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The diffusion of molecules in complex intracellular environments can be strongly influenced by spatial hetero-
geneity and stochasticity. A key challenge when modelling such processes using stochastic random walk frame-
works is that negative jump coefficients can arise when transport operators are discretized on heterogeneous
domains. Often this is dealt with through homogenization approximations by replacing the heterogeneous
medium with an effective homogeneous medium. In this work, we present a new class of homogenization ap-
proximations by considering a stochastic diffusive transport model on a one-dimensional domain containing
an arbitrary number of layers with different jump rates. We derive closed form solutions for the kth moment
of particle lifetime, carefully explaining how to deal with the internal interfaces between layers. These general
tools allow us to derive simple formulae for the effective transport coefficients, leading to significant gener-
alisations of previous homogenization approaches. Here, we find that different jump rates in the layers gives
rise to a net bias, leading to a non-zero advection, for the entire homogenized system. Example calculations
show that our generalized approach can lead to very different outcomes than traditional approaches, thereby
having the potential to significantly affect simulation studies that use homogenization approximations.

I. INTRODUCTION

The motion of cells in heterogeneous tissues and the
diffusion of molecules in complex intracellular environ-
ments is strongly influenced by spatial heterogeneity1–5.
Modelling transport through heterogeneous materials is
far more challenging than modelling transport through
homogeneous materials. Mathematical models of trans-
port through homogeneous materials can often be solved
analytically, whereas mathematical models of transport
through heterogeneous materials often require repeated
numerical calculations, thereby providing less general in-
sight.

The motion of cells and molecules in biological tis-
sues is often modelled using stochastic approaches6–8.
A key challenge is that negative jump coefficients can
arise when transport operators are discretized on do-
mains characterized by heterogeneous transport coeffi-
cients9–13. This problem can be circumvented through
homogenization by replacing the heterogeneous medium
with an effective homogeneous medium9–13. One of the
challenges in using a homogenization approach is that
there is a wide range of techniques and results avail-
able. For continuum models, based on partial differ-
ential equations, transport equations can either be ho-
mogenized using volume averaging or asymptotic expan-
sions14. For stochastic models of transport through het-
erogeneous media, there are also several homogenization
approximations available for different applications15–18.

We present a new approach for homogenization by con-
sidering a stochastic, lattice-based transport model on
an interval [0, L] partitioned into m layers, (xi−1, xi) for
i = 1, . . . ,m, where 0 = x0 < x1 < x2 < . . . < xm−1 <
xm = L and xi denotes the location of the interface be-
tween layer i and layer i + 1 for i = 1, . . . ,m − 119. An
agent, initialized at some location, undergoes a random
walk with probability Pi of taking one step in the positive

x direction and probability Pi of taking one step in the
negative x direction during each time step when located
in the interior of layer i. A key tool used to describe
this kind of model in a homogeneous setting is the mean
particle lifetime or mean first exit time9,20,21. Here we
generalize this concept and provide exact, analytical tools
that can be used to calculate the kth moment of parti-
cle lifetime in an arbitrarily heterogeneous medium22–26.
The new method is very powerful as it leads to exact
closed form expressions for any moment of particle life-
time, k = 1, 2, 3, . . ., in an arbitrary system composed of
any number of layers, m = 1, 2, 3 . . .. With these tools we
derive simple formulae for the effective transport coeffi-
cients, leading to significant generalisations of previous
results. Example calculations show that traditional ap-
proximations can lead to very different outcomes that
may not capture the appropriate underlying physics of
interest.

