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Faithful orthogonal representations of graphs from partition logics

Karl Svozil∗

Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/136, 1040 Vienna, Austria

(Dated: October 25, 2018)

The graphs induced by partition logics allow a dual probabilistic interpretation: a classical one for which

probabilities lie on the convex hull of the dispersion-free weights, and another one, suggested independently

from the quantum Born rule, in which probabilities are formed by the (absolute) square of the inner product

of state vectors with the faithful orthogonal representations of the respective graph. Two immediate conse-

quences are the demonstration that the logico-empirical structure of observables does not determine the type of

probabilities alone, and that complementarity does not imply contextuality.
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I. PARTITION LOGICS AS NONBOOLEAN STRUCTURES

PASTED FROM BOOLEAN SUBALGEBRAS

Partitions provide ways to distinguish between elements of

a given finite set Sn = {1,2, . . . ,n}. The Bell number Bn (after

Eric Temple Bell) is the number of such partitions [1]. (Obvi-

ous generalizations are infinite denumerable sets or continua.)

We shall restrict our attention to partitions with an equal num-

ber 1 ≤ m ≤ n of elements. Every partition can be identified

with some Boolean subalgebra 2m – in graph theoretical terms

a clique – of 2n whose atoms are the elements of that partition.

A partition logic [2–6] is the logic obtained (i) from col-

lections of such partitions, each partition being identified with

an m-atomic Boolean subalgebra of 2n, and (ii) by “stitching”

or pasting these subalgebras through identifying identical in-

tertwining elements. In quantum logic this is referred to as

pasting construction; and the partitions are identified with, or

are synonymously denoted by, blocks, subalgebras or cliques,

which are representable by orthonormal bases or maximal op-

erators.

Partitions represent classical mini-universes which satisfy

compatible orthogonality, or Specker’s exclusivity princi-

ple [7–14]: if any two observables corresponding to two el-

ements of a partition are co-measurable, the entire set of ob-

servables corresponding to all elements of that partition are

simultaneously measurable. (For Hilbert spaces this is a well-

known theorem; see, for instance, von Neumann [15, Satz 8,

p. 221] and [16, p. 173], or Halmos [17, § 84, Theorem 1,

p. 171].)

Unlike complete graphs Km representations of m-vertex

cliques in which every pair of distinct vertices is connected

by a unique edge in quantum logic it is quite common to con-

veniently depict cliques (aka contexts) as smooth curves; re-

ferred to as Greechie orthogonality diagram [18]. For exam-

ple, the two ad hoc partitions

{{1},{2},{3,4}} and {{1},{3},{2,4}} (1)

of S3 = {1,2,3,4} form two 3-atomic Boolean algebras 23

with one identical intertwining atom {1}, as depicted in de-

∗ svozil@tuwien.ac.at; http://tph.tuwien.ac.at/˜svozil

picted in Fig. 1(a). It is the logic L12 (because it has 12 ele-

ments). – is just two straight lines (representing the two con-

texts or cliques) interconnected at {1}. (Cf. Fig. 1 of Wright’s

“Bowtie Example 3.1” [19, pp. 884,885].)

Many partition logics, such as the pentagon logic, have

quantum doubles. One of the (necessary and sufficient) crite-

ria for quantum logics to be representable by a partition logic

is the separability of pairs of atoms of the logic by dispersion

free (aka two-valued, {0,1}-valued) weights/states [20, The-

orem 0, p. 67], interpretable as classical truth assignments.

