The Tribonacci and ABC Representations of Numbers are Equivalent

Wolfdieter L ang ${ }^{1}$
Karlsruhe
Germany
wolfdieter.lang@partner.kit.edu

Abstract

It is shown that the unique representation of positive integers in terms of tribonacci numbers and the unique representation in terms of iterated A, B and C sequences defined from the tribonacci word are equivalent. These sequences are studied in detail.

1 Introduction and Synopsis

The quintessence of many applications of the tribonacci sequence $T=\{T(n)\}_{n=0}^{\infty}$ [4] A000073 [5], [6], [2] [1] is the ternary substitution sequence $2 \rightarrow 0,1 \rightarrow 02$ and $0 \rightarrow 01$. Starting with 2 this generates an infinite (incomplete) binary tree with ternary node labels called TTree. See Fig 1 for the first 6 levels $l=0,1, \ldots, 5$ denoted by TTree ${ }_{5}$. The number of nodes on level l is the tribonacci number $T(l+2)$, for $l \geq 0$. In the limit $n \rightarrow \infty$ the last level $l=n$ of TTree ${ }_{n}$ becomes the infinite self-similar tribonacci word TWord. The nodes on level l are numbered by $N=0,1, \ldots, T(l+2)-1$.
The left subtree, starting with 0 at level $l=1$ will be denoted by TTreeL, and the right subtree, starting with 2 at level $l=0$ is named TTreeR. The number of nodes on level l of the left subtree TTreeL is $T(l+1)$, for $l \in \mathbb{N}$; the number of nodes on level l of TTree R is 1 for $l=0$ and $T(l+1)$, for $l \in \mathbb{N}$.
TWord considered as ternary sequence t is given in [4] A080843 (we omit the OEIS reference henceforth if A numbers for sequences are given): $\{0,1,0,2,0,1,0,0,1,0,2,0,1, \ldots\}$. See also Table 1. This is the analogue of the binary rabbit sequence A005614 in the Fibonacci case. Like in the Fibonacci case with the complementary and disjoint Wythoff sequences $A=\underline{\text { A000201 }}$ and $B=\underline{\text { A001950 }}$ recording the positions of 1 and 0 , respectively, in the tribonacci case the sequences $A=\underline{\text { A278040, }} B=\underline{\text { A278039, and } C=}$

[^0]A278041 record the positions of 1, 0, and 2, respectively. These sequences start with $A=\{1,5,8,12,14,18,21,25,29,32, \ldots\}, B=\{0,2,4,6,7,9,11,13,15,17, \ldots\}$, and $C=\{3,10,16,23,27,34,40,47,54,60, \ldots\}$. See also Table 1.
The present work is a generalization of the theorem given in the Fibonacci case for the equivalence of the Zeckendorf- and Wythoff- representations of numbers in [3].
Note that there are other complementary and disjoint tribonacci A, B and C sequences given in OEIS. They use the same ternary sequence $t=\underline{\text { A080843 (which has offset } 0 \text {), with }}$ $0 \rightarrow a, 1 \rightarrow b$ and $2 \rightarrow c$, however with offset 1 , and record the positions of a, b and c by A $=\mathrm{A} 003144, \mathrm{~B}=\mathrm{A} 003145$ and $\mathrm{C}=\mathrm{A} 003146$, respectively. In [2] and [1] they are called a, b, and c. This tribonacci $A B C$-representation is given in A317206. The relation between these sequences (we call them now a, b, c) is: $a(n)=B(n-1)+1, b(n)=A(n-1)+1$, and $c(n)=C(n-1)+1$, for $n \geq 1$. We used $B(0)=0$ in analogy to the Wythoff-representation in the Fibonacci case.
From the uniqueness of the ternary sequence t (with offset 0) it is clear that the three sequences A, B and C cover the nonnegative integers \mathbb{N}_{0} completely, and they are disjoint. In contrast to the Fibonacci case where the Wythoff sequences are Beatty sequences [7] for the irrational number $\varphi=\underline{\text { A001622, the golden section, and are given by } A(n)=\lfloor n \varphi\rfloor}$ and $B(n)=\left\lfloor n \varphi^{2}\right\rfloor$, for $n \in \mathbb{N}$ (with $A(0)=0=B(0)$), no such formulae for the complementary sequences A, B and C in the tribonacci case are considered. The definition given above in terms of TWord, or as sequence t, is not burdened by numerical precision problems.
Note that the irrational tribonacci constant $\tau=1.83928675521416 \ldots=\underline{\text { A058265 }}$, the real solution of characteristic cubic equation of the tribonacci recurrence $\lambda^{3}-\lambda^{2}-\lambda-1=0$, defines, together with $\sigma=\frac{\tau}{\tau-1}=2.19148788395311 \ldots=\underline{\text { A316711 }}$ the complementary and disjoint Beatty sequences $A t:=\lfloor n \tau\rfloor$ and $B t:=\lfloor n \sigma\rfloor$, given in A158919 and A316712, respectively.

Figure 1: Tribonacci Tree TTree $_{5}$

The analogue of the unique Zeckendorf-representation of positive integers is the unique tribonacci-representation of these numbers.

$$
\begin{equation*}
(N)_{T}=\sum_{i=0}^{I(N)} f_{i} T(i+3), \quad f_{i} \in\{0,1\}, \quad f_{i} f_{i+1} f_{i+2}=0, f_{I(N)}=1 \tag{1}
\end{equation*}
$$

The sum should be ordered with falling T indices. This representation will also be denoted by (Z as a reminder of Zeckendorf)

$$
\begin{align*}
Z T(N) & =\operatorname{al}_{i=0}^{I(N)} f_{I(N)-i} \\
& =f_{I(N)} f_{I(N)-1} \ldots f_{0} . \tag{2}
\end{align*}
$$

The product with concatenation of symbols is here denoted by F , and the concatenation symbol \circ is not written. This product has to be read from the right to the left with increasing index i. This representation is given in $\underline{\text { A278038 }}(N)$, for $N \geq 1$. See also Table 3 for $Z T(N)$ for $N=1,2, \ldots, 100$.
E.g., (1) $)_{T}=T(3), Z T(1)=1 ;(8)_{T}=T(6)+T(3), Z T(8)=1001$. The length of $Z T(N)$ is $\# Z T(N)=I(N)+1=\{1,2,2,3,3,3,4,4,4,4,4,4, \ldots\}=\{\underline{\operatorname{A} 278044}(N)\}_{N \geq 1}$. The number of numbers n is given by $\{1,2,3,6,11,20,37 \ldots\}=\{\underline{\text { A } 001590}(n+2)\}_{n \geq 1}$. These are the companion tribonacci numbers of $T=\underline{\text { A000073 }}$ with inputs $0,1,0$ for $n=0,1,2$, respectively.
$Z T(N)$ can be read off any finite T Tree $_{n}$ with $T(n+2) \geq N$ after all node labels 2 have been replaced by 1. See Figure 1 for $n=5($ with $2 \rightarrow 1)$ and numbers $N=0,1, \ldots, 12$. The branch for N is read from bottom to top, recording the labels of the nodes, ending with the last 1 label. Then the obtained binary string is reversed in order to obtain the one for $Z T(N)$. E.g., $N=9$ leads to the string 0101 which after reversion becomes $Z T(9)=1010$.
The analogue of the Wythoff- representation of nonnegative integers is the tribonacci $A B C$ representation using iterations of the sequences A, B and C.

$$
\begin{equation*}
(N)_{A B C}=\left(\mathrm{\Pi}_{j=1}^{J(N)} X(N)_{j}^{k(N)_{j}}\right) B(0), \text { with } N \in \mathbb{N}_{0}, \quad k(N)_{j} \in \mathbb{N}_{0} \tag{3}
\end{equation*}
$$

again with an ordered concatenation product. Here $X(N)_{j} \in\{A, B, C\}$, for
$j=1,2, \ldots, J(N)-1$, with $X(N)_{j} \neq X(N)_{j+1}$, and $X(N)_{J(N)} \in\{A, C\}$. Powers of $X(N)_{j}$ are also to be read as concatenations. Concatenation means here iteration of the sequences. The exponents can be collected in $\vec{k}(N):=\left(k(N)_{1}, \ldots, k(N)_{J(N)}\right)$. For the equivalence proof only positive integers N are considered. If exponents vanish the corresponding A, B, C symbols are not present $\left(X(N)_{j}^{0}\right.$ is of course not 1$)$. If all exponents vanish, the I is empty, and $N=0$ could be represented by $(0)_{A B C}=B(0)=0$ (but this will not be used for the equivalence proof).
E.g., $(30)_{A B C}=(B C B A) B(0)=B(C(B(A(B(0))))), J(30)=4, \vec{k}(30):=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=$ $(1,1,1,1), X(30)_{1}^{k_{1}}=B^{1}, X(30)_{2}^{k_{2}}=C^{1}, X(30)_{3}^{k_{3}}=B^{1}, X(30)_{4}^{k_{4}}=A^{1}$ (sometimes the arguments (N) are skipped).

