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INTERPOLATING CLASSICAL PARTITIONS OF THE SET OF

POSITIVE INTEGERS

WEIRU CHEN AND JARED KRANDEL

Abstract. We construct an easily described family of partitions of the positive integers
into n disjoint sets with essentially the same structure for every n ≥ 2. In a special case, it
interpolates between the Beatty 1

φ
+ 1

φ2 = 1 partitioning (n = 2) and the 2-adic partitioning

in the limit as n → ∞. We then analyze how membership of elements in the sets of one par-
tition relates to membership in the sets of another. We investigate in detail the interactions
of two Beatty partitions with one another and the interactions of the φ Beatty partition
mentioned above with its “extension” to three sets given by the construction detailed in the
first part. In the first case, we obtain detailed results whereas the second case we place some
restrictions on the interaction but cannot obtain exhaustive results.
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2 WEIRU CHEN AND JARED KRANDEL

1. Introduction

Beatty’s 1
x + 1

y = 1 theorem [1] provides uncountably many partitionings of the set of

positive integers. Among these are partitionings that encode winning strategies for variations
of Wythoff’s game [10]. Particularly relevant is the partition given by

1

φ
+

1

φ2
= 1

with the members of the two distinct sequences

a(k) = ⌊kφ⌋ and b(k) = ⌊kφ2⌋

giving the two sets of the partition. Another significant partition, this time into infinitely
many sets, is the 2-adic partition. Here, the sets are 2e · M for e = 0, 1, 2, . . . , where M is
the set of all positive odd integers. This partitioning is, for example, the key to showing that
the partial sums of the harmonic series are (with the trivial exception) never integral. See
[p. 32, problem 36] of [8].

We construct an easily described family of partitions of the positive integers into n disjoint
sets with essentially the same structure for every n ≥ 2. In a special case, it interpolates
between the Beatty golden ratio partitioning (n = 2) and the 2-adic partitioning in the limit
as n → ∞.

Next, we study how specific examples of partitions in the constructed family relate to one
another. If we define A = {⌊kφ⌋}∞k=1 and B = {⌊kφ2⌋}∞k=1, then the positive integers can be
described as A ∪ B or D1 ∪D2 ∪D3 where the former is an n = 2 partition and the latter
is an n = 3 partition to be described (see Section 2.4) which “extends” the A,B partition
to 3 sets. In order to carry out this analysis, we write Dj as a sequence {d1j , d2j , d3j , . . .}
with dij < d(i+1)j , 1 ≤ j ≤ 3. Then the n = 3 partitioning corresponds to the 3 infinite
columns of an ∞×3 matrix shown in Table 1. We now take the transposed point of view and

D3 D2 D1

1 2 4

3 6 11

5 9 15

7 13 22

8 17 29

10 20 33
...

...
...

Table 1. An enumeration of the first few values of D1,D2, and D3

examine the rows of this matrix. They form an infinite collection of 3-vectors (dk1, dk2, dk3).
Each such 3-vector has, a priori, 23 = 8 possible classifications depending on the A or B
membership of its individual components. For example, (d11, d12, d13) = (1, 2, 4) ∈ A×B×A
while (d21, d22, d23) = (3, 6, 11) ∈ A × A × A; these are two of the 8 distinct possibilities.
We perform a detailed technical analysis to determine which of these cases occur. The result
seems non-obvious: exactly 6 of the 8 cases can occur. This leads to a natural question that
we have been unable to resolve: With what frequencies do each of these 6 cases occur?
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We preface the above investigation by a similar but more tractable problem. Consider the
Beatty partitioning associated to

1

φ3
+

1

φ2/2
= 1,

and let C and D be the two sets in this partition. One can ask how each of C and D
splits into A and B elements and vice versa. In this case, we derive a summary of fractional
parts identities which gives fairly complete information about the problem. We then extend
this to a more generalized case involving the Fibonacci numbers that can be used to further
investigate such classification problems. This Beatty partitioning case is of special interest,
as the Beatty sequence ⌊nφ3⌋ plays a role (“Long’s conjecture”) in the theory of additive
partitions, a type of partitioning that is not of Beatty type, but is closely related to Beatty-
type partitions. Specifically, it is of interest with respect to the unique partitioning of the
positive integers into disjoint sets A∗ and B∗ such that sums of distinct elements of A∗, and
also of B∗, never equal a Fibonacci number. See [2] for the proof of Long’s conjecture and
[3] for further background information.

Two main tools for our investigations are the KLM formula (see [5][p. 256] for a proof) and
Theorem 3.2, a proof of which is available in [9]. For general information on Beatty sequences
and especially explanations as to why the naive generalization of Beatty’s theorem to sums of
3 or more irrational reciprocals is false (Uspensky’s theorem) see [4], [7], and [12]. Interesting
ways of partitioning the set of all real numbers into n disjoint subsets are described in [6].

2. n-Set Partition Theorem

2.1. Statement of Theorem and Examples.

Definition 2.1. Let ri, i = 1, 2, 3, . . . , be real numbers and S a set of real numbers. Define

S ± r1 = {s+ r1 : s ∈ S} ∪ {s− r1 : s ∈ S},
S ± r1 ± r2 = (S ± r1)± r2,

and S ± r1 ± . . .± rm = (S ± r1 ± . . .± rm−1)± rm.

Theorem 2.2. Let n ≥ 2 and define

G = {2n−1, 2n−1 + 2n−2, . . . ,

n
∑

i=1

2n−i}.

Let l be a non-decreasing integer-valued sequence such that l(1) = 2n−1 and l(k+1)− l(k) ∈ G
for all k. If we set D1 = {l(k)}∞k=1, then the sets

D1,D2 = D1 ± 2n−2,D3 = D1 ± 2n−2 ± 2n−3, . . . ,Dn = D1 ± 2n−2 ± 2n−3 ± . . .± 2± 1

are a partition of the set of all positive integers into n disjoint sets.

Corollary 2.3. Let h(k) be a non-decreasing integer-valued sequence with h(1) = 1 and
1 ≤ h(k + 1) − h(k) ≤ 2. Put l(k) = t(k) = (2n−1 − 1)h(k) + k for n ≥ 2.Then the sets
D1,D2, . . . ,Dn defined in Theorem 2.2 with D1 = {t(k)}∞k=1 partition the positive integers.

Proof. We need to check that t(1) = 2n−1 and t(k + 1) − t(k) takes on values in G. The
former is clear from the definition of t. To prove the latter, consider the two cases where
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h(k + 1)− h(k) = 1 and where h(k + 1)− h(k) = 2. In the former case, we have

t(k + 1)− t(k) = (2n−1 − 1)(h(k + 1)− h(k)) + 1

= (2n−1 − 1) + 1 = 2n−1

which is the first number in G. In the second case, the same calculation gives

t(k + 1)− t(k) = (2n−1 − 1)2 − 1

= 2n − 1 =

n
∑

i=1

2n−i

which is the final number in G. �

Example 2.4. Let t(k) be as in Corollary 2.3 and set h(k) = k and n = 2. This simply gives
the partitioning of the positive integers into even and odd numbers. For n = 3 it gives

D1 = {4k + 4},
D2 = {4k + 2},
D3 = {2k + 1},

where k = 0, 1, 2, . . .

