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Abstract

It is shown that the unique representation of positive integers in terms of tribonacci

numbers and the unique representation in terms of iterated A, B and C sequences

defined from the tribonacci word are equivalent. These sequences are studied in detail.

1 Introduction and Synopsis

The quintessence of many applications of the tribonacci sequence T = {T (n)}∞n=0 [4]
A000073 [5], [6], [2] [1] is the ternary substitution sequence 2 → 0, 1 → 02 and 0 → 01.
Starting with 2 this generates an infinite (incomplete) binary tree with ternary node labels
called TTree. See Fig 1 for the first 6 levels l = 0, 1, ..., 5 denoted by TTree5. The number
of nodes on level l is the tribonacci number T (l+2), for l ≥ 0. In the limit n → ∞ the last
level l = n of TTreen becomes the infinite self-similar tribonacci word TWord. The nodes
on level l are numbered by N = 0, 1, ..., T (l + 2) − 1 .

The left subtree, starting with 0 at level l = 1 will be denoted by TTreeL, and the right
subtree, starting with 2 at level l = 0 is named TTreeR. The number of nodes on level l of
the left subtree TTreeL is T (l+ 1), for l ∈ N; the number of nodes on level l of TTreeR is
1 for l = 0 and T (l + 1), for l ∈ N.

TWord considered as ternary sequence t is given in [4] A080843 (we omit the OEIS reference
henceforth if A numbers for sequences are given): {0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, ...}.
See also Table 1. This is the analogue of the binary rabbit sequence A005614 in the Fi-

bonacci case. Like in the Fibonacci case with the complementary and disjoint Wythoff

sequences A = A000201 and B = A001950 recording the positions of 1 and 0, respec-
tively, in the tribonacci case the sequences A = A278040, B = A278039, and C =

1 http://www.itp.kit.edu/~wl
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A278041 record the positions of 1, 0, and 2, respectively. These sequences start with
A = {1, 5, 8, 12, 14, 18, 21, 25, 29, 32, ...}, B = {0, 2, 4, 6, 7, 9, 11, 13, 15, 17, ...}, and
C = {3, 10, 16, 23, 27, 34, 40, 47, 54, 60, ...}. See also Table 1.

The present work is a generalization of the theorem given in the Fibonacci case for the
equivalence of the Zeckendorf- and Wythoff- representations of numbers in [3].

Note that there are other complementary and disjoint tribonacci A, B and C sequences
given in OEIS. They use the same ternary sequence t = A080843 (which has offset 0), with
0 → a, 1 → b and 2 → c, however with offset 1, and record the positions of a, b and c by A
= A003144, B = A003145 and C = A003146, respectively. In [2] and [1] they are called a, b,
and c. This tribonacci ABC-representation is given in A317206. The relation between these
sequences (we call them now a, b, c) is: a(n) = B(n − 1) + 1, b(n) = A(n − 1) + 1, and
c(n) = C(n−1)+1, for n ≥ 1. We used B(0) = 0 in analogy to the Wythoff-representation
in the Fibonacci case.

From the uniqueness of the ternary sequence t (with offset 0) it is clear that the three
sequences A, B and C cover the nonnegative integers N0 completely, and they are disjoint.
In contrast to the Fibonacci case where the Wythoff sequences are Beatty sequences [7] for
the irrational number ϕ =A001622, the golden section, and are given by A(n) = ⌊nϕ⌋
and B(n) = ⌊nϕ2⌋, for n ∈ N (with A(0) = 0 = B(0)), no such formulae for the
complementary sequences A, B and C in the tribonacci case are considered. The definition
given above in terms of TWord, or as sequence t, is not burdened by numerical precision
problems.

Note that the irrational tribonacci constant τ = 1.83928675521416... =A058265, the real
solution of characteristic cubic equation of the tribonacci recurrence λ3 − λ2 − λ − 1 = 0,

defines, together with σ =
τ

τ − 1
= 2.19148788395311... =A316711 the complementary

and disjoint Beatty sequences At := ⌊n τ⌋ and Bt := ⌊nσ⌋, given in A158919 and A316712,
respectively.
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Figure 1: Tribonacci Tree TTree5
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The analogue of the unique Zeckendorf-representation of positive integers is the unique
tribonacci-representation of these numbers.

(N)T =

I(N)∑

i=0

fi T (i+ 3), fi ∈ {0, 1}, fi fi+1 fi+2 = 0, fI(N) = 1 . (1)

The sum should be ordered with falling T indices. This representation will also be denoted
by (Z as a reminder of Zeckendorf)

ZT (N) = cΠ
I(N)
i=0 fI(N)−i

= fI(N)fI(N)−1...f0 . (2)

The product with concatenation of symbols is here denoted by cΠ, and the concatenation
symbol ◦ is not written. This product has to be read from the right to the left with increasing
index i. This representation is given in A278038(N), for N ≥ 1. See also Table 3 for ZT (N)
for N = 1, 2, ..., 100 .

E.g., (1)T = T (3), ZT (1) = 1; (8)T = T (6) + T (3), ZT (8) = 1001. The length of ZT (N)
is #ZT (N) = I(N) + 1 = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, ...} = {A278044(N)}N ≥ 1. The
number of numbers n is given by {1, 2, 3, 6, 11, 20, 37 ...} = {A001590(n+ 2)}n≥ 1. These
are the companion tribonacci numbers of T =A000073 with inputs 0, 1, 0 for n = 0, 1, 2,
respectively.

ZT (N) can be read off any finite TTreen with T (n + 2) ≥ N after all node labels 2 have
been replaced by 1. See Figure 1 for n = 5 (with 2 → 1) and numbers N = 0, 1, ..., 12 .
The branch for N is read from bottom to top, recording the labels of the nodes, ending with
the last 1 label. Then the obtained binary string is reversed in order to obtain the one for
ZT (N). E.g.,N = 9 leads to the string 0101 which after reversion becomes ZT (9) = 1010.

The analogue of the Wythoff- representation of nonnegative integers is the tribonacci ABC-
representation using iterations of the sequences A, B and C.