The number of A, B and C sequences present in this representation of N is $\sum_{j=1}^{J(N)} k(N)_{j}+$ $1=\underline{\text { A316714 }}(N)$, This representation is also written as

$$
\begin{equation*}
A B C(N)=\left(\mathrm{\Pi}_{j=1}^{J(N)} x(N)_{j}^{k(N)_{j}}\right) 0, \text { with } k(N)_{j} \in \mathbb{N}_{0} \tag{4}
\end{equation*}
$$

and $x(N)_{j} \in\{0,1,2\}$, for $j=1,2, \ldots, J(N)-1$, with $x(N)_{j} \neq x(N)_{j+1}$, and $x(N)_{J(N)} \in$ $\{1,2\}$. Here $x=0,1,2$ replaces $X=B, A, C$, respectively.
E.g., $A B C(0)=0, J(1)=0$ (empty product); $A B C(30)=02010$.

For this $A B C$-representation see A319195. Another version is A316713 (where for a technical reason B, A, and C are represented by 1,2 and 3 (not 0,1 and 2), respectively). See also Table 3 for $A B C(N)$, for $N=1,2, \ldots, 100$.
The number of $B \mathrm{~s}, A \mathrm{~s}$ and $C \mathrm{~s}$ in the $A B C$-representation of N is given in sequences A 316715 , $\underline{\text { A316716 }}$ and A316717, respectively. The length of this representation is given in A3167174.

A) From $\mathrm{ZT}(\mathrm{N})$ to $\mathrm{N}_{\mathrm{ABC}}$

For the proof of the equivalence of these two representations $(N)_{T}$ and $(N)_{A B C}$ for positive integers N one uses for the first part, $(N)_{T} \rightarrow(N)_{A B C}$, in the version $Z T(N) \rightarrow$ $(N)_{A B C}$, the reversed word $Z T(N)$ with a concatenated 0 at the beginning and at the end. This intermediate step will be called $\widehat{Z T}(N)$. E.g., $\widehat{Z T}(1)=010$ from $Z T(1)=1$; $\widehat{Z T}(30)=00110010$ from $Z T(30)=100110$. I.e., $\widehat{Z T}(N)=0 \overline{Z T}(N) 0$, with the reversed word $\overline{Z T}(N):=(Z T(N))_{\text {reversed }}$.
This simple definition of $\widehat{Z T}(N)$ for given N becomes somewhat complicated if a compact explicit notation is used for general $N \in \mathbb{N}$.

$$
\begin{align*}
\widehat{Z T}(N) & \equiv \widehat{Z T}\left(N ; P(N), \overrightarrow{j_{A}}(N, p), \overrightarrow{j_{C}}(N, p)\right) \\
& =0 \operatorname{I}_{p=1}^{P(N)}\left(\left(\operatorname{\Pi }_{k=1}^{J_{A}(N, p)} 0^{j_{A, k}(N, p)} 1\right)\left(\operatorname{\Pi }_{k=1}^{J_{C}(N, p)} 0^{j_{C, k}(N, p)} 11\right)\right)^{p} 0 . \tag{5}
\end{align*}
$$

Several explanations follow, and rules are needed to avoid the appearance of 111 in this binary word. Uniqueness requires rules for the separation between neighboring p-words.

Explanations:

1) Vanishing p-dependent ordered concatenation products are indicated by $J_{A}=0$ or $J_{C}=0$ (we omit sometimes the arguments (N, p)). In this case undefined products arise (which are here not set to 1 , of course). Not both products are allowed to vanish for any p, i.e., $J_{A}=0=J_{C}$ is forbidden.
2) Exponents of 0 indicate the multiplicity. A vanishing exponent means disappearance of the 0 s . One could use another notation like $0_{j_{A, k}}$ and $0_{j_{C, k}}$.
3) The separation of consecutive p-words is done such that $P(N)$ becomes minimal. For this the following two rules apply.
i) If $J_{A}(N, p+1) \geq 1$ (part A present for $\left.p+1\right)$ then $J_{C}(N, p) \neq 0$.
ii) $J_{C}(N, p)=0=J_{A}(N, p+1)$ is forbidden.
4) To avoid the appearance of the subword 111 some rule is needed:

The exponents of 0 are collected in $\overrightarrow{j_{A}}$ and $\overrightarrow{j_{C}}$. In general they satisfy $j_{A, k} \in \mathbb{N}$ and $j_{C, k} \in \mathbb{N}$, i.e., positive powers of 0 appear. But there are exceptions for which these exponents may vanish.
The first exceptions apply to the start of the p-product. It may start with 1 or with 11 .

Exception 1

i) $j_{A, 1}(N, 1) \in \mathbb{N}_{0}$
ii) $j_{C, 1}(N, 1) \in \mathbb{N}_{0}$ if $J_{A}(N, 1)=0$

The remaining exception applies for $p \geq 2$. Then one has to make sure that no 111 appears in the transition from a $p-1$ to p.

Exception 2

If $J_{C}(N, p-1)=0$ then $j_{A, 1}(N, p) \in \mathbb{N}_{0}$, for $2<p<P(N)$.
Some examples may illustrate these explanations and exceptions.

Examples 1

1) $\widehat{Z T}(N)=0101010^{2}$ 11010. Minimal $P(N)$ (Explanation 3) is obtained with $P(N)=2$, $J_{A}(N, 1)=3, J_{C}(N, 1)=1, J_{A}(N, 2)=1, J_{C}(N, 2)=0$. Here $j_{A, 1}(N, 1)=0$ (exception 1)i)). E.g., the separation $01|0101| 0011 \mid 010$ with $P=4$ is forbidden. For this $J_{C}(N, 1)=0$, $J_{A}(N, 2)=2$ and $J_{C}(N, 2)=0=J_{A}(N, 3)$. The last separation is the only one for the given minimal $P(N)$ solution.
2) $\widehat{Z T}(N)=010^{2} 10^{2} 11011010$. This is an instance $P(N)=2, J_{A}(N, 1)=2, J_{C}(N, 1)=$ $2, J_{C}(N, 2)=0$ and

$$
\overrightarrow{j_{A}}(N, 1)=(0,2), \overrightarrow{j_{C}}(N, 1)=(2,1), \overrightarrow{j_{A}}(N, 2)=(1)
$$

Here the minimal P is 2, and exception 1)i) (start with 1) applies. Also explanation 1) is needed because for $p=2$ part C is missing but not part A. The corresponding $Z T(N)$ is 1011011001001, with $I(N)=12$, and $N=1705+504+274+81+44+7+1=2616$.
3) $\widehat{Z T}(N)=0110^{2}$ 11010. Here exception 1)ii) (start with 11) occurs and $P(N)=2$ with $J_{A}(N, 1)=0$ (explanation 1), $J_{C}(N, 1)=2$ and $J_{A}(N, 2)=1, J_{C}(N, 2)=0$ (explanation 1). $Z T(N)$ is 10110011 , with $I(N)=7$, and $N=81+24+13+2+1=121$.

The translation from $\widehat{Z T}(N)$ to $(N)_{A B C}$ is now performed, in an intermediate step introducing two new symbols and \bullet and \times with the help of four substitution rules in the word $w(N)$, used here as abbreviation for $w(N):=\widehat{Z T}(N)=\square_{i=1}^{\# w(N)} w(N)_{i}$ with $\# w(N)=I(N)+3=$ $\underline{\text { A278044 }}(N)+2$. This intermediate representation will be denoted by $(N)_{A B \bullet \times}$. The following rules depend on the neighbors of $w(N)_{i}$ for $i=1,2, \ldots, \# w(N)-1$. To mark the position i, the number (letter) $w(N)_{i}$ to be substituted is given in the rules in boldface and underlining. $w(N)_{1}$ has no left neighbor denoted in the following by \emptyset. This \emptyset is also used to signal the end of each word $w(N)$ after 10 .