Conversely, “sufficiently” many (more precisely, a sep-

arating set of) dispersion free states allows the explicitly

(re)construction of a partition logic [6, 21]. For instance,

the five cyclically intertwined contexts/cliques forming a pen-

tagon/pentagram logic [22, p. 267, Fig. 2] support 11 disper-

sion free states v1, . . . ,v11. By constructing 5 contexts/cliques

from the occurrences of the dispersion free value 1 on the re-

spective 10 atoms results in the partition logic based on the set

of indices of the dispersion free states S11 = {1, . . . ,11}, as

depicted in Fig. 1(b)

{{{1,2,3},{4,5,7,9,11},{6,8,10}},
{{6,8,10},{1,2,4,7,11},{3,5,9}},
{{3,5,9},{1,4,6,10,11},{2,7,8}},
{{2,7,8},{1,3,9,10,11},{4,5,6}},
{{4,5,6},{7,8,9,10,11},{1,2,3}}}.

(2)

According to this construction, the earlier logic

L12 would have a partition logic representation

{{{2,3},{4,5},{1}},{{1},{3,5},{2,4}}} based on

S5 = {1, . . . ,5}, corresponding to its 5 dispersion free

states.

II. PROBABILITIES ON PARTITION LOGICS

The following hypothesis or principle is taken for granted:

probabilities and expectations on classical substructures of

an empirical logic should be classical. That is, mutually

exclusive co-measurable propositions (satisfying Specker’s

exclusivity principle) should obey the Kolmogorovian ax-

ioms; in particular, nonnegativity and additivity. Non-

negativity implies that all probabilities are nonnegative:

http://arxiv.org/abs/1810.10423v1
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{3,4}

{2}

{1}

{3}

{2,4}

{1,2,3}
{7,8,9,10,11}

{4,5,6}

{1,3,9,10,11}

{2,7,8}
{1,4,6,10,11}

{3,5,9}

{1,2,4,7,11}

{6,8,10}

{4,5,7,9,11}

(a) (b)

FIG. 1. Greechie orthogonality diagrams of (a) the L12 logic and

(b) the pentagon (pentagram) logic, with two of their associated

(quasi)classical partition logic representations.

P(E1), . . . ,P(Ek) ≥ 0. Additivity among (pairwise) mutu-

ally exclusive outcomes E1, . . . ,Ek means that the probabil-

ities of joint outcomes are equal to the sum of probabilities

of these outcomes; that is, within cliques/contexts, for k ≤ m:

P(E1∨·· ·∨Ek)=P(E1)+ · · ·+P(Ek)≤ 1. In particular, prob-

abilities add to 1 on each of the cliques/contexts.

At the moment at least three such types of probabilities are

known to satisfy Specker’s exclusivity principle, correspond-

ing to classical, quantum and Wright’s “exotic”pure weights,

such as the weight 1
2

on the vertices of the pentagon [22, ω0,

p. 68] and on the triangle vertices [19, pp. 899-902] (the lat-

ter logic is representable as partition logic [4, Example 8.2,

pp. 420,421], but not in 3-dimensional Hilbert space). The

former two “nonexotic” types, based on representations of

mutually disjoint sets, and on mutually orthogonal vectors,

will be discussed later.

It is not too difficult to imagine boxes allowing input/output

analysis “containing” classical or quantum algorithms, agents

or mechanisms rendering the desired properties. For instance,

a model realization of a classical box rendering classical prob-

abilities is Wright’s generalized urn model [19, 22–24] or the

initial state identification problem for finite deterministic au-

tomaton [2, 5, 25, 26] – both are equivalent models of partition

logics [6] featuring complementarity without value indefinite-

ness.

Specker’s parable of the overprotective seer [7, 27–29] in-

volving three boxes is an example for which the exclusivity

principle does not hold [30, Section 116, p. 40]. It is an in-

teresting problem to find other potential probability measures

based on different approaches which are also linear in mutu-

ally exclusive events.