(N)ABC =
(

cΠ
J(N)
j=1 X(N)

k(N)j
j

)
B(0), with N ∈ N0, k(N)j ∈ N0 , (3)

again with an ordered concatenation product. Here X(N)j ∈ {A, B, C}, for
j = 1, 2, ..., J(N) − 1 , with X(N)j 6= X(N)j+1, and X(N)J(N) ∈ {A, C}. Powers of
X(N)j are also to be read as concatenations. Concatenation means here iteration of the

sequences. The exponents can be collected in ~k(N) := (k(N)1, ..., k(N)J(N)). For the
equivalence proof only positive integers N are considered. If exponents vanish the corre-
sponding A, B, C symbols are not present (X(N)0j is of course not 1). If all exponents
vanish, the cΠ is empty, and N = 0 could be represented by (0)ABC = B(0) = 0 (but this
will not be used for the equivalence proof).

E.g., (30)ABC = (BCBA)B(0) = B(C(B(A(B(0))))), J(30) = 4, ~k(30) := (k1, k2, k3, k4) =
(1, 1, 1, 1), X(30)k11 = B1, X(30)k22 = C1, X(30)k33 = B1, X(30)k44 = A1 (sometimes the
arguments (N) are skipped).
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The number of A, B and C sequences present in this representation of N is
∑J(N)

j=1 k(N)j +
1 =A316714(N), This representation is also written as

ABC(N) =
(

cΠ
J(N)
j=1 x(N)

k(N)j
j

)
0,with k(N)j ∈ N0 , (4)

and x(N)j ∈ {0, 1, 2}, for j = 1, 2, ..., J(N)−1 , with x(N)j 6= x(N)j+1, and x(N)J(N) ∈
{1, 2}. Here x = 0, 1, 2 replaces X = B, A, C, respectively.

E.g.,ABC(0) = 0, J(1) = 0 (empty product); ABC(30) = 02010.

For this ABC-representation see A319195. Another version is A316713 (where for a technical
reason B, A, and C are represented by 1, 2 and 3 (not 0, 1 and 2), respectively). See also
Table 3 for ABC(N), for N = 1, 2, ..., 100 .

The number of Bs, As and Cs in the ABC-representation ofN is given in sequences A316715,
A316716 and A316717, respectively. The length of this representation is given in A3167174.

A) From ZT(N) to NABC

For the proof of the equivalence of these two representations (N)T and (N)ABC for pos-
itive integers N one uses for the first part, (N)T → (N)ABC , in the version ZT (N) →
(N)ABC , the reversed word ZT (N) with a concatenated 0 at the beginning and at the

end. This intermediate step will be called ẐT (N). E.g., ẐT (1) = 010 from ZT (1) = 1;

ẐT (30) = 00110010 from ZT (30) = 100110. I.e., ẐT (N) = 0ZT (N)0, with the reversed
word ZT (N) := (ZT (N))reversed.

This simple definition of ẐT (N) for given N becomes somewhat complicated if a compact
explicit notation is used for general N ∈ N.

ẐT (N) ≡ ẐT (N ; P (N),
−→
jA(N, p),

−→
jC(N, p))

= 0 cΠ
P (N)
p=1

((
cΠ
JA(N,p)
k=1 0jA,k(N,p)1

) (
cΠ
JC(N,p)
k=1 0jC,k(N,p)11

))p

0 . (5)

Several explanations follow, and rules are needed to avoid the appearance of 111 in this
binary word. Uniqueness requires rules for the separation between neighboring p-words.

Explanations:

1) Vanishing p−dependent ordered concatenation products are indicated by JA = 0 or
JC = 0 (we omit sometimes the arguments (N, p)). In this case undefined products arise
(which are here not set to 1, of course). Not both products are allowed to vanish for any p,
i.e.,JA = 0 = JC is forbidden.

2) Exponents of 0 indicate the multiplicity. A vanishing exponent means disappearance of
the 0s. One could use another notation like 0jA,k

and 0jC,k
.

3) The separation of consecutive p-words is done such that P (N) becomes minimal. For this
the following two rules apply.

i) If JA(N, p+ 1) ≥ 1 (part A present for p+ 1) then JC(N, p) 6= 0.

ii) JC(N, p) = 0 = JA(N, p+ 1) is forbidden.

4) To avoid the appearance of the subword 111 some rule is needed:
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The exponents of 0 are collected in
−→
jA and

−→
jC . In general they satisfy jA,k ∈ N and jC,k ∈ N,

i.e., positive powers of 0 appear. But there are exceptions for which these exponents may
vanish.

The first exceptions apply to the start of the p−product. It may start with 1 or with 11.

Exception 1

i) jA,1(N, 1) ∈ N0

ii) jC,1(N, 1) ∈ N0 if JA(N, 1) = 0

The remaining exception applies for p ≥ 2. Then one has to make sure that no 111 appears
in the transition from a p− 1 to p.

Exception 2

If JC(N, p− 1) = 0 then jA,1(N, p) ∈ N0, for 2 < p < P (N).

Some examples may illustrate these explanations and exceptions.

Examples 1

1) ẐT (N) = 0101010211010. Minimal P (N) (Explanation 3) is obtained with P (N) = 2,
JA(N, 1) = 3, JC(N, 1) = 1, JA(N, 2) = 1, JC(N, 2) = 0. Here jA,1(N, 1) = 0 (exception
1)i)). E.g., the separation 01|0101|0011|010 with P = 4 is forbidden. For this JC(N, 1) = 0,
JA(N, 2) = 2 and JC(N, 2) = 0 = JA(N, 3). The last separation is the only one for the
given minimal P (N) solution.

2) ẐT (N) = 010210211011010. This is an instance P (N) = 2, JA(N, 1) = 2, JC(N, 1) =
2, JC(N, 2) = 0 and

−→
jA(N, 1) = (0, 2),

−→
jC(N, 1) = (2, 1),

−→
jA(N, 2) = (1) .

Here the minimal P is 2, and exception 1)i) (start with 1) applies. Also explanation 1) is
needed because for p = 2 part C is missing but not part A. The corresponding ZT (N) is
1011011001001, with I(N) = 12, and N = 1705 + 504 + 274 + 81 + 44 + 7 + 1 = 2616.

3) ẐT (N) = 0110211010. Here exception 1)ii) (start with 11) occurs and P (N) = 2 with
JA(N, 1) = 0 (explanation 1), JC(N, 1) = 2 and JA(N, 2) = 1, JC(N, 2) = 0 (explanation
1). ZT (N) is 10110011, with I(N) = 7, and N = 81 + 24 + 13 + 2 + 1 = 121.

