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Abstract

Classical pattern avoidance and occurrence are well studied in the symmetric group Sn. In
this paper, we provide explicit recurrence relations to the generating functions counting the
number of classical pattern occurrence in the set of 132-avoiding permutations and the set of
123-avoiding permutations.

Keywords: permutation statistics, classical patterns, Catalan numbers, Dyck paths

AMS Subject Classification Numbers: 05A05, 05A10, 05A15, 05A19

1 Introduction

Let Sn denote the set of permutations of size n. Given a sequence w = w1 · · ·wn of distinct integers,
let red(w) be the permutation that we replace the i-th smallest integer in σ with i. For example,
red(4685) = 1342. Given a permutation τ = τ1 · · · τj in Sj, we say that the pattern τ occurs in
σ = σ1 · · · σn ∈ Sn if there exist 1 ≤ i1 < · · · < ij ≤ n such that red(σi1 · · · σij ) = τ . We say that a
permutation σ avoids the pattern τ if τ does not occur in σ. In the theory of permutation patterns,
τ is called a classical pattern.

We let Sn(τ) denote the set of permutations in Sn which avoid τ . If Γ is a collection of permutations,
then we let Sn(Γ) denote the set of permutations in Sn that avoid each permutation in Γ. Let
occrτ (σ) denote the number of pattern τ occurrences in the permutation σ. For example, the
permutation σ = 867943251 avoids pattern 132, while it contains pattern 123 and occr123(σ) = 1
since only the subsequence 6, 7, 9 matches pattern 123.

Classical patterns have been studied separately for a long time. It is well known that for all
n ≥ 1, |Sn(132)| = |Sn(123)| = Cn, where Cn = 1

n+1

(2n
n

)
is the nth Catalan number. Mansour in

[9, 10] enumerated the number of permutations in Sn avoiding 2 classical patterns. Mansour and
Vainshtein in [12, 13] enumerated the number of permutations in Sn(132) or Sn(123) that has 0 or
1 occurrence of another pattern τ . See Kitaev [7] for a comprehensive introduction to patterns in
permutations. However, there is not much research about the distribution of classical patterns in
Sn(τ). Mansour and Vainshtein in [11] gave a continued fraction form of the generating function
of the distribution of pattern 12 · · · k in Sn(132). Very recently, Janson in [5, 6] studied patterns in
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random permutations avoiding the pattern 132 and 123 in a probabilistic way. Pan the authors in
[15] studied consecutive pattern matches in Sn(132) and Sn(123).

Given two sets of permutations Λ = {λ1, . . . , λr} and Γ = {γ1, . . . , γs}, it is natural to study the
distribution of classical patterns γ1, . . . , γs in Sn(Λ). That is, we want to study generating functions
of the form

QΓ
Λ(t, x1, . . . , xs) := 1 +

∑

n≥1

tnQΓ
n,Λ(x1, . . . , xs), (1)

where
QΓ

n,Λ(x1, . . . , xs) :=
∑

σ∈Sn(Λ)

x
occrγ1 (σ)
1 · · · x

occrγs (σ)
s . (2)

When Λ = {λ} and Γ = {γ} are singletons, we write

Q
γ
λ(t, x) := 1 +

∑

n≥1

tnQ
γ
n,λ(x) and Q

γ
n,λ(x) :=

∑

σ∈Sn(λ)

xoccrγ(σ). (3)

The main goal of this paper is to study the distribution of classical patterns in 132-avoiding per-
mutations and in 123-avoiding permutations using a recursive method.

To study the generating functions Qγ
λ(t, x) when λ is 132 or 123, we want to first study the sym-

metries in Sn(132) and Sn(123). Given a permutation σ, we denote the reverse of σ by σr, the
complement of σ by σc, the reverse-complement of σ by σrc, and the inverse of σ by σ−1. For
example, if σ = 15324, then σr = 42351, σc = 51342, σrc = 24315, σ−1 = 14352.

It is clear that Sn(123) is closed under the operation reverse-complement, and both Sn(123) and
Sn(132) are closed under the operation inverse. Thus we have the following lemma.
Lemma 1. Given any permutation pattern γ,

Q
γ
123(t, x) = Q

γrc

123(t, x) = Q
γ−1

123 (t, x), Q
γ
132(t, x) = Q

γ−1

132 (t, x).

When γ is a pattern of length 3, we have the following corollary.
Corollary 1. Considering the distribution of patterns of length 3, we only need to study the fol-
lowing 4 generating functions for Sn(132),

(1) Q123
132(t, x),

(2) Q213
132(t, x),

(3) Q231
132(t, x) = Q312

132(t, x),

(4) Q321
132(t, x),

and the following 3 generating functions for Sn(123),

(1) Q132
123(t, x) = Q213

123(t, x),

(2) Q231
123(t, x) = Q312

123(t, x),

(3) Q321
123(t, x).

It is easy to check that all the 7 generating functions are different when looking at S8(132) and
S8(123). Our motivation of this paper is to study the 7 generating functions above, and then
generalize some of the results.
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The structure of this paper is as follows. In Section 2, we introduce background about permutations
and two bijections between Sn(132) and Sn(123) and Dyck paths which are useful in our compu-
tation. Then we study the length 3 pattern distributions in Sn(132) in Section 3 and Sn(123) in
Section 4. In Section 5, we show two applications of our results in computing pattern popularities.
In Section 6, we show the application of our results about circular permutations. Finally in Section
7, we give a summary of this paper.

2 Preliminaries

Let σ = σ1 · · · σn be a permutation written in one-line notation. The graph of σ, G(σ), is obtained
by placing σi in the ith column counting from left to right and σth

i row counting from bottom to
top on an n × n table for i = 1, . . . , n. For example, the graph of the permutation σ = 471569283
is pictured in Figure 1.

We define inv(σ) :=
∣∣{(i, j)|1 ≤ i < j ≤ n, σi > σj}

∣∣ to be the number of inversions and
coinv(σ) :=

∣∣{(i, j)|1 ≤ i < j ≤ n, σi < σj}
∣∣ to be the number of coinversions of a permutation

σ. Note that the number of inversions of a permutation is the same as the number of occurrences
of pattern 21, and the number of coinversions of a permutation is the same as the number of
occurrences of pattern 12. Clearly, inv(σ) + coinv(σ) =

(
n
2

)
.
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Figure 1: The graph of σ = 471569283

Given σ = σ1 · · · σn, we say that σj is a left-to-right minimum of σ if σi > σj for all i < j. We
let LRmin(σ) denote the number of left-to-right minima of σ. We shall also call each left-to-right
minimum of σ a peak, and the remaining number non-peaks of σ. We can see that the permutations
in Figure 3(a) and Figure 3(b) both have peaks {8, 6, 4, 3, 2, 1}.

Let π = π1 · · · πm ∈ Sm and σ = σ1 · · · σn ∈ Sn, then the direct sum (π ⊕ σ) and skew sum (π ⊖ σ)
of π and σ are defined by

π ⊕ σ := π1 · · · πm(σ1 +m) · · · (σn +m), (4)

π ⊖ σ := (π1 + n) · · · (πm + n)σ1 · · · σn. (5)

Given an n × n square, we will label the coordinates of the columns from left to right and the
coordinates of the rows from top to bottom with 0, 1, . . . , n (different from the coordinates of the
graph of a permutation). An (n, n)-Dyck path is a path made up of unit down-steps D and unit
right-steps R which starts at (0, 0) and ends at (n, n) and stays on or below the diagonal y = x

(these are “down-right” Dyck paths). The set of (n, n)-Dyck paths is denoted by Dn.
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Given a Dyck path P , we let the first return of P , denoted by ret(P ), be the smallest number i > 0
such that P goes through the point (i, i). For example, for P = DDRDDRRRDDRDRDRRDR

shown in Figure 2, ret(P ) = 4 since the leftmost point on the diagonal that P goes through is
(4, 4).

0th diagonal

1st diagonal

2nd diagonal

ret= 4

Figure 2: A (9, 9)-Dyck path P = DDRDDRRRDDRDRDRRDR

We refer to positions (i, i) where P goes through as return positions of P . We call the full cells
between P and the main diagonal area cells, and the cells below P coarea cells. Then we let
area(P ) and coarea(P ) be the number of area cells and coarea cells of P . In the example in Figure
2, area(P ) = 7 and coarea(P ) = 29.

