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1. INTRODUCTION

I used to feel guilty in Cambridge that I spent all day playing games, while I was supposed
to be doing mathematics. Then, when I discovered surreal numbers, I realized that playing
games IS math.

John Horton Conway

Surreal numbers, invented by John Horton Conway [1], and named by Knuth in
“Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found
Total Happiness” [2], are appealing because they provide a single construction for all
of the numbers we are familiar with and many others – the reals, rationals, hyperreals
and ordinals – with only the use of set theory. Thus they provide an underpinning idea
of what a number really is. And they have an elegant and complex structure that is
worthy of study in its own right.

Surreal numbers aren’t numbers as we are taught in grade school, but they have
many of the same properties. The tricky thing is that they are defined recursively from
the very start.

Recursion is like the joke: “an American, an Englishman and an Australian walk
into a bar, and one of them says

“an American, an Englishman and an Australian walk into a bar, and
one of them says,

“an American, an Englishman and an Australian walk into a bar, and
one of them says, ...”

A recursive definition means that a surreal number is defined in terms of other surreals
and so on. The break in this circularity that makes it possible to get a foothold is that
each turn of the circle progresses inexorably towards 0, which can be defined ab initio.
To continue the Latin the surreal numbers violate the dictum ex nihlo nihil fit, or “from
nothing comes nothing.” From 0 springs forth all other numbers.

The definition that performs this miracle is as follows: a surreal number x consists
of an ordered pair of two sets of surreal numbers (call them the left and right sets, XL

and XR, respectively) such that no member of the left set is ≥ any of the members of
the right set. We write x = {XL|XR} for such a surreal.

This seems a difficult definition. We haven’t even defined ≥, and yet are using it in
the definition. Everything resolves because we can always work with empty sets. The
starting point – the first surreal number – is {∅|∅} (where ∅ is the empty set). A careful
reading of the definition says that no elements of one can be ≥ the other, but as there
are no elements, the comparison is automatically true. We call this number 0.

Then on the “first day” a new generation of surreals can be created, building on
0. On the second day we create a second generation and so on. Each has a meaning
corresponding to traditional numbers in order to have a consistent interpretation with
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respect to standard mathematical operators such as addition. The construction is ele-
gant, and surprisingly general, and leads naturally to the idea of the “birthday” of a
surreal numbers being literally the day on which it is born.

A natural question then is, when we perform arithmetic on surreal numbers, what is
the birthday of the result? This paper answers that question.

2. THE SURREAL NUMBERS AND THEIR BIRTHDAYS We won’t describe
the surreals in detail here; there are several good tutorials or books, e.g., [1–6]. In
particular, Tøndering [3] and Simons [6] provide excellent introductions. We need
provide a little background though. For instance, notation varies a little: here we denote
numbers in lower case, and sets in upper case, with the convention thatXL andXR are
the left and right sets of x, and we write a form as x = {XL | XR}. I’d like to make
a surrealist/computer-science joke here, namely ‘|’ is not a pipe, but a conjunction
between Magritte and Unix might be considered too obscure even for a paper on surreal
numbers. More prosaically, it is common to omit empty sets, but I prefer writing ∅
explicitly because it is a little clearer when writing complicated sequences.

In much of the literature the idea of a surreal number is interwoven with its form.
This is best explained by an analogy to rational numbers. We can write a rational num-
ber in many ways, e.g., 1/2 = 2/4. That is, we have many forms of the same number.
Likewise, a surreal number can have many forms. Here, we work with the form be-
cause it is in terms of these that Conway’s surreal arithmetic operators are defined.
The distinction requires a clarification of the notion of equality. Following Keddie [7]
we call two forms identical if they are the same form (i.e., have identical left and right
sets), and equal if they have the same value (i.e., they denote the same number). We
shall distinguish these two cases by writing equality of value as equivalence, ≡, and
identity by ==. A single equal sign will be reserved for conventional numbers.