The four substitution rules

$$
\begin{array}{lll}
\underline{10} 0 & : \underline{\mathbf{0}} \longrightarrow \bullet \text { and } x \underline{\mathbf{0}} 0: \underline{\mathbf{0}} \longrightarrow B, \text { for } x \in\{\emptyset, 0\}, \\
\underline{\mathbf{0}} 11: & \underline{\mathbf{0}} \longrightarrow \times \text { and } \underline{\mathbf{0}} 10: \underline{\mathbf{0}} \longrightarrow A, \\
\underline{1} 1 & : \underline{\mathbf{1}} \longrightarrow \times, \\
\underline{1} 01 & : \underline{\mathbf{1}} \longrightarrow \bullet \text { and } \underline{1} 0 x: \underline{\mathbf{1}} \longrightarrow B, \text { for } x \in\{\emptyset, 0\} . \tag{S4}
\end{array}
$$

These rules suffice and are not in conflict which each other. Eg. $1 \underline{10}$ is not needed because if the word ends in the numbers 110 then rule (S4), part two, with $x=\emptyset$, applies for the substitution of the last 1 becoming a B. Otherwise it is either $1 \underline{1} 00$ or $1 \underline{1} 01$ in which case also (S4) applies either with part two and $x=0$ or with part one.
E.g., $w(N)=0101010011010$ with $\# w=13$ translates to $(N)_{A B \bullet \times}=A \bullet A \bullet A B \bullet \times \times \bullet A B$ with length $\# w-1=12$.
$w(N)$ ends always in 10 . This last substitution of 1 uses part two of rule (S4) with $x=\emptyset$.
In the final step the translation into $(N)_{A B C}$ is obtained by omitting all $\bullet s$ and substituting $\times \times \longrightarrow C$. This reduces the length to $\underline{\text { A316714 }}(N)$, the one of $(N)_{A B C}$.
The preceding example thus gives $(N)_{A B C}=A^{3} B C A B$ which represents $N=752$ corresponding to the given $Z T(752)=10110010101=504+149+81+13+4+1$.

Figure 2: ABC-representation with the $\mathrm{ABCTree}_{5}$
In Figure 2 the tribonacci tree TTree $_{5}$ from Figure 1 has been used with labeling the edges (branches) with symbols $A, B, C, \bullet \times$ in a special way. It is called $A B C T r e e_{5}$. The new branch decorated infinite tree is denoted by ABCTree.
The $A B C$-representation of N is obtained directly by reading the branches from bottom to top. If there are two edge labels like A and \times, or B and \bullet, for an edge going out from from a node, the choice is fixed from the direction from which the previous (lower) edge reached the node. If it reached the node from the right-hand side, the label on the right-hand side of the outgoing edge has to be chosen, and similarly for the left-hand side. If one considers a finite $A B C T r e e_{n}$ with levels $l=0,1, \ldots, n$ having no incoming edges from the next level $l=n+1$, one chooses always the left variant for the outgoing edges from nodes of the last level $l=n$ of $A B C$ Tree e_{n}. The $A B C$-representation ends always in $A B(0)$ or $C B(0)$ which means that coming from the left subtree one stops after reaching the first node on the outermost branch with only B edges. Only in the right subtree one has to go all the way up
to node 2 at level $l=0$. The $N=0$ case is not considered in the equivalence proof, but the tree shows that $N=0$ would be represented by $B=B(0)$ (Figure 2 the B emerging from the first node labeled 0 at level $l=5$).
$E . g$., for $N=8$ one has from $A B C T r e e_{5}$ the edge labels from bottom to top $A \bullet B A B$ corresponding to $A B A B=A(B(A(B(0))))=8$. Here one sees why the tree started with node 2 at level $l=0$. For $N=6$ the path is $B \times \times B \rightarrow B C B=B(C(B(0)))$ ending at node 0 at level l.
Note that if one adds a level $n+1$ to $A B C T r e e_{n}$, thus obtaining $A B C T r e e_{n+1}$, the first numbers $N=0,1, \ldots, T(3+l)-1$ related to level $l+1$ of the left subtree TTree L_{l+1} have the same $A B C$-representations like the those compiled starting from level n of $A B S T r e e_{n}$. This is because one stays in the left subtree $A B S T r e e L_{l+1}$ and one reaches at most the 0 from level 1.

B) From (N) $\mathbf{A B C}$ to $\mathrm{ZT}(\mathbf{N})$

The reverse part of the equivalence proof starts with the representation $(N)_{A B C}$ eq. 3, and constructs $\widehat{Z T}(N)$ eq. 5 . After erasing the 0 at the beginning and end, and reversing the remaining word one obtains the binary word $Z T(N)$ eq. 2 and from this $(N)_{T}$ eq. 1 .
The first task is to find the intermediate $(N)_{A B \bullet} \times$ version from $(N)_{A B C}$. For this one derives from the substitution rules eq. 6 how A, B and C can appear. A is reached uniquely from 010. For B one has to distinguish two types, called $B I$ and $B I I . B I$ originates from a substituted $\underline{\mathbf{0}}$, either at the start from $\emptyset \underline{\mathbf{0}} 0$ or from $0 \underline{\mathbf{0}} 0$. BII originates from a substituted $\underline{1}$ either at the end from $\underline{1} 0 \emptyset$ or from $\underline{1} 00$. Finally, C, represented by $\times \times$, originates from substituting 0 in $\underline{\mathbf{0}} 11$ leading to \times, and the following substitution for 1 produces the second \times. Note that $\times \times$ obtained from substituting 11 would need in fact 111 which is forbidden. Therefore C can appear only from a 0110 string starting substitutions with the first 0 .
Consider now $(N)_{A B C}$ from eq. 3. It turns out that the transition between the blocks of powers of A, B and C is important in order to find out the correct $(N)_{A B \bullet \times}$ representation. The final $B(0)$ in $N_{A B C}$ will only at the end be added as a final B. There is never a final B-block for $j=J(N)$ in eq, 3 from the uniqueness requirement of the representation. The following statements then follow.

Step 1 replacements

Step1A) A block A^{n}, for $n \in \mathbb{N}$, (i.e., $X(N)_{j}=A, k(N)_{j}=n$ in eq. 3), appearing alone $(J(N)=1)$ or at the end $(j=J(N))$ or if followed by a B-block is replaced by $(A \bullet)^{n-1} A$ (remember that $(A \bullet)^{0}$ means disappearance). The B following an A^{n}-block is always of type $B I I$ (in the cases $J(N)=1$ or $j=J(N)$ this means that last omitted B is of type BII). If the A^{n}-block is followed by a C-block then it is replaced by $(A \bullet)^{n}$.
Step1B) A block B^{n}, for $n \in \mathbb{N}$, which can never appear alone, stays B^{n} if it begins with a B of type $B I$ (especially if $X(N)_{1}=B$). If the block B^{n} begins with a B of type $B I I$ then B^{n} is replaced by $B \bullet B^{n-1}$.
Step1C) A block C^{n} followed by an A-block is replaced by $(\bullet \times \times)^{n}$. If C^{n} is followed by a B-block starting with a B of type $B I I$ then it is replaced by $\times \times$. This applies also if
a C-block appears alone $(J(N)=1)$. A C-block is never followed by a B-block beginning with a B of type $B I$.

In order to obtain the $(N)_{A B \bullet} \times$ representation one adds after these $\operatorname{Step} 1$ replacements the final B. Some examples are in order:

Examples 2

1) $N_{A B C}=B^{3} A B$. The starting B^{3} remains B^{3} because the first B is of type I (it comes from $\emptyset \underline{0} 0$). Because the A^{1} (the last block) is followed by a B (always type II) it remains an A. After appending the omitted last B one obtains $(N)_{A B \bullet \times}=B B B A B$, i.e., here no - appears.
2) $N_{A B C}=A^{3} B C A B$. The starting A-bock is replaced via Step1A) by $(A \bullet)^{2} A$. The following block B^{1} is replaced by $B \bullet$ because the B after an A is always of type II. The next block C^{1} followed by the last A-block A^{1} is replaced by $\bullet \times \times$ The last A remains an A. After adding the final B one obtains $(N)_{A B \bullet} \times A \bullet A \bullet A B \bullet \times \times \bullet A B$. This is the representation found above in part A) from $\operatorname{ZT}(752)$
The translation from $(N)_{A B \bullet} \times$ to $\widehat{Z T}(N)$ is simply done by starting with an extra 0 and appending the $(N)_{A B \bullet} \times$ string by replacing $A \rightarrow 1, B \rightarrow 0, \bullet \rightarrow 0$ and $\times \rightarrow 1$.
In the example 1) this produces $\widehat{Z T}(N)=000010$. The example 2) gives 0101010011010.
The final translation from $\widehat{Z T}(N)$ to $Z T(N)$ is then trivial: omit the two boundary 0 s and reverse the remaining binary string.
The two examples give: 1$) \overline{0001}=1000$, which is $Z T(7)$, and 2) $\overline{10101001101}=10110010101$ which is $Z T(752)$. This was used above as start of the example for the proof in the other direction.

2 Equivalence of representations $\mathrm{ZT}(\mathbf{N})$ and $\mathrm{ABC}(\mathbf{N})$

First the uniqueness of the tribonacci-representation $Z T(N)$ of eq. 2 is considered.
It is clear that every binary sequence starting with 1 , without three consecutive 1s, represents some $N \in \mathbb{N}$. An algorithm for finding such a representation for every $N \in \mathbb{N}$ is given to prove the following lemma.

Lemma 1. The tribonacci-representation $Z T(N)$ of eq. 2 is unique.