We shall also label the diagonals that go through corners of squares that are parallel to and below
the main diagonal with 0, 1, 2, . . . starting at the main diagonal, as shown in Figure 2. The peaks of
a path P are the positions of consecutive DR steps. We can say that each peak is on a diagonal of
P . In the path in Figure 2, the peaks are in the first, second, first, first, first and zeroth diagonal
counting from top to bottom.

It is well known that for all n ≥ 1, |Sn(132)| = |Sn(123)| = |Dn| = Cn, where Cn = 1
n+1

(2n
n

)
is

the nth Catalan number. Many bijections are known between these Catalan objects (see [18]). We
use the bijection of Krattenthaler [8] between Sn(132) and Dn and the bijection of Deutsch and
Elizalde [2] between Sn(123) and Dn. The authors of this paper also discussed the two bijections
in [16, 17] with more details.

We shall first describe the bijection Φ of Krattenthaler [8] between Sn(132) and Dn. Given any
permutation σ = σ1 · · · σn ∈ Sn(132), we draw the graph G(σ) of σ. Then, we shade the cells
to the north-east of the cell that contains σi. Φ(σ) is the path that goes along the south-west
boundary of the shaded cells. For example, this process is pictured in Figure 3(a) in the case where
σ = 867943251 ∈ S9(132). In this case, Φ(σ) = DDRDDRRRDDRDRDRRDR.

8
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4
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2

5

1

⇔

(a) The map Φ

8
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9

7

4
3
2

5

1

⇔

(b) The map Ψ

Figure 3: Sn(132) ⇔ Dn, Sn(123) ⇔ Dn

The horizontal segments (or segments) of the path Φ(σ) are the maximal consecutive sequences
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of R steps in Φ(σ). For example, in Figure 3(a), the lengths of the horizontal segments, reading
from top to bottom, are 1, 3, 1, 1, 2, 1, and {6, 7, 9} is the set of numbers associated with the second
horizontal segment of Φ(σ).

The map Φ is invertible since for each Dyck path P , the peaks of P give the left-to-right minima
of the 132-avoiding permutation, and the remaining numbers are uniquely determined by the left-
to-right minima. More details about Φ can be found in [8]. We have the following properties for Φ
from [16].
Lemma 2. Let P ∈ Dn and σ = Φ−1(P ). Then

(1) for each horizontal segment H of P , the set of numbers associated to H form a consecutive
increasing sequence in σ and the least number of the sequence sits immediately above the first
right-step of H.

(2) The number n is in the column of last right-step before the first return.

(3) Suppose that σi is a peak of σ and the cell containing σi is on the kth diagonal. Then there
are k elements in the graph G(σ) in the first quadrant relative to coordinate system centered at
(i, σi).

(4) inv(σ) = coarea(P ); coinv(σ) = area(P ).

Proof. (1), (2) and (3) are proved in Lemma 3 in [16].

For (4), it is clear that for any pair of index i < j, we have σi > σj if and only if in path P , the
ith column intersects the σth

j row at a coarea cell. Thus the number of inversions of σ is equal to

the coarea of P , i.e. inv(σ) = coarea(P ). Since inv(σ) + coinv(σ) = area(P ) + coarea(P ) =
(
n
2

)
, we

have coinv(σ) = area(P ).

The bijection Ψ : Sn(123) → Dn given by Deutsch and Elizalde [2] can be described in a similar way.
Given any permutation σ ∈ Sn(123), the Dyck path Ψ(σ) is constructed exactly as the bijection
Φ. Figure 3(b) shows an example of this map, from σ = 869743251 ∈ S9(123) to the Dyck path
DDRDDRRRDDRDRDRRDR. The map Ψ is invertible because each 123-avoiding permutation
has a unique left-to-right minima set. More details about Ψ can be found in [2]. We then have the
following lemma from [16].
Lemma 3 ([16], Lemma 4). Let P ∈ Dn and σ = Ψ−1(P ). Then

(1) for each horizontal segment H of P , the least element of the set of numbers associated to H sits
directly above the first right-step of H and the remaining numbers of the set form a consecutive
decreasing sequence in σ.

(2) σ can be decomposed into two decreasing subsequences, the first decreasing subsequence corre-
sponds to the peaks of σ and the second decreasing subsequence corresponds to the non-peaks of
σ.

(3) Suppose that σi is a peak of σ and the cell containing σi is on the kth diagonal. Then there
are k elements in the graph G(σ) in the first quadrant relative to coordinate system centered at
(i, σi).
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3 The functions Q
γ
132(t, x)

In this section, we give the recursions for generating functions Q
γ
132(t, x) by examining the set

Sn(132). We shall first look at the structure of a 132-avoiding permutation.

Given σ = σ1 · · · σn ∈ Sn(132), we suppose σk = n is the biggest number in the permutation. The
numbers σ1, . . . , σk−1 must be bigger than the numbers σk+1, . . . , σn since otherwise there will be
a 132 pattern in σ. Thus we can break the permutation σ into three parts: the first k− 1 numbers,
the biggest number σk = n, and the last n − k numbers. We let A(σ) = red(σ1 · · · σk−1) and
B(σ) = red(σk+1 · · · σn) be the reduction of the first k − 1 numbers and the last n − k numbers,
then A(σ) ∈ Sk−1(132) and B(σ) ∈ Sn−k(132). The left picture of Figure 3(a) is an example for
σ = 867943251 ∈ S9(132) with A(σ) = 312 and B(σ) = 43251. We also let A(σ) := red(σ1 · · · σk)
be the reduction of the first k numbers. The structure of σ is shown in Figure 4.

A(σ)

B(σ)

n

Figure 4: Structure of σ ∈ Sn(132)

Now we count the number of occurrences of a pattern γ = γ1 · · · γr ∈ Sr(132) in σ. First, there are
(occrγ(A(σ)) + occrγ(B(σ))) occurrences of γ in parts A(σ) and B(σ). Then we count occurrences
of γ that intersect with at least two of the three parts, {A(σ), σk , B(σ)}, of σ.

Similar to σ, we shall break γ into three parts: A(γ) = red(γ1 · · · γs−1), γs = r and B(γ) =
red(γs+1 · · · γr). We also let A(γ) = red(γ1 · · · γs). Let χ(x) be the function that takes value 1
when the statement x is true and 0 otherwise. Then there are

(a) χ(s = r) · occrA(γ)(A(σ)) occurrences of γ stretch over parts A(σ) and σk,

(b) χ(s = 1) · occrB(γ)(B(σ)) occurrences of γ stretch over parts σk and B(σ),

(c) χ(s < r) · occrA(γ)(A(σ)) · occrB(γ)(B(σ)) occurrences of γ stretch over parts A(σ) and B(σ) if
γr = r − s,

(d) and χ(1 < s < r) · occrA(γ)(A(σ)) · occrB(γ)(B(σ)) occurrences of γ stretch over all three parts.

Note that (c) requires γr = r − s, i.e. the permutation B(γ) cannot be expressed as the skew sum
of two smaller permutations. If γr 6= r − s, then

(c’) if {π1 ⊖ τ1, . . . , πj ⊖ τj} is the collection of all the ways to write γ as the skew sum of two
smaller permutations, then

j∑

i=1

occrπi
(A(σ)) · occrτi(B(σ))

is the number of occurrences of γ stretch over parts A(σ) and B(σ).
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We call the above method the recursive counting method, which allows us to count occrγ(σ) by
counting pattern occurrences from the components of σ.

3.1 The function Q
12,21
n,132(x1, x2)

As a first application of our recursive counting method, we have the following theorem first proved
by Fürlinger and Hofbauer [3] in 1985 about distribution of patterns of length 2.
Theorem 1 (Fürlinger and Hofbauer). Let Qn(x1, x2) := Q

12,21
n,132(x1, x2) and

Q(t, x1, x2) := Q
12,21
132 (t, x1, x2), then

Q0(x1, x2) = 1, Qn(x1, x2) =

n∑

k=1

xk−1
1 x

k(n−k)
2 Qk−1(x1, x2)Qn−k(x1, x2), (6)

and
Q(t, x, 1) = 1 + tQ(t, x, 1) ·Q(tx, x, 1). (7)

The theorem was initially proved using Dyck paths. Since the area and coarea of a Dyck path P

correspond to the pattern 21 and 12 occurrences, we shall give a brief proof using permutations.