II. STOCHASTIC TRANSPORT MODEL

We consider a random walk in both a homogeneous
environment, shown in Fig 1(a), and a heterogeneous en-
vironment containing two or more layered homogeneous
materials with different material properties, shown in Fig
1(b). In both cases, the one-dimensional Cartesian geom-
etry [0, L] is discretized to give N lattice sites with uni-
form spacing, ∆ = L/(N − 1) > 0. Sites are indexed so
that site j has position x = (j−1)∆ for all j = 1, . . . , N .
For the heterogeneous environment, we choose N to en-
sure that a site is located at each interface (x = xi,
i = 1, . . . ,m) as shown in Fig 1(b). A particle is placed on
the lattice, and during each time step of duration τ > 0,
the particle undergoes a nearest-neighbour random walk.
Any walker reaching the left boundary, j = 1, is removed.
In contrast, the right boundary, j = N , is reflecting.
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FIG. 1. (a) Biased random walk in a homogeneous environment on the interval [0, L]. A particle takes one step in the positive x
direction with probability Pr and one step in the negative x direction with probability Pl. The continuum limit of the discrete
stochastic model is characterized by two transport properties, diffusivity and drift, represented by D and v for the homogeneous
model and Deff and veff for the homogenized model (b) Unbiased random walk in a heterogeneous environment, where the
interval [x0, xm] = [0, L] is partitioned into m layers. A particle in the ith layer takes one step in the positive x direction with
probability Pi and one step in the negative x direction with probability Pi. The continuum limit of the discrete stochastic
model is characterized by an individual diffusivity Di in the ith layer.

Let E(Tj) be the mean time for a particle released at

site j to exit the system, and E(T
(k)
j ) to be the kth

moment of the lifetime distribution of an ensemble of
particles released at site j. The family of moments,
k = 1, 2, 3, . . ., can be written as

E(T
(k)
j ) =

∞∑
l=0

tk P(Tj = t), (1)

where t = lτ is time, E(T
(0)
j ) = 1 and P(Tj = t) is

the probability that an agent released at site j exits the
system at time t. Our aim is to arrive at a discrete re-

lationship involving E(T
(k)
j ) for both the homogeneous

and heterogeneous environments, which can then be con-
verted into a family of boundary value problems for which
we can derive exact closed-form solutions.

Homogeneous environment. We consider both a biased
and an unbiased random walk in the homogeneous en-
vironment, Fig 1(a). A particle currently located at a
lattice site in the interior of the medium has three possi-
ble outcomes during the next time step: (i) the particle
takes one step in the positive x direction with probability
Pr ∈ (0, 1); (ii) the particle takes one step in the nega-
tive x direction with probability Pl ∈ (0, 1− Pr]; or (iii)
the particle remains at the same location with probabil-
ity 1 − Pl − Pr. Considering a particle initially released
at lattice site j and conditioning on the three possible
outcomes during the first step of the stochastic process,
we have

P(Tj = t) = P(Tj−1 = t− τ)Pl + P(Tj+1 = t− τ)Pr

+P(Tj = t− τ)(1− Pr − Pl). (2)

If we first consider k = 1, substituting Eq (2) into Eq (1),
re-writing t as [(t− τ) + τ ], and rearranging, we obtain

Pl

[
E(T

(1)
j−1)− E(T

(1)
j )

]
+ Pr

[
E(T

(1)
j+1)− E(T

(1)
j )

]
= −τ,

(3)
which can be thought of as a discrete conservation state-

ment for E(T
(1)
j ). Now repeating the process for k = 2

by re-writing t2 as [(t− τ) + τ ]
2

leads to

Pl

[
E(T

(2)
j−1)− E(T

(2)
j )

]
+ Pr

[
E(T

(2)
j+1)− E(T

(2)
j )

]
=

(
2

0

)
(−τ)2 +

(
2

1

)
(−τ)1E

(
T

(1)
j

)
, (4)

which shows that the discrete conservation statement for
the second moment is related to the first moment. Re-
peating the process for k = 3 is sufficient to observe a
pattern that can be formalized by induction to give

Pl

[
E(T

(k)
j−1)− E(T

(k)
j )

]
+ Pr

[
E(T

(k)
j+1)− E(T

(k)
j )

]
=

k−1∑
l=0

(
k

l

)
(−τ)k−lE

(
T

(l)
j

)
, (5)

for all k = 1, 2, . . .. To convert this family of discrete con-
servation statements into a continuum model we identify

the discrete moment E(T
(k)
j ) with a smooth continuous

function Mk(x). Expressing E(T
(k)
j±1) in Eq (5) in terms

of appropriate Taylor series expansions

E(T
(k)
j±1) ≡Mk(x)±∆

dMk(x)

dx
+

∆2

2

d2Mk(x)

dx2

+O(∆3),

assuming Pr − Pl = O(∆)6 and considering the limit as
∆ → 0 and τ → 0 jointly in Eq (5) with the ratio ∆2/τ
held finite leads to the differential equation:

D
d2Mk(x)

dx2
− vdMk(x)

dx
= −kMk−1(x), (6)

for all k = 1, 2, 3, . . ., with M0(x) = 1. The appropriate
boundary conditions are:

Mk(0) = 0,
dMk(L)

dx
= 0, (7)

with the diffusion and drift coefficients, D and v, defined
as:

D =
(Pr + Pl)∆

2

2τ
, v =

(Pl − Pr)∆

τ
. (8)
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Note that v < 0 if Pr > Pl so the kth moment is ad-
vected in the opposite direction to that of a particle. For
an unbiased random walk, where Pl = Pr and v = 0, we
use the notation Mk(x) to denote the continuous repre-

sentation of E(T
(k)
j ) to distinguish it from Mk(x). Here,

Mk(x) satisfies the boundary value problem:

D
d2Mk(x)

dx2
= −kMk−1(x), (9)

Mk(0) = 0,
dMk(L)

dx
= 0, (10)

for all k = 1, 2, 3, . . ., with M0(x) = 1.
Heterogeneous environment. We consider an unbiased

random walk in the heterogeneous environment, Fig 1(b).
A particle currently located at a lattice site in the interior
of the ith layer has three possible outcomes during the
next time step: (i) the particle takes one step in the
positive x direction with probability Pi ∈ (0, 0.5]; (ii) the
particle takes one step in the negative x direction with
probability Pi; or (iii) the particle remains at the same
location with probability 1−2Pi. Here, the probability Pi

is indexed by the layer number to signify that it may vary
across layers. For this configuration, the kth moment of
particle lifetime satisfies the discrete relationship given
in Eq (5) with Pr = Pl = Pi:

Pi

[
E(T

(k)
j−1) + E(T

(k)
j+1)− 2E(T

(k)
j )

]
=

k−1∑
l=0

(
k

l

)
(−τ)k−lE(T

(l)
j ). (11)

To convert this family of discrete conservation state-

ments into a continuum model we identify E(T
(k)
j ) with

a smooth continuous function M
(i)
k (x) in each layer i =

1, . . . ,m, where xi−1 < x < xi. Expressing E(T
(k)
j±1) in

Eq (11) in terms of appropriate Taylor series expansions:

E(T
(k)
j±1) ≡M (i)

k (x)±∆
dM

(i)
k (x)

dx
+

∆2

2

d2M
(i)
k (x)

dx2

+O(∆3),

yields:

Pi∆
2 d2M

(i)
k

dx2
+O(∆3) =

k−1∑
l=0

(
k

l

)
(−τ)k−lM

(i)
l (x). (12)

Dividing Eq (12) by τ and considering the limit as ∆→ 0
and τ → 0 jointly with the ratio ∆2/τ held finite leads
to family of differential equations:

Di
d2M

(i)
k

dx2
= −kM (i)

k−1(x), xi−1 < x < xi, (13)

for i = 1, . . . ,m, where Di = Pi∆
2/τ is the diffusivity

associated with layer i. The appropriate boundary con-
ditions are

M
(1)
k (0) = 0,

dM
(m)
k (L)

dx
= 0. (14)

To close the problem, Eqs (13)–(14) need to be paired
with appropriate internal boundary conditions at the in-
terfaces between adjacent layers (x = xi, i = 1, . . . ,m−
1). The first boundary condition is to assume continuity
of the kth moment across the interface:

M
(i)
k (xi) = M

(i+1)
k (xi), (15)

where i = 1, . . . ,m− 1. The second boundary condition
is derived by analysing the discrete relationship satisfied
by the kth moment of particle lifetime at an arbitrary
interface. We assume a particle currently located at the
ith interface (x = xi) has three possible outcomes during
the next time step: (i) the particle takes one step in the
positive x direction with probability Pi+1; (ii) the particle
takes one step in the negative x direction with probability
Pi; or (iii) the particle remains at the same location with
probability 1 − Pi − Pi+1 (see Fig 1(b)). Clearly, this
requires Pi + Pi+1 ≤ 1 for all i = 1, . . . ,m − 1. For
this configuration, the kth moment of particle lifetime
satisfies the discrete relationship given in Eq (5) with
Pr = Pi+1 and Pl = Pi:

Pi

[
E(T

(k)
j−1)− E(T

(k)
j )