Proof:

The recurrence of the tribonacci sequence $T:=\{T(l)\}_{l=3}^{\infty}$, with inputs $T(3)=1, T(4)=2$ and $T(5)=4$, shows that this sequence is strictly increasing. Define the floor function floor $(T ; n)$, for $n \in \mathbb{N}$, giving the largest member of T smaller or equal to n. The corresponding index of T will then be called $\operatorname{Ind}(\operatorname{floor}(T ; n))$. Define the finite sequence Nseq $:=\left\{N_{j}\right\}_{j=1}^{j_{\text {max }}}$ recursively by

$$
\begin{equation*}
N_{j}=N_{j-1}-\operatorname{floor}\left(T ; N_{j-1}\right), \quad \text { for } j=1,2, \ldots, j_{\max } \tag{8}
\end{equation*}
$$

with $N_{0}=N$ and $N_{j_{\max }}=0$.
It is clear that this recurrence reaches always 0 . Define the finite sequences $f T N:=$ $\left\{\operatorname{floor}\left(T ; N_{j}\right)\right\}_{j=0}^{j_{\max }-1}$ and $\operatorname{IfTN}:=\left\{\operatorname{Ind}\left(f T N_{j}\right)\right\}_{j=0}^{j_{\max }-1}$. Then $I(N)$ in eq. 2 is given by $I(N)=I F T N_{0}$ and the finite sequence $f_{s e q}=\left\{f_{I(N)-k}\right\}_{k=0}^{I(N)}$ is given by

$$
f_{I(N)-k}= \begin{cases}1 & \text { if } I(N)-k \in I f T N \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

Example $3 N=263$. $N s e q=\{263,144,33,92,0\}, f T N=\{149,81,24,7,2\}$, IfTN $=$ $\{8,7,5,3,1\}, I(N)=8$, fseq $=\{1,1,0,1,0,1,0,1,0\}$.
Next follows the lemma on the uniqueness of the $A B C$-representation given in eq. 3 .
Lemma 2. The tribonacci $A B C$-representation $(N)_{A B C}$ of eq.3, for $N \in \mathbb{N}_{0}$, is unique.

Proof:

From the definition of the $A-, B$ - and C-sequences (each with offset 0) based on the value 1,0 and 2 , respectively, of $t(n)$, for $n \in \mathbb{N}_{0}$, it is clear that these sequences are disjoint and \mathbb{N}_{0}-complementary. 0 is represented by $B(0)$. Therefore the n-fold iteration $B^{[n]}(0)$ (written as $\left.B^{n}(0)\right)$ is allowed only for $n=1$, and any representation ends in $B(0)$. Iterations acting on 0 are encoded by words over the alphabet $\{A, B, C\}$, and n-fold repetition of a letter X is written as X^{n}, named X-block, where $n=0$ means that no such X-block is present. Then any word consisting of consecutive different non-vanishing X-blocks ending in the B-block B^{1} represents a number $N \in \mathbb{N}_{0}$.
In order to prove that with such representations every $N \in \mathbb{N}_{0}$ is reached the following algorithm is used. Replace any number $n \in \mathbb{N}_{0}$, which is $n=X_{n}(k)$ with $X_{n} \in\{A, B, C\}$ and $k \in \mathbb{N}_{0}$, by the 2-list $L(n)=\left[L(n)_{1}, L(n)_{2}\right]:=\left[X_{n}, k(n)\right]$. Define the recurrence

$$
\begin{equation*}
L(j)=\left[L\left(L(j-1)_{2}\right)_{1}, L\left(L(j-1)_{2}\right)_{2}\right], \text { for } j=1,2, \ldots, j_{\max } \tag{10}
\end{equation*}
$$

with input $L(0)=\left[X_{N}, k(N)\right]$, and $j_{\max }$ is defined by $L\left(j_{\max }\right)=[B, 0]$.
Then the word is $w(N)=\AA_{j=0}^{j_{\text {max }}} L(j)_{1}$ (a concatenation product), and read as iterations acting on 0 this becomes the representation $(N)_{A B C}$. The length of the word $w(N)$ is $j_{\text {max }}+1$.

Example $4 N=38 . L(0)=[A, 11], L(1)=[B, 6], L(2)=[B, 3], L(3)=[C, 0]$, and $L(4)=[B, 0]$, hence $j_{\max }(38)=4, w(38)=A B B C B$, and $(38)_{A B C}=A B B C B(0)$, to be read as $A(B(B(B(C(B(0))))))$.

After these preliminaries the main theorem can be stated.
Theorem. The tribonacci-representation $Z T(N)$ of eq. 1, is equivalent to the tribonacci ABC-representation $(N)_{A B C}$ eq. 3, for $N \in \mathbb{N}$.

Proof:

Part A): The proof of the map $Z T(N) \rightarrow(N)_{A B C}$ is performed in three steps:

$$
\begin{array}{ll}
\text { Step 1: } & Z T(N) \rightarrow \widehat{Z T}(N):=0\left(Z T(N)_{\text {reverse }}\right) 0, \\
\text { Step 2: } & \widehat{Z T}(N) \rightarrow(N)_{A B \bullet \times}, \\
\text { Step 3: } & (N)_{A B \bullet \times} \rightarrow(N)_{A B C} . \tag{11}
\end{array}
$$

Step 1 is clear.
For Step 2 one uses eq. 5 and the Explanations 1) to 4) with Exception 1) and 2). See also Example 1. The four substitution rules $(S 1),(S 2),(S 3)$ and (S4) of eq. 6 are then applied to obtain $(N)_{A B \bullet \times}$. See also the example for $N=752$ there.
In Step 3 the symbols \bullet in $(N)_{A B \bullet \times}$ are omitted and the pair of symbols $\times \times(\times$ always appears as a pair) is replaced by C.

Part B): The proof of the map $(N)_{A B C} \rightarrow Z T(N)$ is performed also in three steps:

$$
\begin{array}{lll}
\text { Step 1: } & (N)_{A B C} & \rightarrow(N)_{A B \bullet \times}, \\
\text { Step 2: } & (N)_{A B \bullet \times} \rightarrow \widehat{Z T}(N), \\
\text { Step 3: } & \widehat{Z T}(N) \rightarrow Z T(N) . \tag{12}
\end{array}
$$

Step 1 is a bit tricky. The representation $(N)_{A B C}$ of eq. 3 without the final $B(0)$ consists of blocks of powers of A, B or C with the restriction that a B-block never appears alone or at the end (because $B^{n+1}(0)=0$, for $n \in \mathbb{N}$, the uniqueness of the representation would be violated). Then the Step 1 replacements of eq. 7 are applied to the $A-, B$-, and C-blocks, called there $\operatorname{Step} 1 A$, Step $1 B$ and Step $1 C$. The omitted final B is again appended. See also Example 2.
In Step 2 the replacements $A \rightarrow 1, B \rightarrow 0, \bullet \rightarrow 0$ and $\times \rightarrow 1$ are applied and an extra 0 is added at the beginning of the thus obtained binary string. This is $\overline{Z T}(N)$.
Step 3 is trivial: omit the two bordering 0 s of $\widehat{Z T}(N)$ and reverse the binary string to obtain $Z T(N)$.

3 Investigation of the A-, B- and C- sequences

In this section a detailed investigation of the $A-, B-$ and C - sequences is presented.
The starting point is the infinite tribonacci word TWord, written as a sequence $t=\underline{\text { A080843 }}$. Its self-similarity leads to the following definitions and lemmata.

Definition 3. The tribonacci words $t w(l)$ over the alphabet $\{0,1,2\}$ of length \#tw $(l)=$ $T(l+2)$ are defined recursively by concatenations (we omit the concatenation symbol o) as

$$
t w(l)=t w(l-1) t w(l-2) t w(l-3), \quad \text { with } t w(1)=0, t w(2)=01, t w(3)=0102
$$

Also $t w(0)=2$ is used.
The substitution map acting on tribonacci words and other strings with characters $\{0,1,2\}$ is defined as a concatenation homomorphism by $\sigma: 0 \mapsto 01,1 \mapsto 02,2 \mapsto 0$. The inverse map is $\sigma^{[-1]}$ (One replaces first each 01 and 02 then the left over 0). With σ the words $t w(l)$ are generated iteratively from $t w(0)=2 . \sigma(t w(l))=t w(l+1)$, for $l \in \mathbb{N}_{0}$, and $\lim _{l \rightarrow \infty} \sigma^{[l]}(0)=$ TWord. Self-similarity of TWord means $\sigma($ TWord $)=$ TWord.
Substrings of TWord of length n, starting with the first letter (number) $t(0)=0$, are denoted by $s_{n}:=\Pi_{j=0}^{n-1} t(n)$. If $n=T(l+2)$, for $l \in \mathbb{N}_{0}$, then $s_{n}=t w(l)$ (the string becomes a tribonacci word), and the numbers of s_{n} map to the node labels of the last level of TTree l_{l} read from the left-hand side.
Also substrings of TWord not starting with $t(0)$ are used, like $\hat{s}_{2}=02=\sigma(1)$, starting with $t(2)$.