Proof. Equation (7) is a consequence of (6). To prove equation (6), we shall consider the distribution
of pattern γ = 12 and τ = 21 in Sn(132) using the recursive counting method.

Given σ ∈ Sn(132) such that σk = n. We have A(σ) ∈ Sk−1(132) and B(σ) ∈ Sn−k(132). By the
recursive counting method,

occr12(σ) = occr12(A(σ)) + occr12(B(σ)) + occr1(A(σ))

= occr12(A(σ)) + occr12(B(σ)) + k − 1, (8)

and

occr21(σ) = occr21(A(σ)) + occr21(B(σ)) + occr1(B(σ)) + occr1(A(σ)) · occr1(B(σ))

= occr21(A(σ)) + occr21(B(σ)) + k(n− k). (9)

Thus,

Qn(x1, x2) =
∑

σ∈Sn(132)

x
occr12(σ)
1 x

occr21(σ)
2

=

n∑

k=1

∑

σ∈Sn(132),σk=n

x
occr12(A(σ))+occr12(B(σ))+k−1
1 x

occr21(A(σ))+occr21(B(σ))+k(n−k)
2

=

n∑

k=1

xk−1
1 x

k(n−k)
2

∑

σ∈Sn(132),σk=n

x
occr12(A(σ))
1 x

occr21(A(σ))
2 x

occr12(B(σ))
1 x

occr21(B(σ))
2

=

n∑

k=1

xk−1
1 x

k(n−k)
2

∑

π∈Sk−1(132)

x
occr12(π)
1 x

occr21(τ)
2

∑

τ∈Sn−k(132)

x
occr12(τ)
1 x

occr21(τ)
2

=
n∑

k=1

xk−1
1 x

k(n−k)
2 Qk−1(x1, x2)Qn−k(x1, x2). (10)
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Using the recursive equation (6), we can use Mathematica to get

Q12
132(t, x) = 1 + t+ t2(1 + x) + t3(1 + 2x+ x2 + x3) + t4(1 + 3x+ 3x2 + 3x3 + 2x4 + x5 + x6)

+ t5(1 + 4x+ 6x2 + 7x3 + 7x4 + 5x5 + 5x6 + 3x7 + 2x8 + x9 + x10) + · · · . (11)

3.2 The function Q
12,21,123,213,231,312,321
n,132 (x1, x2, x3, x4, x5, x6, x7)

Let Γ2 = {12, 21}, Γ3 = {123, 213, 231, 312, 321}. We shall prove the following theorem of the func-
tion QΓ2∪Γ3

n,132 (x1, x2, x3, x4, x5, x6, x7) = Q
12,21,123,213,231,312,321
n,132 (x1, x2, x3, x4, x5, x6, x7) which tracks

all patterns of length 2 or 3 in Sn(132). We use the shorthand Qn for QΓ2∪Γ3
n,132 .

Theorem 2. The function QΓ2∪Γ3
n,132 (x1, x2, x3, x4, x5, x6, x7) satisfies the recursion

Q0(x1, x2, x3, x4, x5, x6, x7) = 1, (12)

Qn(x1, x2, x3, x4, x5, x6, x7) =

n∑

k=1

xk−1
1 x

k(n−k)
2 x

(k−1)(n−k)
5

·Qk−1(x1x3x
(n−k)
5 , x2x4x

(n−k)
7 , x3, x4, x5, x6, x7) ·Qn−k(x1x

k
6, x2x

k
7 , x3, x4, x5, x6, x7). (13)

Proof. We shall consider the distribution of the patterns γ1 = 12, γ2 = 21, γ3 = 123, γ4 = 213,
γ5 = 231, γ6 = 312 and γ7 = 321 in Sn(132).

Given σ ∈ Sn(132) such that σk = n. Like Theorem 1, we have A(σ) ∈ Sk−1(132) and B(σ) ∈
Sn−k(132). The number of occurrences of γ1 and γ2 is given by equation (8) and (9). For
γ3, γ4, γ5, γ6, γ7, we have the following from the recursive counting method.

occr123(σ) = occr123(A(σ)) + occr123(B(σ)) + occr12(A(σ)), (14)

occr213(σ) = occr213(A(σ)) + occr213(B(σ)) + occr21(A(σ)), (15)

occr231(σ) = occr231(A(σ)) + occr231(B(σ))

+occr12(A(σ)) · occr1(B(σ)) + occr1(A(σ)) · occr1(B(σ))

= occr231(A(σ)) + occr231(B(σ)) + (n− k)occr12(A(σ)) + (k − 1)(n − k), (16)

occr312(σ) = occr312(A(σ)) + occr312(B(σ)) + occr12(B(σ)) + occr1(A(σ)) · occr12(B(σ))

= occr312(A(σ)) + occr312(B(σ)) + k · occr12(B(σ)), and (17)

occr321(σ) = occr321(A(σ)) + occr321(B(σ)) + occr21(B(σ))

+occr1(A(σ)) · occr21(B(σ)) + occr21(A(σ)) · occr1(B(σ))

= occr321(A(σ)) + occr321(B(σ)) + k · occr21(B(σ)) + (n− k)occr21(A(σ)). (18)

8



Thus,

Qn(x1, x2, x3, x4, x5, x6, x7)

=
∑

σ∈Sn(132)

x
occr12(σ)
1 x

occr21(σ)
2 x

occr123(σ)
3 x

occr213(σ)
4 x

occr231(σ)
5 x

occr312(σ)
6 x

occr321(σ)
7

=
n∑

k=1

∑

π∈Sk−1(132)

∑

τ∈Sn−k(132)

x
occr12(π)+occr12(τ)+k−1
1 x

occr21(π)+occr21(τ)+k(n−k)
2

·x
occr123(π)+occr123(τ)+occr12(π)
3 x

occr213(π)+occr213(τ)+occr21(π)
4

·x
occr231(π)+occr231(τ)+(n−k)occr12(π)+(k−1)(n−k)
5 x

occr312(π)+occr312(τ)+k·occr12(τ),
6

·x
occr321(π)+occr321(τ)+k·occr21(τ)+(n−k)occr21(π)
7

=

n∑

k=1

xk−1
1 x

k(n−k)
2 x

(k−1)(n−k)
5 Qk−1(x1x3x

(n−k)
5 , x2x4x

(n−k)
7 , x3, x4, x5, x6, x7)

·Qn−k(x1x
k
6 , x2x

k
7, x3, x4, x5, x6, x7). (19)

Using mathematical software like Mathematica, one can efficiently compute the polynomials
QΓ2∪Γ3

132 (t, x1, x2, x3, x4, x5, x6, x7) =
∑

n≥0 t
nQΓ2∪Γ3

n,132 (x1, x2, x3, x4, x5, x6, x7) as follows.