]
+ Pi+1

[
E(T

(k)
j+1)− E(T

(k)
j )

]
=

k−1∑
l=0

(
k

l

)
(−τ)k−lE(T

(l)
j ). (16)

Identifying E(T
(k)
j±1) in Eq (16) with appropriate Taylor

series expansions

E(T
(k)
j−1) ≡M (i)

k (x)−∆
dM

(i)
k (x)

dx
+

∆2

2

d2M
(i)
k (x)

dx2

+O(∆3),

E(T
(k)
j+1) ≡M (i+1)

k (x) + ∆
dM

(i+1)
k (x)

dx
+

∆2

2

d2M
(i+1)
k (x)

dx2

+O(∆3),

and utilising Eq (12) gives

Pi+1∆
dM

(i+1)
k (xi)

dx
− Pi∆

dM
(i)
k (xi)

dx
= O(∆3). (17)

Multiplying Eq (17) by ∆/τ and considering the limit as
∆→ 0 and τ → 0 jointly with the ratio ∆2/τ held finite
leads to the interface condition:

Di
dM

(i)
k (xi)

dx
= Di+1

dM
(i+1)
k (xi)

dx
, (18)

where i = 1, . . . ,m − 1. In summary, Eqs (13)–(15) and
(18) define a boundary value problem for the kth moment
of particle lifetime in the heterogeneous environment for
all k = 1, 2, 3, . . .. Here, setting k = 1 corresponds to the
mean particle lifetime, k = 2 corresponds to the second
moment of particle lifetime, and so on.
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Homogeneous random walk

Unbiased

M1(x) =
x(2L− x)

2D

M2(x) =
x(2L− x)

12D2

(
4L2 + 2Lx− x2)

M3(x) =
x (2L− x)

120D3

(
48L4 + 24L3x− 8L2x2 − 4Lx3 + x4)

M4(x) =
x (2L− x)

1680D4

(
1088L6 + 544L5x− 176L4x2 − 88L3x3 + 12L2x4 + 6Lx5 − x6)

Biased

M1(x) =
1

v2

[
De−Lv/D −De−(L−x)v/D + vx

]
M2(x) =

1

v4

[(
4D2 + 4LDv + 2D2e−Lv/D

)(
e−Lv/D − e−(L−x)v/D

)
+ 2Dvx

(
e−Lv/D + e−(L−x)v/D

)
+ v2x2 + 2Dvx

]
Heterogeneous random walk

2 layers

M
(1)
1 (x) =

L

D1
x− 1

2

x2

D1
, 0 < x < x1

M
(2)
1 (x) =

1

2
l21

(
1

D1
− 1

D2

)
+ `1`2

(
1

D1
− 1

D2

)
+

L

D2
x− 1

2

x2

D2
, x1 < x < x2

m layers

M
(i)
1 (x) =

1

2

i−1∑
k=1

`2k

[
1

Dk
− 1

Di

]
+

i−1∑
k=1

m∑
j=k+1

`k`j

[
1

Dk
− 1

Di

]
+
Lx

Di
− 1

2

x2

Di
, xi−1 < x < xi, i = 1, . . . ,m

TABLE I. Moment expressions for the biased and unbiased homogeneous random walk and the unbiased heterogeneous random
walk outlined in Section II. For the biased and unbiased homogeneous random walk the moments are obtained by solving the
family of boundary value problems described by Eqs (6)–(7) and Eqs (9)–(10), for k = 1, . . . , 4 and k = 1, 2, respectively. For
the unbiased heterogeneous random walk the moments are obtained by solving the boundary value problem described by Eqs
(13)–(15) and (18) with k = 1.

III. MOMENT EXPRESSIONS

A key benefit of working with the moments of particle
lifetime is that the governing boundary value problems,
derived in Section II, can be solved exactly to provide
explicit information about the moments of particle life-
time. For modest k and m, the boundary value prob-
lems can be easily solved by hand. While the algebraic
details become more tedious for larger values of k and
m, the exact solutions can be computed very quickly
with standard symbolic software. In Table I, we give
expressions for the first four moments of particle life-
time for the unbiased homogeneous random walk and
the first two moments for the biased homogeneous ran-
dom walk. For the unbiased heterogeneous random walk,
it is quite simple to derive by hand the expressions for
the first moment in a two-layer heterogeneous medium
given in Table I. Repeating this process symbolically for
larger numbers of layers (m = 3, 4, . . .) and identifying
the pattern that emerges allows the general expression
given in Table I to be identified. For all other moments,
Maple worksheets are provided in a GitHub repository
(https://github.com/elliotcarr/Carr2019a) for symboli-
cally calculating the expressions.