Lemma 4.

A) With $s_{13}=0102010010201=t w(5), s_{11}=01020100102$ and $s_{7}=0102010=t w(4)$ define

$$
\begin{equation*}
t_{1}=s_{13} s_{11} s_{13} s_{7} s_{13} s_{11} s_{13} s_{13} s_{11} s_{13} s_{7} s_{13} \ldots=\operatorname{R}_{j=0}^{\infty} s_{\varepsilon(t(j))}, \tag{14}
\end{equation*}
$$

where $\varepsilon(0)=13, \varepsilon(1)=11$ and $\varepsilon(2)=7$.
B) With $s_{7}=0102010=t w(4), s_{6}=010201$ and $s_{4}=0102=t w(3)$ define

$$
\begin{equation*}
t_{2}=s_{7} s_{6} s_{7} s_{4} s_{7} s_{6} s_{7} s_{7} s_{6} s_{7} s_{4} s_{7} \ldots=\Pi_{j=0}^{\infty} s_{\pi(t(j))} \tag{15}
\end{equation*}
$$

where $\pi(0)=7, \pi(1)=6$ and $\pi(2)=4$.
C) With $s_{4}=0102=t w(3), s_{3}=010$ and $s_{2}=01=t w(2)=\sigma(0)$ define

$$
\begin{equation*}
t_{3}=s_{4} s_{3} s_{4} s_{2} s_{4} s_{3} s_{4} s_{4} s_{3} s_{4} s_{2} s_{4} \ldots=\operatorname{R}_{j=0}^{\infty} s_{\tau(t(j))} \tag{16}
\end{equation*}
$$

where $\tau(0)=4, \tau(1)=3$ and $\tau(2)=2$.
D) With $s_{2}=01, \hat{s}_{2}=02$ and $s_{1}=0=t w(1)=\sigma(2)$ define

$$
\begin{equation*}
t_{4}=s_{2} \hat{s}_{2} s_{2} s_{1} s_{2} \hat{s}_{2} s_{2} s_{2} \hat{s}_{2} s_{2} s_{2} s_{1} \ldots \tag{17}
\end{equation*}
$$

Here the string follows t with s_{2}, \hat{s}_{2} and s_{1} playing the rôle of 0,1 and 2 , respectively. Then

$$
\begin{equation*}
t_{1}=t_{2}=t_{3}=t_{4}=T W \text { ord } \tag{18}
\end{equation*}
$$

Proof:
D: The definition of $\sigma^{[-1]}$ shows that $\sigma^{[-1]}\left(t_{4}\right)=$ TWord Hence $t_{4}=\sigma($ TWord $)=$ TWord.
C: Because $\sigma\left(s_{2}\right)=s_{4}, \hat{\sigma}\left(s_{2}\right)=s_{3}$ and $\sigma\left(s_{1}\right)=s_{2}$ it follows that $t_{3}=\sigma\left(t_{4}\right)=$ TWord.
B: Because $\sigma\left(s_{4}\right)=s_{7}, \sigma\left(s_{3}\right)=s_{6}$ and $\sigma\left(s_{2}\right)=s_{4}$ it follows that $t_{2}=\sigma\left(t_{3}\right)=$ TWord.
A: Because $\sigma\left(s_{7}\right)=s_{13}, \sigma\left(s_{6}\right)=s_{11}$ and $\sigma\left(s_{4}\right)=s_{7}$ it follows that $t_{1}=\sigma\left(t_{2}\right)=$ TWord.
Using eq. 16 a formula for sequence entry $A(n)=\underline{\text { A278040 }}(n)$ in terms of $z(n):=\sum_{j=0}^{n} t(j)$ is derived. This sequence $\{z(j)\}_{j=0}^{\infty}$ is given in A319198.

Proposition 5.

$$
\begin{equation*}
A(n)=4 n+1-z(n-1), \text { for } \mathrm{n} \in \mathbb{N}_{0}, \text { with } \mathrm{z}(-1)=0 \tag{19}
\end{equation*}
$$

Proof:

Define $\triangle A(k+1):=A(k+1)-A(k)$. Consider the word t_{3} of eq. 16. The distances between the 1 s in the pairs $s_{4} s_{3}, s_{3} s_{4}, s_{4} s_{2}, s_{2} s_{4}$ and $s_{4} s_{4}$ are $4,3,4,2,4$. Therefore, the sequence of these distances is $4,3,4,2,4,3,4,4,3,4,2, \ldots$. Thus, because the s-string t_{2} follows the pattern of t, i.e., of TWord,

$$
\begin{equation*}
\triangle A(k+1)=4-t(k), \text { for } k=0,1, \ldots . \tag{20}
\end{equation*}
$$

Then the telescopic sum produces the assertion, using $A(0)=1$.

$$
\begin{equation*}
A(n)=A(0)+\sum_{k=0}^{n-1} \triangle A(k+1)=1+4 n-z(n-1), \text { with } z(-1)=0 \tag{21}
\end{equation*}
$$

The B-numbers A278039, giving the increasing indices k with $t(k)=0$, come in three types: $B 0$-numbers form the sequence of increasing indices k of sequence t with $t(k)=0=t(k+1)$. Similarly the $B 1$-sequence lists the increasing indices k with $t(k)=0, t(k+1)=1$ and for the $B 2$-sequence the indices k are such that $t(k)=0, t(k+1)=2$.
These numbers $B 0(n), B 1(n)$ and $B 2(n)$ are given by $\underline{\text { A319968 }}(n+1), \underline{\text { A278040 }}(n)-1$, and A278041 (n) - 1, respectively.
Before giving proofs we define the counting sequences $z_{A}(n), z_{B}(n)$ and $z_{C}(n)$ to be the numbers of A, B and C numbers not exceeding $n \in \mathbb{N}$, respectively. If these counting functions appear for $n=-1$ they are set to 0 .
These sequences are given by $\underline{\mathrm{A} 276797}(n+1), \underline{\operatorname{A276796}}(n+1)$ and $\underline{\text { A276798 }}(n+1)-1$ for $n \geq-1$.
Obviously,

$$
\begin{equation*}
z(n)=1 z_{A}(n)+0 z_{B}(n)+2 z_{C}(n)=z_{A}(n)+2 z_{C}(n), \text { for } n=-1,0,1, \ldots \tag{22}
\end{equation*}
$$

These counting functions are obtained by partial sums of the corresponding characteristic sequences for the $A-, B-$ and C-numbers (or $0-, 1-$, and $2-$ numbers in t), called k_{A}, k_{B} and k_{C}, respectively.

$$
\begin{equation*}
z_{X}(n)=\sum_{k=0}^{n} k_{X}(k), \text { for } X \in\{A, B, C\} \tag{23}
\end{equation*}
$$

The characteristic sequences members $k_{A}(n), k_{B}(n)$ and $k_{C}(n)$ are given in $\underline{\text { A276794 }}(n+1)$, $\underline{\text { A276793 }}(n+1)$ and $\underline{\text { A276791 }}(n+1)$, for $n \in \mathbb{N}_{0}$, and they are, in terms of t, obviously given by

$$
\begin{align*}
k_{A}(n) & =t(n)(2-t(n)) \tag{24}\\
k_{B}(n) & =\frac{1}{2}(t(n)-1)(t(n)-2), \tag{25}\\
k_{C}(n) & =\frac{1}{2} t(n)(t(n)-1) . \tag{26}
\end{align*}
$$

By definition it is trivial that (note the offset 0 of the A, B, C sequences)

$$
\begin{equation*}
z_{X}(X(k))=k+1, \text { for } X \in\{A, B, C\} \text { and } k \in \mathbb{N} \tag{27}
\end{equation*}
$$

Proposition 6.

For $n \in \mathbb{N}_{0}$:
B0) $B 0(n)=13 n+6-2\left[z_{A}(n-1)+3 z_{C}(n-1)\right]=2 C(n)-n$,
B1) $B 1(n)=4 n-z(n-1)=4 n-\left[z_{A}(n-1)+2 z_{C}(n-1)\right]=A(n)-1$,
B2) $B 2(n)=7 n+2-\left[z_{A}(n-1)+3 z_{C}(n-1)\right]=\frac{1}{2}(B 0(n)+n-2)$
$=C(n)-1$,
B) $B(n)=2 n-z_{C}(n-1)$.