The translation from ẐT (N) to (N)ABC is now performed, in an intermediate step introduc-
ing two new symbols and • and × with the help of four substitution rules in the word w(N),

used here as abbreviation for w(N) := ẐT (N) = cΠ
#w(N)
i=1 w(N)i with #w(N) = I(N) + 3 =

A278044(N) + 2. This intermediate representation will be denoted by (N)AB•×. The fol-
lowing rules depend on the neighbors of w(N)i for i = 1, 2, ..., #w(N) − 1 . To mark the
position i, the number (letter) w(N)i to be substituted is given in the rules in boldface and
underlining. w(N)1 has no left neighbor denoted in the following by ∅. This ∅ is also used
to signal the end of each word w(N) after 10.

The four substitution rules

(S1) 100 : 0 −→ • and x00 : 0 −→ B, for x ∈ {∅, 0} ,

(S2) 011 : 0 −→ × and 010 : 0 −→ A,

(S3) 11 : 1 −→ × ,

(S4) 101 : 1 −→ • and 10x : 1 −→ B, for x ∈ {∅, 0} . (6)

5
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These rules suffice and are not in conflict which each other. Eg. 110 is not needed because
if the word ends in the numbers 110 then rule (S4), part two, with x = ∅, applies for the
substitution of the last 1 becoming a B. Otherwise it is either 1100 or 1101 in which case
also (S4) applies either with part two and x = 0 or with part one.

E.g.,w(N) = 0101010011010 with #w = 13 translates to (N)AB•× = A•A•AB•××•AB
with length #w − 1 = 12.

w(N) ends always in 10. This last substitution of 1 uses part two of rule (S4) with x = ∅.

In the final step the translation into (N)ABC is obtained by omitting all •s and substituting
×× −→ C. This reduces the length to A316714(N), the one of (N)ABC .

The preceding example thus gives (N)ABC = A3BCAB which represents N = 752 corre-
sponding to the given ZT (752) = 10110010101 = 504 + 149 + 81 + 13 + 4 + 1.
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Figure 2: ABC-representation with the ABCTree5

In Figure 2 the tribonacci tree TTree5 from Figure 1 has been used with labeling the edges
(branches) with symbols A, B, C, •, × in a special way. It is called ABCTree5. The new
branch decorated infinite tree is denoted by ABCTree.

The ABC-representation of N is obtained directly by reading the branches from bottom to
top. If there are two edge labels like A and ×, or B and •, for an edge going out from from
a node, the choice is fixed from the direction from which the previous (lower) edge reached
the node. If it reached the node from the right-hand side, the label on the right-hand side
of the outgoing edge has to be chosen, and similarly for the left-hand side. If one considers
a finite ABCTreen with levels l = 0, 1, ..., n having no incoming edges from the next level
l = n + 1, one chooses always the left variant for the outgoing edges from nodes of the
last level l = n of ABCTreen. The ABC-representation ends always in AB(0) or CB(0)
which means that coming from the left subtree one stops after reaching the first node on the
outermost branch with only B edges. Only in the right subtree one has to go all the way up
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to node 2 at level l = 0. The N = 0 case is not considered in the equivalence proof, but the
tree shows that N = 0 would be represented by B = B(0) (Figure 2 the B emerging from
the first node labeled 0 at level l = 5).

E.g., for N = 8 one has from ABCTree5 the edge labels from bottom to top A•BAB

corresponding to ABAB = A(B(A(B(0)))) = 8. Here one sees why the tree started with
node 2 at level l = 0. For N = 6 the path is B××B → BCB = B(C(B(0))) ending at
node 0 at level l.

Note that if one adds a level n + 1 to ABCTreen, thus obtaining ABCTreen+1, the first
numbers N = 0, 1, ..., T (3+ l) − 1 related to level l+1 of the left subtree TTreeLl+1 have
the same ABC-representations like the those compiled starting from level n of ABSTreen.
This is because one stays in the left subtree ABSTreeLl+1 and one reaches at most the 0
from level 1.

B) From (N)ABC to ZT(N)

The reverse part of the equivalence proof starts with the representation (N)ABC eq. 3,

and constructs ẐT (N) eq. 5. After erasing the 0 at the beginning and end, and reversing
the remaining word one obtains the binary word ZT (N) eq. 2 and from this (N)T eq. 1.

The first task is to find the intermediate (N)AB•× version from (N)ABC . For this one derives
from the substitution rules eq. 6 how A, B and C can appear. A is reached uniquely from
010. For B one has to distinguish two types, called BI and BII. BI originates from a
substituted 0, either at the start from ∅00 or from 000. BII originates from a substituted
1 either at the end from 10∅ or from 100. Finally, C, represented by ××, originates from
substituting 0 in 011 leading to ×, and the following substitution for 1 produces the second
×. Note that ×× obtained from substituting 11 would need in fact 111 which is forbidden.
Therefore C can appear only from a 0110 string starting substitutions with the first 0.

Consider now (N)ABC from eq. 3. It turns out that the transition between the blocks of
powers of A, B and C is important in order to find out the correct (N)AB•× representation.
The final B(0) in NABC will only at the end be added as a final B. There is never a final
B-block for j = J(N) in eq, 3 from the uniqueness requirement of the representation. The
following statements then follow.

Step 1 replacements

Step1A) A block An, for n ∈ N, (i.e.,X(N)j = A, k(N)j = n in eq. 3), appearing alone
(J(N) = 1) or at the end (j = J(N)) or if followed by a B-block is replaced by (A•)n−1A

(remember that (A•)0 means disappearance). The B following an An-block is always of type
BII (in the cases J(N) = 1 or j = J(N) this means that last omitted B is of type BII).
If the An-block is followed by a C-block then it is replaced by (A•)n.

Step1B) A block Bn, for n ∈ N, which can never appear alone, stays Bn if it begins with
a B of type BI (especially if X(N)1 = B). If the block Bn begins with a B of type BII

then Bn is replaced by B•Bn−1.