IV. HOMOGENIZATION APPROACHES

Consider the unbiased heterogeneous random walk and
the particle lifetime distribution for an ensemble of parti-
cles released at the lattice site, j = N , located at the right
boundary x = L. In this section, we explore three meth-
ods for homogenizing this stochastic process that replace
the heterogeneous medium, with known diffusivities Di

and layer widths `i = xi− xi−1 for all i = 1, . . . ,m, with
an equivalent or effective homogeneous medium, with ef-
fective transport coefficients.

Approximation 1 : The first approach assumes the ho-
mogenized model takes the form of an unbiased random
walk with diffusivity Deff for all 0 < x < L. The effec-
tive diffusivity Deff is chosen to ensure the mean particle
lifetime of the homogenized model is equal to the mean
particle lifetime of the heterogeneous model at the loca-
tion where the particles are released (x = L =

∑m
i=1 `i):

M eff
1 (L) = M

(m)
1 (L), (19)

where M eff
1 (L) denotes M1(L) with D = Deff . With the

expressions for M1(x) and M
(m)
1 (x) given in Table I, Eq

https://github.com/elliotcarr/Carr2019a
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(19) becomes:

L2

2Deff
=

1

2

 m∑
i=1

`2i
Di

+ 2

m−1∑
i=1

m∑
j=i+1

`i`j
Di

 ,

which can be rearranged to give the following formula for
the effective diffusivity:

Deff = L2

 m∑
i=1

`2i
Di

+ 2

m−1∑
i=1

m∑
j=i+1

`i`j
Di

−1

. (20)

Eq (20) describes how Deff varies according to the lengths
and diffusivities of the individual layers and indicates
that the order in which the layers are arranged is im-
portant. Applying Eq (20) for a homogeneous medium,
by setting either m = 1 and D1 = D or Di = D for
all i = 1, . . . ,m, correctly yields Deff = D. This first
homogenization approximation is widely used in the lit-
erature10–12.

Approximation 2 : The second approach also assumes
the homogenized model takes the form of an unbiased
random walk with diffusivityDeff for all 0 < x < L. How-
ever, a different approach is taken here to calculate the
effective diffusivity Deff with higher moments incorpo-
rated into the calculations. This is achieved by choosing
Deff in an attempt to ensure that the first p moments of
the homogenized model are equal to the first p moments
of the heterogeneous model at x = L:

M eff
1 (L) = M

(m)
1 (L), (21)

[M eff
2 (L)]1/2 = [M

(m)
2 (L)]1/2, (22)

...

[M eff
p (L)]1/p = [M (m)

p (L)]1/p, (23)

where M eff
k (L) denotes Mk(L) with D = Deff . To pro-

ceed, we first derive a general expression for Mk(L), for
all k = 1, . . . , p. The first four moments listed in Table I
give:

M1(L) =
1

2

L2

D
, M2(L) =

5

12

L4

D2
, (24)

M3(L) =
61

120

L6

D3
, M4(L) =

1385

1680

L8

D4
. (25)

The numbers 1, 5, 61, 1385 appearing in the numera-
tors in Eqs (24)–(25) are the second to fifth Euler num-
bers (http://oeis.org/A000364) while the numbers 2, 12,
120, 1680 appearing in the denominators are the sec-
ond to fifth numbers in the integer sequence, (2k)!/k!
(k = 0, 1, . . .) (https://oeis.org/A001813). These obser-
vations lead to the following general formula:

Mk(L) = αk
L2k

Dk
, αk =

k!Ek

(2k)!
, (26)

where Ek denotes the kth Euler number. Eq (26) can be
easily verified symbolically for arbitrarily large k.

Substituting the general expression, Eq (26), into Eqs
(21)–(23) and multiplying each equation through by Deff

yields an overdetermined system of p linear equations in
one unknown Deff :

α1L
2 = DeffM

(m)
1 (L), (27)

α
1/2
2 L2 = Deff [M

(m)
2 (L)]1/2, (28)

...