A. Probabilities from the convex hull of dispersion-free states

For nonboolean logics, it is not immediately evident which

probability measures should be chosen. The answer is already

implicit in Zierler and Schlessinger’s 1965 paper on “Boolean

embeddings of orthomodular sets and quantum logic”. The-

orem 0 of Kochen and Specker’s 1967 paper [20] states that

separability by dispersion free states (of image 21 = 0,1) for

every pair of atoms of the lattice is a necessary and sufficient

criterium for a homomorphic embedding into some “larger”

Boolean algebra. In 1978 Wright explicitly stated [22, p. 272]

“that every urn weight is “classical”, i.e., in the convex hull

of the dispersion free weights”. In the graph theoretical con-

text Grötschel, Lovász and Schrijver have discussed the vertex

packing polytope V P(G) of a graph G, defined as the convex

hull of incidence vectors of independent sets of nodes [31].

This author has employed dispersion free weights for hull

computations on the Specker bug [32] and other (partition)

logics supporting a separating set of two-value states.

Hull computations based on the pentagon (modulo pen-

tagon/pentagram graph isomorphisms) can be found in

Refs. [33–36] (for a survey see [37, Section 12.9.8.3]). The

Bub and Stairs inequality [34, Equation (10), p. 697] can be

directly read off from the partition logic (2), as depicted in

Fig. 1(b), which in turm are the cumulated indices of the

nonzero dispersion free weights on the atoms: the sum of

the convex hull of the dispersion free weights on the 5 inter-

twining atoms (the “vertices” of the pentagon diagram) repre-

sented by the subsets {1,2,3}, {6,8,10}, {3,5,9}, {2,7,8},

{4,5,6} of S11 are

(λ1 +λ2 +λ3)+ (λ6 +λ8 +λ10)+ (λ3+λ5 +λ9)+

+(λ2 +λ7 +λ8)+ (λ4 +λ5 +λ6)≤ 2
11

∑
i=1

λi = 2.
(3)

B. Born-Gleason-Grötschel-Lovász-Schrijver type

probabilities

Motivated by cryptographic issues outside quantum theory

Lovász [38] has proposed an “indexing” of vertices of a graph

by vectors reflecting their adjacency: the graph-theoretic def-

inition of a faithful orthogonal representation of a graph is by

identifying vertices with vectors (of some Hilbert space of di-

mension d) such that any pair of vectors are orthogonal if and

only if their vertices are not orthogonal [39, 40]. For physical

applications, Cabello[41], Portillo [42] and others have uses

an “inverse” notation, in which vectors are required to be mu-

tually orthogonal whenever they are adjacent. Both notations

are equivalent by exchanging graphs with their complements

or inverses.

There is no systematic algorithm to compute the minimal

dimension for a faithful orthogonal representation of a graph.

Lovász [13, 38] gave a (relative to entropy measures [43]) “op-

timal” vector representation of the pentagon graph depicted in

Figure 1(b) in three dimensions [L12 depicted in Figure 1(a) is

a sublogic thereof]: modulo pentagon/pentagram graph iso-

morphisms which, in two-line notation is

(

1 2 3 4 5

1 4 2 5 3

)

,

and in cycle notation is (1)(2453), its set of five intertwining

vertices {v1, . . . ,v5} = {u1,u3,u5,u2,u4} are represented by

the 3-dimensional unit vectors (the five vectors corresponding

to the “inner” vertices/atoms can be found by a Gram-Schmidt

process)

|ul〉= 5−
1
4

(

1,
[

5
1
2 − 1

]
1
2

cos 2π l
5
,

[

5
1
2 − 1

]
1
2

sin 2π l
5

)

, (4)
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which, by preparing the “(umbrella) handle” state vector
(

1,0,0
)

, turns out to render the maximal [34, 36] quan-

tum bound ∑5
j=1〈c|ul〉2 =

√
5, which exceeds the “classical”

bound (3) of 2 from the computation of the convex hull of the

dispersion free weights.