The first surreal number form to be defined is 0 def
= {∅ | ∅}. We call this number

0, because it will turn out to be the additive identity (the 0 of conventional arithmetic).
All other numbers are defined from this point, following a construction to be laid out
below. The line over the 0 denotes that this is a special, canonical form of zero.

The second two surreal number forms, the numbers we can define on Day 1, imme-
diately after creating 0, are

1
def
= {0 | ∅} and −1 def

= {∅ | 0}.

This notation, however, hides some of the structure of the surreals. To see them in all
their glory we should write

1
def
=
{
{∅ | ∅}

∣∣ ∅} and −1 def
=
{
∅
∣∣ {∅ | ∅}},

but no doubt you can see that this will quickly result in a very complicated expressions.
We will resolve this by drawing pictures such as in Figure 1(a). The figure shows each
surreal as a node in a graph. It is (almost) a connected Directed Acyclic Graph (DAG)
with links showing how each surreal is constructed from its parents. But a DAG, by
itself, would loose information. The graph would only specify parents, not left and
right parents. So in displaying the DAG, we show a box for each surreal number, with
the value given in the top section, and the left and right sets shown in the bottom
left and right sections, respectively. From each member of each set we show a link to
its box, and its parents in turn: a red link indicates a left parent, and blue right. The
advantage of the DAG is that it shows the whole recursive structure of a surreal.
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(a) 1 == {0 | ∅}. (b) 0 == {−1 | 1}.
Figure 1. DAGs depicting the forms of two surreal numbers. Each box represents a surreal number with the
value given in the top section, and the left and right sets shown in the bottom left and right sections, respectively.
The arrows show the form of each parent surreal, with its own recursive structure. Note that there are equivalent
forms, e.g., {∅ | ∅} ≡ {−1 | 1}, even within a single DAG.

Most aspects of surreals are defined recursively. For instance x ≥ y (which we
need even in the definition) means that no member of XL is greater than or equal to
y, and no member of YR is less than or equal to x. It might be hard to see how to
use this in the definition when it is also defined in terms of surreals (which in turn use
the definition), but this is the nature of surreal operations: they are recursive, not just
in terms of themselves, but each definition in turn uses others at lower levels. In any
case, it is now relatively easy to check that −1 ≤ 0 ≤ 1, and we can define further
comparisons, for instance x ≡ y means x ≥ y and y ≥ x.

Once we have defined ±1, we can proceed to define yet more surreals. Figure 1(b)
shows another form equivalent to zero, i.e., {−1|1} ≡ {∅|∅} == 0. The graph shows
that a value can reappear at multiple places in the structure of the form: in this case
0 appears both at the top and the bottom of the DAG. The information characterising
the surreal form is not its value, or even the values of its subsets, but the structure
of the whole DAG that describes it. So the two ‘0’ nodes in the graph are different
(non-identical) surreal forms that just happen to have the same value.

Each number is actually an infinite equivalence class of forms, so we need to have
standard, canonical forms, at least to bootstrap later work. The standard construc-
tion (called the Dali function by Tondering [3]) maps dyadic numbers D := {n/2k |
n, k integers} to (finite) surreals, and is defined recursively by d : D→ S where

d(x) =


{∅ | ∅}, if x = 0,{
d(n− 1) | ∅

}
, if x = n, a positive integer,{

∅ | d(n+ 1)
}
, if x = n, a negative integer,{

d
(
n−1
2k

) ∣∣ d (n+1
2k

)}
, if x = n/2k for k > 0 and n odd.

(1)

For convenience, we denote canonical forms through the shorthand of placing a line
above the number. All other forms are defined by their DAG, or in terms of canonicals.

This recursive construction is often illustrated as a tree [4,8–10] showing the num-
bers that are created in each generation and their position on the real number line.
However, that is misleading. The (non-integer) Dali surreals have two parents, and the
resultant structure of dependency in the recursion is the DAG shown in Figure 2. We
can see from this, for instance, that each canonical form has either one or two parents.