α1/p
p L2 = Deff [M (m)

p (L)]1/p. (29)

Eqs (27)–(29) do not have an exact solution so it is impos-
sible to match more than one moment simultaneously. A
reasonable choice for Deff is the least squares solution of
Eqs (27)–(29). Here, Deff satisfies the normal equations
corresponding to Eqs (27)–(29), which take the form of
a single linear equation:

Deff

p∑
k=1

[M
(m)
k (L)]2/k = L2

p∑
k=1

α
1/k
k [M

(m)
k (L)]1/k. (30)

Rearranging this equation gives the following alternative
formula for the effective diffusivity:

Deff = L2

∑p
k=1 α

1/k
k [M

(m)
k (L)]1/k∑p

k=1[M
(m)
k (L)]2/k

. (31)

Eq (31) provides a generalisation of Eq (20) that incor-
porates the first p moments with Eq (31) reducing to Eq
(20) when p = 1. This can be explained by noting that
Eqs (21)–(23) with p = 1 reduce to Eq (19), where the
least squares and exact solutions are equivalent.

Approximation 3: The third approach assumes the ho-
mogenized model takes the form of a biased random walk
with diffusivity Deff and drift veff for all 0 < x < L.
Our justification for assuming the homogenized model
exhibits drift stems from the lattice sites located at the
interfaces between adjacent layers. At these sites the mo-
tion is biased and this bias cannot be directly accounted
for solely by diffusive transport. With the homogenized
model, Deff and veff are chosen to ensure the first and
second moments of particle lifetime for the homogenized
model are equal to the first and second moments of par-
ticle lifetime of the heterogeneous model at x = L:

Meff
1 (L) = M

(m)
1 (L), (32)

Meff
2 (L) = M

(m)
2 (L), (33)

where Meff
k (L) denotes Mk(L) with D = Deff . Using

the expressions for Mk(L) given in Table I in Eqs (32)–
(33) yields a system of two nonlinear equations in two
unknowns:

http://oeis.org/A000364
https://oeis.org/A001813
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1

v2
eff

(
Deffe

−Lveff/Deff −Deff + Lveff

)
= M

(m)
1 (L), (34)

1

v4
eff

[
2Deffe

−Lveff/Deff

(
Deffe

−Lveff/Deff +Deff + 3Lveff

)
− 4D2

eff + L2v2
eff

]
= M

(m)
2 (L), (35)

where M
(m)
1 (L) and M

(m)
2 (L) are known quantities that

depend on the diffusivities Di and layer widths `i of the
heterogeneous environment. Due to the nonlinearity of
Eqs (34)–(35), obtaining closed-form expressions for Deff

and veff is not possible. Instead, we solve the system
numerically. To avoid division by veff in Eqs (34)–(35),
we first expand the exponential functions in Taylor series,
which produces the following equivalent system:

1

2

L2

Deff
+

∞∑
k=3

βk,1
Lkvk−2

eff

k!Dk−1
eff

= M
(m)
1 (L), (36)

5

12

L4

D2
eff

+ 2

∞∑
k=5

βk,2
Lkvk−4

eff

k!Dk−2
eff

= M
(m)
2 (L), (37)

where βk,1 = (−1)k and βk,2 = (1 − 3k)(−1)k + (−2)k.
The left-hand sides of Eqs (36)–(37) indicate that, at
x = L, the first (second) moment of particle lifetime for
the biased homogeneous random walk is given by the
sum of the first (second) moment of particle lifetime for
the unbiased homogeneous random walk (see Eq (24))
and a complicated correction term. For a homogeneous
medium, with m = 1 and D1 = D or Di = D for all

i = 1, . . . ,m, M
(m)
1 (L) and M

(m)
2 (L) are given by the

first and second moments in Eq (24), respectively. In
this case, the method outlined here correctly concludes
that there is no drift with the solution of Eqs (36)–(37)
given by Deff = D and veff = 0.