Proof:

B0: Part 1: Define $\triangle B 0(k+1):=B 0(k+1)-B 0(k)$ and consider the word t_{1} of eq. 14. The distances between pairs of 00 in $s_{13} s_{11}, s_{11} s_{13}, s_{13} s_{7}, s_{7} s_{13}$ and $s_{13} s_{13}$ are 13, 11, 13, 7,13 . Note that S_{7} has no substring 00 , however because S_{7} is always followed by S_{13} the last 0 of s_{7} and the first of s_{13} build the 00 pair. Similarly, in the $s_{13} s_{7}$ case the last 0 of s_{7} is counted as a beginning of a 00 pair. Therefore, the sequence of these distances is $13,11,13,7,13,11,13,13,11,13,7, \ldots$ Because the s-string t_{1} follows the pattern of t the defect from 13 is $0,-2,-6$ if $t(k)=0,1,2$, hence

$$
\begin{equation*}
\triangle B 0(k+1)=13-t(k)(t(k)+1), \text { for } k \in \mathbb{N}_{0} \tag{32}
\end{equation*}
$$

The telescopic sum gives, with $B 0(0)=6$,

$$
\begin{align*}
B 0(n+1) & =B 0(0)+\sum_{k=0}^{n} \triangle B 0(k+1) \\
& =6+13(n+1)-\left[\left(1^{2} z_{A}(n)+2^{2} z_{C}(n)\right)+z(n)\right] \\
& =13 n+19-2\left(z_{A}(n)+3 z_{C}(n)\right) \tag{33}
\end{align*}
$$

In the last step $z(n)$ has been replaced by eq. 22. Substituting $n \rightarrow n-1$ proves the first part of $\mathbf{B 0}$. The proof of part 2 follows later from $\mathbf{B 2}$.
B1: With $\triangle B 1(k+1):=B 1(k+1)-B 1(k)$ and t_{2} of eq. 15 one finds for the distances between consecutive 1s similar to the above argument

$$
\begin{equation*}
\triangle B 1(k+1)=4-t(k), \text { for } k \in \mathbb{N}_{0} . \tag{34}
\end{equation*}
$$

The telescopic sum gives, with $B 1(0)=0$,

$$
\begin{equation*}
B 1(n+1)=4(n+1)-z(n) \tag{35}
\end{equation*}
$$

and with $n \rightarrow n-1$ this becomes the first part of $\mathbf{B} 1$, which shows, with eq 19 , also the third one. The second part uses eq. 22.

Note that $B 1(n)=A(n)-1$ is trivial because 1 in the tribonacci word TWord can only come from the substitution $\sigma(0)=01$, and TWord (and t) starts with 0 . Therefore, one could directly prove $\mathbf{B 1}$ from eqs. 19 and 22 without first computing $\triangle B 1(k+1)$.
B2: Because 2 in TWord appears only from $\sigma(1)=02$, it is clear that $B 2(n)=C(n)-1$. Now one finds a formula for C by looking first at $\triangle C(k+1):=C(k+1)-C(k)$ using again t_{2} of eq. 15. The distances between consecutive 2 s in the five pairs $s_{7} s_{6}, s_{6} s_{7}, s_{7} s_{4}$, $s_{4} s_{7}$ and $s_{7} s_{7}$ is $7,6,7,4,7$, respectively, and

$$
\begin{equation*}
\triangle C(k+1)=7-\frac{1}{2} t(k)(t(k)+1), \text { for } k \in \mathbb{N}_{0} \tag{36}
\end{equation*}
$$

The telescopic sum leads here, using $C(0)=3, z(n)$ from eq. 22 and letting $n \rightarrow n-1$, to

$$
\begin{equation*}
C(n)=7 n+3-\left[z_{A}(n-1)+3 z_{C}(n-1)\right], \text { for } k \in \mathbb{N}_{0} . \tag{37}
\end{equation*}
$$

This proves B2, and also the second part of $\mathbf{B 0}$.
B): Here t_{4} of eq. 17 can be used. The differences of 0 s in the five pairs $s_{2} \hat{s}_{2}, \hat{s}_{2} s_{2}, s_{2} s_{1}, s_{1} s_{2}$ and $s_{2} s_{2}$ is $2,2,2,1,2$. Thus

$$
\begin{equation*}
\triangle B(k+1):=B(k+1)-B(k)=2-\frac{1}{2} t(k)(t(k)-1)=2-k_{C}(n), \text { for } k \in \mathbb{N}_{0} \tag{38}
\end{equation*}
$$

In the last step k_{C} from eq. 26 has been used. By telescoping, using $B(0)=0$, eliminating $z(n-1)$ with eq. 19 , and letting $n \rightarrow n-1$, proves the assertion.

Eqs. 36 and 38 show that $\triangle C(k+1)-\triangle B(k+1)=5-t(k)$, for $k \in \mathbb{N}_{0}$. Telescoping leads to the result, obtained directly from eqs. 37 and 31 , with eq. 22 ,

$$
\begin{equation*}
C(n)-B(n)=5 n+3-z(n-1), \text { for } k \in \mathbb{N}_{0}, \tag{39}
\end{equation*}
$$

and with A from eq. 19 this becomes

$$
\begin{equation*}
C(n)-(A(n)+B(n))=n+2, \text { for } k \in \mathbb{N}_{0} \tag{40}
\end{equation*}
$$

This equation can be used to eliminate C from the equations.
Next the formulae for z_{X} for $X \in\{A, B, C\}$ are listed, valid for $n=-1,0,1, \ldots$

Proposition 7.

$$
\begin{align*}
& z_{A}(n)=2 B(n+1)-A(n+1)+1 \tag{41}\\
& z_{B}(n)=A(n+1)-B(n+1)-(n+2) \tag{42}\\
& z_{C}(n)=2(n+1)-B(n+1) \tag{43}
\end{align*}
$$

Proof: Version 1. The inputs $z_{X}(-1)=0$, for $X \in\{A, B, C\}$, follow from eqs. 19 and 31. The first differences $\triangle z_{X}(n):=z_{X}(n)-z_{X}(n-1)$ produce with the claimed formulae, and $\triangle A(n+1)$ and $\triangle B(n+1)$ from eqs. 20 and 38 , the trivial results given in eqs. 24 to 26. Therefore $z_{X}(n)$ from eq. 23 holds.

Version 2. Besides eq. 22 the trivial formula

$$
\begin{equation*}
z_{A}(n)+z_{B}(n)+z_{C}(n)=n+1 \tag{44}
\end{equation*}
$$

can be used.
$z_{A}(n)$ is computed from the difference of $3\left(z_{A}(n-1)+2 z_{C}(n-1)\right)$ from eq. 30, with $C(n)$ from eq. 40 , and $2\left(z_{A}(n-1)+3 z_{C}(n-1)\right)$ from eq. 29. This difference leads to the claim eq. 41.
$2 z_{C}(n)=-A(n+1)+4 n+5-z_{A}(n)$ from eq. 29. Inserting the proven $z_{A}(n)$ formula leads to the claim eq. 43.
$z_{B}(n)$ can then be computed from eq. 44.
Finally all formulae for compositions of the types $X(Y(k)+1)$ and $X(Y(k))$, for $X, Y \in$ $\{A, B, C\}$ and $k \in \mathbb{N}_{0}$ shall be given. They are of interest in connection with the tribonacci $A B C$-representation given in the preceding section. For this one needs first the results for the compositions $z(X(k))$. The formulae will be given in terms of A and B (with C eliminated by eq. 40).

Proposition 8.

$$
\begin{align*}
z(A(k)) & =2(A(k)-B(k))-k-1, \tag{45}\\
z(B(k)) & =-A(k)+3 B(k)-k+1, \tag{46}\\
z(C(k)) & =B(k)+2 k+3 . \tag{47}
\end{align*}
$$

Proof: $z(X(k))$ will be found from the self-similarity properties given in eqs. 16, 17 and 15 , for $X=A, B$ and C, respectively. These strings t_{3}, t_{4} and t_{2} are chosen because the relevant numbers 1,0 and 2 , respectively, appear precisely once in all s-substrings. For $z(X(k))=\sum_{j=0}^{X(k)} t(j)$ one has to sum all the numbers of the first k substrings s but in the last one only the numbers up to the number standing for X are summed.
A) In the t_{3} substrings $s_{4}=0102, s_{3}=010$ and $s_{2}=01$ the number 1 appears just once. In all three substrings the sum up to the relevant number 1 (for A) is $0+1=1$, so for the last s one has always to add 1 . Because s_{4}, s_{3} and s_{2}, with sums 3,1 and 1 , play the rôle of 0,1 and 2, respectively, in t_{3} one obtains $z(A(k))=3 z_{B}(k-1)+1\left(z_{A}(k-1)+z_{C}(k-1)\right)+1$. With the identity eq. 44 this becomes $2 z_{B}(k-1)+k+1$, and with the z_{B} formula eq. 42 this leads to the claim eq. 45 .
B) In t_{4} the sums of the substrings $s_{2}, \hat{s}_{2}, s_{1}$ are $1,2,0$, respectively, and because all three begin with the relevant number 0 nothing to be summed for the last s. Thus $z(B(k))=$ $1 z_{B}(k-1)+2 z_{A}(k-1)+0+0$. Using eqs. 42 and 41 this becomes the claim.
C) In t_{2} the sums are 4 for s_{7}, s_{6} and 3 for s_{4}. The sums up to the relevant number 2 are 3 for each case. Therefore $z(C(k))=4\left(z_{B}(k-1)+z_{A}(k-1)\right)+3 z_{C}(k-1)+3=$ $z_{B}(k-1)+z_{A}(k-1)+3 k+3=B(k)+2 k+3$, with eqs. 44, 42 and 41.