The construction of surreals leads to the notion of birthdays: take 0 to be born on

3
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Figure 2: The dyadic DAG, i.e., the recursive structure of the dyadic surreal numbers,
up to birthday/generation 3.

Day 0, and ±1 to be born on Day 1, and so on, then we can assign a birthday to all
surreals. I prefer the term generation over birthday if only because it links up to the
notion of parents and children more cleanly. The birthday can also be seen as how
deeply you must recurse through the DAG structure to get to 0. We say a surreal is
older if it comes from an earlier generation, i.e., it has a smaller (earlier) birthday. We
formalise notions these below.

Definition 1. We refer to the elements of the left and right sets of a surreal form x
as its parents (note there may be other than two parents), and x as their child. The
birthday or generation of {∅ | ∅} is 0, and the generation of all other finite surreal
forms is 1 greater than that of their youngest parent.

If we denote the parents of x by XP = XL ∪XR, then the generation/birthday func-
tion of a surreal number form x is given by

g(x) = sup
xp∈XP

g(xp) + 1, (2)

where g({∅ | ∅}) = 0. For example, in Figure 1(b) g
(
{−1 | 1}

)
= g(1) + 1 = 2.

Surreal forms with equivalent values can come from different generations, so know-
ing the value of a surreal tells us only a lower bound on its generation (namely the
generation of the canonical form of that surreal). Thus, some questions arise in regard
to birthdays: e.g., can we derive birthdays for standard surreal constructs?

We call these problems in birthday arithmetic.
We will start by deriving the birthday of the canonical forms as it provides an ex-

ample of the standard proof structure for many surreal arguments. Simons states the
result [6, p.27] but only as a minor note within a larger result. As in many proofs in
this domain, it is inductive. Throughout this we use g(x) as shorthand for g(d(x)).

Lemma 1. The generation/birthday of the canonical form of dyadic x = n/2k, which
is in irreducible form (or lowest terms) is

g(x) =
⌈
|x|
⌉
+ k,

where dxe denotes the ceiling function of x (the smallest integer larger than x).

Proof. The statement is true for x = 0 because g(0) = 0 by definition. The negative
case can be treated by considering g(−x) (see §3), so we only consider x > 0 here.
The integer case is trivial (see Figure 2) so we focus on the case n odd and k > 0.
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Assume for the purpose of induction that the lemma is true for all parents of x.
From Definition (1) such a dyadic has exactly two parents, and hence (2) reduces to

g
( n
2k

)
= max

{
g

(
n− 1

2k

)
, g

(
n+ 1

2k

)}
+ 1.

For n odd and k > 0 both x = n/2k and (n + 1)/2k have the same ceiling (call it
m), and d(n− 1)/2ke ≤ m, so by the inductive hypothesis

g
( n
2k

)
= g

(
n+ 1

2k

)
+ 1.

Now n + 1 is even so we can simplify (n + 1)/2k = `/2k−1, and by the inductive
hypothesis the theorem is true for the parents of x, so we must have

g

(
n+ 1

2k

)
= m+ k − 1.

Hence g
(
n/2k

)
= m+ k.

Intrinsic to this proof (and others) is the fact that 0 is the starting point for the
construction of the surreals, and therefore is the ultimate ancestor of all surreals.

3. ADDITION AND SUBTRACTION In order for the surreals to fulfil their role as
“numbers” they must be able to play all the tricks of numbers, for instance, we must
be able to do arithmetic. Conway defined addition and subtraction for surreal numbers,
and showed these satisfy the conditions required, but they are actually operations on
the forms. Let us examine them in detail below.

Addition The standard definition of addition on surreal forms [1,3] is

x+ y
def
= {XL + y ∪ x+ YL | XR + y ∪ x+ YR}.