Remark 2.5. Our partitioning into n sets is of interest in part because of Uspensky’s The-
orem , which states that the sequences {⌊kx1⌋}, {⌊kx2⌋}, . . . , {⌊kxn⌋} where x1, x2, . . . xn are
irrational numbers satisfying

1

x1
+

1

x2
+ . . .+

1

xn
= 1

give a partitioning of the positive integers only when n = 2.

Corollary 2.6. Let 1 ≤ α < 2 and let n ∈ N with n ≥ 2. Put t(k) = (2n−1 − 1)⌊kα⌋ + k for
k ∈ N. Then the sets D1,D2, . . . Dn as defined in Theorem 2.2 with D1 = {t(k)}∞k=1 partition
the positive integers.

Proof. Clearly t(1) = 2n−1. Since

⌊(k + 1)α⌋ − ⌊kα⌋ = (k + 1)α − {(k + 1)α} − (kα− {kα})
= α+ {kα} − {(k + 1)α}
< 2 + β

where β < 1, so the difference is strictly less than 3. Since the difference is an integer, it
must be at most 2, and the result follows from Corollary 2.3. �

Example 2.7. Let h(k) = ⌊kφ⌋, where φ is the golden ratio, and n = 2. Then D1 =
{⌊(21 − 1)⌊kφ⌋ + k} = {⌊k(φ + 1)⌋}∞k=1 = {⌊kφ2⌋}∞k=1 because φ2 = φ + 1. This implies

D2 = {⌊kφ⌋}∞k=1, so D1 and D2 form the 1
φ + 1

φ2 Beatty partition.

Example 2.8. Let h(k) = ⌊kφ⌋ and n = 3. Then we have a possibly new partitioning given
by

D1 = {3a(k) + k} = {4, 11, 15, 22, 29, 33, . . .}
D2 = {a(k) + 2k − 1} = {2, 6, 9, 13, 17, 20, 24, 27, . . .}
D3 = {N/(D1 ∪D2)} = {1, 3, 5, 7, 8, 10, 12, 14, 16, . . .}
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The set D2 does occur in OEIS as sequence A054770. It is of interest in connection with
properties of Lucas numbers. This is the aforementioned n = 3 case “extension” of the A,B
partition to be studied in later sections.

Example 2.9. Let h(k) = ⌊k
√
2⌋ and n = 2. This gives

D1 = {2, 4, 7, 9, 12, . . .},
D2 = {1, 3, 5, 6, 8, 10, 11, . . .}.

Unlike in the golden ratio case, this is not the Beatty 1√
2
+ 1

2+
√
2
= 1 partition which consists

of the sets

S1 = {3, 6, 10, 13, 17, . . .},
S2 = {1, 2, 4, 5, 7, 8, 9, 11, . . .}.

2.2. Proof of Theorem 2.2. The proof will be split into two parts. First, we show that
the sets D1,D2, . . . ,Dn contain every positive integer. Second, we show that these sets are
pairwise disjoint, i.e., Di ∩Dj = ∅, i 6= j. We begin by developing a series of lemmas from
which the first part of the proof will follow easily.

Lemma 2.10. Suppose that ai, bi, c, n,N, and m are integers with n ≥ c ≥ 0, N ≥ n +
m, and m ≥ 1. If the bi are odd, then

n
∑

i=c

ai · 2N−i 6=
n+m
∑

i=c

bi · 2N−i.

Proof. Suppose equality holds. Then
n
∑

i=c

ai · 2n+m−i =

n+m
∑

i=c

bi · 2n+m−i,

and all terms in these sums are integers. Since m ≥ 1, all terms on the left side of the
equation are even. On the other hand, all terms on the right side of the equation are even
except for the last term which equals bn+m and is odd. This is a contradiction. �

Definition 2.11. Let t be an integer and let the (n− 1)-vector E be defined by

E = En−1 = {ǫ0, ǫ1, . . . , ǫn−2}
where we make the restriction ǫj ∈ {−1, 1} for the remainder of the paper. Define n inhomo-
geneous linear forms L0 = L0(t, E), . . . , Ln−1 = Ln−1(t, E) in the variables {t; ǫ0, ǫ1, . . . , ǫn−2}
by

L0(t, E) = t,

L1(t, E) = t+ ǫn−2 · 2n−2,

L2(t, E) = t+ ǫn−2 · 2n−2 + ǫn−3 · 2n−3,

...

Lj(t, E) = t+ ǫn−2 · 2n−2 + . . . + ǫn−j−1 · 2n−j−1,

...

Ln−1(t, E) = t+ ǫn−2 · 2n−2 + . . . + ǫ1 · 2 + ǫ0.
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Thus, for j ≥ 1,

Lj(t, E) = t+

j+1
∑

s=2

ǫn−s · 2n−s.

Lemma 2.12. Fix t ∈ N. As E varies over all of its 2n−1 possible values, the above collection
of linear forms {L0, L1, . . . , Ln−1} takes on each value in the closed interval of integers

I(t) = [t− (2n−1 − 1), t+ (2n−1 − 1)]

and no other values. Moreover, each integer in I(t) is the value of exactly one of the linear
forms as E varies over all 2n−1 possible values.

Proof. The linear forms {L0, L1, . . . , Ln−1} assume respectively

1, 2, 22, . . . , 2n−1

possible values, hence
∑n−1

i=0 2i = 2n − 1 possible values in all. Let i, j be distinct integers
between 0 and n − 1. By Lemma 2.10, we have that Li(t, E1) 6= Lj(t, E2) for any E1, E2.
In addition, we claim that for any j, Lj(t, E1) 6= Lj(t, E2). That is, for fixed t, no two
values taken on by Lj(t) as it varies over E are the same. For proof, suppose two such
values are equal. Then there exist a collection {ǫ0, ǫ1, . . . , ǫn−j−1} and a distinct collection
{δ0, δ1, . . . , δn−j−1} each taking values in {−1, 1} such that

t+

j+1
∑

s=2

ǫn−s · 2n−s = t+

j+1
∑

s=2

δn−s · 2n−s.

Thus
j+1
∑

s=2

(ǫn−s − δn−s) · 2n−s = 0.

Since ǫn−s − δn−s must be -2, 0, or 2, we can divide the equation by 2n−j to get

j+1
∑

s=2

(ǫn−s − δn−s)

2
· 2j+1−s = 0.

If ǫn−j−1 − δn−j−1 6= 0, then all the terms of the equation are even except for the last term,
which equals 1 or -1 and is odd. This is a contradiction. So ǫn−j−1− δn−j−1 must be 0. Now
we have

j
∑

s=2

(ǫn−s − δn−s) · 2n−s = 0.