Based on Lovász’s vector representation by graphs

Grötschel, Lovász and Schrijver have proposed [31, Section 3]

a Gleason-Born type probability measure [44] which results in

convex sets different from polyhedra defined via convex hulls

of vectors discussed earlier in Section II A. Essentially their

probability measure is based upon m-dimensional faithful or-

thogonal representations of a graph G whose vertices vi are

represented by unit vectors |vi〉 which are orthogonal within,

and nonorthogonal outside, of cliques/contexts. Every vertex

vi of the graph G, represented by the unit vector |vi〉, can then

be associated with a “probability” with respect to some unit

“preparation” (state) vector |c〉 by defining this “probability”

to be the square of the inner product of |vi〉 and |c〉; that is, by

P(c,vi) = 〈c|vi〉2. Iff the vector representation (in the sense

of Cabello-Portillo) of G is faithful the Pythagorean theorem

assures that, within every clique/context of G, probabilities

are positive, additive, and (as both |vi〉 and |c〉 are normal-

ized) the sum of probabilities on that context adds up to ex-

actly one; that is, ∑i∈clique/context P(c,vi) = 1. Thereby, proba-

bilities and expectations of simultaneously comeasurable ob-

servables, represented by graph vertices within cliques or con-

texts, obey Specker’s exclusivity principle and “behave clas-

sically”. It might be challenging to motivate “quantum type”

probabilities and their convex expansion, the theta body [31],

by the very assumptions such as exclusivity [14, 44].

A very similar measure on the closed subspaces of Hilbert

space, satisfying Specker’s exclusivity principle and additiv-

ity, had been proposed by Gleason [45, first and second para-

graphs, p. 885]: “A measure on the closed subspaces means a

function µ which assigns to every closed subspace a nonneg-

ative real number such that if {Ai} is a countable collection

of mutually orthogonal subspaces having closed linear span

B, then µ(B) = ∑i µ(Ai). It is easy to see that such a mea-

sure can be obtained by selecting a vector v and, for each

closed subspace A, taking µ(A) as the square of the norm of

the projection of v on A.” Gleason’s derivation of the quan-

tum mechanical Born rule [46, Footnote 1, Anmerkung bei

der Korrektur, p. 865] operates in dimensions higher than two,

and allows also mixed states; that is, outcomes of nonideal

measurements. However, mixed states can always be “com-

pleted” or “purified” [47, Section 2.5,pp. 109-111] (and thus

outcomes of nonideal measurements made ideal [44]) by the

inclusion of auxiliary dimensions.

III. QUASICLASSICAL ANALOGUES OF

ENTANGLEMENT

In what follows classical analogs to entangled states will

be discussed. These examples are local. They are based

on Schrödinger’s observation that entanglement among pairs

of particles is associated with, or at least accompanied by,

joint or relational [48] properties of the constituents, whereas

nonentangled states feature individual separate properties of

the pair constituents [49–51]. (For early similar discussions in

the measurement context, see von Neumann [16, Section VI.2,

p 426, pp 436-437] and London and Bauer [52, 53].)

A. Partitioning of state space

Wrights generalized urn model [19, 22], in a nutshell, is the

observation of black balls, on which multiple colored sym-

bols are painted, with monochromatic filters in only one of

those colors. Complementarity manifests itself in the neces-

sity of choice of the particular color one observes: one may

thereby obtain knowledge of the information encoded in this

color; but thereby invariable loses messages encoded in differ-

ent colors. A typical example is the logic L12 encoded by the

partition logic enumerated in (1) and depicted in Figure 1(a):

suppose that there are 4 ball types and two colors on black

backgrounds:

• ball type 1 is colored with orange a and blue a;

• ball type 2 is colored with orange b and blue c;

• ball type 3 is colored with orange c and blue b;

• ball type 4 is colored with orange c and blue c.

Suppose an urn is loaded with balls of all four types. Sup-

pose further that an agent’s task is to draw one ball from the

urn and, by observing this ball, to find which type it is. Of

course, if the observer is allowed to look at both colors simul-

taneously, this would allow to single out exactly one ball type.