Notation is often abbreviated, and so you will sometimes set operations simplified,
e.g., {x, y} ∪ A is written {x, y,A}. Also, in this and other definitions we implicitly
extend the operators to sets, or combinations of sets and set with surreals, e.g., x+ y
is comprised of terms likeXL + y. Operations on sets are applied to each member [3]:

{x1, x2, . . . , xn}+ y
def
= {x1 + y, x2 + y, . . . , xn + y},

and operations on empty sets result in empty sets, i.e., x+ ∅ = ∅.
Many of the texts on surreals provide proofs that addition satisfies all of the usual

requirements, e.g., associativity, commutativity and so on e.g., [1,3]. For instance, 0 is
the additive identity [1,3]

x+ 0 ≡ 0 + x ≡ x,

but this is a statement about values not forms: x+ 0 is not (in general) identical to x,
except for the canonical zero, i.e., x+ 0 == x. For instance, consider the following

5
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addition of 1/2 + 0 noting carefully the bars indicating which terms are canonical.

{0|1}+ {−1 | 1} == {0 + 0, 1/2 + (−1) | 1 + 0, 1/2 + 1}
== {0,−1/2 | 1, 3/2},

which is not identical to {0|1}.
Another instructive example is 2 + 2. In this case XR = YR = ∅ and so the right-

set of 2 + 2 will also be ∅, thus

2 + 2 == {1 + 2, 2 + 1 | ∅}
== {3 | ∅}
== 4.

The result is the canonical form of 4. Naively, we might expect that addition of canon-
ical forms would always lead to the same. However this is not true. We can play with
such hypotheses using the SurrealNumbers package1 in the programming language
Julia. For instance, the above calculation can be performed using the commands
1 julia> using SurrealNumbers
2 julia> x = dali(2) // set x to the canonical form of 2

3 julia> y = x + x // calculate 2 + 2

A more complicated example with a non-canonical result is

1 + 1/2 == {{{∅ | ∅} | {{∅ | ∅} | ∅}}, {{∅ | ∅} | ∅} | {{{∅ | ∅} | ∅} | ∅}}.

Figure 3 shows this, and two other forms with value 3/2. The figure makes it easy to
see that the latter two forms are non-canonical, and we see in (c) a different generation
as well.

That brings us to the nub of the problem – can we calculate the generation/birthday
of the sum purely from the generation of the inputs? Simons proves [6, p.25] that
g(x+ y) ≤ g(x) + g(y), but we present a small set of examples in Table 1, and in all
of these (and every other case tested) we find g(x+ y) = g(x) + g(y). The question
then is, can we prove that equality is always the case? The answer follows.

0 1/2 3/4 1 2 x

y g(y) 0 2 3 1 2 g(x)

0 0 0 2 3 1 2
1/2 2 2 4 5 3 4
3/4 3 3 5 6 4 5
1 1 1 3 4 2 3
2 2 2 4 5 3 4

Table 1. The birthday table g(x+ y), i.e., the birthdays of the sums of the x and y values in the columns and
rows. Note that they are additive, i.e., g(x+ y) = g(x) + g(y).

1The SurrealNumbers toolkit (v0.1.1) is released under the MIT license, and available at https://

github.com/mroughan/SurrealNumbers.jl
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(a) Canonical form 3/2.
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(b) The form of 1 + 1/2.
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(c) The form of 3/4 + 3/4.

Figure 3. Graphs depicting three forms for the surreal number 3/2. It is interesting that the form in (b) appears
as a subgraph of the form in (c). An open question concerns whether this is true in general: is the canonical
form always a subgraph of any alternative form of the same number?

Theorem 1 (Birthday addition theorem). For two surreal numbers x and y

g(x+ y) = g(x) + g(y),

where g(·) is the birthday/generation function.

Proof. Birthday addition is trivially true if x or y = 0. Presume that the theorem is
true for all combinations of the parents of summands x and y and the summands
themselves (excepting x+ y itself). Apply Definition (2) to addition and we get

g(x+ y) = sup
xp,yp

{
g(x+ yp) + 1, g(y + xp) + 1

}
.