Repeating this process, we obtain ǫn−s−δn−s = 0 for all s ∈ {2, 3, . . . , j+1}. So the collections
{ǫ0, ǫ1, . . . , ǫn−j−1} and {δ0, δ1, . . . , δn−j−1} are exactly the same. Therefore, for fixed t ∈ N,
the form Lj(t) is injective for any j ∈ N. Hence the linear forms {L0, L1, . . . , Ln−1} assume
all possible

(2n−1 − 1) + 1 + (2n−1 − 1) = 2n − 1

values between their minimum and maximum values. These values are

t±
n−2
∑

i=0

2i = t± (2n−1 − 1),

and the result follows. �
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Remark 2.13. We shall next allow t to vary. But it will be useful to bear in mind that if at
any point we fix t, distinct forms will take on distinct values.

Lemma 2.14. Let l be a sequence satisfying the hypotheses of Theorem 2.2 and set

I(l(k)) = [l(k)− (2n−1 − 1), l(k) + (2n−1 − 1)].

Then
∞
⋃

k=1

I(l(k)) is the set of all positive integers.

Proof. By the hypotheses of Theorem 2.2, l(k) → ∞ as k → ∞, and l(1) − (2n−1 − 1) = 1.
Thus, we need to show that for k ≥ 2, any given interval I(l(k)) either overlaps with I(l(k−1))
or begins at the first integer outside I(l(k − 1)). This condition will be satisfied if

l(k + 1)− (2n−1 − 1) ≤ l(k) + (2n−1 − 1) + 1.

Rearranging this inequality gives

l(k + 1)− l(k) ≤ 2n − 1.

Since

max G =

n
∑

i=1

2n−i = 2n − 1,

this inequality is satisfied for all k. �

Corollary 2.15. Let t be as in Corollary 2.3 and set h(k) = ⌊kα⌋ where 1 ≤ α < 2. Then
∞
⋃

k=1

I(t(k)) is the set of all positive integers.

Proposition 2.16. Let the sequence l and the sets Dj, 1 ≤ j ≤ n, be as in Theorem 2.2 with

D1 = {l(k)}∞k=1. Then
n
⋃

j=1
Dj is the set of all positive integers.

Proof. First, fix k ∈ N and let the set of all values of the form Lj−1(l(k), E) as E varies varies
over all possible choices for ǫ0, ǫ1, . . . , ǫn−2 be denoted by

⋃

E

{Lj−1(l(k), E)}.

Each Dj is defined such that it is the set of all values taken on by Lj−1(l(k), E) as k varies
over all positive integers and E varies as above. With this characterization of D1,D2, . . . Dn,
we can write

n
⋃

j=1

Dj =

n
⋃

j=1

∞
⋃

k=1

(

⋃

E

{Lj−1(l(k), E)}
)

=

∞
⋃

k=1

n
⋃

j=1

(

⋃

E

{Lj−1(l(k), E)}
)

=

∞
⋃

k=1

I(l(k)) = N

where the second to last equality follows from Lemma 2.12 and the last equality follows from
Lemma 2.14. �

Proposition 2.16 shows that the desired collection of sets contains every positive integer.
We now need to show that no integer belongs to two of the sets simultaneously. In other
words, we need to show that for any sequence l satisfying the hypotheses of Theorem 2.2 and
positive integers i 6= j

Li(l(k1), E1) 6= Lj(l(k2), E2)

for any k1, k2, E1, E2. If l(k1) = l(k2), then by Lemma 2.12, the forms must be the same, so
i = j. On the other hand, if l(k1) and l(k2) are sufficiently far apart (note that n is fixed),



8 WEIRU CHEN AND JARED KRANDEL

Li(l(k1), E1) and Lj(l(k2), E2) cannot be equal. Thus a more careful analysis will be needed
when l(k1) and l(k2) are unequal but close.

Lemma 2.17. max I(l(k)) < min I(l(k + 2)).

Proof. We need to show that

l(k + 2)− (2n−1 − 1) > l(k) + (2n−1 − 1),

i.e., that

l(k + 2)− l(k) > 2n − 2.

Since min G = 2n−1, we have

l(k + 2)− l(k) = l(k + 2)− l(k + 1) + l(k + 1)− l(k) ≥ 2 · 2n−1 = 2n > 2n − 2.

�

We are now ready to finish the proof of Theorem 2.2. Since increasing k makes the smallest
element of I(l(k)) larger, it is now clear that

I(l(k)) ∩ I(l(k + b)) = ∅
for all b ≥ 2. Thus if Li(l(k1), E1) and Lj(l(k2), E2) with i 6= j and k2 ≥ k1 take on the same
value m, it must be the case that k2 = k1 + 1 and

m ∈ I(l(k1)) ∩ I(l(k1 + 1)).

Of course, we are done if the above intersection is empty.
We first consider those k for which l(k + 1)− l(k) = maxG = 2n − 1. In this case,

I(l(k)) = [l(k) − (2n−1 − 1), l(k) + (2n−1 − 1)],

I(l(k + 1)) = [l(k) + 2n − 1− (2n−1 − 1), l(k) + 2n − 1 + (2n−1 − 1)]

= [l(k) + 2n−1, l(k) + 3(2n)− 2].

Thus the smallest integer in the interval I(l(k + 1)) is at least l(k) + 2n−1, which is larger
than the largest integer in I(l(k)). Hence the intersection is empty.

We now consider those k for which l(k + 1)− l(k) =
∑b

a=1 2
n−a for 1 ≤ b ≤ n− 1.

In this case, we can write the intersection I(l(k)) ∩ I(l(k + 1)) as

I(l(k)) ∩ I(l(k + 1)) =
[

l(k)− 2n−1 + 1, l(k) + 2n−1 − 1
]

∩
[

l(k) +

b
∑

a=1

2n−a − 2n−1 + 1, . . .

]

=

[

l(k) +

b
∑

a=1

2n−a − 2n−1 + 1, l(k) + 2n−1 − 1

]

=

[

l(k) + 1 +

b
∑

a=2

2n−a, l(k) + 2n−1 − 1

]

.

Suppose that for some E1, E2 we have

m = Li(l(k), E1) and m = Lj(l(k + 1), E2).

This means that m has a representation in terms of both Li and Lj. From the fact that
m = Li(l(k), E1), we have
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m = l(k) +

i+1
∑

s=2

ǫn−s · 2n−s.

But since m ∈ I(l(k)) ∩ I(l(k + 1)), we must have m > l(k) +
∑b

a=2 2
n−a. We claim this

forces i+ 1 > b as well as
ǫn−2 = ǫn−3 = . . . = ǫn−b−1 = 1.