Proposition 9.

$$
\begin{array}{lll}
A(A(k)+1) & =2(A(k)+B(k))+k+6, & \\
A(A(k))=A(A(k)+1)-3 \\
A(B(k)+1) & =A(k)+B(k)+k+4, & \tag{50}\\
A(B(k))=A(B(k)+1)-4, \\
A(C(k)+1) & =4 A(k)+3 B(k)+2(k+5), & \\
A(C(k))=A(C(k)+1)-2 .
\end{array}
$$

$$
\begin{array}{lll}
B(A(k)+1) & =A(k)+B(k)+k+3, & \\
B(B(k)+1) & =A(k)+1, & \\
B(B(k))=B(A(k)+1)-2,(x)=B(B(k)+1)-2,(\\
B(C)+1) & =2(A(k)+B(k))+k+5, & \\
& B(C(k))=B(C(k)+1)-1 .(\\
C(A(k)+1) & =4 A(k)+3 B(k)+2(k+6), & \tag{56}\\
C(A(k))=C(A(k)+1)-6,(\\
C(B)+1)=2(A(k)+B(k))+k+8, & & C(B(k))=C(B(k)+1)-7,(\\
C(C(k)+1)=7 A(k)+6 B(k)+4(k+5), & C(C(k))=C(C(k)+1)-4 .(
\end{array}
$$

Proof:

The two versions are related by $\triangle X(n+1)=X(n+1)-X(n)$ given in eqs.20, 38, 36, for $X \in\{A, B, C\}$, respectively, and n replaced by $Y(k)$ with $Y \in\{A, B, C\}$. For $C(n)$ eq. 40 is always used.
A) This follows from $A(n+1)$ given from eq. 19 with $z(Y(k))$ from eqs. 45, 46 and 47 .
B) One proves that $B(A(k))=A(k)+B(k)+k+1$ from which $B(A(k)+1)$ follows. With eqs. 40 and 30 this means that

$$
\begin{equation*}
B(A(k))=C(k)-1=B 2(k) \tag{57}
\end{equation*}
$$

After applying z_{B} on both sides, using eq. 27 this is equivalent to

$$
\begin{equation*}
\left.A(k)+1=z_{B}(C(k)-1)\right)=z_{B}(C(k)) \tag{58}
\end{equation*}
$$

The second equality is trivial. This is now proved. From eq. $22 z_{B}(n)=n+1-z(n)+$ $z_{C}(n)$. Hence $z_{B}(C(k))=C(k)+1-z(C(k))+(k+1)$, with eq. 27. This is $C(k)-k-$ $1-B(k)$ from eq. 47, and replacing $C(k)$ gives $A(k)+1$.
One proves $B(B(k))=A(k)+1$ or, after application of z_{B} on both sides, $B(k)+1=$ $z_{B}(A(k)-1)=z_{B}(A(k))$, where the second equality is trivial. But from eqs. 44 and 27 follows $z_{B}(A(k))=A(k)+1-(k+1)-z_{C}(A(k))$. Applying eq. 43 and the just proven $B(A(k)+1)$ formula shows that

$$
\begin{equation*}
z_{B}(A(k))=B(k)+1 \tag{59}
\end{equation*}
$$

The $B(C(k))$ claim can be written in terms of C from eqs. 40 and 28 as

$$
\begin{equation*}
B(C(k))=2 C(k)-k=B 0(k) \tag{60}
\end{equation*}
$$

Indeed, eqs. 31, 27 imply for $B(C(k))=2 C(k)-z_{C}(C(k)-1)=2 C(k)-\left(z_{C}(C(k))-1\right)=$ $2 C(k)-k$. The second equality is trivial.
C) This follows immediately from $C(n+1)$ of eq. 40 and the already proved formulae for $A(Y(k)+1)$ and $B(Y(k)+1)$.

The collection of the results for $Z_{X}(Y(k))$ is, for $k \in \mathbb{N}_{0}$:

Proposition 10.

$$
\begin{align*}
z_{A}(A(k)) & =k+1 \\
z_{A}(B(k)) & =A(k)-B(k)-(k+1)=z_{C}(A(k)), \\
z_{A}(C(k)) & =B(k)+1 . \tag{61}\\
z_{B}(A(k)) & =B(k)+1=z_{A}(C(k)) \\
z_{B}(B(k)) & =k+1, \\
z_{B}(C(k)) & =A(k)+1 . \tag{62}\\
& \\
z_{C}(A(k)) & =A(k)-B(k)+(k+1)=z_{A}(B(k)) \\
z_{C}(B(k) & =2 B(k)-A(k)+1, \tag{63}\\
z_{C}(C(k)) & =k+1 .
\end{align*}
$$

Proof:

That $z_{X}(X(k))=k+1$ has been noted already in eq. 27 .
The other claims follow from the $z_{X}(n)$ results after replacing n by $Y(k) \neq X(k)$, and application of the formulae from Proposition 9.

Many of the formulae from section 3 appear in [2] and [1] with the above mentioned translation between their sequences a, b, and c to our B, A, and C. For example, Theorem 13 of [2], p. 57, for the nine twofold iterations (in our notation $X(Y(k)$ of Proposition 9) can be checked.

Acknowledgment: Thanks go to Neil Sloane for an e-mail motivating this study.

References

[1] Elena Barcucci, Luc Blanger, and Srecko Brlek, On Tribonacci Sequences, Fib. Q., 42 (2004), 314-320.
[2] L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Fibonacci Representations of Higher Orders, The Fibonacci Quarterly 10 (1972) 43-69. http://www.fq.math.ca/Scanned/10-1/carlitz3-a.pdf
[3] Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (eds.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. A scanned copy with corrections is https://oeis.org/A317208/a317208.pdf (see also A189921).
[4] The On-Line Encyclopedia of Integer Sequences (2010), published electronically at http://oeis.org.
[5] Eric Weisstein's World of Mathematics, Tribonacci Numbers, http://mathworld.wolfram.com/TribonacciNumber.html.
[6] Wikipedia,Generalizations of Fibonacci numbers, https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers.
[7] Wikipedia, Beatty Sequence, https://en.wikipedia.org/wiki/Beatty_sequence

2010 Mathematics Subject Classification: Primary 11Y55; Secondary 32H50.
Keywords: Tribonacci numbers, tribonacci constant, tribonacci word, tribonacci tree, tribonacci ABC-sequences, tribonacci ABC-tree.
Concerned with OEIS [4] sequences: A0000073, A000201, A001622, A001590, A001950, A003144, A003145, A003146, A005614, A058265, A080843, A158919, A189921, A276791, A276793, A276794, A276796, A276797, A276798, A278038, A278039, A278040, A278041, $\underline{A 278044}, \underline{A 316174}, \underline{A 316711}, \underline{A 316712}, \underline{A 316713}, \underline{A 316714}, \underline{A 316715}, \underline{A 316716}, \underline{A 316717}$, A317206, A319195, A319198, A319968.

Table 1: Sequences $\mathrm{t}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, for $\mathrm{n}=0,1, \ldots, 79$

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
t	0	1	0	2	0	1	0	0	1	0	2	0	1	0	1	0	2	0	1	0
A	1	5	8	12	14	18	21	25	29	32	36	38	42	45	49	52	56	58	62	65
B	0	2	4	6	7	9	11	13	15	17	19	20	22	24	26	28	30	31	33	35
C	3	10	16	23	27	34	40	47	54	60	67	71	78	84	91	97	104	108	115	121
n	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
t	0	1	0	2	0	1	0	2	0	1	0	0	1	0	2	0	1	0	1	0
A	69	73	76	80	82	86	89	93	95	99	102	106	110	113	117	119	123	126	130	133
B	37	39	41	43	44	46	48	50	51	53	55	57	59	61	63	64	66	68	70	72
C	128	135	141	148	152	159	165	172	176	183	189	196	203	209	216	220	227	233	240	246
n	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
t	2	0	1	0	0	1	0	2	0	1	0	0	1	0	2	0	1	0	1	0
A	137	139	143	146	150	154	157	161	163	167	170	174	178	181	185	187	191	194	198	201
B	74	75	77	79	81	83	85	87	88	90	92	94	96	98	100	101	103	105	107	109
C	253	257	264	270	277	284	290	297	301	308	314	321	328	334	341	345	352	358	365	371
n	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
t	2	0	1	0	0	1	0	2	0	1	0	2	0	1	0	0	1	0	2	0
A	205	207	211	214	218	222	225	229	231	235	238	242	244	248	251	255	259	262	266	268
B	111	112	114	116	118	120	122	124	125	127	129	131	132	134	136	138	140	142	144	145
C	378	382	389	395	402	409	415	422	426	433	439	446	450	457	463	470	477	483	490	494