Now, by the inductive hypothesis, birthday addition is true for all parents and their
combinations so the above reduces to

g(x+ y) = sup
xp,yp

{
g(x) + g(yp) + 1, g(y) + g(xp) + 1

}
= max

{
g(x) + sup

yp

{g(yp)}+ 1, g(y) + sup
xp

{g(xp)}+ 1
}

= max
{
g(x) + g(y), g(x) + g(y)

}
= g(x) + g(y).

Thus by induction the result.
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Negation and subtraction Negation and subtraction are defined together as

−x def
= {−XR | −XL} and x− y def

= x+ (−y).

Subtraction looks as simple as addition, but can complicate matters more than one
might think with respect to surreal forms because the number of empty sets in the
results change, and we end up with more complicated expressions. For instance 1− 1
is equivalent to 0 (this is the form that is illustrated in Figure 1(b)), but is not identical
to 0. Thus −x is the additive inverse of x in terms of equivalence, but not identity.

However, here we are interested in the birthday/generation of the output. We can
construct a very simple inductive proof that g(−x) = g(x), using the definition above.
Incidentally, this concludes the proof of Lemma 1.

From this, the definition of subtraction and Theorem 1 we immediately get the
following corollary.

Corollary 1 (Birthday subtraction corollary). For two surreal numbers x and y

g(x− y) = g(x) + g(y),

where g(·) is the birthday/generation function.

4. MULTIPLICATION If you thought addition and subtraction were complicated
then fasten your seat belts. Multiplication is defined by

xy
def
=
{
{XL y + xYL −XLYL} ∪ {XR y + xYR −XRYR}

∣∣∣
{XL y + xYR −XLYR} ∪ {XR y + xYL −XRYL}

}
. (3)

We need to be clear about exactly what each term in this definition means because
it does not follow the typical convention for expressions of this form. Consider the
term {XL y + xYL −XLYL}; this means create a set by taking all pairs xi ∈ XL and
yj ∈ YL and combining as follows:

{XL y + xYL −XLYL}
def
= {xiy + xyj − xiyj | ∀xi ∈ XL and yj ∈ YL},

where each of the products in the set above is another surreal multiplication and the
additions are surreal additions.

Another quick example is informative: let’s work quickly through 2× 2. Once again
XR = YR = ∅, and so only one term of the four in the multiplication is non-empty:

2× 2 == {1× 2 + 2× 1− 1× 1 | ∅}
== {2 + 2− 1 | ∅}
== {4− 1 | ∅}
≡ {3 | ∅},

where we exploit the fact that 1 is the multiplicative identity for surreal forms, and 0
is the multiplicative annihilator, i.e., 0x = 0 for all x, a fact seen by considering that

0x == {∅ y+ 0YL − ∅YL, ∅ y+ 0YR − ∅YR | ∅ y+ 0YL − ∅YL, ∅ y+ 0YR − ∅YR},

8
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Figure 4. Graph depicting the form of 2× 3. Inside this we frequently see subforms that might superficially
appear identical, e.g., 4 = {3 | 5} appears three times, but these are not identical forms, which is implicit
in their dependent DAG. Interestingly, the DAG also includes even some negative values, which might be
unexpected in a product of positive integers.

and noting that operations with ∅ result in ∅. The proof of the identity of 1 is very
similar though it requires an inductive step.

We also use a minor result we have not bothered to prove that addition of canonical
forms of non-negative integers results in canonical forms, however, subtraction does
not. The result of 2× 2 looks like the canonical form for 4, but we are taking liberties
by reducing ‘3’ to its short hand. This isn’t the canonical 3, and so the shorthand is
here misleading. In fact if we write this out in full we get (as in [11])

2× 2 == {{{{{{∅ | {∅ | ∅}} | {{∅ | ∅} | ∅}} | {{{∅ | ∅} | ∅} | ∅}} |
{{{{∅ | ∅} | ∅} | ∅} | ∅}} | {{{{{∅ | ∅} | ∅} | ∅} | ∅} | ∅}} | ∅}.