QΓ2∪Γ3
132 (t, x1, x2, x3, x4, x5, x6, x7) = 1+t+t2(x1+x2)+t3(x31x3+x21x2x4+x1x

2
2x5+x1x

2
2x6+x32x7)

+ t4
(
x61x

4
3 + x51x2x

2
3x

2
4 + x41x

2
2x3x

2
4x5 + x31x

3
2x3x

3
5 + x41x

2
2x3x

2
4x6 + x21x

4
2x

2
5x

2
6 + x31x

3
2x3x

3
6

+x31x
3
2x

3
4x7 + x21x

4
2x4x

2
5x7 + x21x

4
2x4x

2
6x7 + x1x

5
2x

2
5x

2
7 + x1x

5
2x5x6x

2
7 + x1x

5
2x

2
6x

2
7 + x62x

4
7

)

+ t5
(
x101 x103 + x91x2x

7
3x

3
4 + x81x

2
2x

5
3x

4
4x5 + x71x

3
2x

4
3x

3
4x

3
5 + x61x

4
2x

4
3x

6
5 + x81x

2
2x

5
3x

4
4x6 + x61x

4
2x

2
3x

4
4x

2
5x

2
6

+ x71x
3
2x

4
3x

3
4x

3
6 + x41x

6
2x3x

6
5x

3
6 + x61x

4
2x

4
3x

6
6 + x41x

6
2x3x

3
5x

6
6 + x71x

3
2x

3
3x

6
4x7 + x61x

4
2x

2
3x

5
4x

2
5x7

+ x51x
5
2x

2
3x

2
4x

5
5x7 + x61x

4
2x

2
3x

5
4x

2
6x7 + x51x

5
2x

2
3x

2
4x

5
6x7 + x51x

5
2x3x

5
4x

2
5x

2
7 + x41x

6
2x3x

2
4x

5
5x

2
7

+ x51x
5
2x3x

5
4x5x6x

2
7 + x41x

6
2x3x

2
4x

4
5x6x

2
7 + x51x

5
2x3x

5
4x

2
6x

2
7 + x31x

7
2x4x

4
5x

3
6x

2
7 + x41x

6
2x3x

2
4x5x

4
6x

2
7

+ x31x
7
2x4x

3
5x

4
6x

2
7 + x41x

6
2x3x

2
4x

5
6x

2
7 + x31x

7
2x3x

6
5x

3
7 + x31x

7
2x3x

3
5x

3
6x

3
7 + x31x

7
2x3x

6
6x

3
7 + x41x

6
2x

6
4x

4
7

+ x31x
7
2x

3
4x

3
5x

4
7 + x21x

8
2x

4
5x

2
6x

4
7 + x31x

7
2x

3
4x

3
6x

4
7 + x21x

8
2x

3
5x

3
6x

4
7 + x21x

8
2x

2
5x

4
6x

4
7 + x21x

8
2x4x

4
5x

5
7

+x21x
8
2x4x

2
5x

2
6x

5
7 + x21x

8
2x4x

4
6x

5
7 + x1x

9
2x

3
5x

7
7 + x1x

9
2x

2
5x6x

7
7 + x1x

9
2x5x

2
6x

7
7 + x1x

9
2x

3
6x

7
7 + x102 x107

)

+ · · · . (20)

We can also evaluate the appropriate variables at 1 and use the relation that inv(σ)+coinv(σ) =
(
n
2

)

to get the following corollary. We use the shorthand Pn for P γ
n in the RHS of each equation.
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Corollary 2. Let P γ
n (q, x) :=

∑
σ∈Sn(132)

qoccr12(σ)xoccrγ(σ), then

P
γ
0 (q, x) = 1 for each pattern γ, (21)

P 123
n (q, x) =

n∑

k=1

qk−1Pk−1(qx, x)Pn−k(q, x), (22)

P 213
n (q, x) =

n∑

k=1

qk−1x
(k−1)(k−2)

2 Pk−1(
q

x
, x)Pn−k(q, x), (23)

P 231
n (q, x) =

n∑

k=1

qk−1x(k−1)(n−k)Pk−1(qx
(n−k), x)Pn−k(q, x), (24)

P 321
n (q, x) =

n∑

k=1

qk−1x
(n−k)(kn−4k+2)

2 Pk−1(
q

xn−k
, x)Pn−k(

q

xk
, x). (25)

Then we can compute Q
γ
132(t, x) =

∑
n≥0 t

nP
γ
n (1, x) where γ has length 3 as follows.

Q123
132(t, x) = 1+t+2t2+t3(4+x)+t4(8+4x+x2+x4)+t5(16+12x+5x2+x3+4x4+2x5+x7+x10)

+ t6(32+32x+18x2+6x3+13x4+10x5+3x6+4x7+3x8+5x10+2x11+2x13+x16+x20)+ · · · ,
(26)

Q213
132(t, x) = 1+ t+2t2+ t3(4+x)+ t4(8+2x+3x2+x3)+ t5(16+5x+6x2+5x3+3x4+5x5+2x6)

+ t6(32 + 12x+ 16x2 + 11x3 + 9x4 + 10x5 + 10x6 + 5x7 + 10x8 + 10x9 + 6x10 + x12) + · · · , (27)

Q231
132(t, x) = Q312

132(t, x)

= 1 + t+ 2t2 + t3(4 + x) + t4(8 + 2x+ 3x2 + x3) + t5(16 + 4x+ 6x2 + 7x3 + 4x4 + 2x5 + 3x6)

+ t6(32 + 8x+ 12x2 + 14x3 + 17x4 + 7x5 + 17x6 + 5x7 + 5x8 + 8x9 + 5x10 + 2x12) + · · · , (28)

Q321
132(t, x) = 1+t+2t2+t3(4+x)+t4(7+3x+3x2+x4)+t5(11+5x+9x2+3x3+6x4+3x5+4x7+x10)

+t6(16+7x+15x2+9x3+17x4+7x5+10x6+12x7+7x8+6x9+7x10+3x11+6x12+4x13+5x16+x20)

+ · · · . (29)

3.3 Longer patterns whose distributions satisfy good recursions

We have built recursions for generating functions which give the distribution of all patterns of
length 2 or 3 in Sn(132). This leads to a natural question – can we give recursions for the generating
functions tracking any pattern in Sn(132) like we have done in Section 3.1 and Section 3.2. We
prove that though we can always use the recursive counting method, we do not always obtain clear
recursions like Theorem 1 and Theorem 2.

Let γ be a permutation pattern. We say that the distribution of the pattern γ in Sn(132) satisfies a
good recursion if there exist s permutations γ1, . . . , γs of length at least 2 such that the generating
function Qn(x, x1, . . . , xs) = Q

γ,γ1,...,γs
n,132 (x, x1, . . . , xs) satisfies that Q0(x, x1, . . . , xs) = 1, and

Qn(x, x1, . . . , xs) =

n∑

i=1

q(X)Qi−1(p1(X), . . . , ps+1(X))Qn−i(q1(X), . . . , qs+1(X)) (30)
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for n ≥ 1, where X = {x, x1, . . . , xs}, and q(X), p1(X), . . . , ps+1(X), q1(X), . . . , qs+1(X) are 2s+ 3
rational functions about variables inX and the power of variables in the numerator and denominator
are polynomials of n and i.

Thus, for any pattern γ whose distribution satisfies a good recursion, there is a Qn(x, x1, . . . , xs)
defined as above such that it can be computed directly from the functions Qi(x, x1, . . . , xs) for
i = 0, . . . , n − 1. We have the following theorem about the number of permutations in Sn(132)
whose distribution satisfy a good recursion.
Theorem 3. Let {an}n≥0 be the integer sequence defined by

a0 = a1 = 1, a2 = 2, and an = an−1 + 2an−2 + an−3. (31)

Then the number of permutations in Sn(132) whose distribution satisfy a good recursion is at least
an.

Proof. Given σ = σ1 · · · σn ∈ Sn(132), we define

σ′ := σ1 · · · σn(n+ 1), (32)

σ′′ := (n+ 2)σ1 · · · σn(n+ 1), (33)

σ′′′ := (σ1 + 1) · · · (σn + 1)(n+ 2)1 and (34)

σ′′′′ := (n+ 3)(σ1 + 1) · · · (σn + 1)(n + 2)1. (35)

We construct a set Γ of permutation patterns as follows. We let the empty permutation ∅ ∈ Γ.
Next, for each permutation σ ∈ Γ, we let σ′, σ′′, σ′′′, σ′′′′ ∈ Γ. Clearly, each permutation in Γ is
132-avoiding, and the number of permutations in Γ ∩ Sn is an based on the recursive construction
of the set Γ.

From the recursive counting method, the distributions of σ′, σ′′, σ′′′, σ′′′′ satisfy a good recursion as
long as the distribution of σ satisfies a good recursion. Thus the distribution of each permutation
in Γ satisfies a good recursion, which proves the theorem.

In fact, when we are counting the number of occurrences of γ ∈ Sr(132) in σ ∈ Sn(132) with
recursive counting method, we shall break the pattern γ into three parts: A(γ), r and B(γ). γ

fails to satisfy a good recursion by part (c’) of the recursive counting method if γ = π⊖ τ for some
permutation π, τ of length at least 2 (in this case the generating function cannot be recursively
computed as equation (30) since the RHS of equation (30) never gives the product occrπ(A(σ)) ·
occrτ (B(σ))). This is saying that we cannot have |A(γ)| ≥ 1 and |B(γ)| ≥ 2 simultaneously.

