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FACTORIZATION THEOREMS FOR RELATIVELY PRIME DIVISOR SUMS, GCD
SUMS AND GENERALIZED RAMANUJAN SUMS

HAMED MOUSAVI
MAXIE D. SCHMIDT

ABSTRACT. We generalize recent matrix-based factorization theorems for Lambert series generating func-
tions generating the coefficients (f % 1)(n) for some arithmetic function f. Our new factorization theorems
provide analogs to these established expansions generating sums of the form Zd:(d,n):l f(d) (typeI) and the
Anderson-Apostol sums >, .) f(d)g(n/d) (type II) for any arithmetic functions f and g. Our treatment
of the type II sums includes a matrix-based factorization method relating the partition function p(n) to
arbitrary arithmetic functions f. We also conclude the last section of the article by directly expanding new
formulas for an arithmetic function g by the type II sums using discrete Fourier transforms for functions over
inputs of greatest common divisors and by suitably defined orthogonal polynomial sequences whose weight
function we can define by an inverse Laplace (Mellin) transform involving the partition function p(n). There
are numerous applications and special cases of our new results which we are able to cite as examples in the
article. Particular cases of the applications we give in the article include new identities for Euler’s totient
function, the Ramanujan sums cq(n), the generalized sum-of-divisors functions, the Mertens function which
is the summatory function of the Mobius function, and the cyclotomic polynomials.

1. INTRODUCTION

1.1. Motivation. We are motivated by considering the breakdown of the partial sums of an arithmetic
function f(d) whose average order we would like to estimate into sums over the pairwise disjoint sets of
component indices d < x:

xT

S = 3 f+ Y )+ 7(d). 1)
d<z d=1 dlz d=1
(d,z)=1 1<(d,z)<z

In particular, in evaluating the partial sums of an arithmetic function f(d) over all d < x, we wish to break
the terms in these partial sums into three sets: those d relatively prime to x, the d dividing z, and the
somewhat less “round” set of indices d which are neither relatively prime to z nor proper divisors of . In
particular, if we let f denote an arithmetic function, we define the remainder terms in our average order
expansions as follows:

d<z

Sp) =3 "fd - > f@d) - fd). (2)
=1 dlz

d
(d,z)=1
For instance, when x = 24 we have that

§f(24) = f(9) + f(10) + f(14) + f(16) + f(18) + f(20) + f(21) + f(22).
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We observe that the last divisor sum terms in (2) correspond to the coefficients of powers of ¢ in the
Lambert series generating function over f in the following form considered in the next subsection:

S f(d) = Zf gl < 1.

d|z n>1

We can see that the average order sums on the left-hand-side of (1) correspond to the hybrid of divisor
and relatively prime divisor sums of the form

Sra-x ¥ swmi-% 3 (%)

n<z m|z m|z

(k)1 (kim)=1

We study and prove new results relating both variants of the sums expanding the right-hand-side of the
previous equation to restricted partitions and special partition functions. Namely, a combination of the
results we prove in Section 2 and the Lambert series factorization theorem results summarized in the next
subsection allow us to write!

n j—1

D fd) =" sen Z Z )21 n—j)XLk(j—k’—Gi)[j—k‘—GiZ1]5-f<7(x21)k>’

n<x dlz+1 0 k=1 =0
where [n = k]; = 6, denotes Iverson’s convention, G; := 3 [j/2] [(3j +1)/2] denotes the sequence of

k
interleaved, or generalized pentagonal numbers, the triangular sequence s, 1, := [¢"](q; q)Ool e corresponds

to the difference of restricted partition functions discussed in the next subsection, and p(n) i 1S the classical
partition function. The analysis of the asymptotic properties of these sums is a central topic in the study
of the behavior of arithmetic functions, analytic number theory, and in applications such as algorithmic
analysis. Our new results connect variants of such sums over multiplicative functions with the distinctly
additive flavor of the theory of partitions.

1.2. Variantions on recent work. There is a fairly complete and extensive set of expansions providing
identities related to these Lambert series generating functions and their matrix factorizations in the form of
so-termed “Lambert series factorization theorems” studied by Merca and Schmidt in 2017-2018 [15, 9, 11].
These results provide factorizations for a Lambert series generating function over the arbitrary arithmetic
function f expanded in the form of

o e (S o o

n>1 n>1

where s, & = 5o(n, k) —se(n, k) is independent of f and is defined as the difference of the functions s,/ (n, k)
which respectively denote the number of k’s in all partitions of n into an odd (even) number of distinct
parts. These so-termed factorization theorems, which effectively provide a matrix-based expansion of an

1 For natural numbers k > 1, we use the notation X1,5(n) to denote the principal Dirichlet character (modulo k) which is
defined explicitly for all n > 1 by [12, §27.8]
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ordinary generating function for the divisor sums of the type enumerated by Lambert series expansions,
connect the additive theory of partitions to the more multiplicative constructions of power series generating
functions found in other branches on number theory. In these cases, it appears that it is most natural, in
some sense, to expand these sums via the factorizations defined in (3) since the matrix entries (and their
inverses) are also partition-related. It then leads us to the question of what other natural, or cannonical
analogous expansions can be formed for other more general variants of the above divisor sums.

More generally, we can form analogous matrix-based factorizations of the generating functions of the
next summation sequences provided that these transformations are invertible:

3 U SERFICI P o § SRRV P

> = >
TL_l kke.AlnA”lg[lvn} n>1

The sums in (4) below are refered to as type I and type II sums in the next subsections as the special cases
of the generalized factorizations defined by the previous equation when A, :={d: 1 <d < mn,(d,n) =1}
and A, :={d:1<d <n,d|(k,n) =1} for some 1 < k < n, respectively.