Gonshor proves a Weak Birthday Multiplication Theorem [12, Theorem 6.2], namely
that g(xy) ≤ 3g(x)+g(y). Simons [6] conjectures a much tighter bound that g(xy) ≤
g(x)g(y), and states that there are no obvious counter-examples. It was this hypothesis
that largely motivated this investigation.

The problem with Simons’ statement is that there are very few examples at all.
Multiplication is very complex to do in practice. As far as I am aware only a few
multiplications are explicitly tabulated! Several places show that simple multiplicative
identities hold, but few go any further. With the help of the SurrealNumbers package
we can calculate other products (they quickly become too complicated to do with pen
and paper). The result of 2 × 3 is shown in DAG form in Figure 4. From this we
can calculate g(2 × 3) = 12. Unfortunately this breaks Simons’ conjecture, which
suggests the bound should be 6. It also suggests that Gonshor’s bound is very weak.

Table 2 shows a table for the birthday/generation of products. The black numbers
are those that we have calculated (in multiple ways) using the Julia package. Note that
the only surreal forms with birthdays 0 and 1 are 0 and ±1 so the first two rows and
columns of this table are trivially true.

Patterns appear in the results, e.g., g(2×m) = m(m+ 1), but the general pattern
is not so trivial. For instance, the product g(3× 3) = 31 is prime, and so the resulting
birthdays are not even the product of a function the underlying birthdays!

The results below explain the pattern observed in the black values of the table, and
can be extrapolated to provide the gray values.

9
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m = g(y)

0 1 2 3 4 5 6

n = g(x)

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 = m

2 0 2 6 12 20 30 42 = m(m+ 1)

3 0 3 12 31 64 115 188
4 0 4 20 64 160 340 644
5 0 5 30 115 340 841 1826
6 0 6 42 188 644 1826 4494 f(n,m)

Table 2. The values of g(xy) in relation to n = g(x) and m = g(y). Roman values have been verified through
multiple instances of the products of (not just canonical) forms from the same generation. Italic are extrapolated
using Theorem 2. The right-hand column expresses the pattern, where known.

Lemma 2. If the generation of xy is given by a function f of the generations of x and
y, i.e., g(xy) = f

(
g(x), g(y)

)
, then the function will be symmetric, i.e., f(n,m) =

f(m,n), and strictly increasing.

Proof. The function must be symmetric by the commutativity of multiplication. Now
find the “maximal” parent of x, i.e., that is the parent x(max)

p that has the maximum
generation so that g(x) = g(x(max)

p ) + 1. If the generation of xy is given by a function
f
(
g(x), g(y)

)
then

g(xy) = f
(
g(x(max)

p ) + 1, g(y)
)
.

Also xy contains parents containing products of all pairs of parents of x and y, and so
g(xy) > g(xpy) for all xp ∈ XP . Choosing the maximal parent we get

f
(
g(x(max)

p ) + 1, g(y)
)
> f

(
g(x(max)

p ), g(y)
)
,

and as we can find examples x for any n = g(x), this must be true for all values of n,
and likewise m, and hence the function is increasing.

Theorem 2 (Birthday multiplication theorem). The generation of xy is given by a
function f(·, ·) of the generations of x and y, i.e., g(xy) = f

(
g(x), g(y)

)
, where the

function f(·, ·) satisfies the recurrence relation

f(n,m) =

 0, if m = 0,
0, if n = 0,
f(n,m− 1) + f(n− 1,m) + f(n− 1,m− 1) + 1, otherwise,

for n,m ∈ Z+.

Proof. The only number x with g(x) = 0 is 0 which is the multiplicative annihilator,
i.e., 0× x = 0 for all x, and hence the bounding case n = 0 and by symmetrym = 0.