V. RESULTS AND DISCUSSION

We now compare the accuracy of our three homoge-
nization methods by considering the homogenization of a
random walk in a heterogeneous medium containing two
layers (m = 2) with N = 101, [x0, x1, x2] = [0, 50, 100],
[`1, `2] = [50, 50], ∆ = 1 and τ = 1. We first con-
sider a weakly heterogeneous medium with [P1, P2] =
[0.35, 0.4], and then a strongly heterogeneous medium
with [P1, P2] = [0.004, 0.4]. For our choice of ∆ and
τ , [D1, D2] = [P1, P2] = [0.35, 0.4] for the weakly het-
erogeneous case and [D1, D2] = [P1, P2] = [0.004, 0.4]
for the strongly heterogeneous case. Performing the het-
erogeneous random walk 10,000 times, each time releas-
ing a particle at x = 100 and recording the time taken
to be absorbed at x = 0, we construct a histogram of
the particle lifetime, shown in Figs 2(a)–(c) and 2(d)–(f)
for the weakly and strongly heterogeneous media, respec-
tively. Our goal is to replicate these target distributions

as accurately as possible using a random walk in a ho-
mogenized medium on the same lattice with the same
time step duration (L = 100, ∆ = 1, τ = 1). The
first step is to calculate the effective transport coeffi-
cients for the homogenized medium. For Approxima-
tion 1 and 2, Deff is calculated directly by applying Eq
(20) and Eq (31), respectively. For Approximation 3, we
solve the nonlinear system described by Eqs (36)–(37) for
Deff and veff numerically using MATLAB’s lsqnonlin
function27. The summations in Eqs (36)–(37) are trun-
cated at k = 100. With these computed values of the
effective transport coefficients, to simulate the homog-
enized random walk model, the required probabilities,
Pl and Pr, are computed from Eq (8) with D = Deff

and v = veff giving Pl = τ
[
Deff/∆

2 + veff/(2∆)
]

and

Pr = τ
[
Deff/∆

2 − veff/(2∆)
]
. For Approximation 1 and

2, which assume the homogenized model takes the form
of an unbiased random walk, veff = 0 so Pl = Pr =
τDeff/∆

2. Repeating the same experiment by performing
the homogenized random walk 10,000 times, each time
releasing a particle at x = 100 and recording the parti-
cle’s lifetime allows histograms of the particle lifetime for
each approximation method to be constructed, as shown
in red in Figs 2(a)–(c) and Figs 2(d)–(f) for the weakly
and strongly heterogeneous cases, respectively. To quan-
tify the error of the homogenized distribution compared
to the target distribution we calculate the Euclidean dis-
tance of the difference between the histogram bin fre-
quencies scaled by the number of bins (denoted by Error
in Fig 2).

For the weakly heterogeneous test case we have Deff =
0.3613 for Approximation 1, and Deff = 0.3605 for Ap-
proximation 2 with p = 2. Therefore, in this case, defin-
ing the homogenized medium by matching the mean first
exit time (Approximation 1) gives very similar results
than if we homogenize by matching the first two mo-
ments of the exit time distribution (in a least squares
sense). This is reassuring as Approximation 1 is widely
invoked but the question of whether the homogenized
media also captures higher moments of particle lifetime
is never explicitly tested10–12. For the weakly heteroge-
neous test case Approximation 3 gives Deff = 0.3768 and
veff = −0.0004706. Here, we have a very small negative
effective drift, implying a particle in the homogenized
system is slightly biased towards transport in the pos-
itive x direction, see Eq (8), which makes sense given
that a particle at the interface (x = 50) is more likely
to take one step in the positive x direction than in the
negative x direction since P2 = 0.4 > P1 = 0.35. Over-
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FIG. 2. Homogenization results for a two-layer heterogeneous system with (a)–(c) weak and (d)–(f) strong heterogeneity.
The particle lifetime distribution for the heterogeneous (blue) and homogenized (red) systems are superimposed. For the
heterogeneous system we have [x0, x1, x2] = [0, 50, 100], [`1, `2] = [50, 50], ∆ = 1, τ = 1 with [P1, P2] = [D1, D2] = [0.35, 0.4]
and [P1, P2] = [D1, D2] = [0.004, 0.4] for weak and strong heterogeneity, respectively. For the homogenized random walk the
parameter values are L = 100, ∆ = 1 and τ = 1 with effective transport parameters shown. All particle lifetime distributions
are constructed by performing 10,000 realizations of the random walk, each time releasing a particle at x = 100, and recording
the particle’s lifetime. Histograms in (a)–(c) use bins of width 1500 while the histograms in (d)–(f) use bins of width 100,000.
The error is calculated as the Euclidean distance of the difference between the histogram bin frequencies scaled by the number
of bins.

all, for the weakly heterogeneous test case we see that all
three approximations give very similar results, and we
have an excellent match between the homogenized life-
time distributions and the target lifetime distribution in
Figs 2(a)–(c).