Z fd (4)

(d 1‘)

byt = 5 10 7(3)

d|(k,x)

In particular, we define the following preliminary constructions for the factorizations of the Lambert-like
series whose coeflicients are respectively given by the sums in the previous two definitions:

Ty(z) = [¢"] Zztn kf(k)-q"+ f(1)-q (5a)
Oon>2k 1
q7q n>2 k=1

We focus on the special expansions of each factorization type in Section 2 and Section 3, respectively,
though we note that other related variants of these expansions are possible.

1.3. Applications of our new results.

1.3.1. Forms of the type I sums. The identities and theorems we prove for the general sum case defined
by (4) in Section 2 can be useful in constructing new identities for well-known functions which have not
yet been discovered, and hence, are not well explored yet. We give a few notable examples of summation
identities which express classical functions and combinatorial objects in new ways below to illustrate the
stylistic components to our new methods before we set out to prove them for the general case later in this
article.
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We obtain the following identities for Euler’s totient function where and where [n = k|5 = 6, 1 denotes
ITverson’s convention based on our new constructions:
n j—1 j

ZZan ) Wﬂxlk(j—k Gi)lj—k—G;>1]5+[n=1]

j=0 k=1 i=0
n d+1 d

o(n) = ZZZp (i + 1= B0k = Gy)pai [k — G5 > 1

d=1 k=1 1i=1 j=0
(d,n)=1
To give another related example that applies to classical multiplicative functions, recall that we have a
known representation for the Mobius function given as an exponential sum in terms of powers of the nt
primitive roots of unity given by [3, §16.6]
n

p(n)= > exp (m%).

d=1
(d,n)=1

The Mertens function, M(x), is defined as the summatory function over the Mébius function p(n) for all
n < z. Using the definition of the Mobius function as one of our type I sums defined above, we have new
expansions for the Mertens function given by (c¢f. Corollary 3.15)

M(z)= ] <an—3 DI — k=G [j — k — Gi > 1] 2“’k/">.

1<k<j<n<z \1=0

Finally, we can form another related polynomial sum of the type indicated above when we consider the
logarithm of the cyclotomic polynomials leads to the sums

log @, ( Z log ( e2mk/">

1<k<n
(kn)=1

= Z (an—g D2y (G — k=G [ — k — Gy > 1] 10g< eka/n))‘
1<k<j<n \i=0

1.3.2. Forms of the type II sums. The sums Ly, (n) are sometimes refered to as Anderson-Apostol sums
named after the authors who first defined them (cf. [2, §8.3] [1]). Other variants and generalizations of these
sums are studied in the references [5, 7]. There are many number theoretic applications of the periodic
sums factorized in this form. For example, the famous form of Ramanujan’s sum ¢,(n) is expressed as the
following right-hand-side divisor sum [4, §IX]:
n
can) =Y ™M= d-pulq/d).
( n)l d|(g;n)

The applications of our new results to Ramanujan’s sum include the expansions

en(@) = [w?] | Sl (u,w) ST (1) u(k — 6y)
k=1

Jj=0
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=30 X depsd— k) | S0k - G),

k=1 \d|(n,z) Jj=0

where the inverse matrices uil_kl)(u, w) are expanded according to Proposition 3.1. We then immediately

have the following new results for the next special expansions of the generalized sum-of-divisors functions

for R(s) >0

)2k — G
os(n) = nC(s +1) ZZ > d-plijd - k) Z( W;ﬁgk G)

i=1 k=1 \d|(n,i) j>0
(r(Lk+z)
n,i)
Cls+1) ZZ e
i=1 k>0

Section 3.3 expands the left-hand-side function g(z) in (5b) by considering a new indirect method involving
the sums Ly 4 ,(n) using discrete Fourier transforms of functions of the greatest common divisor studied
n [6, 16]. This method allows us to study the factorization forms in (5b) by bypassing the complicated
forms of the ordinary matrix coefficients wu,, x(f, w) which we expand in Corollary 3.4 of Section 3.1. These
discrete Fourier series methods lead to the next key result proved in Theorem 3.13 that

k—1
ZZd.Lf,g,r(k‘)e<—?> (k/d) = o(d) f(d)(k/d)*g(k/d),

d|k T=0 d|k

where e (z) = exp(2m - x) is standard notation for the exponential function.

1.4. Significance of our new results. Our new results provide generating function expansions for the
type I and type II sums in the form of matrix-based factorization theorems. The matrix products involved
in expressing the coefficients of these generating functions for arbitrary arithmetic functions f and g are
closely related to the partition function p(n). The known Lambert series factorization theorems proved in
the references and which are summarized in the subsections on variants above demonstrate the flavor of
the matrix-based expansions of these forms for ordinary divisor sums of the form (f * 1)(n) = 3_, f(d).
Our extensions of these factorization theorem approaches in the context of the new forms of the type
I and type II sums similarly relate special arithmetic functions in number theory to partition functions
and more additive branches of number theory. The last results proved in Section 3.3 are expanded in
the spirit of these matrix factorization constructions using discrete Fourier transforms of functions (and
sums of functions) evaluated at greatest common divisors. We pay special attention to illustrating our
new results with many relevant examples and new identities expanding famous special number theoretic
functions throughout the article.