For proof of this last fact, suppose that there is some non-empty subset I of the integers 2
through b + 1 such that for d ∈ I, ǫn−d = −1 while for e 6∈ I, we have ǫn−e = 1. Using the
lower bound for m, we write

m = l(k) +

i+1
∑

s=2

ǫn−s2
n−s > l(k) +

b
∑

a=2

2n−a.

Canceling l(k) and the common terms in the sums gives

−
∑

d∈I
2n−d +

i+1
∑

s=b+1

ǫn−s2
n−s >

∑

d∈I
2n−d ⇐⇒

∑

d∈I
2n+1−d <

i+1
∑

s=b+1

ǫn−s2
n−s.

Now, choosing any a ∈ I allows us to write

2n+1−a <
∑

d∈I
2n−d+1 <

i+1
∑

s=b+1

ǫn−s2
n−s <

n
∑

s=b+1

2n−s = 2n−b − 1 = 2n+1−(b+1) − 1

But since a ∈ I, a ≤ b+ 1. This is a contradiction. Therefore, we have shown that the ǫn−i

with n ≤ n− b− 1 are 1 and so the Li representation of m must have the form

m = l(k) +
b+1
∑

a=2

2n−a +
i+1
∑

s=b+2

ǫn−s2
n−s.

Since m = Lj(l(k + 1), E2) we can additionally write

m = l(k + 1) +

j+1
∑

s=2

δn−s2
n−s = l(k) +

b
∑

a=1

2n−a +

j+1
∑

s=2

δn−s2
n−s

because we have assumed l(k + 1) = l(k) +
∑b

a=1 2
n−a. Next, we equate these two represen-

tations and cancel common terms, resulting in

i+1
∑

s=b+2

ǫn−s2
n−s + 2n−b−1 = 2n−1 +

j+1
∑

s=2

δn−s2
n−s.

Rearranging this identity, we get

i+1
∑

s=b+2

ǫn−s2
n−s = 2n−1 − 2n−b−1 +

j+1
∑

s=2

δn−s2
n−s

=

(

n
∑

c=2

2n−c + 1

)

−
(

n
∑

c=b+2

2n−c + 1

)

+

j+1
∑

s=2

δn−s2
n−s

=

b+1
∑

c=2

2n−c +

j+1
∑

s=2

δn−s2
n−s
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We now wish to show that δn−2 = δn−3 = . . . = δn−b−1 = −1. Suppose that there is a
nonempty subset I of the integers 2 through b + 1 such that for d ∈ I, δn−d = 1 while
δn−s = −1 for s 6∈ I. Then, continuing from the above equality, we have

i+1
∑

s=b+2

ǫn−s2
n−s =

∑

d∈I
2n−d +

∑

s∈I
2n−s +

j+1
∑

s=b+2

δn−s2
n−s.

Rearranging, we have

∑

d∈I
2n+1−d =

i+1
∑

s=b+2

ǫn−s2
n−s −

j+1
∑

s=b+2

δn−s2
n−s.

Consider the absolute values of both sides of the inequality. The absolute values of both
sums on the right side are strictly less than 2n−b−1 while the sum on the left is greater than
any individual member of the sum. So, choosing any a ∈ I gives the following inequality

2n+1−a = 2n−(a−1) < 2n−b−1 + 2n−b−1 = 2n−b,

but since a ∈ I we have a − 1 ≤ b, which gives a contradiction. Therefore, δn−2 = δn−3 =
. . . = δn−b−1 = −1. Using this fact and equating the two representations of m, we find that

i+1
∑

s=b+2

ǫn−s2
n−s =

j+1
∑

s=b+2

δn−s2
n−s.

But i 6= j, so by Lemma 2.10 this is a contradiction. Hence Li and Lj have no common value,
and Theorem 2.2 follows. (In particular, when we are considering t(k) = (2n−1 − 1)⌊kφ⌋+ k,
this forms the general n-columns φ-partition. The properties of this partition for the n = 3
case are analyzed in Section 4.)

2.3. Limiting Behavior of the n-Set Partition. We now examine the limiting behavior
of our n-set partitions as n → ∞.

Theorem 2.18. Let (lk)k∈N be a sequence of sequences such that each lj satisfies the hypoth-
esis in Theorem 2.2 with n = j. Let (Dj)j∈N be a sequence of partitions of the kind considered
in Theorem 1 where D1 = {D1} = {N}, D2 = {D1,2,D2,2}, D3 = {D1,3,D2,3,D3,3}, . . . ,Dj =
{D1,j ,D2,j , . . . ,Dj,j}, . . . where we put {D1,j} = {lj(k)}∞k=1. That is, the n-th partition in the
sequence is a partition into n parts of the kind in considered in Theorem 2.2. Additionally, let
M = {1, 3, 5, 7, 9, . . .}, the set of odd positive integers. Then we have the following pointwise
convergence properties of the sets within each partition as n → ∞:

Dn,n → M

Dn−1,n → 2 ·M
...

Dn−e,n → 2e ·M
...
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Proof. Let n ∈ N. The first (smallest) element of D1,n is 2n−1, and it is easy to see that the
first element of Dj,n for any 1 ≤ j ≤ n is 2n−j . In particular, the first element of Dn,n is
simply 1. For further insight into the small values of the various Dj,n, we determine the range
of the linear forms Lj(2

n−1, E), 0 ≤ j ≤ n− 1 as E varies for any Dn. For any particular j,
Lj(2

n−1, E), can lie between a minimum of

2n−1 − 2n−2 − 2n−3 − . . .− 2n−j−1 = 2n−1 − 2n−j−1(1 + 2 + 22 + . . . + 2j−1)

= 2n−1 − 2n−j−1(2j − 1) = 2n−j−1

and a maximum of

2n−1 + 2n−2 + 2n−3 + . . .+ 2n−j−1 = 2n−1 + 2n−j−1(2j − 1)

= 2n−j−1(2j+1 − 1).

Dividing the value of the form by 2n−j−1 yields

Lj(2
n−1, E)/2n−j−1 = (2n−1 +

j+1
∑

s=2

ǫn−s2
n−s)/2n−j−1 = 2j +

j+1
∑

s=2

ǫn−s2
j+1−s.

Here Lj(2
n−1, E)/2n−j−1 is odd, and can take on a total of 2j values as E varies. The

minimum value is 1 and the maximum is 2j+1−1, a range in which there are exactly 1
2(2

j+1−
1 + 1) = 2j odd numbers. Therefore, Lj(2

n−1, E)/2n−j−1 takes on exactly the numbers

{1, 3, 5, 7, . . . , 2j+1 − 1}
as E varies over all possible values. Thus, since the first 2j−1 numbers in Dj,n are exactly
those possible values of Lj−1(2

n−1, E), the first 2j−1 numbers in Dj,n are exactly

2n−j(1, 3, 5, . . . , 2j − 1).

Now set j = n− e. We see that the first 2n−e−1 numbers of each Dn−e,n are exactly

2e(1, 3, 5, . . . , 2n−e − 1).