Step1C) A block Cn followed by an A-block is replaced by (•××)n. If Cn is followed by
a B−block starting with a B of type BII then it is replaced by ××. This applies also if

7



a C-block appears alone (J(N) = 1). A C- block is never followed by a B-block beginning
with a B of type BI.

(7)

In order to obtain the (N)AB•× representation one adds after these Step1 replacements
the final B. Some examples are in order:

Examples 2

1) NABC = B3AB. The starting B3 remains B3 because the first B is of type I (it comes
from ∅00). Because the A1 (the last block) is followed by a B (always type II) it remains
an A. After appending the omitted last B one obtains (N)AB•× = BBBAB, i.e., here no
• appears.

2) NABC = A3BCAB. The starting A-bock is replaced via Step1A) by (A•)2A. The
following block B1 is replaced by B• because the B after an A is always of type II. The
next block C1 followed by the last A-block A1 is replaced by •×× The last A remains an
A. After adding the final B one obtains (N)AB•× = A•A•AB • × × •AB. This is the
representation found above in part A) from ZT (752)

The translation from (N)AB•× to ẐT (N) is simply done by starting with an extra 0 and
appending the (N)AB•× string by replacing A → 1, B → 0, • → 0 and × → 1.

In the example 1) this produces ẐT (N) = 000010. The example 2) gives 0101010011010.

The final translation from ẐT (N) to ZT (N) is then trivial: omit the two boundary 0s and
reverse the remaining binary string.

The two examples give: 1) 0001 = 1000, which is ZT (7), and 2) 10101001101 = 10110010101
which is ZT (752). This was used above as start of the example for the proof in the other
direction.

2 Equivalence of representations ZT(N) and ABC(N)

First the uniqueness of the tribonacci-representation ZT (N) of eq. 2 is considered.
It is clear that every binary sequence starting with 1, without three consecutive 1s, represents
some N ∈ N. An algorithm for finding such a representation for every N ∈ N is given to
prove the following lemma.

Lemma 1. The tribonacci-representation ZT (N) of eq.2 is unique.

Proof:

The recurrence of the tribonacci sequence T := {T (l)}∞l=3, with inputs T (3) = 1, T (4) = 2
and T (5) = 4, shows that this sequence is strictly increasing. Define the floor function
floor(T ; n), for n ∈ N, giving the largest member of T smaller or equal to n. The cor-
responding index of T will then be called Ind(floor(T ; n)). Define the finite sequence
Nseq := {Nj}

jmax

j=1 recursively by

Nj = Nj−1 − floor(T ; Nj−1) , for j = 1, 2, ..., jmax , (8)

8



with N0 = N and Njmax
= 0.

It is clear that this recurrence reaches always 0. Define the finite sequences fTN :=
{floor(T ; Nj)}

jmax−1
j=0 and IfTN := {Ind(fTNj)}

jmax−1
j=0 . Then I(N) in eq. 2 is given by

I(N) = IFTN0 and the finite sequence fseq = {fI(N)− k}
I(N)
k=0 is given by

fI(N)− k =





1 if I(N) − k ∈ IfTN ,

0 otherwise .
(9)

�

Example 3N = 263. Nseq = {263, 144, 33, 9 2, 0}, fTN = {149, 81, 24, 7, 2}, IfTN =
{8, 7, 5, 3, 1}, I(N) = 8, fseq = {1, 1, 0, 1, 0, 1, 0, 1, 0}.

Next follows the lemma on the uniqueness of the ABC-representation given in eq. 3.

Lemma 2. The tribonacci ABC-representation (N)ABC of eq.3, for N ∈ N0, is unique.

Proof:

From the definition of the A−, B− and C−sequences (each with offset 0) based on the value
1, 0 and 2, respectively, of t(n), for n ∈ N0, it is clear that these sequences are disjoint and
N0-complementary. 0 is represented by B(0). Therefore the n-fold iteration B[n](0) (written
as Bn(0)) is allowed only for n = 1, and any representation ends in B(0). Iterations acting
on 0 are encoded by words over the alphabet {A, B, C}, and n-fold repetition of a letter X
is written as Xn, named X−block, where n = 0 means that no such X−block is present.
Then any word consisting of consecutive different non-vanishing X−blocks ending in the
B−block B1 represents a number N ∈ N0.
In order to prove that with such representations every N ∈ N0 is reached the following
algorithm is used. Replace any number n ∈ N0, which is n = Xn(k) with Xn ∈ {A, B, C}
and k ∈ N0, by the 2-list L(n) = [L(n)1, L(n)2] := [Xn, k(n)] . Define the recurrence

L(j) = [L(L(j − 1)2)1, L(L(j − 1)2)2], for j = 1, 2, ..., jmax , (10)

with input L(0) = [XN , k(N)], and jmax is defined by L(jmax) = [B, 0].
Then the word is w(N) = cΠjmax

j=0 L(j)1 (a concatenation product), and read as iterations
acting on 0 this becomes the representation (N)ABC . The length of the word w(N) is
jmax + 1.

�

Example 4 N = 38. L(0) = [A, 11], L(1) = [B, 6], L(2) = [B, 3], L(3) = [C, 0], and
L(4) = [B, 0], hence jmax(38) = 4, w(38) = ABBCB, and (38)ABC = ABBCB(0), to be
read as A(B(B(B(C(B(0)))))).

After these preliminaries the main theorem can be stated.

Theorem. The tribonacci-representation ZT (N) of eq. 1, is equivalent to the tribonacci

ABC-representation (N)ABC eq. 3, for N ∈ N.

9



Proof:

Part A): The proof of the map ZT (N) → (N)ABC is performed in three steps:

Step 1 : ZT (N) → ẐT (N) := 0(ZT (N)reverse)0 ,

Step 2 : ẐT (N) → (N)AB•× ,

Step 3 : (N)AB•× → (N)ABC . (11)

Step 1 is clear.
For Step 2 one uses eq. 5 and the Explanations 1) to 4) with Exception 1) and 2). See
also Example 1. The four substitution rules (S1), (S2), (S3) and (S4) of eq. 6 are then
applied to obtain (N)AB•×. See also the example for N = 752 there.
In Step 3 the symbols • in (N)AB•× are omitted and the pair of symbols ×× (× always
appears as a pair) is replaced by C.

