

2k2 − 1
(14)

b =
2(C0B

′
0 −B0C

′
0) + (1− k)(C0 − C′

0)

2(2k2 − 1)

c =
(1− k) [8B0(B0 −B′

0) + 4(1− k)(B0 −B′
0)− C0(C0 − C′

0)]

2(2k2 − 1)

maps (Bi, Ci) to (B′
i, C

′
i) for all i.

Proof. Assume t has the form t(x) = ax+ by+ c for unknown coefficients a, b, and
c. The only possible values of the coefficients can be determined by solving the
system 


B0 C0 1
B1 C1 1
B2 C2 1





a

b

c


 =



B′

0

B′
1

B′
2




for a, b, and c. Put (x, y) = (B0, C0) and (z, w) = (B′
0, C

′
0). Using (5) this becomes

(15)


x y 1
3x+ y + 1− k 8x+ 3y + 4− 4k 1
17x+ 6y + 8− 8k 48x+ 17y + 24− 24k 1





a

b

c


 =




z

3z + w + 1− k

17z + 6w + 8− 8k


 .
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Using Cramer’s rule and the identity y2 = 8x2 + 8(1 − k)x + (2k − 1)2, we obtain
(14). By construction, t(Bi) = B′

i for i = 0, 1, 2. We now show that t(Bi) = B′
i for

all i using induction. Assume t(Bi) = B′
i for all 0 ≤ i ≤ k for some k ≥ 2. Consider

the system

(16)




Bk−1 Ck−1 1
Bk Ck 1
Bk+1 Ck+1 1





a′

b′

c′


 =




B′
k−1

B′
k

B′
k+1


 .

By induction (15) holds for (x, y) = (Bk−2, Ck−2) and (z, w) = (B′
k−2, C

′
k−2). Again

using (5), the system (16) can be written as



3x+ y + 1− k 8x+ 3y + 4− 4k 1
17x+ 6y + 8− 8k 48x+ 17y + 24− 24k 1
99x+ 35y + 49− 49k 280x+ 99y + 140− 140k 1





a′

b′

c′


 =




3z + w + 1− k

17z + 6w + 8− 8k
99z + 35w + 49− 49k


 .

Using Cramer’s rule and the identity y2 = 8x2+8(1−k)x+(2k− 1)2, we solve this
last system to see a′ = a, b′ = b, and c′ = c. Thus t(Bi) = B′

i for all 0 ≤ i ≤ k + 1.
The proof for t̂ is similar. �

The techniques used in Theorem 5.1 can be applied to upper k-gap balancer
pairs to obtain the following result.

Theorem 5.2. Let ((ri, r̂i))i≥0 and ((r′i, r̂
′
i))i≥0 be upper k-gap balancer pairs

corresponding to the two classes of upper k-gap balancing pairs ((Bi, Ci))i≥0 and

((B′
i, C

′
i))i≥0, respectively. Let y =

√
8x2 + 8kx+ 1. Then the transition function

given by

[
T (x)

T̂ (x)

]
=

[
a b

8b a

] [
x

y

]
+

[
c

4kb

]

where

a =
8r0r

′
0 + 4k(r0 + r′0) + 2k2 − r̂0r̂

′
0

2k2 − 1

b =
2(r0r̂

′
0 − r̂0r

′
0) + k(r̂′0 − r̂0)

2(2k2 − 1)

c =
k [8r0(r

′
0 − r0) + 4k(r′0 − r0) + r̂0(r̂0 − r̂′0)]

2(2k2 − 1)

maps (ri, r̂i) to (r′i, r̂
′
i) for all i.

The next result gives a property of transition functions when the underlying
classes are conjugate.

Theorem 5.3. Let ((Bi, Ci))i≥0 and ((B′
i, C

′
i))i≥0 be two classes of upper k-gap

balancing pairs. Suppose ((Bi, Ci))i≥0 and ((B
′

i, C
′

i))i≥0 are their conjugate classes,

respectively. Then the transition functions (Bi, Ci) 7→ (B′
i, C

′
i) and (B

′

i, C
′

i) 7→
(Bi, Ci) are the same. Moreover, the transition functions for the corresponding
classes of upper k-gap balancer pairs are also the same.
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Table 2. Initial upper 9-gap balancing numbers and related sequences.

i 0a 0b 0c 0d 1a 1b 1c 1d 2a 2b 2c 2d
B 9 14 20 33 38 65 99 174 203 360 558 995
C 19 31 47 83 97 173 269 481 563 1007 1567 2803
m 9 15 23 41 48 86 134 240 281 503 783 1401
r 0 1 3 8 10 21 35 66 78 143 225 406
r̂ 1 9 17 33 39 71 111 199 233 417 649 1161
t1 14 ∗ 33 ∗ 65 ∗ 174 ∗ 360 ∗ 995 ∗
t2 ∗ 20 ∗ ∗ ∗ 99 ∗ ∗ ∗ 558 ∗ ∗
t4 ∗ ∗ ∗ 38 ∗ ∗ ∗ 203 ∗ ∗ ∗ 1164
f9 38 65 99 174 203 360 558 995 1164 2079 3233 5780