�

2.4. Consequences of Theorems 2.2 and 2.18 Regarding Beatty Sequences. Beatty
sequences and the theory surrounding them are a major motivation in establishing Theorems
2.2 and 2.18. Recall that given irrational α, β > 0 which satisfy

1

α
+

1

β
= 1,

Beatty’s Theorem states that the sets

{⌊kα⌋}∞k=1 and {⌊kβ⌋}∞k=1

partition the positive integers. Using this and Corollary 2.6, we can establish an interesting
way of ”extending” these partitions in the context of Theorem 1. If we let α be irrational
such that 1 < α < 2, then applying Corollary 2.3 gives that the sequence

t(k) = ⌊kα⌋ + k = ⌊k(α + 1)⌋
satisfies the hypotheses of Theorem 2.2 and generates a 2-set partition. The sequence t is a
Beatty sequence with 2 < α+1 < 3, so, by Beatty’s Theorem, the set D2 is composed of the
elements of the complementary Beatty sequence ⌊kα+1

α ⌋. The given partition {D1,D2} is a
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Beatty partition. This itself is nothing new, but Theorem 1 gives a natural way to construct
a potentially new, related partition.

For any n > 2, we can use α to form

t(k) = (2n−1 − 1)⌊kα⌋ + k

from which Corollary 2.6 gives an n set partition. In addition, Theorem 2.18 tells us that as
n → ∞, the sequence of partitions (Dn) with D1,n = {(2n−1 − 1)⌊kα⌋ + k}∞k=1 approaches
the 2-adic, giving an interpolation between the 2-adic and any Beatty partition with one of
α, β between 2 and 3. The rest of this paper is a study of interactions of the specific Beatty
partition given by a(k) = ⌊kφ⌋ and b(k) = ⌊kφ2⌋ with other partitions, one of which is the
n = 3 extension of this partition given above.

To see that the Beatty partition involving a and b is in fact one of our partitions, notice
that if we set h(k) = ⌊kφ⌋, we get

t(k) = ⌊kφ⌋+ k = ⌊k(φ+ 1)⌋ = ⌊kφ2⌋
since φ2 = φ + 1. In particular, we study the n = 3 extension in which we define d(k) =
t(k) = (22−1)a(k)+k = 3a(k)+k. It is interesting to note that φ is the only positive number
such that {h(k)}∞k=1 = {⌊kα⌋}∞k=1 is exactly the set D2 when we put D1 = {h(k) + k}∞k=1 =
{⌊k(α + 1)⌋}∞k=1. This follows from the fact that

1

α
+

1

α+ 1
= 1 ⇐⇒ α2 − α− 1 = 0.

3. The Interaction of Two Beatty Partitions

It is of interest to explore how the classification of integers into A and B numbers relates
to the classifications given by other partitionings of the integers. Here A and B represents
the specific Beatty partition described in section 2.4: A = {a(n)}∞n=1 and B = {b(n)}∞n=1,
where a(n) = ⌊nφ⌋ and b(n) = ⌊nφ2⌋. We examine this question for one of the partitions
already discussed here (the case n = 3), but begin with a simpler case that serves as a model.
Also, in this simpler case we can provide a more complete description.

3.1. Column Classifications for Beatty Partitions.

Theorem 3.1. (The KLM formula). For integers K,L and M we have

a(Ka(n) + Ln+M) = Kb(n) + La(n) + ⌊Mφ+ (Lφ−K)
{nφ}
φ

⌋

The following important result is known, but we include a proof for the sake of complete-
ness.

Theorem 3.2.

{a(n)φ} = 1− {nφ}
φ

,

{b(n)φ} =
{nφ}
φ2

.

For the proof we use the KLM formula and a precise form of the fact that b(n) is approx-
imately φa(n).
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Lemma 3.3.

a(a(n)) = a(n) + n− 1 = b(n)− 1,

a(b(n)) = a(n) + b(n).

Proof. We use the KLM formula, first with K = 1, L = M = 0 and then with K = L =
1,M = 0. �

Lemma 3.4. b(n)− φa(n) = {nφ}
φ .

Proof. Since φ = 1 + 1
φ , the left side

b(n)− φa(n) = a(n) + n− φa(n) = n− a(n)

φ

=
nφ− a(n)

φ
=

{nφ}
φ

.

�

We may now prove the above theorem.
Add a(n)φ to both sides of −a(a(n)) = 1− b(n) to obtain

{a(n)φ} = a(n)φ− ⌊a(n)φ⌋ = a(n)φ− a(a(n))

= 1− b(n) + a(n)φ = 1− {nφ}
φ

.

Next, add b(n)φ to both sides of −a(b(n)) = −a(n)− b(n) to obtain, since φ− 1 = 1
φ ,

{b(n)φ} = b(n)φ− ⌊b(n)φ⌋ = b(n)φ− a(b(n)) = b(n)φ− b(n)− a(n)

= −a(n) + b(n) · (φ− 1) = −a(n) +
b(n)

φ
=

{nφ}
φ2

.

This proves the theorem.

Corollary 3.5. {a(n)φ}+ φ{b(n)φ} = 1.

Beatty’s Theorem applied to 1
φ2/2

+ 1
φ3 = 1 shows that the infinite sequences

c(n) = ⌊n · φ
2

2
⌋ and d(n) = ⌊nφ3⌋, n = 1, 2, 3, . . .

partition the set of positive integers. Call these two sequences (we may also call them sets)
C and D. We shall investigate how the elements of C and D are distributed among the sets
A and B, and vice-versa. The following result illuminates this subject.

Theorem 3.6. For any n ≥ 1 the fractional part {d(n)φ} is in the interval (3−
√
5

2 , 12 ) if {nφ} >
1
2 , and in the interval (4−

√
5

2 , 1) if {nφ} < 1
2 . Each interval clearly has length

√
5−2
2 .

For any n ≥ 1 the fractional part {c(2n)φ} lies in the interval (0, 3−
√
5

2 ) while the fractional

part {c(2n+1)φ}, n ≥ 1, lies in the interval (12 ,
4−

√
5

2 ). Each of these last two intervals clearly

has length 3−
√
5

2 .

Remark 3.7. These intervals are all disjoint and their total length is 1. It is curious how
the criteria for interval membership is defined by an inequality for d(n) and by parity for
c(n).

We first establish a lemma.
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Lemma 3.8.

d(n) =

{

2 · a(n) + n, if {nφ} < 1
2 ,

2 · a(n) + n+ 1, if {nφ} > 1
2 .