Table 2: $\mathrm{ZT}(\mathbf{N})$, for $\mathrm{N}=1,2, \ldots, 100$

\mathbf{N}	$\mathbf{Z T}(\mathbf{N})$								
$\mathbf{1}$	1		$\mathbf{2 1}$	11001	$\mathbf{4 1}$	110100	$\mathbf{6 1}$	1010100	$\mathbf{8 1}$
$\mathbf{2}$	10	$\mathbf{2 2}$	11010	$\mathbf{4 2}$	110101	$\mathbf{6 2}$	1010101	$\mathbf{8 2}$	100000001
$\mathbf{3}$	11	$\mathbf{2 3}$	11011	$\mathbf{4 3}$	110110	$\mathbf{6 3}$	1010110	$\mathbf{8 3}$	10000010
$\mathbf{4}$	100	$\mathbf{2 4}$	100000	$\mathbf{4 4}$	1000000	$\mathbf{6 4}$	1011000	$\mathbf{8 4}$	10000011
$\mathbf{5}$	101	$\mathbf{2 5}$	100001	$\mathbf{4 5}$	1000001	$\mathbf{6 5}$	1011001	$\mathbf{8 5}$	10000100
$\mathbf{6}$	110	$\mathbf{2 6}$	100010	$\mathbf{4 6}$	1000010	$\mathbf{6 6}$	1011010	$\mathbf{8 6}$	10000101
$\mathbf{7}$	1000	$\mathbf{2 7}$	100011	$\mathbf{4 7}$	1000011	$\mathbf{6 7}$	1011011	$\mathbf{8 7}$	10000110
$\mathbf{8}$	1001	$\mathbf{2 8}$	100100	$\mathbf{4 8}$	1000100	$\mathbf{6 8}$	1100000	$\mathbf{8 8}$	10001000
$\mathbf{9}$	1010	$\mathbf{2 9}$	100101	$\mathbf{4 9}$	1000101	$\mathbf{6 9}$	1100001	$\mathbf{8 9}$	10001001
$\mathbf{1 0}$	1011	$\mathbf{3 0}$	100110	50	1000110	$\mathbf{7 0}$	1100010	$\mathbf{9 0}$	10001010
$\mathbf{1 1}$	1100	$\mathbf{3 1}$	101000	51	1001000	$\mathbf{7 1}$	1100011	$\mathbf{9 1}$	10001011
$\mathbf{1 2}$	1101	$\mathbf{3 2}$	101001	$5 \mathbf{2}$	1001001	$\mathbf{7 2}$	1100100	$\mathbf{9 2}$	10001100
$\mathbf{1 3}$	10000	$\mathbf{3 3}$	101010	53	1001010	$\mathbf{7 3}$	1100101	$\mathbf{9 3}$	10001101
$\mathbf{1 4}$	10001	$\mathbf{3 4}$	101011	$\mathbf{5 4}$	1001011	$\mathbf{7 4}$	1100110	$\mathbf{9 4}$	10010000
$\mathbf{1 5}$	10010	$\mathbf{3 5}$	101100	55	1001100	$\mathbf{7 5}$	1101000	$\mathbf{9 5}$	10010001
$\mathbf{1 6}$	10011	$\mathbf{3 6}$	101101	56	1001101	$\mathbf{7 6}$	1101001	$\mathbf{9 6}$	10010010
$\mathbf{1 7}$	10100	$\mathbf{3 7}$	110000	57	1010000	$\mathbf{7 7}$	1101010	$\mathbf{9 7}$	10010011
$\mathbf{1 8}$	10101	$\mathbf{3 8}$	110001	58	1010001	$\mathbf{7 8}$	1101011	$\mathbf{9 8}$	10010100
$\mathbf{1 9}$	10110	$\mathbf{3 9}$	110010	59	1010010	$\mathbf{7 9}$	1101100	$\mathbf{9 9}$	10010101
$\mathbf{2 0}$	11000	$\mathbf{4 0}$	110011	$\mathbf{6 0}$	1010011	$\mathbf{8 0}$	1101101	$\mathbf{1 0 0}$	10010110

Table 3: $\operatorname{ABC}(\mathbf{N})$, for $\mathbf{N}=1,2, \ldots, 100$

\mathbf{N}	$\mathbf{A B C}(\mathbf{N})$								
$\mathbf{1}$	10	$\mathbf{2 1}$	1020	$\mathbf{4 1}$	00120	$\mathbf{6 1}$	001110	$\mathbf{8 1}$	000000010
$\mathbf{2}$	010	$\mathbf{2 2}$	0120	$\mathbf{4 2}$	1120	$\mathbf{6 2}$	11110	$\mathbf{8 2}$	10000010
$\mathbf{3}$	20	$\mathbf{2 3}$	220	$\mathbf{4 3}$	0220	$\mathbf{6 3}$	02110	$\mathbf{8 3}$	01000010
$\mathbf{4}$	0010	$\mathbf{2 4}$	0000010	$\mathbf{4 4}$	00000010	$\mathbf{6 4}$	000210	$\mathbf{8 4}$	2000010
$\mathbf{5}$	110	$\mathbf{2 5}$	100010	$\mathbf{4 5}$	1000010	$\mathbf{6 5}$	10210	$\mathbf{8 5}$	00100010
$\mathbf{6}$	020	$\mathbf{2 6}$	010010	$\mathbf{4 6}$	0100010	$\mathbf{6 6}$	01210	$\mathbf{8 6}$	1100010
$\mathbf{7}$	00010	$\mathbf{2 7}$	20010	$\mathbf{4 7}$	200010	$\mathbf{6 7}$	2210	$\mathbf{8 7}$	0200010
$\mathbf{8}$	1010	$\mathbf{2 8}$	001010	$\mathbf{4 8}$	0010010	$\mathbf{6 8}$	0000020	$\mathbf{8 8}$	00010010
$\mathbf{9}$	0110	$\mathbf{2 9}$	11010	$\mathbf{4 9}$	110010	$\mathbf{6 9}$	100020	$\mathbf{8 9}$	1010010
$\mathbf{1 0}$	210	$\mathbf{3 0}$	02010	$\mathbf{5 0}$	020010	$\mathbf{7 0}$	010020	$\mathbf{9 0}$	0110010
$\mathbf{1 1}$	0020	$\mathbf{3 1}$	000110	$\mathbf{5 1}$	0001010	$\mathbf{7 1}$	20020	$\mathbf{9 1}$	210010
$\mathbf{1 2}$	120	$\mathbf{3 2}$	10110	$5 \mathbf{2}$	101010	$\mathbf{7 2}$	001020	$\mathbf{9 2}$	0020010
$\mathbf{1 3}$	000010	$\mathbf{3 3}$	01110	$\mathbf{5 3}$	011010	$\mathbf{7 3}$	11020	$\mathbf{9 3}$	120010
$\mathbf{1 4}$	10010	$\mathbf{3 4}$	2110	$\mathbf{5 4}$	21010	$\mathbf{7 4}$	02020	$\mathbf{9 4}$	00001010
$\mathbf{1 5}$	01010	$\mathbf{3 5}$	00210	$\mathbf{5 5}$	002010	$\mathbf{7 5}$	000120	$\mathbf{9 5}$	1001010
$\mathbf{1 6}$	2010	$\mathbf{3 6}$	1210	$\mathbf{5 6}$	12010	$\mathbf{7 6}$	10120	$\mathbf{9 6}$	0101010
$\mathbf{1 7}$	00110	$\mathbf{3 7}$	000020	$\mathbf{5 7}$	0000110	$\mathbf{7 7}$	01120	$\mathbf{9 7}$	201010
$\mathbf{1 8}$	1110	$\mathbf{3 8}$	10020	58	100110	$\mathbf{7 8}$	2120	$\mathbf{9 8}$	0011010
$\mathbf{1 9}$	0210	$\mathbf{3 9}$	01020	$\mathbf{5 9}$	010110	$\mathbf{7 9}$	00220	$\mathbf{9 9}$	111010
$\mathbf{2 0}$	00020	$\mathbf{4 0}$	2020	$\mathbf{6 0}$	20110	$\mathbf{8 0}$	1220	$\mathbf{1 0 0}$	021010

Here 0,1 and 2 stand for B, A and C , respectively. E.g., $\mathrm{ABC}(6)=\mathrm{BCB}=\mathrm{B}(\mathrm{C}(\mathrm{B}(0)))$.

[^0]: ${ }^{1}$ http://www.itp.kit.edu/~wl