But that maximal resolution can no longer be maintained in

experiments restricted to one of the two colors. Any one of

such two experiment varieties could resolve different, com-

plementary properties: looking at the drawn ball with orange

glasses the agent is able to resolve between balls (i) of type 1

associated with the symbol a; (ii) of type 2 associated with the

symbol b; and (ii) of type 3 or 4 associated with the symbol

c. The resolution between type 3 and 4 balls is lost. Alterna-

tively, by looking at the drawn ball with blue glasses the agent

is able to resolve between balls (i) of type 1 associated with

the symbol a; (ii) of type 3 associated with the symbol b; and

(ii) of type 2 or 4 associated with the symbol c. That is, for

the color blue the resolution between type 2 and 4 balls is lost.

In any case, the state of ball type is partitioned in different

ways, depending on the color of the filter. (Similar consider-

ations apply for initial state identification problems on finite

automata.)

B. Relational encoding

Tables I and II enumerate a relational encodings among

two or more colors not dissimilar to Peres’ detonating bomb

model [54]. Suppose that an urn is loaded with balls of the

type occurring in subensemble E6 of Table I. The observation

of some symbol s ∈ {0,1} in green implies the (counterfac-

tual) observation of the same symbol s in red, and vice versa.
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sample ball type 1 ball type 2 ball type 3 ball type 4

E1 00 01

E2 10 11

E3 00 10

E4 01 11

E5 00 11

E6 01 10

TABLE I. Six subensembles E1–E6 of the set {00,01,10,11} with

the following properties: E1 = {00,01} encodes the first digit be-

ing 0; E2 = {10,11} encodes the first digit being 1; E3 = {00,10}
encodes the second digit being 0; E4 = {01,11} encodes the second

digit being 1; E5 = {00,11} encodes the first and the second digit be-

ing equal; E6 = {01,10} encodes the first and the second digit being

different.

sample ball type 1 ball type 2 ball type 3 ball type 4

(E5)
2 0000 0011 1100 1111

(E6)
2 0101 0110 1001 1010

TABLE II. The subensembles (E5)
2 and (E6)

2 of the set {0000,

0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010,

1011, 1100, 1101, 1110, 1111} with the following properties: E5 =
{0000,0011,1100,1111} encodes the first and the second pair, as

well as the third and the fourth pair of digits being equal; E6 =
{0101,0110,1001,1010} encodes the first and the second pair, as

well as the third and the fourth pair of digits being different.

Table II is just an extension to two colors per observer, and an

urn loaded with subensembles (E6)
2 Agent Alice draws a ball

from the urn and looks at it with her red (exclusive) or blue fil-

ters. Then Alice hands the ball over to Bob. Agent Bob looks

at the ball with his green (exclusive) or orange filters. This lat-

ter scenario is similar to a Clauser-Horne-Shimony-Holt sce-

nario of the Einstein-Podolsky-Rosen type, except that the for-

mer is totally local and its probabilities derived from the con-

vex hull of the dispersion-free weights can never violate clas-

sical bounds; whereas the latter one may be (and hopefully is)

nonlocal, and its performance with a quantum resource vio-

lates the classical bounds.

IV. PARTITION LOGIC FREAK SHOW

Let us, for a moment, consider partition logics not restraint

by low-dimensional faithful orthogonal representability, but

with a separable set of two-valued states [with the exception

of the logic depicted in Figure 2(f)]. These have no quantum

realization. Yet, due to the automaton logic, they are intrinsi-

cally realized in Turing universal environments.

An example of such a structure is Wright’s triangle

logic [19, Figure 2, p. 900] depicted in Figure 2(a) (see also [4,

Fig. 6, Example 8.2, pp. 414,420,421]). As mentioned ear-

lier, together with 4 dispersion free weights it allows another

weight 1
2

on its intertwining vertices. Figures 2(b&c) depict a

square logic, the latter one being formed by a pasting of two

triangle logics along a common leg. Figures 2(d&e) depict

{1}

{2,4}

{3} {1,4} {2}

{3,4}

{1,3}{4,5,7}{2,6}

{3,4,7}

{1,5} {3,6,7} {2,4}

{5,6,7}

(a) (b)