Proof. By the KLM formula,

d(n) = ⌊n+ 2φn⌋ = n+ a(2n) = n+ 2a(n) + ⌊(2φ) · {nφ}
φ

⌋

= n+ 2a(n) + ⌊2{nφ}⌋

where we set K = M = 0 and L = 2. The result follows. �

We can now prove the assertions about d(n). First, say {nφ} < 1
2 . Then

{d(n)φ} = {nφ+ 2 · a(n)φ} = {{nφ}+ 2 · {a(n)φ}}

= {{nφ}+ 2 · (1− {nφ}
φ

)} = {(2 −
√
5){nφ}}

= 1 + (2−
√
5){nφ},

so {d(n)φ} lies in (4−
√
5

2 , 1). Next, say {nφ} > 1
2 . Then

{d(n)φ} = {nφ+ φ− 1 + 2 · a(n)φ} = {{nφ} + 2 · (1− {nφ}
φ

) +
1

φ
}

= {(2−
√
5){nφ} + 1

φ
}.

This has the form {p} where 0 < p < 1. Thus {d(n)φ} = 1
φ − (

√
5−2){nφ} and thus {d(n)φ}

lies in (3−
√
5

2 , 12).

The case of c(2n)φ is straightforward.

{c(2n)φ} = {⌊(2n) · φ
2

2
⌋φ} = {b(n)φ} =

{nφ}
φ2

∈ (0,
3−

√
5

2
).

A more detailed consideration is needed for {c(2n + 1)φ}. Set λ = 5−
√
5

4 . Since φ2

2 = 3+
√
5

4

we have λ < 1 and φ2

2 + λ = 2.

Lemma 3.9.

φ3{c(2n + 1)φ} − φ{nφ} =

{

φ2, if {nφ} < λ,

1, if {nφ} > λ.

Proof. Let

e(n) =

{

1, if {nφ} < λ,

2, if {nφ} > λ.
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Since 0 < {nφ} < 1 < φ2

2 < 2 = φ2

2 + λ, and 1 + φ2

2 < 3, we have that {nφ} + φ2

2 is strictly

between 1 and 3. So the above equality 2 = φ2

2 + λ shows that ⌊{nφ}+ φ2

2 ⌋ = e(n). Now

c(2n + 1) = ⌊(2n + 1) · φ
2

2
⌋ = ⌊nφ2 +

φ2

2
⌋

= ⌊b(n) + {nφ2}+ φ2

2
⌋ = ⌊b(n) + {nφ}+ φ2

2
⌋

= b(n) + ⌊{nφ}+ φ2

2
⌋ = b(n) + e(n).

In the case {nφ} < λ (e(n) = 1) we have {c(2n + 1)φ} = {b(n)φ + φ} = {{b(n)φ} + φ} =

{{nφ}
φ2 + 1

φ} = {nφ}
φ2 + 1

φ since 1
φ + 1

φ2 = 1. Thus in this case φ3{c(2n + 1)φ} − φ{nφ} = φ2.

In the case {nφ} > λ (e(n) = 2) we have {c(2n+1)φ} = {b(n)φ+2φ} = {{nφ}
φ2 + 2

φ}. Now
1 < 2

φ < {nφ}
φ2 + 2

φ < 1
φ2 + 2

φ = φ < 2, so {c(2n + 1)φ} = {nφ}
φ2 + 2

φ − 1. This implies that

φ3{c(2n + 1)φ} = φ{nφ} + 2φ2 − φ3, so φ3{c(2n + 1)φ} − φ{nφ} = 2φ2 − φ3 = 1 and the
result follows. �

Now observe that λ
φ2 + 1

φ3 = 1
2 < 1

φ < λ
φ2 + 1

φ = 4−
√
5

2 .

In the φ2 case ({nφ} < λ) this shows that 1
2 < 1

φ < {c(2n+1)φ} < 4−
√
5

2 where in particular

the upper bound is achieved. In the 1 case ({nφ} > λ) this shows that 1
2 < {c(2n + 1)φ} <

1
φ < 4−

√
5

2 where in particular the lower bound is achieved.

This proves the theorem.

Summary of Fractional Parts Identities:

φ{a(n)φ}+ {nφ} = φ

φ2{b(n)φ} − {nφ} = 0

{d(n)φ} + (
√
5− 2){nφ} =

{

1, if {nφ} < 1
2 ,

1
φ , if {nφ} > 1

2

φ3{c(m)φ} − φ{nφ} =







0, if m = 2n,

φ2, if m = 2n+ 1, {nφ} < λ,

1, if m = 2n+ 1, {nφ} > λ.

We may now use Weyl’s Theorem on uniform distribution which asserts that for α irrational
the sequence {nα}∞n=1 is uniformly distributed in (0, 1).

Divide the unit interval (0, 1) into 4 parts (I1, I2, I3, I4) that are respectively

(0,
1

φ2
), (

1

φ2
,
1

2
), (

1

2
,
4−

√
5

2
), (

4 −
√
5

2
, 1).

Our results imply that

{nφ} ∈ I1 ⇐⇒ n ∈ B

{nφ} ∈ I2 ∪ I3 ∪ I4 ⇐⇒ n ∈ A

{nφ} ∈ I1 ∪ I3 ⇐⇒ n ∈ C

{nφ} ∈ I2 ∪ I4 ⇐⇒ n ∈ D.
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From this we see that

(c(n), d(n)) ∈ (A×A) ∪ (B ×A),

(a(n), b(n)) ∈ (C × C) ∪ (D × C).

Note that for arbitrary two integer vectors (h, k), a partitioning of the integers into 2
sequences gives 4 membership classifications for (h, k), so it is notable here that for the (A,B)
and (C,D) partitionings we have for the Wythoff pairs (a(n), b(n)) and the (c(n), d(n)) pairs
only 2 possibilities.

We can also be a bit more quantitative. Since 4−
√
5

2 − 1
2 = 1

φ2 , we see that the set of

integers n for which c(n) ∈ A has density 1
2 and the same for c(n) ∈ B. Since 1− 1

φ2 = 1
φ we

see that the set of integers n for which a(n) ∈ C has density ( 1
φ2 )/(

1
φ ) =

1
φ . Hence the set of

integers n for which a(n) ∈ D has density 1
φ2 .

3.2. Extension of Fractional Parts Identities. In connection with the fractional parts
identities, we also have the following result related to Fibonacci numbers which can be used
to solve more interaction problems.

Theorem 3.10. Define Fk as the k-th Fibonacci number for any k ∈ N. Let r be an odd
positive integer and let m and n be any positive integers. Then we have φr{mφ}−φr−2{nφ} =
1 if and only if m = a(n) + n+ Fr.

Before we prove the theorem, we need to establish the following Lemmas.

Lemma 3.11. When r is an odd positive integer, ⌊Frφ+ (φ− 1) · {nφ}
φ ⌋ = Fr+1.

Proof. First we will prove that Frφ + (φ − 1) · {nφ}
φ > Fr+1. Note that Fibonacci numbers

have a closed-form solution (often known as Binet’s formula): Fk = 1√
5
(φk − (−1)k · ( 1φ )k) for

all k ∈ N. Since Frφ+ (φ− 1) · {nφ}
φ > Frφ+ 0 = Frφ, and

Frφ > Fr+1 ⇐⇒ 1√
5
(φr+1 +

1

φr−1
) >

1√
5
(φr+1 − 1

φr+1
),

which must be true because 1
φk > 0 for all k ∈ N, we have Frφ+ (φ− 1) · {nφ}

φ > Fr+1.