Part B): The proof of the map (N)ABC → ZT (N) is performed also in three steps:

Step 1 : (N)ABC → (N)AB•× ,

Step 2 : (N)AB•× → ẐT (N) ,

Step 3 : ẐT (N) → ZT (N) . (12)

Step 1 is a bit tricky. The representation (N)ABC of eq. 3 without the final B(0) consists
of blocks of powers of A, B or C with the restriction that a B-block never appears alone or
at the end (because Bn+1(0) = 0, for n ∈ N, the uniqueness of the representation would be
violated). Then the Step 1 replacements of eq. 7 are applied to the A-,B-, and C-blocks,
called there Step1A, Step1B and Step1C. The omitted final B is again appended. See also
Example 2.

In Step 2 the replacements A → 1, B → 0, • → 0 and × → 1 are applied and an extra
0 is added at the beginning of the thus obtained binary string. This is ẐT (N).

Step 3 is trivial: omit the two bordering 0s of ẐT (N) and reverse the binary string to obtain
ZT (N). �

3 Investigation of the A-,B- and C- sequences

In this section a detailed investigation of the A−, B− and C− sequences is presented.
The starting point is the infinite tribonacci word TWord, written as a sequence t =A080843.
Its self-similarity leads to the following definitions and lemmata.

Definition 3. The tribonacci words tw(l) over the alphabet {0, 1, 2} of length #tw(l) =
T (l + 2) are defined recursively by concatenations (we omit the concatenation symbol ◦) as

tw(l) = tw(l− 1) tw(l− 2) tw(l− 3), with tw(1) = 0, tw(2) = 01, tw(3) = 0102 . (13)
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Also tw(0) = 2 is used.
The substitution map acting on tribonacci words and other strings with characters {0, 1, 2}
is defined as a concatenation homomorphism by σ : 0 7→ 01, 1 7→ 02, 2 7→ 0. The
inverse map is σ[−1] (One replaces first each 01 and 02 then the left over 0). With σ the
words tw(l) are generated iteratively from tw(0) = 2. σ(tw(l)) = tw(l + 1), for l ∈ N0,
and lim

l→∞
σ[l](0) = TWord. Self-similarity of TWord means σ(TWord) = TWord.

Substrings of TWord of length n, starting with the first letter (number) t(0) = 0, are denoted
by sn := cΠn−1

j=0 t(n). If n = T (l + 2), for l ∈ N0, then sn = tw(l) (the string becomes a
tribonacci word), and the numbers of sn map to the node labels of the last level of TTreel
read from the left-hand side .
Also substrings of TWord not starting with t(0) are used, like ŝ2 = 02 = σ(1), starting
with t(2).

Lemma 4.

A) With s13 = 0102010010201 = tw(5), s11 = 01020100102 and s7 = 0102010 = tw(4)
define

t1 = s13s11s13s7s13s11s13s13s11s13s7s13... = cΠ∞
j=0 sε(t(j)), (14)

where ε(0) = 13, ε(1) = 11 and ε(2) = 7.

B) With s7 = 0102010 = tw(4), s6 = 010201 and s4 = 0102 = tw(3) define

t2 = s7s6s7s4s7s6s7s7s6s7s4s7... = cΠ∞
j=0 sπ(t(j)), (15)

where π(0) = 7, π(1) = 6 and π(2) = 4.

C) With s4 = 0102 = tw(3), s3 = 010 and s2 = 01 = tw(2) = σ(0) define

t3 = s4s3s4s2s4s3s4s4s3s4s2s4... = cΠ∞
j=0 sτ(t(j)), (16)

where τ(0) = 4, τ(1) = 3 and τ(2) = 2.

D) With s2 = 01, ŝ2 = 02 and s1 = 0 = tw(1) = σ(2) define

t4 = s2ŝ2s2s1s2ŝ2s2s2ŝ2s2s2s1... (17)

Here the string follows t with s2, ŝ2 and s1 playing the rôle of 0, 1 and 2, respectively.
Then

t1 = t2 = t3 = t4 = TWord . (18)

Proof:
D: The definition of σ[−1] shows that σ[−1](t4) = TWord Hence t4 = σ(TWord) = TWord.
C: Because σ(s2) = s4, σ̂(s2) = s3 and σ(s1) = s2 it follows that t3 = σ(t4) = TWord.
B: Because σ(s4) = s7, σ(s3) = s6 and σ(s2) = s4 it follows that t2 = σ(t3) = TWord.
A: Because σ(s7) = s13, σ(s6) = s11 and σ(s4) = s7 it follows that t1 = σ(t2) = TWord.
�

Using eq.16 a formula for sequence entry A(n) =A278040(n) in terms of z(n) :=

n∑

j=0

t(j)

is derived. This sequence {z(j)}∞j=0 is given in A319198.
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Proposition 5.

A(n) = 4n + 1 − z(n− 1), for n ∈ N0, with z(−1) = 0 . (19)

Proof:
Define △A(k + 1) := A(k + 1) − A(k). Consider the word t3 of eq. 16. The distances
between the 1s in the pairs s4s3, s3s4, s4s2, s2s4 and s4s4 are 4, 3, 4, 2, 4. Therefore, the
sequence of these distances is 4, 3, 4, 2, 4, 3, 4, 4, 3, 4, 2, .... Thus, because the s-string t2
follows the pattern of t, i.e., of TWord,

△A(k + 1) = 4 − t(k) , for k = 0, 1, ... . (20)

Then the telescopic sum produces the assertion, using A(0) = 1.

A(n) = A(0) +

n−1∑

k=0

△A(k + 1) = 1 + 4n − z(n− 1), with z(−1) = 0. (21)

�

The B-numbers A278039, giving the increasing indices k with t(k) = 0, come in three types:
B0-numbers form the sequence of increasing indices k of sequence t with t(k) = 0 = t(k+1).
Similarly the B1-sequence lists the increasing indices k with t(k) = 0, t(k+ 1) = 1 and for
the B2-sequence the indices k are such that t(k) = 0, t(k + 1) = 2.
These numbers B0(n), B1(n) and B2(n) are given by A319968(n+1), A278040(n) − 1, and
A278041(n) − 1, respectively.

Before giving proofs we define the counting sequences zA(n), zB(n) and zC(n) to be the
numbers of A, B and C numbers not exceeding n ∈ N, respectively. If these counting
functions appear for n = −1 they are set to 0.