Proof. It follows from the proof of Theorem 5.1 that it suffices to use the seeds of two
classes of upper k-gap balancing numbers to compute the coefficients of the transi-

tion functions between them. Observe that taking (B0, C0) as (k − 1−B
′

−1, C
′

−1)

and (B′
0, C

′
0) as (k− 1−B−1, C−1) in Theorem 5.1 gives the same values of coeffi-

cients (14) of the transition function (13) as with taking (B−1, C−1) and (B′
−1, C

′
−1),

respectively. The first statement now follows from Theorem 4.6. The last statement
follows from a similar argument and Theorem 4.7. �

Example 5.4. There are four classes of upper 9-gap balancing pairs whose initial
terms are (9, 19), (14, 31), (20, 47), and (33, 83), respectively. Note that (9, 19)
and (33, 83) appear in conjugate classes. Similarly, (14, 31) and (20, 47) appear in
conjugate classes. Four transition functions can be defined between the four classes
to sort the upper 9-gap balancing number in ascending order as shown in Table 2.
Asterisks denote non-integer values. In particular,

t1(x) =
27x+ 5y − 16

23
,

t2(x) =
177x+ 26y − 64

161
,

t3(x) =
27x+ 5y − 16

23
,

t4(x) =
163x+ 9y − 8

161
,

t̂1(x) =
40x+ 27y − 160

23
,

t̂2(x) =
208x+ 177y− 832

161
,

t̂3(x) =
40x+ 27y − 160

23
,

t̂4(x) =
72x+ 163y − 288

161
,

T1(x) =
27x+ 5y + 18

23
,

T2(x) =
177x+ 26y + 72

161
,

T3(x) =
27x+ 5y + 18

23
,

T4(x) =
163x+ 9y + 9

161
.

Here t1 = t3, t̂1 = t̂3, T1 = T3, and T̂1 = T̂3 (not shown above) as a consequence
of Theorem 5.3. None of the sequences or subsequences in Table 2 appear in The
On-line Encyclopedia of Integer Sequences [9].

6. Recursive formulas and other results

In this section we give recursive formulas, generating functions, and other re-
sults involving upper k-gap balancing numbers appearing in a particular class.
This generalizes and unifies previous work on gap balancing numbers. New lim-
its are presented in Theorem 6.3 and Corollary 6.4 that involve both upper k-gap
balancing numbers and their corresponding upper k-gap Lucas-balancing numbers.
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Also Cassini-like formulas are given for upper k-gap balancing numbers and related
sequences.

Dash et al. [3] established recursive formulas analogous to the first three for lower
k-gap balancing numbers.

Theorem 6.1. Let ((Bi, Ci))i≥0 be a class of upper k-gap balancing pairs with
associated upper k-gap balancer pairs ((ri, r̂i))i≥0, and counterbalancers (mi)i≥0.
Then

(a) Bi+1 = 6Bi −Bi−1 + 2− 2k;
(b) Ci+1 = 6Ci − Ci−1;
(c) ri+1 = 6ri − ri−1 + 2k;
(d) r̂i+1 = 6r̂i − r̂i−1;
(e) mi+1 = 6mi −mi−1 + 2.

Proof. From (10) and (12), it follows that Bi+1 = 3Bi + Ci + 1− k and
Bi−1 = 3Bi − Ci + 1− k. Thus Bi+1 +Bi−1 = 6Bi +2− 2k which is equivalent to
(a). The proofs for (b), (c), and (d) are similar. Lastly, use Definition 2.4 with (a)
and (c) to see

mi+1 = Bi+1 + ri+1 = 6Bi −Bi−1 + 2− 2k + 6ri − ri−1 + 2k = 6mi −mi−1 + 2.

�

The recurrence relations in Theorem 6.1 can be used to determine the limits
of the ratio of successive terms in a class of upper k-gap balancing numbers and
associated sequences. The following theorem generalizes the corresponding result
for balancing numbers [1, Thm. 8.1, p. 103]. Its proof is similar and omitted.

Theorem 6.2. Let ((Bi, Ci))i≥0 be a class of upper k-gap balancing pairs,
((ri, r̂i))i≥0 its upper k-gap balancer pairs, and (mi)i≥0 the associated counterbal-
ancers. Then

lim
i→∞

Bi+1

Bi

= lim
i→∞

Ci+1

Ci

= lim
i→∞

ri+1

ri
= lim

i→∞

r̂i+1

r̂i
= lim

i→∞

mi+1

mi

= 3 +
√
8.

The next limits involve terms from two sequences.

Theorem 6.3. Let ((Bi, Ci))i≥0 be a class of upper k-gap balancing pairs and
((ri, r̂i))i≥0 its upper k-gap balancer pairs. Then

lim
i→∞

(
Ci −

√
8Bi

)
=

√
2(1 − k) and lim

i→∞

(
r̂i −

√
8ri

)
=

√
2k.