2. FACTORIZATION THEOREMS FOR SUMS OF THE FIRST TYPE

2.1. Inversion relations. We begin our exploration here by expanding an inversion formula which is
analogous to Mdbius inversion for ordinary divisor sums. We prove the following result which is the analog
to the sequence inversion relation provided by the Mobius transform in the context of our sums over the
integers relatively prime to n [13, cf. §2, §3].
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Proposition 2.1 (Inversion Formula). For all n > 2, there is a unique lower triangular sequence, denoted
by pin k., which satisfies the inversion relation

gy = 3 D) = fm) = gd+ Dpma
d=1 d=1
(d,n)=1

Moreover, if we form the matriz (i j)1<ij<n for any n > 2, we have that the inverse sequence satisfies
-1
,Ufiz,k) =[(n+1,k) =1]; [k < ns.
Proof. Consider the (n — 1) x (n — 1) matrix

([(17]) = 1]5)1§i,j<n ’

which effectively corresponds to the formula on the left-hand-side of the first equation by applying the
matrix to the vector of [f(1) f(2) --- f(n)]T and extracting the n*" column as our stated formula. Since
ged(n,n — 1) =1 for all n > 1, we see that this matrix is lower triangular with ones on its diagonal. Thus
the matrix is non-singular and its unique inverse, which we denote by (u; j)1<i j<n, leads to the sum on the
right-hand-side of the first equation when we shift n +— n + 1. The second equation restates the form of
the first matrix when we perform the shift of n — n + 1 as on the right-hand-side of the first equation. [

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00
-1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0o -1 -1 1 0 0 0 0 0 0 0 0 0 0 0
1 0o -1 0 -1 0 1 0 0 0 0 0 0 0 0 0 0
-1 0 2 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0
-1 0 0 0 1 0 -1 0 1 0 0 0 0 0 0 0 0
1 0 -1 1 o -1 1 -1 -1 1 0 0 0 0 0 00
-1 0 1 0 0 0 -1 O 0 1 0 0 0 0 00
1 0o -1 0 0 0 1 0 -1 -1 1 0 0 0 0 0
3 0o -2 0 -2 0 2 0o -1 0 -1 0 1 0 0 0 0
-3 0 1 0 3 o -1 -1 1 0 0 0o -1 1 0 0 0
-1 0 1 0 1 0 -1 0 0 0 0 0 -1 0 1 00
1 0 0 0 -2 0 0 1 0 0 1 -1 1 -1 -1 1 0
-3 0 2 0 2 0o -2 0 1 0 0 0 -1 0 0 01

tni for 1 <n,k <18

Figure 2.1. Inversion formula coefficient sequences
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Remark 2.2. Figure 2.1 provides a listing of the relevant analogs to the Mobius function in the context
of the Mobius transform of the ordinary divisor sum over an arithmetic function from the proposition.
We not know of a comparatively simple closed-form function for the sequence of p, 5 [17, cf. A096433].
However, we readily see by construction that the sequence and its inverse satisfy

n
E:/%kzo
d=1

(d,n)=1

ST ouil = o),
1

d=
(d,n)=1

where ¢(n) is Euler’s totient function. The first columns of the corresponding sums in the previous equation

performed over the columns index k for fixed n appear in the integer sequences database as the entry [17,

A096433].

2.2. Exact formulas for the factorization matrices. The next result is key to proving the exact

), and their expansions by the partition functions defined
in the introduction. We prove the following result first as a lemma which we will use in the proof of
Theorem 2.4 given below. The first several rows of the matrix sequence ¢, and its inverse implicit to the
factorization theorem in (5) are tabulated in Figure 2.2 for intuition on the formulas we prove in the next
proposition and following theorem.

formulas for the matrix sequences, t, ; and t;_kl

Lemma 2.3 (A Convolution Identity for Relatively Prime Integers). For all natural numbers n > 2 and
k > 1 with k < n, we have the following expression for the indicator function of whether (n,k) forms a
pair of relatively prime integers:

n
D tiap(n = §) = x1k(n).
=1

Equivalently, we have that
n
tn,k = Z(_l)’—i/ﬂXl,k(n - Gz) [’I’L -G > k+ 1]5 .
i=0
Proof. We begin by noticing that the right-hand-side expression in the statement of the lemma is equal to
u;_kl ) by the construction of the sequence in Proposition 2.1. Next, we see that the factorization in (5a) is
equivalent to the expansion

n—1 n J
Do @iy’ =YY pln— it S (k).
d=1 j=1 k=1
Since ugl_kl) = [(n+ 1,k) = 1];, we may take the coefficients of f(k) on each side of the previous equation

for each 1 < k < n to establish the claimed result. The equivalent statement of the first result follows by
a generating function argument applied to the product that generates the left-hand-side Cauchy product
in the first equation. O
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10 0 0 0 0O
101 0 0 0O0O0

1

110 0 00
01001000

1

11
-1
24

15
-1
32

0
9

-1

1 0 0

-1 0 00 0 0 0 10

6 4 3 2 1

12
-1
12

18
-3

—4
17

—6
24

7 6 3 2 2 1 11

8

13

oy (=1
(i) tfl,k)

Figure 2.2. The factorization matrices, t, r and ti;kl), for1<n, k<14

, the two

k>1

invertible lower triangular factorization sequences defining the expansion of (5a) satisfy exact formulas

Theorem 2.4 (Exact Formulas for the Factorization Matrix Sequences). For integers n,
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given by
tn,k:Z(_l)U/Q]XLk(n_k_Gj)[n_k_Gj > 1], (i)
§=0
t,(;kl) => p(d—k)pna; (i)
d=1

where we define the sequence of interleaved pentagonal numbers G; as in the introduction.