Next, we will prove that Frφ + (φ − 1) · {nφ}
φ < Fr+1 + 1. Since Frφ + (φ − 1) · {nφ}

φ <

Frφ+ (φ− 1) · 1
φ , and

Frφ+ (φ− 1) · 1
φ
≤ Fr+1 + 1 ⇐⇒ Frφ− 1

φ
≤ Fr+1 ⇐⇒ 1√

5
(

1

φr−1
+

1

φr+1
) ≤ 1

φ
,

which must be true because 1√
5
( 1
φr−1 +

1
φr+1 ) ≤ 1√

5
(1+ 1

φ2 ) =
1
φ , we have Frφ+(φ−1) · {nφ}φ <

Fr+1 + 1.

Since Frφ+(φ−1)·{nφ}φ ∈ (Fr+1, Fr+1+1), it is obvious that ⌊Frφ+(φ−1)·{nφ}φ ⌋ = Fr+1. �

Lemma 3.12. φk = Fkφ+ Fk−1 for all k ∈ N.

Proof. Fibonacci numbers are recursively defined such that Fk+2 = Fk+1 + Fk for all k ∈ N,
and F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, . . .. So when k = 1, φk = φ = F1φ+ F0 =
Fkφ+ Fk−1.
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Suppose that φk = Fkφ+ Fk−1 for some k ∈ N. Then

φk+1 = φk · φ = (Fkφ+ Fk−1)φ

= Fkφ
2 + Fk−1φ = Fk(φ+ 1) + Fk−1φ

= (Fk + Fk−1)φ+ Fk = Fk+1φ+ Fk.

So by induction, we have φk = Fkφ+ Fk−1 for all k ∈ N. �

Now, we may proceed to the proof of Theorem 3.10. Suppose that m = a(n) + n+ Fr for
some odd positive integer r. Using the KLM formula with K = 1, L = 1,M = Fr, we get

{mφ} = (a(n) + n+ Fr)φ− (b(n) + a(n) + ⌊Frφ+ (φ− 1) · {nφ}
φ

⌋)

Now, since ⌊Frφ+ (φ− 1) · {nφ}
φ ⌋ = Fr+1 by Lemma 3.11, we have

{mφ} = ⌊nφ⌋φ− ⌊nφ2⌋+ {nφ}+ Frφ− Fr+1

= (nφ− {nφ})φ− ⌊nφ⌋ − n+ {nφ}+ Frφ− Fr+1

= (2− φ){nφ}+ Frφ− Fr+1,

which means

φr{mφ} = (2− φ)φr{nφ}+ Frφ
r+1 − Fr+1φ

r

= (1− 1/φ)φr{nφ}+ Frφ
r+1 − Fr+1φ

r

= φr−1(φ− 1){nφ} + Frφ
r+1 − Fr+1φ

r

= φr−2{nφ}+ Frφ
r+1 − Fr+1φ

r.

From Lemma 3.12, we know that φr+1 = Fr+1φ + Fr and φr = Frφ + Fr−1. So Frφ
r+1 −

Fr+1φ
r = F 2

r − Fr+1 · Fr−1. Cassini’s identity (see [p. 41] of [11] for proof) states that

(−1)n = Fn+1 · Fn−1 − F 2
n

for n ∈ N. Using this and the fact that r is an odd positive integer, we have Frφ
r+1 −

Fr+1φ
r = 1. Therefore, when m = a(n) + n + Fr for some odd positive integer r, we have

φr{mφ} − φr−2{nφ} = 1.

On the other hand, if φr{mφ}−φr−2{nφ} = 1 for some odd positive integer r, then we can
assume that m = Ka(n)+Ln+M , where K,L,M ∈ Z, and M is some constant independent
of n. Using the KLM formula, we have

{mφ} = mφ− ⌊mφ⌋ = Ka(n)φ+ Lnφ+Mφ−Kb(n)− La(n)− ⌊Mφ+ (Lφ−K) · {nφ}
φ

⌋

= L{nφ}+Ka(n)(φ− 1)−Kn+Mφ− ⌊Mφ+ (Lφ−K) · {nφ}
φ

⌋

= L{nφ}+K(nφ− {nφ})(φ − 1)−Kn+Mφ− ⌊Mφ+ (Lφ−K) · {nφ}
φ

⌋

= L{nφ} −K{nφ} · (φ− 1) +Mφ− ⌊Mφ+ (Lφ−K) · {nφ}
φ

⌋

= {nφ} · (L−K(φ− 1)) +Mφ− ⌊Mφ+ (Lφ−K) · {nφ}
φ

⌋.
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From Lemma 3.12, we know that φr+1 = Fr+1φ+ Fr and φr = Frφ+ Fr−1. So,

φr{mφ} = {nφ} · (L−K(φ− 1))φr +Mφr+1 − ⌊Mφ+ (Lφ−K) · {nφ}
φ

⌋ · φr

= {nφ}(L−K(φ− 1))φr +M(Fr+1φ+ Fr)− ⌊Mφ+ (Lφ−K)
{nφ}
φ

⌋ · (Frφ+ Fr−1).

We also have φr{mφ} = φr−2{nφ} + 1 by assumption. So, as M · Fr − ⌊Mφ + (Lφ − K) ·
{nφ}
φ ⌋Fr−1 is an integer and {nφ}(L−K(φ− 1))φr +M ·Fr+1φ−⌊Mφ+(Lφ−K){nφ}φ ⌋ ·Frφ

is irrational, we have the following two equations:
{

φr−2{nφ} = {nφ}(L−K(φ− 1))φr +M · Fr+1φ− ⌊Mφ+ (Lφ−K){nφ}φ ⌋ · Frφ,

1 = M · Fr − ⌊Mφ+ (Lφ−K) · {nφ}
φ ⌋ · Fr−1.

From the first equation above, we have

φr−3{nφ} = {nφ}(L−K(φ− 1))φr−1 +M · Fr+1 − ⌊Mφ+ (Lφ−K)
{nφ}
φ

⌋ · Fr.

Since M · Fr+1 − ⌊Mφ + (Lφ − K){nφ}φ ⌋ · Fr is an integer and {nφ}(L − K(φ − 1))φr−1 is

irrational, we have the following two equations:
{

0 = M · Fr+1 − ⌊Mφ+ (Lφ−K){nφ}φ ⌋ · Fr,

φr−3 = (L−K(φ− 1))φr−1.

From the second equation above, we get

L−K(φ− 1) = L− K

φ
=

1

φ2
⇐⇒ Lφ2 −Kφ = 1 ⇐⇒ (L−K)φ+ L = 1 ⇐⇒ L = K = 1.