These sequences are given by A276797(n+1), A276796(n+1) and A276798(n+1) − 1 for
n ≥ −1.
Obviously,

z(n) = 1 zA(n) + 0 zB(n) + 2 zC(n) = zA(n) + 2 zC(n), for n = −1, 0, 1, ... . (22)

These counting functions are obtained by partial sums of the corresponding characteristic
sequences for the A−, B− and C−numbers (or 0−, 1−, and 2−numbers in t), called kA, kB
and kC , respectively.

zX(n) =

n∑

k=0

kX(k), for X ∈ {A, B, C} . (23)

The characteristic sequences members kA(n), kB(n) and kC(n) are given in A276794(n+1),
A276793(n+1) and A276791(n+1), for n ∈ N0, and they are, in terms of t, obviously given
by

kA(n) = t(n) (2 − t(n)), (24)

kB(n) =
1

2
(t(n) − 1) (t(n) − 2), (25)

kC(n) =
1

2
t(n) (t(n) − 1). (26)
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By definition it is trivial that (note the offset 0 of the A, B, C sequences)

zX(X(k)) = k + 1, for X ∈ {A, B, C} and k ∈ N . (27)

Proposition 6.

For n ∈ N0 :

B0) B0(n) = 13n + 6 − 2 [zA(n− 1) + 3 zC(n− 1)] = 2C(n) − n, (28)

B1) B1(n) = 4n − z(n− 1) = 4n − [zA(n− 1) + 2 zC(n− 1)] = A(n) − 1, (29)

B2) B2(n) = 7n + 2 − [zA(n− 1) + 3 zC(n− 1)] =
1

2
(B0(n) + n − 2)

= C(n) − 1, (30)

B) B(n) = 2n − zC(n− 1) . (31)

Proof:
B0: Part 1: Define△B0(k+1) := B0(k+1)−B0(k) and consider the word t1 of eq. 14. The
distances between pairs of 00 in s13s11, s11s13, s13s7, s7s13 and s13s13 are 13, 11, 13, 7, 13.
Note that S7 has no substring 00, however because S7 is always followed by S13 the last
0 of s7 and the first of s13 build the 00 pair. Similarly, in the s13s7 case the last 0 of
s7 is counted as a beginning of a 00 pair. Therefore, the sequence of these distances is
13, 11, 13, 7, 13, 11, 13, 13, 11, 13, 7, .... Because the s-string t1 follows the pattern of t the
defect from 13 is 0, −2, −6 if t(k) = 0, 1, 2, hence

△B0(k + 1) = 13 − t(k) (t(k) + 1) , for k ∈ N0 . (32)

The telescopic sum gives, with B0(0) = 6,

B0(n+ 1) = B0(0) +

n∑

k=0

△B0(k + 1)

= 6 + 13 (n+ 1) − [(12 zA(n) + 22 zC(n)) + z(n)]

= 13n + 19 − 2 (zA(n) + 3 zC(n)) . (33)

In the last step z(n) has been replaced by eq. 22. Substituting n → n − 1 proves the first
part of B0. The proof of part 2 follows later from B2.

B1: With △B1(k + 1) := B1(k + 1) − B1(k) and t2 of eq. 15 one finds for the distances
between consecutive 1s similar to the above argument

△B1(k + 1) = 4 − t(k) , for k ∈ N0 . (34)

The telescopic sum gives, with B1(0) = 0,

B1(n+ 1) = 4 (n + 1) − z(n), (35)

and with n → n − 1 this becomes the first part of B1, which shows, with eq 19, also the
third one. The second part uses eq. 22.
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Note that B1(n) = A(n) − 1 is trivial because 1 in the tribonacci word TWord can only
come from the substitution σ(0) = 01, and TWord (and t) starts with 0. Therefore, one
could directly prove B1 from eqs. 19 and 22 without first computing △B1(k + 1).

B2: Because 2 in TWord appears only from σ(1) = 02, it is clear that B2(n) = C(n) − 1.
Now one finds a formula for C by looking first at △C(k + 1) := C(k + 1) − C(k) using
again t2 of eq. 15. The distances between consecutive 2s in the five pairs s7s6, s6s7, s7s4,
s4s7 and s7s7 is 7, 6, 7, 4, 7, respectively, and

△C(k + 1) = 7 −
1

2
t(k) (t(k) + 1) , for k ∈ N0 . (36)

The telescopic sum leads here, using C(0) = 3, z(n) from eq. 22 and letting n → n− 1, to

C(n) = 7n + 3 − [zA(n− 1) + 3 zC(n− 1)] , for k ∈ N0 . (37)

This proves B2, and also the second part of B0.

B): Here t4 of eq. 17 can be used. The differences of 0s in the five pairs s2ŝ2, ŝ2s2, s2s1, s1s2
and s2s2 is 2, 2, 2, 1, 2. Thus

△B(k+1) := B(k+1) − B(k) = 2 −
1

2
t(k) (t(k) − 1) = 2 − kC(n) , for k ∈ N0 . (38)

In the last step kC from eq. 26 has been used. By telescoping, using B(0) = 0, eliminating
z(n−1) with eq. 19, and letting n → n−1, proves the assertion. �

Eqs. 36 and 38 show that △C(k + 1) − △B(k + 1) = 5 − t(k), for k ∈ N0. Telescoping
leads to the result, obtained directly from eqs. 37 and 31, with eq. 22,

C(n) − B(n) = 5n + 3 − z(n− 1) , for k ∈ N0 , (39)

and with A from eq. 19 this becomes

C(n) − (A(n) + B(n)) = n + 2 , for k ∈ N0 . (40)

This equation can be used to eliminate C from the equations.

Next the formulae for zX for X ∈ {A, B, C} are listed, valid for n = −1, 0, 1, ....