Proof of (i). Tt is plain to see by the considerations in our construction of the factorization theorem that
both matrix sequences are lower triangular. Thus, we need only consider the cases where n < k. By a
convolution of generating functions, the identity in Lemma 2.3 shows that

n

tnk = Z[qn_j](% Q)oo : [(] +1, k) = 1]6 :

j=k
Then shifting the index of summation in the previous equation implies (i). O
Proof of (ii). To prove (ii), we consider the factorization theorem when f(n) := SLT ) for some fixed r > 1.

We then expand (5a) as

n

S -

d= l n>1 k=1
(din)=
n 7j—1
. —1
= pln—5) x St
=1 k=1

=> pn—j)lr=j-1
j=1

=pn—1-—r).

t g

n,k *

Hence we may perform the inversion by Proposition 2.1 to the left-hand-side sum in the previous equations
to obtain our stated result. O

Remark 2.5 (Relations to the Lambert Series Factorization Theorems). We notice that by inclusion-
exclusion applied to the right-hand-side of (5a), we may write our matrices t, 5 in terms of the triangular
sequence expanded as differences of restricted partitions in (3). For example, when k := 12 we see that

12 12 12 12

q q q q
n,12) = 1]54¢" = - - + .
;2[( ) ]6 1_q 1_q2 1_q3 1_q6

In general, when k > 1 we can expand

> [tnk) = =Z

n>k
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Thus we can relate the triangles ¢,, ;, in this article to the s, ;, employed in the expansions from the references
as follows:

Sn,ks k= 1;
bk =N Y spa1hraa- p(d), k> 1.
dlk

2.3. Completing the proofs of the main applications. We remark that as in the Lambert series
factorization results from the references [9], we have three primary expansion types of identities that we
primarily consider for any fixed choice of the arithmetic function f in the forms of

n n j—1
Z f(d) = ZZP(” = Dtj—ef(k) + (1) [n = 1] (6a)
=1 =1 k=1

(d,n)=1

J

n—1 n
Dtk B =D ("4 D)oo - £(d) = [0 (g5 @)oo - F(1), (6b)
k=1 j=1 d=1

(d,g)=1

and the corresponding inverted formula providing that

n
=301 ST )BTk +1-6y) - (@ - £ |- (6¢)
k=1 j=0
k+1—G;>0
Now the applications cited in the introduction follow immediately and require no further proof than to
cite these results for the respective special cases of f. We provide other similar corollaries and examples
of these factorization theorem results below.

Example 2.6 (Sum-Of-Divisors Functions). For any o € C, the last expansion identity in (6) also implies
the following new formula for the generalized sum-of-divisors functions, o, = > din d®:

d
-1 z
cam =Yt | X 0lElsatk+1-6) — )@ 0
dn k=1 5>0
k+1—Gj>0
In particular, when « := 0 we obtain the next identity for the divisor function d(n) expanded in terms of
Euler’s totient function.

d
dm) =323t | D DIl +1- @) - i@ o)
dn k=1 3>0
k+1-G;>0
Remark 2.7. There are also numerous noteworthy applications of the expansions of the type-I sums we
have proved in this section in the context of exact (and asymptotic) expansions of named partition functions.
For instance, Rademacher’s exact series formula for the partition function p(n) involves Dedekind sums
implicitly expanded through sums of this type. Similarly, an asymptotic approximation for the named
special function ¢(n) = [¢"](—¢; ¢) [17, AO00009] which counts the number of partitions of n into distinct
parts involves an infinite series over modified Bessel functions and nested Kloosterman sums [12, §26.10(vi)].
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We have not attempted to study the usefulness of our new finite sums in these contexts in deconstructing
asymptotic properties in these more famous examples of partition formulas. A detailed treatment is
nonetheless suggested as an exercise to readers which may unravel some undiscovered combinatorial twists
to the expansions of such sums.

Example 2.8 (Menon’s Identity and Related Arithmetical Sums). We can use our new results proved
in this section to expand new identities for known closed-forms of special arithmetic sums. For example,
Menon’s identity [18] states that

p(n)d(n) = Y ged(k—1,n),
1<k<n
(k,n)=1
where p(n) is Euler’s totient function and d(n) = o¢(n) is the divisor function. We can then expand the
right-hand-side of Menon’s identity as follows:

n j—1

J
em)dn) =Y 3" pn— i) (D) x (G — k= Gi) [j — k — Gi > 15 ged(k — 1,n).
7=0 k=1 =0

Another closely related identity considered by Téth in [18] is that for any arithmetic function f we have
the identity (cf. [8])

ST fleed(k —1,m) = p(n) - S (px )(d)

1<k<n dln (’D(d)

(kn)=1
We can use our new formulas to write a gcd-related recurrence relation for f in two steps. First, we observe
that the right-hand-side divisor sum in the previous equation is expanded by

n j—1 3
2 (M;({l))(d) N w(ln) DD pn = NEDE (G~ k= G [~ k= Gi 2 1, flged(k — 1,n))
djn §=0 k=
[n

+ /(1)

Next, by M&bius inversion and noting that the Dirichlet inverse of u(n) is p* 1 = &, we can express f(n)
as follows:

S

r j—1 7

=333 3 = DD PG =k =G [ — k= Gi > 15 x

d|n T"d] =0 k=1 i=0
1P (d
 feed = 1.0 200 ()

D)) e(d)p(d)

din

3. FACTORIZATION THEOREMS FOR SUMS OF THE SECOND TYPE

3.1. Formulas for the inverse matrices. It happens that in the case of the series expansions we defined
in (5b) of the introduction, the corresponding terms of the inverse matrices u;}ﬁ( f,w) satisfy considerably
simpler formulas that the ordinary matrix entries themselves. We first prove a partition-related explicit
formula for these inverse matrices in Proposition 3.1 and then discuss several applications of this result.
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Proposition 3.1 (Formulas for the Inverse Matrix Sequence u;}ﬁ(f,w)). For alln>1and 1 < k <mn,
any fixed arithmetic function f, and w € C, we have that

n

ul kl)(f,w)zz Z fdpn/d—k) | w™.

m=1 \d|(m.n)

Proof. Let 1 < r < n and for some suitably chosen arithmetic function g define

= Lygm(n)uw™. (i)
m=1

By directly expanding the series on the right-hand-side of (5b), we obtain that

2 (Z wjalfow) -l w>> p(n— )

—an—] =rls =p(n—r).