If B(γ) is empty, then γ = A(γ)′. If B(γ) = 1, then γ = A(γ)′′′. If |B(γ)| ≥ 2 and A(γ) is empty,
then we shall decompose B(γ) into three parts: A(B(γ)), r− 1 and B(B(γ)). If B(B(γ)) is empty,
then γ = A(B(γ))′′. If B(B(γ)) is not empty, then B(B(γ)) can only be of size 1 to make γ not
separable into a skew sum of two nontrivial permutations, and γ = A(B(γ))′′′.

Thus Γ collects all the permutations satisfying a good recursion if use the recursive counting method,
and there are exactly an permutations in Sn whose distributions satisfy a good recursion using the
recursive counting method (there might be more permutations in Sn whose distributions satisfy a
good recursion, but for other reasons not accessible by the recursive counting method).

The sequence {an}n≥0 = {1, 1, 2, 5, 10, 22, 47, 101, 217, . . .} appears in OEIS [14] as sequence A101399.
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We shall give an example of a longer pattern γ = 12 · · ·m whose distribution satisfies a good
recursion in the following theorem. Note that this gives a way to count the number of occurrences
of 12 · · ·m in Sn(132) different from Mansour and Vainshtein [11].
Theorem 4. Given m ≥ 2 and n ≥ 0, let

Q
(m)
n,132(x2, x3, . . . , xm) :=

∑

σ∈Sn(132)

x
occr12(σ)
2 x

occr123(σ)
3 · · · xoccr12···m(σ)

m and (36)

Q
(m)
132 (t, x2, x3, . . . , xm) :=

∑

n≥0

tnQ
(m)
n,132(x2, x3, . . . , xm), (37)

then we have the following equations,

Q
(m)
n,132(x2, . . . , xm) =

n∑

k=1

xk−1
2 Q

(m)
k−1,132(x2x3, x3x4, . . . , xm−1xm, xm)Q

(m)
n−k,132(x2, . . . , xm),(38)

Q
(m)
132 (t, x2, . . . , xm) = 1 + tQ

(m)
132 (tx2, x2x3, x3x4, . . . , xm−1xm, xm)Q

(m)
132 (t, x2, . . . , xm). (39)

Proof. We shall consider the distribution of pattern γs = 12 · · · s for s = 2, . . . ,m in Sn(132).

Given σ ∈ Sn(132) such that σk = n, we have A(σ) ∈ Sk−1(132) and B(σ) ∈ Sn−k(132). By the
recursive counting method, we have

occr12···s(σ) = occr12···s(A(σ)) + occr12···s(B(σ)) + occr12···(s−1)(A(σ)). (40)

Thus,

Q
(m)
n,132(x2, . . . , xm) =

∑

σ∈Sn(132)

m∏

i=2

x
occr12···i(σ)
i

=

n∑

k=1

∑

π∈Sk−1(132)

∑

τ∈Sn−k(132)

m∏

i=2

x
occr12···i(π)
i · x

occr12···i(τ)
i · x

occr12···(i−1)(π)

i

=

n∑

k=1

xk−1
2 Q

(m)
k−1,132(x2x3, x3x4, . . . , xm−1xm, xm)Q

(m)
n−k,132(x2, . . . , xm),(41)

which proves equation (38), and (39) follows immediately.

This theorem can be seem as a generalization of Theorem 1 of Fürlinger and Hofbauer [3].

3.4 The distribution of patterns of length 4 in Sn(132)

Let Γ4 = {1234, 2134, 2314, 2341, 3124, 3214, 3241, 3412, 3421, 4123, 4213, 4231, 4312, 4321} be the
set of patterns in S4(132). By Theorem 3, there are 10 of the 14 patterns in Γ4 satisfy good
recursions. To track all the 14 patterns in S4(132), we shall refine the generating function Qn by
the number of coinversions and define

Qn,i(x1, . . . , x19) := QΓ2∪Γ3∪Γ4
n,132 (x, 1, x1, . . . , x19)

∣∣
xi , (42)

then

QΓ2∪Γ3∪Γ4
n,132 (x1, . . . , x21) =

(n2)∑

i=0

xi1x
(n2)−i

2 Qn,i(x3, . . . , x21). (43)
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We let xi track the occurrences of length 3 patterns and yi to track the occurrences of length 4
patterns, then we have the following theorem which gives the recursion for the generating function
Qn,i(x1, . . . , x5, y1, . . . , y14).
Theorem 5. The function Qn,i(x1, . . . , x5, y1, . . . , y14) satisfies the following recursion,

Q0,0(x1, . . . , x5, y1, . . . , y14) = 1, (44)

Qn,i(x1, . . . , x5, y1, . . . , y14) = 0 for i < 0 or i >

(
n

2

)
, (45)

Qn,i(x1, . . . , x5, y1, . . . , y14) =

n∑

k=1

i+1−k∑

j=0

x
j
1x

(k−1
2 )−j

2 x
(n−k)(k+j−1)
3 x

k(i+1−k−j)
4 x

(n−k)((k−1
2 )−j)+k((n−k

2 )+k+j−i−1)
5 y

j(n−k)
4 y

((k−1
2 )−j)(n−k)

7

y
(j+k−1)(i+1−k−j)
8 y

(j+k−1)((n−k
2 )+k+j−i−1)

9 y
((k−1

2 )−j)(i+1−k−j)

13 y
((k−1

2 )−j)((n−k
2 )+k+j−i−1))

14

Qk−1,j(x1y1y
n−k
4 , x2y2y

n−k
7 , x3y3y

n−k
9 , x4y5y

n−k
12 , x5y6y

n−k
14 , y1, . . . , y14)

Qn−k,i+1−k−j(x1y
k
10, x2y

k
11, x3y

k
12, x4y

k
13, x5y

k
14, y1, . . . , y14). (46)

Proof. We shall count the number of occurrences of 19 patterns of length 3 or 4 in Sn(132) using
the recursive counting method. Let σ ∈ Sn(132) such that σk = n and occr12(σ) = i, we have
A(σ) ∈ Sk−1(132) and B(σ) ∈ Sn−k(132), and occr21(σ) =

(
n
2

)
−i. We shall abbreviate occrγ(A(σ)),

occrγ(B(σ)) and occrγ(A(σ)) to Aγ , Bγ and Aγ in this proof.

Similar to Theorem 2, the formulas for occurrences of patterns 123, 213, 231, 312, 321 are given by
equation (14), (15), (16), (17) and (18). Then we shall look at the 14 patterns of length 4. Part
(a) of the recursive counting method implies that

occrπ1π2π34(σ) = Aπ1π2π34 +Bπ1π2π34 +Aπ1π2π3 (47)

for any π1π2π3 ∈ S3(132). For patterns not end with 4, it follows from the recursive counting

13



method that

occr2341(σ) = A2341 +B2341 +A12 ·B1 +A123 · B1

= A2341 +B2341 + j(n− k) + (n− k)A123, (48)

occr3241(σ) = A3241 +B3241 +A21 ·B1 +A213 · B1

= A3241 +B3241 + (

(
k − 1

2

)
− j)(n − k) + (n − k)A213, (49)

occr3412(σ) = A3412 +B3412 +A12B12 +A1B12

= A3412 +B3412 + (j + k − 1)(i + 1− k − j), (50)

occr3421(σ) = A3421 +B3421 +A12B21 +A1AB21 +A231B1

= A3421 +B3421 + (n− k)A231 + (j + k − 1)

((
n− k

2

)
+ k + j − i− 1

)
, (51)

occr4123(σ) = A4123 +B4123B +A1B123 = A4123 +B4123 + kB123 (52)

occr4213(σ) = A4213 +B4213 +A1B213 = A4213 +B4213 + kB213 (53)

occr4231(σ) = A4231 +B4231 +A1B231 +A312B1 = A4231 +B4231 + kB231 + (n − k)A312,(54)

occr4312(σ) = A4312 +B4312 +A1B312 +A21B12

= A4312 +B4312 + kB312 +

((
k − 1

2

)
− j

)
(i+ 1− k − j), (55)

occr4321(σ) = A4321 +B4321 +A1B321 +A21B21 +A321B1

= A4321 +B4321 + kB321

+(n− k)A321 +

((
k − 1

2

)
− j

)((
n− k

2

)
+ k + j − i− 1

)
. (56)

Then, one can arrange the generating function Qn,i(x1, . . . , x5, y1, . . . , y14) in a similar way to
equation (19) to prove the recursion.