Proof. Completing the square in (5) and rearranging, we see

Ci =
√
8

(
Bi −

k − 1

2

)√
1 +

2k2 − 1

8
(
Bi − k−1

2

)2

since Bi− k−1
2 > 0 (cf. Example 2.7). Applying the inequalities 1 ≤

√
1 + x ≤ 1+ x

2
when k ≥ 1 yields

√
8

(
Bi −

k − 1

2

)
≤ Ci ≤

√
8

(
Bi −

k − 1

2

)[
1 +

2k2 − 1

16
(
Bi − k−1

2

)2

]

for sufficiently large Bi since Bi → ∞ as i → ∞. It follows that

0 ≤ Ci −
√
8

(
Bi −

k − 1

2

)
≤

√
8(2k2 − 1)

16
(
Bi − k−1

2

)
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so that

lim
i→∞

(
Ci −

√
8

(
Bi −

k − 1

2

))
= 0

which is equivalent to the stated limit. The k = 0 case follows from by adapting
the argument to use the inequalities 1+x ≤

√
1 + x ≤ 1+ x

2 . The second limit can
be deduced similarly using (6). �

Dividing in the limits from Theorem 6.3 by Bi and ri, respectively, gives the
following result.

Corollary 6.4. Let ((Bi, Ci))i≥0 be a class of upper k-gap balancing pairs and
((ri, r̂i))i≥0 its upper k-gap balancer pairs. Then

lim
i→∞

Ci

Bi

= lim
i→∞

r̂i

ri
=

√
8.

Next we present the generating function for a class of upper k-gap balancing
numbers and give an example. Its proof is similar to the corresponding result for
cobalancing numbers [12, Thm. 4.1, pp. 1193–1194] and is omitted.

Theorem 6.5. Let ((Bi, Ci))i≥0 be a class of upper k-gap balancing pairs. The
generating function for its upper k-gap balancing numbers is

G(s) =
(2− 2k −B1 + 6B0)s

2 + (B1 − 7B0)s+B0

(1− s)(1 − 6s+ s2)
.

Given k ≥ 0, let n be the number of classes of upper k-gap balancing numbers.
Theorem 6.5 can be used to determine the generating function Gi(s) for each of
the n classes. If the classes are labeled so that their initial upper k-gap balanc-
ing numbers occur in ascending order, the generating function for all upper k-gap
balancing numbers is

G(s) =

n∑

i=1

si−1Gi(s
n).

Example 6.6. There are four classes of upper 9-gap balancing numbers whose
generating functions are

G1(s) =
−25s+ 9

(1− s)(1 − 6s+ s2)
, G2(s) =

3s2 − 33s+ 14

(1− s)(1− 6s+ s2)
,

G3(s) =
5s2 − 41s+ 20

(1− s)(1 − 6s+ s2)
, G4(s) =

8s2 − 57s+ 33

(1− s)(1− 6s+ s2)
,

using Theorem 6.5. The generating function for all upper 9-gap balancing numbers
is

G(s) =
−8s8 + 3s7 + 2s6 + 3s5 + 49s4 − 13s3 − 6s2 − 5s− 9

(s− 1)(s8 − 6s4 + 1)
.

The first formula of the last theorem is a generalization of an identity of Panda
and Ray for cobalancing numbers [12, Thm. 3.2(a), p. 1192]. The other Cassini-like
formulas (cf. [4, Thm. 5.3, pp. 74–75]) are new. We give a different proof than
Panda and Ray which avoids induction.

Theorem 6.7. Let ((Bi, Ci))i≥0 be a class of upper k-gap balancing pairs,
((ri, r̂i))i≥0 its upper k-gap balancer pairs, and (mi)i≥0 the associated counterbal-
ancers. Then
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(a) (Bi + k − 1)2 −Bi−1Bi+1 = (2k − 1)2;
(b) C2

i − Ci−1Ci+1 = −8(2k2 − 1);
(c) (ri − k)2 − ri−1ri+1 = 1;
(d) r̂2i − r̂i−1r̂i+1 = 8(2k2 − 1);
(e) (mi − 1)2 −mi−1mi+1 = −4(k2 − 1).

Proof. Using (10) and (12), we obtain (a) from observing that

(Bi + k − 1)2 −Bi−1Bi+1 = (Bi + k − 1)2 − (3Bi − Ci + 1− k)(3Bi + Ci + 1− k)

= C2
i − [8B2

i + 8(1− k)Bi + (2k − 1)2] + (2k − 1)2

= (2k − 1)2

where the last equality follows from (5). The other formulas can be established
similarly where the identity m = C−1

2 is used for (e). �

Considering the expressions on the right side of the formulas in Theorem 6.7 as
sequences indexed by k, we note several connections with The On-line Encyclopedia
of Integer Sequences [9]. The sequences A016754 and A000012 appear in (a) and
(c), respectively. A constant multiple of the sequence A056220 arises for (b) and
(d), and a constant multiple of A005563 occurs in (e).
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