Hence the choice of the function g which satisfies (i) above is given by g(n) := p(n — r). The claimed
expansion of the inverse matrices then follows. O

Corollary 3.2 (A New Formula for Ramanujan Sums). For any natural numbers x,m > 1, we have that

:ide(g—k)xZ( Dk -a)).

Fme) o
J

Proof. We in fact prove the following more general identity:

Ligmm) =3 3 fd (5 —k)x 3 (0l —ay). (7)

k=1d|(m,n) Jj=0
k‘>Gj

Since the coefficients on the left-hand-side of the next equation correspond to a right-hand-side matrix
product as

n k
"¢ D)oo > 9(m)g™ =D uni(frw) Y Lgm(k)uw™,
k=1 m=1

m>1

we can invert the matrix product on the right to obtain that

k
S L =3 (3 Y s (5 —k)-w™ | [ )@ 0w Y glm),
m=1

k=1 \m=1d|(n,m) m>1

so that by comparing coefficients of w™ for 1 < m < n, we obtain (7). The Ramanujan sums are the special
case of this identity where f(n) := n is the identity function and g(n) := p(n) is the Mébius function. [



FACTORIZATION THEOREMS FOR RELATIVELY PRIME DIVISOR SUMS 13

Remark 3.3. We define the following shorthand notation:

Lfg 5 w Z Lfg m
In this notation we have that ui_kl)( fiw) =1L £.p(—k) (n;w). Moreover, if we let the polynomials T),(z) :=

l+z+22+ ot 1=2 _1 , then we have expansions of these sums as convolved ordinary divisor sums
“twisted” by a semi—inseparable polynomial term of the form

Lfg n;w) def Ty ya(w wh)g (%) (8)

din

d

o o )

dln

The Dirichlet inverse of these divisor sums is also not difficult to express, though we will not give its
formula here. These sums lead to a first formula for the more challenging expressions for the ordinary
matrix entries u, 1 (f,w) given by the next corollary.

Corollary 3.4 (A Formula for the Ordinary Matrix Entries). To distinguish notation, let ﬁka(n; w) =
L(n) p(n—iy(n;w). Forn>1 and 1 <k < n, we have the following formula:

(1 —w)? ~
k(1) = = T T (1 — ) FDP (P palni )

S (Y s Bl P G ) Py i) - P (o 0) P, ()
(1 — wll)(l — wi2) e (1 — wim)

m=1 k<i1<--<im<n

When k = n, we have that
1 —w
w(l—w)- f(1)
Proof. This follows inductively from the inversion relation between the coefficients of a matrix and its

inverse. For any invertible lower triangular n X n matrix (a;;)i<ij<n, We can express a non-recursive
formula for the inverse matrix entries as follows:

Un,n(fa w) =

n—k—1

-1 1 On,k Qiy kQig iy Cig in " * Qi ign—1 Onji k=n
aizk) —_ _Yn + Z (_1)m+1 Z 1 2,21 913,22 mslm—1 m [k‘ < n]5+ [ ]6‘
’ an’n ak’k akvkailyil ai27i2 e aiM7i7n an,n

m=1 k<ii<--<im<n

The proof of our result is then just an application of the formula in (9) when a, ; := u, }.(f,w). While the
identity in (9) is not immediately obvious from the known inversion formulas between inverse matrices in
the form of

-1 [n = k] 1 —1
(-1) _ 5 angalY,

an,n Gn,.n

I
—_

J
the result is easily obtained by induction on n so we do not prove it here. O
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3.2. Formulas for simplified variants of the ordinary matrices. In Corollary 3.4 we proved an exact,
however somewhat implicit and unsatisfying, expansion of the ordinary matrix entries u, 1 (f,w) by sums

of weighted products of the inverse matrices u;_kl )( f,w) expressed in closed form through Proposition 3.1.

We will now develop the machinery needed to more precisely express the ordinary forms of these matrices
first for general cases of the indeterminate indexing parameter w € C.

1

f(l)() 0 0 0 0 0
f(2 1 1

A T
SACYRNS [ L <L

b oL T

_ _Je 1 1 1

f(1)3+f(1 MO OE For o tw Tm Y 0
(LR U ) i R R T T
78 * 7wz 7z~ e ) O m T T
LFR L 2@ Jw L fe e 1 @ J®  _J@ 1 1 1
For T i T TR T Fr T o T Fwr T Fur TR RO T

Table 3.1. The simplified matriz entries Uy, i

?
E“
=
I/\
=
e
IA
o

Remark 3.5 (Simplifications of the Matrix Terms). Using the formula for the coefficients of w,, ;(f, w) in
(5b) expanded by (8), we can simplify the form of the matrix entries we seek closed-form expressions for
in the next calculations. In particular, we make the following definitions for 1 < k < n:

n

Fn) = ——=f(n)

U o (fyw) := (WF — Dy p(f,0).