We can still compute the polynomials QΓ2∪Γ3∪Γ4
n,132 (x1, . . . , x21) =

∑(n2)
i=0 x

i
1x

(n2)−i

2 Qn,i(x3, . . . , x21)
efficiently by Mathematica as follows.

QΓ2∪Γ3∪Γ4
132 (t, x1, . . . , x21) = 1 + t+ t2(x1 + x2) + t3(x31x3 + x21x2x4 + x1x

2
2x5 + x1x

2
2x6 + x32x7)

+ t4
(
x41x10x

2
2x3x

2
4x5 + x31x11x

3
2x3x

3
5 + x41x12x

2
2x3x

2
4x6 + x21x15x

4
2x

2
5x

2
6 + x31x17x

3
2x3x

3
6

+ x31x13x
3
2x

3
4x7 + x21x14x

4
2x4x

2
5x7 + x21x18x

4
2x4x

2
6x7 + x1x16x

5
2x

2
5x

2
7 + x1x19x

5
2x5x6x

2
7

+x1x
5
2x20x

2
6x

2
7 + x62x21x

4
7 + x61x

4
3x8 + x51x2x

2
3x

2
4x9
)
+ · · · . (57)

4 The functions Q
γ
123(t, x)

We use the bijection Ψ : Sn(123) → Dn of Deutsch and Elizalde [2] to study the distribution of
patterns 132 and 231 in Sn(123), and we generalize our result of 132 distribution to 1m · · · 2 in
Sn(123). Our method does not apply for the pattern 321.
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4.1 The distribution of pattern 1m · · · 2 in Sn(123)

Given σ ∈ Sn(123). If σi1 · · · σim is an occurrence of pattern 1m · · · 2, then the number σi1 must be
a left-to-right minimum of σ, otherwise there must exist a number σa < σi1 where the index a < i1,
and (a, i1, im) is an occurrence of pattern 123.

By the bijection Ψ : Sn(123) → Dn, the number σi1 must be a peak of the corresponding Dyck
path Ψ(σ). Suppose that the number σi1 is on the dth diagonal of Ψ(σ), then by (3) of Lemma 3,
there are d numbers to the right of σi1 that are bigger than σi1 , appear in a decreasing way. It
follows immediately that there are

(
d

m−1

)
occurrences of pattern 1m · · · 2 at the peak σi1 since any

m− 1 of the d numbers to the right of σi1 that are bigger than σi1 create a pattern 1m · · · 2 with
the number σi1 .

Now let cd(σ) be the number of peaks that are on the dth diagonal of Ψ(σ), then

occr1m···2(σ) =
∑

d≥0

cd(σ)

(
d

m− 1

)
. (58)

We also let cd(P ) be the number of peaks that are on the dth diagonal of a path P .

We shall define

Q
(m)
n,123(s, x2, x3, . . . , xm) :=

∑

σ∈Sn(123)

sLRmin(σ)x
occr12(σ)
2 x

occr132(σ)
3 · · · x

occr1m(m−1)···2(σ)
m and (59)

Q
(m)
123 (t, s, x2, x3, . . . , xm) :=

∑

n≥0

tnQn,123(s, x2, x3, . . . , xm), (60)

then we have the following theorem.
Theorem 6. Given n ≥ 0 and m ≥ 2,

Q
(m)
n,123(s, x2, . . . , xm) = sQ

(m)
n−1,123(s, x2, . . . , xm) (61)

+
n∑

k=2

Q
(m)
k−1,123(sx2, x2x3, x3x4, . . . , xm−1xm, xm)Q

(m)
n−k,123(s, x2, . . . , xm)

and

Q
(m)
123 (t, s, x2, . . . , xm) = 1 + t(s− 1)Q

(m)
123 (t, s, x2, . . . , xm)

+tQ
(m)
123 (t, sx2, x2x3, x3x4, . . . , xm−1xm, xm)Q

(m)
123 (t, s, x2, . . . , xm). (62)

Proof. We enumerate the pattern occurrences using the Dyck path bijection. Given any Dyck path
P , we can break the path at the first return to write P as DP1RP2, where P1 is the path after the
first D step before the last R step before the first return, and P2 is the path after the first return.
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Let k = ret(P ). By equation (58), we have

Q
(m)
n,123(s, x2, . . . , xm)

=
∑

σ∈Sn(123)

s
∑

d≥0 cd(σ)(
d
0)x

∑
d≥0 cd(σ)(

d

1)
2 x

∑
d≥0 cd(σ)(

d

2)
3 · · · x

∑
d≥0 cd(σ)(

d

m−1)
m

=
∑

P∈Dn

s
∑

d≥0 cd(P )(d0)x
∑

d≥0 cd(P )(d1)
2 x

∑
d≥0 cd(P )(d2)

3 · · · x
∑

d≥0 cd(P )( d

m−1)
m

= s
∑

P2∈Dn−1

s
∑

d≥0 cd(P2)(d0)x
∑

d≥0 cd(P2)(d1)
2 · · · x

∑
d≥0 cd(P2)( d

m−1)
m

+

n∑

k=2

∑

P1∈Dk−1

s
∑

d≥0 cd(P1)(d+1
0 )x

∑
d≥0 cd(P1)(d+1

1 )
2 · · · x

∑
d≥0 cd(P1)( d+1

m−1)
m

·
∑

P2∈Dn−k

s
∑

d≥0 cd(P2)(d0)x
∑

d≥0 cd(P2)(d1)
2 · · · x

∑
d≥0 cd(P2)( d

m−1)
m

= sQ
(m)
n−1,123(s, x2, . . . , xm)

+

n∑

k=2

∑

P1∈Dk−1

s
∑

d≥0 cd(P1)(d0)x
∑

d≥0 cd(P1)((d0)+(
d
1))

2 · · · x
∑

d≥0 cd(P1)(( d

m−2)+(
d

m−1))
m

·
∑

P2∈Dn−k

s
∑

d≥0 cd(P2)(d0)x
∑

d≥0 cd(P2)(d1)
2 · · · x

∑
d≥0 cd(P2)( d

m−1)
m

= sQ
(m)
n−1,123(s, x2, . . . , xm)

+
n∑

k=2

Q
(m)
k−1,123(sx2, x2x3, x3x4, . . . , xm−1xm, xm)Q

(m)
n−k,123(s, x2, . . . , xm). (63)

Equation (62) follows immediately from (61).

Evaluating m at 3 gives the following corollary for the distribution of coinversion and occr132
statistics.
Corollary 3. Q

(3)
n,123(s, q, x) =

∑
σ∈Sn(123)

sLRmin(σ)qoccr12(σ)xoccr132(σ) satisfies

Q
(3)
0,123(s, q, x) = 1, Q

(3)
n,123(s, q, x) = sQ

(3)
n−1 +

n∑

k=2

Q
(3)
k−1(sq, qx, x)Q

(3)
n−k(s, q, x). (64)

Further,

Q
(3)
123(t, s, q, x) = 1 + t(s− 1)Q

(3)
123(t, s, q, x) + tQ

(3)
123(t, sq, qx, x)Q

(3)
123(t, s, q, x).