For n,m > 0 we start from the definition of multiplication (3), which contains
terms xpy + xyp − xpyp for all pairs of parents (xp, yp), and hence

g(xy) = sup
(xp,yp)

g(xpy + xyp − xpyp) + 1

10
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= sup
(xp,yp)

[g(xpy) + g(xyp) + g(xpyp)] + 1,

by the Birthday Addition Theorem, and its Subtraction corollary.
Assume (for inductive purposes) that g(xpy) = f

(
g(xp), g(y)

)
, and similarly for

the other such terms, and so

f
(
g(x), g(y)

)
= sup

(xp,yp)

[
f
(
g(xp), g(y)

)
+ f

(
g(x), g(yp)

)
+ f

(
g(xp), g(yp)

)]
+ 1,

We can choose the respective parents xp and yp independently. By the previous theo-
rem the function f(n,m) must be increasing. Hence the above sum will be maximised
when we choose (xp, yp) such that g(xp) and g(yp) are both individually maximised.
In this case note the definition of g(x) in (2), and hence

f
(
g(x), g(y)

)
= sup

xp

f
(
g(xp), g(y)

)
+ sup

yp

f
(
g(x), g(yp)

)
+ sup

(xp,yp)

f
(
g(xp), g(yp)

)
+ 1,

= f
(
g(x)− 1, g(y)

)
+ f

(
g(x), g(y)− 1

)
+ f

(
g(x)− 1, g(y)− 1

)
+ 1,

where existence of the suprema is required by the construction of the surreals.

Functions defined by the recurrence relationship of Theorem 2 have been studied
by Fredman [13], and are summarised in [14]. Table 2 shows values that have been
derived empirically via multiplication of surreal forms, and (in grey) values that have
been derived from the recurrence. Unfortunately, as the depth of recursion is given
by the birthday, and multiplication is built from recursive application of multiple re-
cursive operations, combined across the two surreal forms, we have not been able to
pursue complicate surreal multiplications with resulting generations beyond around
100, though it is noteworthy that many of the empirical values in the table were first
extrapolated using the recursion, before being verified computationally.

Theorem 2 leads to a number of immediate corollaries regarding asymptotic growth
of surreals birthdays in particular cases.

Corollary 2. The birthday/generation of n2 takes values 0, 1, 6, 31, 160, 841, 4494, . . .,
which grow as

g
(
n2
)
∼ aλn/

√
n,

where λ = 3 + 2
√
2 ≈ 5.83 and a = 2−9/4

√
λ/π ≈ 0.29.

Proof. The values g
(
n2
)

are the main diagonal of f(n,m), which are given in [13,15].

Corollary 3. The birthday/generation of powers of 2 takes values 2, 6, 42, 18006, . . .,
which grow as bc(2n)c for c = 1.597910218031873178338070118157....

Proof. The generation of 2
n

is

g
(
2× 2

n−1
)
= f

(
2, g
(
2
n−1))

,

11
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where f(2, n) = n(n+ 1) from Theorem 2, and hence

g
(
2
n)

= g
(
2
n−1
)(

g
(
2
n−1)

+ 1
)
.

Now the sequence gn = gn−1(gn−1 + 1) is known [16], and follows gn = bc(2n)c.

The outstanding feature of both of these corollaries is the very high rate of growth.
The size and complexity of calculations involving these forms grows even faster than
the generation of the output due to the complicated set of recursive operations built on
top of each other, and hence the complexity of larger computations.

5. CONCLUSION This paper derived rules for birthday arithmetic (in particular,
addition, subtraction and multiplication) for surreal number forms.

The notable absentee from this list is division. Naively, division is the reciprocal
of multiplication, and so should be no harder, i.e., x/y = x× (1/y). But division is
in fact quite different. Only dyadic surreals have finite representations. Thus we can
represent 1/2, 15/16 and so on exactly with a finite form. However, non-dyadic real and
even simple rationals are not finite. Thus numbers even as simple as 1/3 do not have
a finite representation. So to apply the multiplication theorem to division, we need a
formula to calculate the birthday of a reciprocal. This remains to be found.

Acknowledgements I would like to thank David Roberts for helpful comments on
this manuscript.
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