Proposition 7.

zA(n) = 2B(n+ 1) − A(n+ 1) + 1 , (41)

zB(n) = A(n + 1) − B(n + 1) − (n + 2), (42)

zC(n) = 2 (n + 1) − B(n+ 1) . (43)

Proof: Version 1. The inputs zX(−1) = 0, for X ∈ {A, B, C}, follow from eqs. 19 and
31. The first differences △zX(n) := zX(n) − zX(n− 1) produce with the claimed formulae,
and △A(n + 1) and △B(n + 1) from eqs. 20 and 38, the trivial results given in eqs. 24 to
26. Therefore zX(n) from eq. 23 holds.
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Version 2. Besides eq. 22 the trivial formula

zA(n) + zB(n) + zC(n) = n + 1 (44)

can be used.
zA(n) is computed from the difference of 3 (zA(n− 1) + 2 zC(n− 1)) from eq. 30, with C(n)
from eq. 40, and 2 (zA(n− 1) + 3 zC(n− 1)) from eq. 29. This difference leads to the claim
eq. 41.
2 zC(n) = −A(n + 1) + 4n + 5 − zA(n) from eq. 29. Inserting the proven zA(n) formula
leads to the claim eq. 43.
zB(n) can then be computed from eq. 44. �

Finally all formulae for compositions of the types X(Y (k)+1) and X(Y (k)), for X, Y ∈
{A, B, C} and k ∈ N0 shall be given. They are of interest in connection with the tribonacci
ABC-representation given in the preceding section. For this one needs first the results for the
compositions z(X(k)). The formulae will be given in terms of A and B (with C eliminated
by eq. 40).

Proposition 8.

z(A(k)) = 2 (A(k) − B(k)) − k − 1, (45)

z(B(k)) = −A(k) + 3B(k) − k + 1, (46)

z(C(k)) = B(k) + 2 k + 3. (47)

Proof: z(X(k)) will be found from the self-similarity properties given in eqs. 16, 17 and
15, for X = A, B and C, respectively. These strings t3, t4 and t2 are chosen because the
relevant numbers 1, 0 and 2, respectively, appear precisely once in all s−substrings. For
z(X(k)) =

∑X(k)
j=0 t(j) one has to sum all the numbers of the first k substrings s but in the

last one only the numbers up to the number standing for X are summed.
A) In the t3 substrings s4 = 0102, s3 = 010 and s2 = 01 the number 1 appears just once. In
all three substrings the sum up to the relevant number 1 (for A) is 0 + 1 = 1, so for the last
s one has always to add 1. Because s4, s3 and s2, with sums 3, 1 and 1, play the rôle of 0, 1
and 2, respectively, in t3 one obtains z(A(k)) = 3 zB(k−1)+1 (zA(k−1) + zC(k−1)) + 1.
With the identity eq. 44 this becomes 2 zB(k − 1) + k + 1, and with the zB formula eq. 42
this leads to the claim eq. 45.

B) In t4 the sums of the substrings s2, ŝ2, s1 are 1, 2, 0,respectively, and because all three
begin with the relevant number 0 nothing to be summed for the last s. Thus z(B(k)) =
1 zB(k − 1) + 2 zA(k − 1) + 0 + 0. Using eqs. 42 and 41 this becomes the claim.

C) In t2 the sums are 4 for s7, s6 and 3 for s4. The sums up to the relevant number 2
are 3 for each case. Therefore z(C(k)) = 4 (zB(k − 1) + zA(k − 1)) + 3 zC(k − 1) + 3 =
zB(k−1) + zA(k−1) + 3 k+3 = B(k) + 2 k+ 3, with eqs. 44, 42 and 41. �

Proposition 9.

A(A(k) + 1) = 2 (A(k) + B(k)) + k + 6 , A(A(k)) = A(A(k) + 1) − 3 , (48)

A(B(k) + 1) = A(k) + B(k) + k + 4 , A(B(k)) = A(B(k) + 1) − 4 , (49)

A(C(k) + 1) = 4A(k) + 3B(k) + 2 (k + 5) , A(C(k)) = A(C(k) + 1) − 2 . (50)
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B(A(k) + 1) = A(k) + B(k) + k + 3 , B(A(k)) = B(A(k) + 1) − 2 , (51)

B(B(k) + 1) = A(k) + 1 , B(B(k)) = B(B(k) + 1) − 2 ,(52)

B(C(k) + 1) = 2 (A(k) + B(k)) + k + 5 , B(C(k)) = B(C(k) + 1) − 1 .(53)

C(A(k) + 1) = 4A(k) + 3B(k) + 2 (k + 6) , C(A(k)) = C(A(k) + 1) − 6 , (54)

C(B(k) + 1) = 2 (A(k) + B(k)) + k + 8 , C(B(k)) = C(B(k) + 1) − 7 ,(55)

C(C(k) + 1) = 7A(k) + 6B(k) + 4 (k + 5) , C(C(k)) = C(C(k) + 1) − 4 .(56)

Proof:
The two versions are related by △X(n + 1) = X(n + 1) − X(n) given in eqs.20, 38, 36,
for X ∈ {A, B, C}, respectively, and n replaced by Y (k) with Y ∈ {A, B, C}. For C(n)
eq. 40 is always used.
A) This follows from A(n+ 1) given from eq. 19 with z(Y (k)) from eqs. 45, 46 and 47.

B) One proves that B(A(k)) = A(k) + B(k) + k + 1 from which B(A(k) + 1) follows.
With eqs. 40 and 30 this means that

B(A(k)) = C(k) − 1 = B2(k). (57)

After applying zB on both sides, using eq. 27 this is equivalent to

A(k) + 1 = zB(C(k)− 1)) = zB(C(k)). (58)

The second equality is trivial. This is now proved. From eq. 22 zB(n) = n + 1 − z(n) +
zC(n). Hence zB(C(k)) = C(k) + 1− z(C(k)) + (k + 1), with eq. 27. This is C(k) − k −
1 − B(k) from eq. 47, and replacing C(k) gives A(k) + 1.
One proves B(B(k)) = A(k) + 1 or, after application of zB on both sides, B(k) + 1 =
zB(A(k) − 1) = zB(A(k)), where the second equality is trivial. But from eqs. 44 and 27
follows zB(A(k)) = A(k) + 1 − (k + 1) − zC(A(k)). Applying eq. 43 and the just proven
B(A(k) + 1) formula shows that

zB(A(k)) = B(k) + 1. (59)

The B(C(k)) claim can be written in terms of C from eqs. 40 and 28 as

B(C(k)) = 2C(k) − k = B0(k) . (60)

Indeed, eqs. 31, 27 imply forB(C(k)) = 2C(k)− zC(C(k)−1) = 2C(k)− (zC(C(k))− 1) =
2C(k) − k. The second equality is trivial.