Then an equivalent formulation of finding the exact formulas for u, ;(f,w) is to find exact expressions
expanding the triangular sequence of u, ;(f, w) satsifying

> il Zunkfw > Flg (%)

720 dn
n—G;>0

We will obtain precisely such formulas in the next few results. Table 3.1 provides the first few rows of our
simplified matrix entries.

Definition 3.6 (Special Multiple Convolutions). For n,j > 1, we define the following nested j-convolutions
of the function f(n) [10]:

(=1)°1 f(n), if j =1
ds;(n) = C% (d)dsj—1 (%), ifj>2.
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n | D(n) n | D(n) n | D(n)
9| _ 12 7 | 1O 19 | 2B @W+2f)FO)-fMf(12) _ 3/(2)°f(3)
fQ)? Jap o . ) fQ)? fay
3| 4B g | QW= FMFE) _ f2)° | 13| _L03)
_F2 o fae fFay F(1)?
4 | L@2=F)f() g | [B?=J(1)]9) 14 | 2@ @-FW)F ()
f(g)(l)3 21?(2)1}((15))3 F(1)F(10) 2/(3)f (f)(l)g(l)f(lf’)
Pl N T 1o O o )
6 | 2/@UIB)-FWF(6) | 1 | _ 10D 16 | L@ _ 3/(@F2)° | J@?+2f2)f©®)  [06)
f@s f)? fQ@)? fat f@s f)?

Table 3.2. The multiple convolution function D(n) for 2 < n < 16.

Then we define our primary multiple convolution function of interest as

D(n) = ZM.

= F(1)2+1

For example, the first few cases of D(n) for 2 < n < 16 are computed in Table 3.2. The examples in the
table should clarify precisely what multiple convolutions we are definining by the function D(n). Namely,

a signed sum of all possible ordinary k Dirichlet convolutions of fwith itself evaluated at n.

Lemma 3.7. We claim that for all n > 1

* (n :—M n
(D * f)(n) 0 +e(n).

Proof. We note that the statement of the lemma is equivalent to showing that
€ 1
D+——](n)=f""(n). (10)
A general recursive formula for the inverse of f(n) is given by [2]

-~

) Zf “n/d) | 0> 1y + = In =1,

d>1
This definition is almost how we defined ds;(n) above. Let’s see how to modify this recurrence relation
to obtain the formula for D(n). We can recursively substitute in the formula for f~!(n) until we hit the

point where successive substitutions only leave the base case of f~1(1) = 1/f(1). This occurs after (n)
substitutions where Q(n) denotes the number of prime factors of n counting multiplicity. We can write the
nested formula for ds;(n) as

dsj(n) = i (F= FV)e) oo (F= F)=) ),

j — 1 factors
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~ ~

where we define fi(n) := f(n)[n > 1]ls — f(1)[n =1];. Next, define the nested k-convolutions Cj(n)
recursively by

fn) = F()e(n), ifk=1;
Ci(n) = C% (f(d) A(l)g(d)) Cr_r(n/d), itk >2.

Then we can express the inverse of f(n) using this definitition as follows:

Q(n)
~ w(n/d)  e(n/d)
ROEDN fld E —

din

Q(n)+1 f(1)2

Then based on the initial conditions for £ =1 (j = 1) in the definitions of Cj(n) and ds;(n), we see that
the function in (10) is in fact the inverse of f(n). O

Proposition 3.8. For alln>1 and 1 < k < n, we have that

Zp (0)Un—i x(f,w) =D <)[n—0modk¢] L

Proof. We notice that Lemma 3.7 implies that

€ ~
g(n) = <<D+ m) * f) (n),

where £(n) is the multiplicative identity for Dirichlet convolutions. The last equation implies that

€ N .
g(n) = <<D+ m) * f*g) (n). (i)

Additionally, we know by the expansion of (5b) and that @, ,(f,w) = 1/]?(1) that we also have the
expansion

=> {Zp Un— Jk] > F(d)g(k/d). (ii)

k>1 | j=0 d|k
So we can equate (i) and (ii) to see that

n—1

N B n [n = k]
]Z:;)p(J)Un—j,k =D (E) [kln]s + ) 2.

This establishes our claim. O

Corollary 3.9 (An Exact Formula for the Ordinary Matrix Entries). For alln > 1 and 1 < k < n, we
have that

~ j n— G, _ 1 _
Up i (f,w) = Z (—1)(21 <D< ? )[n—GjZOmodk]é—km[n—Gj—k]5>.

720
n—Gj >0
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Proof. This is an immediate consequence of Proposition 3.8 by noting that the generating function for p(n)
is (¢;q)=} and that
7 )
(:0)0 = D (-1 1%, O

=0

3.3. The general matrices expressed through discrete Fourier transforms. The proof of the key
formula result given in Theorem 3.13 builds on several key ideas for discrete Fourier transforms of the
greatest common divisor function (k,n) = ged(k,n) developed in [6]. We adopt the common convention
that the function e(z) denotes the exponential function e(x) := €2™®. Throughout the remainder of this
section we take k > 1 to be fixed and consider divisor sums of the following form which are periodic with

respect to k:
Lrguln) = 3 1(@a (G)-

d|(n,k)

In [6] these sums are called k-convolutions of f and g. We will first need to discuss some terminology
related to discrete Fourier transforms.
A discrete Fourier transform (DFT) maps a finite sequence of complex numbers {f[n]}2 - onto their

associated Fourier coefficients {F[n]}) - defined according to the following reversion formulas relating
these sequences:

The discrete Fourier transform of functions of the greatest common divisor, which we will employ repeatedly
to prove Theorem 3.13 below, is summarized by the formula in the next lemma [6, 16].