{1,2}{3,4,5}{6}

{1,3,5}

{2,4} {1,3,6} {5}

{3,4,6}m

{1,2}
{3,5,6,8,10}

{4,7,9}
{2,3,6,8}

{1,5,10} {3,4,8,9} {2,6,7}

{1,3,4,5}
{8,9,10}

{3,4,5,6,7}

m

(c) (d)

{1,2}
{3,4,5,7}

{6}
{2,3,5}

{1,4,7} {3} {2,5,6}

{1,3,4}
{7}

{3,4,5,6}

m3

m2

m1

{1}
{2,4}

{3,5}
{2,4}

{1} {4,5} {2,3}

{1}
{4,5}

{2,3}

m

(e) (f)

FIG. 2. Greechie orthogonality diagram of partition logic re-

alizations of (a) Wright’s triangle logic with a partition logic re-

alization [4, 19]); (b) a square logic from the cyclic pasting of

four three-atomic edges/cliques/contexts K3; (c) a combo of triangle

logics pasted along a common edge with a partition logic realiza-

tion [4, Example 8.3, pp. 421,422], with m = {1,2,3,4}; (d) pen-

tagon logic with inner edge, with a partition logic realization, and

m = {5,6,7,10}; (e) pentagon logic with three inner edges, with a

partition logic realization, and m1 = {1,2,4,5,7}, m2 = {4,5,6,7},

m3 = {1,2,4,5,6}; (e) pentagon logic with two inner edges and

m = {2,3}, without a partition logic realization since the vertex rep-

resentation generated from the 5 dispersion free weights is highly

degenerate and nonseparating.

pentagon logic with one and three inner cliques/contexts; the

latter one realizing a true-implies-four-times-true configura-

tion for {3}. Figure 2(f) has no partition logic representation,

as its 5 dispersion free weights cannot separate three atoms

realized by {1} and {2,3}, as well as two atoms realized by

{2,4} and {4,5}, respectively.

V. IDENTICAL GRAPHS REALIZABLE BY DIFFERENT

PHYSICAL RESOURCES REQUIRE DIFFERENT

PROBABILITY TYPES

It is important to emphasize that both scenarios – the

classical generalized urn scenario as well as the quantized

one – from a graph-theoretical point of view, operate with

identical (exclusivity) graphs (e.g., Figures 1 in both Refer-

ences [10, 14]). The difference is the representation of these
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graphs: the quantum case has a faithful orthogonal represen-

tation in some finite-dimensional Hilbert space, whereas the

classical case in terms of a generalized urn model has a set-

theoretic representation in terms of partitions of some finite

set.

Generalized urn models and automaton logics are models

of partition logics which are capable of complementarity yet

fail to render (quantum) value indefiniteness. They are im-

portant for an understanding of the “twilight zone” spanned

by nonclassicality (nondistributivity, nonboolean logics) and

yet full value definiteness – one may call this a “purgatory” –

floating in-between classical Boolean and quantum realms.

It should be stressed that the algebraic structure of empiri-

cal logics, or graphs, do in general not determine the types of

probability measures on them. For instance, a generalized urn

loaded with balls rendering the pentagon structure, as envi-

sioned by Wright, has probabilities different from the scheme

of Grötschel, Lovász and Schrijver, which is based on orthog-

onal representations of the pentagon. Likewise, a geometric

resource such as a “vector contained in a box” and “measured

along projections onto an orthonormal basis” will not conform

to probabilities induced by the convex hull of the dispersion-

free weights – even if these weights are separating. Therefore

the particular physical resource – what is actually inside the

black box – determines which type of probability theory is

applicable.

Furthermore, partition logics which are not just a single

Boolean algebra represent empirical configurations featuring

complementarity. And yet they all have separating [20, Theo-

rem 0] sets of two-valued states and thus are not “contextual”

in the Specker sense [7].
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