The situation is different for the strongly heteroge-
neous medium where Deff = 0.005316 for Approximation
1, Deff = 0.005175 for Approximation 2 with p = 2, and
Deff = 0.01031 and veff = −0.0001777 for Approximation
3. The ratio veff∆/Deff under Approximation 3 is an or-
der of magnitude larger for the strongly heterogeneous
medium compared to the weakly heterogeneous medium
indicating that drift is more dominant under strong het-
erogeneity. This observation is evident in Fig 2(d)–(f),
with Approximation 3 clearly producing a better match
with the target distribution, particularly for small parti-
cle lifetimes. Across both test cases, when the homoge-
nized model is assumed to take the form of an unbiased
random walk, we observe little benefit of including higher
moments in the calculation of Deff with Approximation
1 and 2, the latter with p = 2, providing an equiva-
lent level of accuracy. Similar observations are observed
for larger values of p. Therefore, caution is warranted
when using homogenization approximations to deal with
strongly heterogeneous media, as can be the case in bi-

ological environments2, since the values of the effective
transport coefficients can depend upon the homogeniza-
tion approximation and it is not always clear which ap-
proximation will provide the best result.

VI. CONCLUSIONS

In this work we construct new homogenization approx-
imations allowing us to approximate a diffusive transport
process, on an arbitrarily heterogeneous one-dimensional
domain, using an equivalent homogenized medium. This
kind of homogenization approximation is often used to
circumvent issues associated with negative transition
rates that can arise when standard transport opera-
tors are discretized on heterogeneous domains, and the
most common approach is to replace the heterogeneous
medium with an homogenized medium so that the mean
particle lifetime is preserved. Here we take a more gen-
eral approach and explain how to derive exact closed form
expressions for the kth moment of particle lifetime in an
arbitrary heterogeneous system consisting of m distinct
layers. We explain how to arrive at a family of boundary
value problems from an underlying random walk process,
taking great care to explore how the interface conditions
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in the discrete random walk formulation translate into
boundary conditions in the continuous description.

Given closed-form expressions for the kth moment of
particle lifetime for an arbitrarily heterogeneous domain
we can define several approximations from which we can
construct effective transport parameters in a homoge-
nized model. We use three approximations: first we
match the mean particle lifetime; second we match the
first p > 1 moments of particle lifetime in a least squares
sense; and third we match the particle lifetime distribu-
tion from the heterogeneous system with a homogenized
advection-diffusion model where the different jump rates
in the various layers give rise to a net bias, leading to
non-zero advection, for the entire homogenized system.
Example calculations show that all three approximations
lead to similar results in the limit of weak heterogeneity
whereas the three approximations can lead to very differ-
ent estimates of the effective transport coefficients in the
case of strong heterogeneity. This result suggests that
care needs to be exercised when homogenizing strongly
heterogeneous environments. In this case, it is prudent
to apply multiple homogenization criteria, such as apply-
ing Approximation 2 with various values of p, to provide
an understanding of the sensitivity of the results to the
homogenization criteria. Our approach, which leads to
exact closed-form expressions for the kth moment of par-
ticle lifetime in an arbitrarily heterogeneous system can
be easily used to test various homogenization criteria, as
we demonstrate in Fig 2.

The results in this study can be extended in many
ways. For simplicity, here we focus on one-dimensional
Cartesian domains. However, the concepts outlined here
generalize to higher dimensional problems, such domains
with radial and spherical symmetry where exact solutions
for the kth moment of particle lifetime can also be calcu-
lated exactly using symbolic software28. In contrast, for
higher-dimensional problems without radial or spherical
symmetry, the same ideas pursued here can be used to
construct elliptic boundary value problems that govern
the kth moment of particle lifetime, however the solu-
tion of these boundary value problems would be more
easily found numerically.
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