Lemma 3.10 (Typical relations between periodic divisor sums and Fourier series). if we take the any two

arithmetic functions f and g, we can express the periodic divisor sums of the forms
k

s(frgin) = Y f(d)g(k/d) =Y ax(f,g;m) -7k, (11a)

d|(n,k) m=1
where the discrete Fourier coefficients in the second equation are given by

w(Fam) = Y gld)f(k/d)- 5 (11h)

d|(m,k)

Proof. For a proof of these relations consult the references [2, §8.3] [12, ¢f. §27.10]. These relations are also
related to the ged-transformations proved in [6, 16]. O

Lemma 3.11 (DFT of Functions of the Greatest Common Divisor). Let h be any arithmetic function.
For natural numbers m > 1, the discrete fourier transform of h defined by

hla)(m Zh ged(k,m)) e <’:§>

k=1
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is given by hla] = h * c_(a) where

- ka
em(a) == g e <E> .
k=1
ged(k,m)=1

The function ¢y, (a) defined by the previous equation is Ramanujan’s sum expanded by the divisor sums in
Corollary 3.2 of the last subsection.

Definition 3.12 (Notation and Special Exponential Sums). In what follows, we denote the ¢/* Fourier
coefficient with respect to k of the function Ly 4 (n) by ay ¢ which is well defined since Ly 4 1(n) = Ly g x(n+
k) is periodic in k. We then have an expansion of this function in the form of

k—1

In
Lf’g7 Zak € < >

where we can compute these coefficients directly from Ly g x(n) according to the formula

In
A p = g L
kit = 1.9, k < k >
We also notice that these Fourier coefficients are given explicitly in terms of the f and g by the formulas

cited in (11) of the introduction.

Theorem 3.13. For all arithmetic functions f,g and natural numbers k > 1, we have that

k—1
ZZd-Lf,g,r(k)e<——> (k/d) = o(d) f(d)(k/d)*g(k/d),

d|lk =0 dlk
where p(n) is Euler’s totient function.

Proof. We notice that the left-hand-side of the claim is equivalent to the divisor sum over the d*"* Fourier
coefficients with respect to k£ in the form of

il rd
SN dLyga(k)e <—?> (k/d) = d- apau(k/d),

dlk =0 d|k

where the Fourier coefficients in this expansion are given by (11) [2, §8.3] [12, §27.10]. In particular, we

have that
Qk.d = k- Z k / 7’
r|(k,d)
The left-hand-side of our expansion then becomes (cf. (12) below)

> d-agap(k/d) =YY rg(r) < ) ( >

d|k dk r|d

- altlya (5) % Zratr (£)

d=1 r|d
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k/r

— ng(r)f <§> X ;dr T <£> [d]k]s

r|k

=S (£) e (2).

r|k

We notice that while the exponential sums in the original statement of the claim are desirable in expanding
applications, this direct expansion is difficult to manipulate algebraically. Therefore, we have swapped out
the exponential sum for the known divisor sum formula for the Fourier coefficients implicit in the theorem
statement in order to prove our key result. O

Corollary 3.14 (An Exact Formula for g(n)). For any n > 1 and arithmetic functions f,g we have the
formula

d-1 . .
olo) = 3250 S T D () uta ot

dln jl|d r=0

where y(n) = (pf Id_9)~1(n) is the Dirichlet inverse of o(n)/n?.

Proof. We first divide both sides of the result in the theorem by k2. Then we apply a convolution with the
left-hand-side of the formula in Theorem 3.13 with y(n) defined as above to obtain the exact expansion for

g(n). O

Corollary 3.15 (The Mertens Function). For all x > 1, the Mertens function defined in the introduction
1s expanded by Ramanujan’s sum as

where y(n) = (pId_1)~Y(n) is the Dirichlet inverse of p(n)/n.

Proof. We begin by citing Theorem 3.13 in the special case corresponding to Ly, (n) a Ramanujan sum
for f(n) = n and g(n) = p(n). Then we sum over the left-hand-side g(n) in the theorem result to obtain
the initial summation identity for M (z) given by

M@= LYY Lt (-Z)u(5)u(3): 0

n<z dln jld r=0
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We can then apply the identity that for any arithmetic functions h, u,v we can interchange nested divisor
sums as

1%]
ZZh u(k/d)v( Zh > uk)v(dk) | . (12)
k=1 d|k k=1

Application of this identity in (i) leads to the first form for M (z) stated above. O
Corollary 3.16 (Euler’s Totient Function). For any n > 1 we have

oty rj d
n)=n- ZZZ ﬁcd(r)e <—3> ] <3> .
din jld =0

Additionally, we have the following expansion of the average order sums for ¢(n) given by
vl cq(r) |z x rj d
> e =335 [g) ([g) - 1) x 2se (7)“(3)-
2<n<z d=1r=0 jld
Proof. We consider the formula in Theorem 3.13 with f(n) := n and g(n) := u(n). Since the Dirichlet

inverse of the Mobius function is % 1 = €, we obtain our result by convolution and multiplication by the
factor of n. The average order identity follows from the first expansion by applying (12). O

3.4. An approach via polynomials and orthogonality relations. In Corollary 3.9 of Section 3.2 we
proved an exact formula for the modified ordinary matrix entries @, »(f, w) defined by the simplifications of
the original w,, ;(f, w) from (5b) in Remark 3.5 (¢f. Table 3.1). We proved the exact formula for u, ;(f, w)
in the previous subsection using a more combinatorial argument involving the multiple convolutions of
the function D(n) constructed recursively in Definition 3.6 (see Table 3.2). In this section we define a
sequence of related polynomials P;(w;t) whose coefficients are the corresponding simplified forms of the
inverse matrices which provide us with the identity (c¢f. Proposition 3.17)