C) This follows immediately from C(n + 1) of eq. 40 and the already proved formulae for
A(Y (k) + 1) and B(Y (k) + 1).

�

The collection of the results for ZX(Y (k)) is, for k ∈ N0:

16



Proposition 10.

zA(A(k)) = k + 1,

zA(B(k)) = A(k) − B(k) − (k + 1) = zC(A(k)),

zA(C(k)) = B(k) + 1. (61)

zB(A(k)) = B(k) + 1 = zA(C(k))

zB(B(k)) = k + 1,

zB(C(k)) = A(k) + 1. (62)

zC(A(k)) = A(k) − B(k) + (k + 1) = zA(B(k))

zC(B(k) = 2B(k) − A(k) + 1,

zC(C(k)) = k + 1. (63)

Proof:

That zX(X(k)) = k + 1 has been noted already in eq. 27.

The other claims follow from the zX(n) results after replacing n by Y (k) 6= X(k), and ap-
plication of the formulae from Proposition 9. �

Many of the formulae from section 3 appear in [2] and [1] with the above mentioned trans-
lation between their sequences a, b, and c to our B, A, and C. For example, Theorem 13 of
[2], p. 57, for the nine twofold iterations (in our notation X(Y (k) of Proposition 9) can be
checked.
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Table 1: Sequences t, A, B, C, for n = 0, 1, ..., 79

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
t 0 1 0 2 0 1 0 0 1 0 2 0 1 0 1 0 2 0 1 0
A 1 5 8 12 14 18 21 25 29 32 36 38 42 45 49 52 56 58 62 65
B 0 2 4 6 7 9 11 13 15 17 19 20 22 24 26 28 30 31 33 35
C 3 10 16 23 27 34 40 47 54 60 67 71 78 84 91 97 104 108 115 121

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
t 0 1 0 2 0 1 0 2 0 1 0 0 1 0 2 0 1 0 1 0
A 69 73 76 80 82 86 89 93 95 99 102 106 110 113 117 119 123 126 130 133
B 37 39 41 43 44 46 48 50 51 53 55 57 59 61 63 64 66 68 70 72
C 128 135 141 148 152 159 165 172 176 183 189 196 203 209 216 220 227 233 240 246

n 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
t 2 0 1 0 0 1 0 2 0 1 0 0 1 0 2 0 1 0 1 0
A 137 139 143 146 150 154 157 161 163 167 170 174 178 181 185 187 191 194 198 201
B 74 75 77 79 81 83 85 87 88 90 92 94 96 98 100 101 103 105 107 109
C 253 257 264 270 277 284 290 297 301 308 314 321 328 334 341 345 352 358 365 371

n 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
t 2 0 1 0 0 1 0 2 0 1 0 2 0 1 0 0 1 0 2 0
A 205 207 211 214 218 222 225 229 231 235 238 242 244 248 251 255 259 262 266 268
B 111 112 114 116 118 120 122 124 125 127 129 131 132 134 136 138 140 142 144 145
C 378 382 389 395 402 409 415 422 426 433 439 446 450 457 463 470 477 483 490 494
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Table 2: ZT(N), for N = 1, 2, ..., 100

N ZT(N) N ZT(N) N ZT(N) N ZT(N) N ZT(N)

1 1 21 11001 41 110100 61 1010100 81 10000000
2 10 22 11010 42 110101 62 1010101 82 10000001
3 11 23 11011 43 110110 63 1010110 83 10000010
4 100 24 100000 44 1000000 64 1011000 84 10000011
5 101 25 100001 45 1000001 65 1011001 85 10000100
6 110 26 100010 46 1000010 66 1011010 86 10000101
7 1000 27 100011 47 1000011 67 1011011 87 10000110
8 1001 28 100100 48 1000100 68 1100000 88 10001000
9 1010 29 100101 49 1000101 69 1100001 89 10001001
10 1011 30 100110 50 1000110 70 1100010 90 10001010
11 1100 31 101000 51 1001000 71 1100011 91 10001011
12 1101 32 101001 52 1001001 72 1100100 92 10001100
13 10000 33 101010 53 1001010 73 1100101 93 10001101
14 10001 34 101011 54 1001011 74 1100110 94 10010000
15 10010 35 101100 55 1001100 75 1101000 95 10010001
16 10011 36 101101 56 1001101 76 1101001 96 10010010
17 10100 37 110000 57 1010000 77 1101010 97 10010011
18 10101 38 110001 58 1010001 78 1101011 98 10010100
19 10110 39 110010 59 1010010 79 1101100 99 10010101
20 11000 40 110011 60 1010011 80 1101101 100 10010110
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Table 3: ABC(N), for N = 1, 2, ..., 100

N ABC(N) N ABC(N) N ABC(N) N ABC(N) N ABC(N)

1 10 21 1020 41 00120 61 001110 81 000000010
2 010 22 0120 42 1120 62 11110 82 10000010
3 20 23 220 43 0220 63 02110 83 01000010
4 0010 24 0000010 44 00000010 64 000210 84 2000010
5 110 25 100010 45 1000010 65 10210 85 00100010
6 020 26 010010 46 0100010 66 01210 86 1100010
7 00010 27 20010 47 200010 67 2210 87 0200010
8 1010 28 001010 48 0010010 68 0000020 88 00010010
9 0110 29 11010 49 110010 69 100020 89 1010010
10 210 30 02010 50 020010 70 010020 90 0110010
11 0020 31 000110 51 0001010 71 20020 91 210010
12 120 32 10110 52 101010 72 001020 92 0020010
13 000010 33 01110 53 011010 73 11020 93 120010
14 10010 34 2110 54 21010 74 02020 94 00001010
15 01010 35 00210 55 002010 75 000120 95 1001010
16 2010 36 1210 56 12010 76 10120 96 0101010
17 00110 37 000020 57 0000110 77 01120 97 201010
18 1110 38 10020 58 100110 78 2120 98 0011010
19 0210 39 01020 59 010110 79 00220 99 111010
20 00020 40 2020 60 20110 80 1220 100 021010

Here 0, 1 and 2 stand for B, A and C, respectively. E.g., ABC(6) = BCB = B(C(B(0))).
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