Then we can use the recursive formula to compute Q
12,132
123 (t, q, x) =

∑
n≥0 t

nQ
(3)
n,123(1, q, x):

Q
12,132
123 (t, q, x) = 1+t+(1+q)t2+t3(1+2q+q2+q2x)+t4(1+3q+3q2+q3+2q2x+2q3x+q4x2+q3x3)

+t5(1+4q+6q2+4q3+q4+3q2x+6q3x+3q4x+3q4x2+2q5x2+2q3x3+2q4x3+q6x3+2q5x4+q4x6+q6x6)

+ · · · . (65)
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By looking at the coefficients of the generating functions, we find a coincidence among Sn(132) and
Sn(123) that

|{σ ∈ Sn(132) : occr12···j(σ) = i}| = |{σ ∈ Sn(123) : occr1j(j−1)···2(σ) = i}| for all i < j. (66)

In other words, we have the following theorem.
Theorem 7. Let [xi]Q denote the coefficient of xi in function Q, then

[tnxi]
Q

1···j
132 (t,x)

= [tnxi]
Q

1j···2
123 (t,x)

for i < j. (67)

Proof. One can use the recursive equations (38) and (61) to prove the theorem using induction.
Here we shall give a proof of the theorem combinatorially using the Dyck path bijections Φ and Ψ.

By equation (58), σ ∈ Sn(123) has i occurrences of pattern 1j(j − 1) · · · 2 where j > i if and only
if the corresponding Dyck path Ψ(σ) has i peaks on the j − 1st diagonal and no peaks on the kth

diagonal for all k ≥ j.

On the other hand, let π ∈ Sn(132) and occr12···j(π) = i. The corresponding Dyck path Φ(π) has
no peaks on the kth diagonal for all k ≥ j. Otherwise, if πi is on the kth diagonal for some k ≥ j,
there are k numbers to the right of πi that is greater than πi, forming a length k + 1 increasing
subsequence with πi. There are

(
k+1
j

)
> i occurrences of pattern 12 · · · j in this subsequence, which

lead to a contradiction.

Further, if πℓ1 · · · πℓj is an occurrence of pattern 12 · · · j, then πℓ1 must be a peak on the j − 1st

diagonal, otherwise any peak to the right of πℓ1 that is smaller than πℓ1 is at least on the jth

diagonal by Lemma 2 (c), contradiction with the statement that Φ(π) has no peaks on the kth

diagonal for all k ≥ j.

Thus, π has i occurrences of pattern 1 · · · j where j > i if and only if the corresponding Dyck path
Φ(π) has i peaks on the j − 1st diagonal and no peaks on the kth diagonal for all k ≥ j, which
proves the equations (66) and (67).

4.2 The distribution of pattern 231 in Sn(123)

We give recursive formulas for generating functions of Sn(123) tracking the number of occurrences
of pattern 231 by refining function Qn by the number of left-to-right minima. Given σ ∈ Sn(123),
we let linv(σ) be the number of pairs (i, j) such that σi is a left-to-right minimum, σj is not a
left-to-right minimum and σi > σj. For a Dyck path P , we also let linv(P ) = linv(Ψ−1(σ)).

Next, we define

Dn(s, q, x, y) :=
∑

σ∈Sn(123)

sLRmin(σ)qoccr12(σ)xlinv(σ)yoccr231(σ) and (68)

Dn,k(q, x, y) :=
∑

σ∈Sn(123),LRmin(σ)=k

qoccr12(σ)xlinv(σ)yoccr231(σ), (69)

then Dn(s, q, x, y) =
∑n

k=1 s
kDn,k(q, x, y), and we have the following theorem for Dn(s, q, x, y).

Theorem 8. D0(s, q, x, y) = D0,0(q, x, y) = 1. For any n, k ≥ 1,

Dn,1(q, x, y) = qn−1, Dn,n(q, x, y) = 1, Dn,k(q, x, y) = 0 for k > n, and (70)
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Dn,k(q, x, y) = xn−kDn−1,k−1(q, x, y) + qkDn−1,k(q, xy, y)

+

n−1∑

i=2

min(i−1,k−1)∑

j=max(1,k+i−n)

qjxj(n−i−k+j)yj(n−i)Di−1,j(qy
n−i, xy, y)Dn−i,k−j(q, x, y). (71)

Proof. Given σ ∈ Sn(123) such that LRmin(σ) = k, we let P = Ψ(σ) be the corresponding Dyck
path which has k peaks by Lemma 3. Suppose that ret(σ) = i, then like Theorem 6, we can write
P = DP1RP2, where P1 is a Dyck path of size i− 1 and P2 is a Dyck path of size n− i.

If i = 1, then P1 is empty, and DP1R is a peak on the main diagonal, thus P2 should be a Dyck
path of size n − 1 with k − 1 peaks. There are n − k extra linvs between the first peak and the
n− k non-peaks in P2, thus the contribution of this case is xn−kDn−1,k−1(q, x, y).

If i = k, then P2 is empty, and P = DP1R. P1 should be a Dyck path of size n − 1 with k peaks.
There are k more inversions of Ψ−1(DP1R) than Ψ−1(P1), and linv(P1) more occurrences of pattern
231 in Ψ−1(DP1R) than Ψ−1(P1), thus the contribution of this case is qkDn−1,k(q, xy, y).

If 1 < i < n, then both P1 and P2 are not empty. Suppose that there are j peaks in P1, then
there are k − j peaks in P2. Other than the statistics counted inside P1 and P2, there are j more
inversions of Ψ−1(DP1R) than Ψ−1(P1), j(n − i − k + j) extra linvs between P1 and P2, and
j(n− i)+ (n− i)occr12(Ψ

−1(P1))+ linv(P1) extra occurrences of pattern 231, thus the contribution
of this case is qjxj(n−i−k+j)yj(n−i)Di−1,j(qy

n−i, xy, y)Dn−i,k−j(q, x, y).

Summing over all the cases gives (71).

Then we can compute Q
12,231
123 (t, q, x) =

∑
n≥0 t

nDn(1, q, 1, x) using the recursive formula:

Q
12,231
123 (t, q, x) = 1+t+(1+q)t2+t3(1+q+2q2+qx)+t4(1+q+2q2+2q3+q4+qx+2q3x+qx2+3q2x2)

+ t5(1 + q + 2q2 + 2q3 + 3q4 + 2q6 + qx+ 2q3x+ 2q5x+ qx2 + 3q2x2 + 5q4x2 + 2q5x2

+ qx3 + q2x3 + 4q3x3 + q4x3 + 3q2x4 + 4q3x4 + q4x4) + · · · . (72)

5 Applications in pattern popularity

Let S be a set of permutations and γ be a permutation pattern. The popularity of γ in S, fS(γ),
is defined by

fS(γ) =
∑

σ∈S

occr(γ). (73)

Let

Fγ(t) =
∑

n≥0

fSn(132)(γ)t
n and (74)

Gγ(t) =
∑

n≥0

fSn(123)(γ)t
n, (75)

Bóna [1] and Homberger [4] studied the popularity of length 2 or 3 patterns in Sn(132) and Sn(123).
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Theorem 9 (Bóna and Homberger). Let C(t) =
∑

n≥0Cnt
n be the generating function of Catalan

numbers. Then

F12(t) =
t2C3(t)

(1− 2tC(t))2
, (76)

G12(t) =
tC2(t)

1− 2tC(t)
. (77)

In this section, we shall give two applications of the results in Section 3 and Section 4 about pattern
popularity in the following theorem.
Theorem 10. Let m > 2 be an integer. Then

F12···m(t) =
tC(t)F12···(m−1)(t)

1− 2tC(t)
, (78)

G1m···2(t) =
tC(t)G1(m−1)···2(t)

1− 2tC(t)
. (79)

Proof. Equation (78) is a consequence of equation (39). It follows from the definition of

Q
(m)
132 (t, x2, . . . , xm) that

F12···m(t) =
∂Q

(m)
132 (t, x2, . . . , xm)

∂xm

∣∣∣∣
x2=···=xm=1

. (80)

Taking partial derivative of equation (39) over xm and evaluating x2, . . . , xm at 1 give

F12···m(t) =
∂Q

(m)
132 (t, x2, . . . , xm)

∂xm

∣∣∣∣
x2=···=xm=1

= t

(
∂Q

(m)
132 (t, x2, . . . , xm)

∂xm
Q

(m)
132 (t, x2, . . . , xm)

+
∂Q

(m)
132 (t, x2, . . . , xm)

∂xm−1
Q

(m)
132 (t, x2, . . . , xm)

+
∂Q

(m)
132 (t, x2, . . . , xm)

∂xm
Q

(m)
132 (t, x2, . . . , xm)

)∣∣∣∣∣
x2=···=xm=1

= t
(
C(t)F12···(m−1)(t) + 2C(t)F12···m(t)

)
, (81)

which implies equation (78).