Zﬂn,k(f,w) - Pp(w;t) = t".
=

which we may integrate against in our constructions below. We then find and prove the form of a weight
function w(t) which provides us with the orthogonality condition

/ w(t) Py (w: £) Py (s £)dt = cx(w) [i = jl; (13a)
It|=1,teC
where we define the right-hand-side coefficients by

en(w) = / w(t) (P, (w;t))? dt. (13b)
|t|=1,teC

2 We also have a related identity which allows us to interchange the order of summation in the Anderson-Apostol sums of
the following form for any natural numbers x > 1 and arithmetic functions f,g,h: N — C:

Zf g )h(%)—gg S/:h f (ged(z,7)d) .

r|(d,z)
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This consitruction, which we develop and make rigorous below, provides us with another method by which
we may exactly extract the form of the simplified matrices i, ;(f, w). Namely, we have that for all n > 1
and 1 < k < n the operation

1 " P (w; C
WA lte(Cw(t)t Py (w; t)dt, (13c)

yields an exact formula for our matrix entries of interest here. We now develop the requisite machinery to
prove that this construction holds.

an,k(fa w) =

Proposition 3.17 (A Partition-Related Polynomial Sum). Let an arithmetic function f be fized and for
an indeterminate w € C let f(n) denote

~ wn

fn) = ——f(n).

For natural numbers j > 1 and any indeterminate w, let the polynomials

P;(w; Z > fd) <——z> t. (14)

i=1 dlj

Then for all n > 1 we have that

D ng(fiw) - Po(wst) = .
=1
Proof. The claim is equivalent to proving that for each n > 1, we have that
(W' = 1) - Po(wit) = > ul P (fow) - -, (15)
k=1

Notice that the previous equation also implies that

0= a )t =3 [ Faw (B ) | & = S F@ < Sat .
k=1

k=1 \d|n dn i=0
Now finally, for each 1 < k < n, we can expand the coefficients of the left-hand-side as
n __ 1)wd
1P (wit) = S WD nd —
[t¥] P (w3 ) = > a1/ (Dp(n/d—k)

1
din
n/d

_Zf p(n/d—k) [ > w
i=1

:Z > f(dp(n/d — k) [d]n]; | w™ (m = id)

m=1 \d/m

:Z Z f(dpn/d—k) | w™.

m=1 \d|(m,n)

Hence by the formula for the inverse matrices given in Proposition 3.1, we have proved our claim. O
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Proposition 3.18 (Another Matrix Formula). Forn > 1 and 1 < k < n, we have the following formula
for the simplified matriz entries where the coefficients ¢ are given by (13b):

Galf) = 3 (ol Fr (2.

Jj=0
n—G;>0
kln—G;

Proof. According to the last expansion in (16), we have that

S = (71 P) ()
=0

or equivalently that

= Z (_1)%} : (f‘l >|<P> (n—Gj).

Jj20
TL—G]‘>0

Then by substituting the previous equation into (13c) we have our result. O
Theorem 3.19. Suppose that the form of the sequence of {cp(w)}r>1 is given. Let Dy, (n) := DTEFT(f)],

denote the discrete-time Fourier transform of f. Then writing t := €' for 0 < u < 27, we have the following
exact expression for the weight function w(t) which depends only on the prescribed sequence of cp(w):

w(e) =20 S EEL Y 0l (e« FY ) -Gi-G) | ).

Gr<i G1<i—Gy
Proof. We have that
cilw) =D F(d) < Y- pr) x Y Fle) x Y p(l) x /| _ e,
dji r=0 cli 1=0 =

For the t := ¢™ and 0 < u < 27 defined above, let h(u) = w(e™). By a direct appeal to Moebius inversion
we see that

(o 1« FYG) = 33 p)p)Dy, (2i— L= 7).

Then we can obtain that

i—1

> pr) Dy 2 =) = > (=Dl (e x T F7) - G,

r=0 Gl<’i
and

. r L s T .
Dty =3 (0l ST ()T (e s FY« FY) - G- G,
Gr<i G <i—Gr

Thus by taking DTFT of both sides we arrive at the formula

(D) =p (0l Y ) (e P -G | @)

Gr<i G <i—Gy
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Since h(u) = w(e™) this proves our key formula. O

4. CONCLUSIONS

We have proved several new expansions of the type I and type IT sums defined by (4) for any prescribed
arithmetic functions f and g. Our new results proved in the article include treatments of the expansions
of these two sum types by both matrix-based factorization theorems and analogous identities formulated
through discrete Fourier transforms of special function sums. The type I sums implicitly define many
special number theoretic functions and sequences by exponential sum variants of this type. Perhaps the
most notable canonical example of this sum type is given by Euler’s totient function which counts the
number of integers relatively prime to a natural number n. The Mobius function also has a representation
in the form of a type I sum.

The type II sums form an alternate flavor of the ordinary divisor sums enumerated by Lambert series
generating functions and the Dirichlet convolutions of two arithmetic functions f and g. These sums are
sometimes refered to as Anderson-Apostol sums, or k-convolutions in the references. The prototypical
example of sums of this type are given by the Ramanujan sums ¢,(n) which form expansions of many other
special number theortic functions by composition and infinite series. Our results provide new and useful
expansions that characterize common and important classes of sums that arise in applications. Our results
are unique in that we are able to relate partition functions to the expansions of these general classes of
sums in both cases.
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