Equation (79) is a consequence of equation (62) and can be proved in a similar way. We shall omit
the proof of equation (79).

6 Circular pattern distribution in CSn(1243) and CSn(1324)

We first define circular permutations. A circular permutation is a permutation with only one cycle.
We use the cycle notation for circular permutations in this section. Let CSn denote the set of
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circular permutations of size n, then for any σ = (σ1 · · · σn) ∈ CSn, σ can also be expressed as
(σi · · · σnσ1 · · · σi−1) for any i = 1, . . . , n.

Next, we define pattern avoidance of circular permutation. For any permutation τ ∈ Sj, we say
that a circular permutation σ = (σ1 · · · σn) ∈ CSn circularly avoids the pattern τ if each expression
σi · · · σnσ1 · · · σi−1 (for i = 1, . . . , n) avoids the pattern τ . We let CSn(τ) denote the set of circular
permutations that circularly avoid the pattern τ . Let coccrτ (σ) denote the number of circular
occurrences of pattern τ in circular permutation σ.

CSn(τ) is the empty set when τ has length ≤ 2 and n ≥ 2. CSn(τ) is also trivial when τ is of length
3. We shall study circular pattern distribution in CSn(τ) where τ is of length 4.

There are 6 circular permutations of length 4. By the reverse (or complement) action, we have
|CSn(1234)| = |CSn(1432)|, |CSn(1243)| = |CSn(1342)| and |CSn(1324)| = |CSn(1423)|. Thus
by symmetry, we only need to study circular pattern distribution in CSn(1234), CSn(1243) and
CSn(1324). We will extend our result on classical permutation pattern distribution in Sn(132) to
circular pattern distribution in CSn(1243) and CSn(1324).

6.1 Circular pattern distribution in CSn(1243)

Given σ = (σ1 · · · σn) ∈ CSn, without loss of generality, we let σ1 = 1. Let σ̃ = red(σ2 · · · σn), then
σ ∈ CSn(1243) if and only if σ̃ ∈ Sn−1(132, 3124, 4312), and we can count the number of circular
pattern occurrences of σ from the permutation σ̃.

Next, we consider circular pattern distribution in circular permutations. When the circular pattern
is of length 2, we have coccr12(σ) = coccr21(σ) =

(
n
2

)
for all σ ∈ CSn, which is trivial. We study all

the 2 circular patterns of length 3 and all the 5 nontrivial circular patterns of length 4 in CSn(1243).
For σ ∈ CSn(1243) and σ̃ defined as before, we have

coccr123(σ) = occr12(σ̃) + occr123(σ̃) + occr312(σ̃) + occr231(σ̃), (82)

coccr132(σ) = occr21(σ̃) + occr213(σ̃) + occr321(σ̃), (83)

coccr1234(σ) = occr123(σ̃) + occr1234(σ̃) + occr4123(σ̃) + occr3412(σ̃) + occr2341(σ̃), (84)

coccr1324(σ) = occr213(σ̃) + occr3241(σ̃), (85)

coccr1342(σ) = occr231(σ̃) + occr2134(σ̃) + occr4213(σ̃) + occr3421(σ̃), (86)

coccr1423(σ) = occr312(σ̃) + occr2314(σ̃) + occr4231(σ̃), (87)

coccr1432(σ) = occr321(σ̃) + occr3214(σ̃) + occr4321(σ̃). (88)

Let

Pn,1243(y123, y132, y1234, y1324, y1342, y1423, y1432) :=

:
∑

σ∈CSn(1243)

y
coccr123(σ)
123 y

coccr132(σ)
132 y

coccr1234(σ)
1234 y

coccr1324(σ)
1324 y

coccr1342(σ)
1342 y

coccr1423(σ)
1423 y

coccr1432(σ)
1432 (89)

and recall the function QΓ2∪Γ3∪Γ4
n,132 (x1, . . . , x21) defined in (43), then Theorem 11 follows.

Theorem 11. Given any n ≥ 1,

Pn,1243(y132, y1234, y1324, y1342, y1423, y1432)

= QΓ2∪Γ3∪Γ4
n−1,132 (y123, y132, y123y1234, y132y1324, y123y1342, y123y1423, y132y1432,

y1234, y1342, y1423, y1234, 0, y1432, y1324, y1234, y1342, y1234, y1342, y1423, 0, y1432). (90)
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Thus, one can compute Pn,1243(y132, y1234, y1324, y1342, y1423, y1432) directly from
QΓ2∪Γ3∪Γ4

n,132 (x1, . . . , x21).

6.2 Circular pattern distribution in CSn(1324)

Given σ = (σ1 · · · σn) ∈ CSn, without loss of generality, we let σn = n. Let σ = σ1 · · · σn−1, then
σ ∈ CSn(1324) if and only if σ ∈ Sn−1(132, 3241), and we can count the number of circular pattern
occurrences of σ from the permutation σ.

Similar to CSn(1243), we study all the 2 circular patterns of length 3 and all the 5 nontrivial circular
patterns of length 4 in CSn(1324). For σ ∈ CSn(1324) and σ defined as before, we have

coccr123(σ) = occr12(σ̃) + occr123(σ̃) + occr312(σ̃) + occr231(σ̃), (91)

coccr132(σ) = occr21(σ̃) + occr213(σ̃) + occr321(σ̃), (92)

coccr1234(σ) = occr123(σ̃) + occr1234(σ̃) + occr4123(σ̃) + occr3412(σ̃) + occr2341(σ̃), (93)

coccr1243(σ) = occr312(σ̃) + occr1243(σ̃) + occr4312(σ̃) + occr2431(σ̃), (94)

coccr1342(σ) = occr213(σ̃) + occr1342(σ̃) + occr3421(σ̃), (95)

coccr1423(σ) = occr231(σ̃) + occr1423(σ̃) + occr4231(σ̃), (96)

coccr1432(σ) = occr321(σ̃) + occr1432(σ̃) + occr4321(σ̃). (97)

Let

Pn,1324(y123, y132, y1234, y1243, y1342, y1423, y1432) :=∑

σ∈CSn(1243)

y
coccr123(σ)
123 y

coccr132(σ)
132 y

coccr1234(σ)
1234 y

coccr1243(σ)
1243 y

coccr1342(σ)
1342 y

coccr1423(σ)
1423 y

coccr1432(σ)
1432 , (98)

then Theorem 12 follows.
Theorem 12. Given any n ≥ 1,

Pn,1324(y132, y1234, y1243, y1342, y1423, y1432)

= QΓ2∪Γ3∪Γ4
n−1,132 (y123, y132, y123y1234, y132y1342, y123y1423, y123y1243, y132y1432, y1234,

y1342, y1423, y1234, y1243, y1432, 0, y1234, y1342, y1234, y1342, y1423, y1243, y1432). (99)

7 Summary and future work

We obtained the recursion tracking all patterns of length 2, 3 or 4 in Sn(132). In fact, it is possible
to give a recursion for the generating function tracking patterns of any length in Sn(132) if we do
enough refinement of the functions Qn.

On Sn(123), we only track 2 patterns of length 2, 2 of 3 patterns of length 3 and the special pattern
1m(m − 1) · · · 2. The recursions in Sn(123) tend to be more complicated than those in Sn(132),
and we are not able to get a recursion for the pattern 321.

We also adapt our method to circular permutations. We define patter avoidance in circular permu-
tations, and we are able to track all circular patterns of length 3 or 4 in CS1243 and CS1324. The
pattern distribution problems in the circular permutation class CS1234 remain to be solved.
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We notice other equalities of coefficients of generating functions Q
γ
132 and Q

γ
123 except equation

(67). For example, the number of permutations in Sn(123) with one occurrence of pattern 231 is
equal to the number of permutations in Sn(231) with one occurrence of pattern 123, which is equal
to 2n − 5; the number of permutations in Sn(132) with one occurrence of pattern 3412 is equal to
the number of permutations in Sn(132) with one occurrence of pattern 2341, which is one less than
the 2n− 5th Fibonacci number.

We have not studied sets of permutations avoiding patterns of length bigger than 3, and circular
patterns of length bigger than 4. We shall study the problems in the future.
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