With L = K = 1, we now have
{

1 = M · Fr − ⌊Mφ+ (φ− 1) · {nφ}
φ ⌋ · Fr−1,

0 = M · Fr+1 − ⌊Mφ+ (φ− 1) · {nφ}
φ ⌋ · Fr.

By multiplying Fr on both sides of the first equation and multiplying Fr−1 on both sides of
the second equation, this is equivalent to the following:

{

Fr = M · F 2
r − ⌊Mφ+ (φ− 1) · {nφ}

φ ⌋ · Fr−1Fr,

0 = M · Fr+1Fr−1 − ⌊Mφ+ (φ− 1) · {nφ}
φ ⌋ · FrFr−1.

Subtracting the two equations gives M(F 2
r −Fr+1 ·Fr−1) = Fr. By Cassini’s identity and the

fact that r is odd, F 2
r −Fr+1 ·Fr−1 = 1. So M = Fr. By Lemma 3.11, ⌊Frφ+(φ−1) · {nφ}φ ⌋ =

Fr+1, the above equations are satisfied.
Therefore, when r is an odd positive integer, φr{mφ} − φr−2{nφ} = 1 if and only if

m = a(n) + n+ Fr, where Fr is the r-th Fibonacci number.

Remark 3.13. In section 3.1, we presented the following results in the summary of fractional
parts identities: φ3{c(k)φ}−φ{nφ} = φ2 if k = 2n+1, {nφ} < λ, and φ3{c(k)φ}−φ{nφ} = 1

if k = 2n + 1, {nφ} > λ. Here λ = 5−
√
5

4 . The first identity is equivalent to φ{c(k)φ} −
φ−1{nφ} = 1 if k = 2n+ 1, {nφ} < λ.

Note that these are the special cases of the result in Theorem 3.10, where r = 1, 3 re-

spectively. In these cases, m = c(k) can be written as c(2n + 1) = ⌊(2n + 1) · φ2

2 ⌋ =
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⌊n(φ + 1) + φ+1
2 ⌋ = a(n) + n + ⌊{nφ} + φ+1

2 ⌋, which equals a(n) + n + 1 (F1 = 1) when
{nφ} < λ and equals a(n) + n+ 2 (F3 = 2) when {nφ} > λ.

4. The Interaction of the A,B Beatty Partition and its 3-Set Extension

Now, we take a look at the interaction between the partition given by the sequences
a(k) = ⌊kφ⌋ and b(k) = ⌊kφ2⌋ and the 3-set partition where l(k) = t(k) = (2n−1 − 1)h(k)+ k
and h(k) = ⌊kφ⌋. It will be useful from this point on to consider the sets of these partitions
as columns. For any n-set partition, we will call D1 the first column, D2 the second column,
and so on, paralleling the presentation in Table 1. We first prove some important results
of 3-set partition which will turn out to be useful in the computation for the densities of
classified columns later on.

4.1. Finding the Second Column of the n-Column Extension. Any partition of the
type described in Theorem 2.2 is determined by the sequence l used to define the set D1. In
the n-column extension of the A,B partition, we use Corollary 2.6 to construct the following
sequence

t(k) = (2n−1 − 1)a(k) + k,

and we set l(k) = t(k) so that D1 = {t(k)}∞k=1. It turns out that, in this case, we can find a
simple closed form for the sequence which gives the elements of the set D2. We develop this
in the next theorem. First, we need a simple lemma.

Lemma 4.1. A ∪ (A+ 1) = N

Proof. This follows from the fact that a(1) = 1 and 1 ≤ a(k + 1)− a(k) ≤ 2 for all k. �

Theorem 4.2. Let D1,D2, . . . ,Dn be the n-set partition generated by D1(k) = (2n−1 −
1)a(k) + k. If we form a sequence D2(k) by placing the elements of D2 in increasing order
d2,1 < d2,2 < d2,3 . . . and defining D2(k) = d2,k, then

D2(k) = a(k) + (2n−1 − 2)k − (2n−2 − 1).

Proof. First, we will show that

{D2(a(l))} = {D1(k)− 2n−2},
{D2(a(l) + 1)} = {D1(k) + 2n−2}.

This will be of use because it will be easier to define D2 on each of these domains separately
and combine them. Since the union of the domains is all of the positive integers by Lemma
4.1, we will have the formula for all positive integers. When l = 1, we have

D2(a(l)) = D2(a(1)) = D2(1) = D1(1)− 2n−2 = D1(l)− 2n−2,

D2(a(l) + 1) = D2(a(1) + 1) = D2(2) = D1(1) + 2n−2 = D1(l) + 2n−2.

We also have

D2(a(l + 1)) = D2(a(l) + 1) ⇐⇒ a(l + 1) = a(l) + 1

⇐⇒ (2n−1 − 1)a(l + 1) + (l + 1)− 2n−2 = (2n−1 − 1)a(l) + l + 2n−2

⇐⇒ D1(l + 1)− 2n−2 = D1(l) + 2n−2.
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I.e., If a(l)+1 is the next A number, a(l+1), thenD1(l)+2n−2 = D2(a(l)+1) = D2(a(l+1)) =
D1(l + 1)− 2n−2. If a(l) + 1 6= a(l + 1), then a(l) + 2 = a(l + 1) and we have

D2(a(l + 1)) = D2(a(l) + 2)

= (2n−1 − 1)a(l + 1) + (l + 1)− 2n−2 = D1(l + 1)− 2n−2

6= (2n−1 − 1)a(l) + l + 2n−2 = D1(l) + 2n−2.

This implies

D2(a(l)) = D1(l)− 2n−2 = (2n−1 − 1)a(l) + l − 2n−2 and

D2(a(l) + 1) = D1(l) + 2n−2 = (2n−1 − 1)a(l) + l + 2n−2

for all l ∈ N.
In the a(l) case, D2(a(l)) = D1(l)− 2n−2 = (2n−1 − 1)a(l) + l− 2n−2. On the other hand, we
have

a(a(l)) + (2n−1 − 2)a(l)− (2n−2 − 1)

= (2n−1 − 1)a(l) − 2n−2 + a(a(l))− a(l) + 1.

From KLM formula (K = 1, L = 0,M = 0), we have a(a(l)) = b(l)− 1 = a(l) + l − 1. So

D2(a(l)) = a(a(l)) + (2n−1 − 2)a(l) − (2n−2 − 1).

In the a(l) + 1 case, D2(a(l) + 1) = D1(l) + 2n−2 = (2n−1 − 1)a(l) + l + 2n−2. On the other
hand, we have

a(a(l) + 1) + (2n−1 − 2)(a(l) + 1)− (2n−2 − 1)

= (2n−1 − 2)a(l) + a(a(l) + 1) + 2n−2 − 1

= (2n−1 − 1)a(l) + 2n−2 + a(a(l) + 1)− a(l)− 1.

From KLM formula (K = 1, L = 0,M = 1), we have a(a(l) + 1) = b(l) + 1 = a(l) + l + 1.
So

D2(a(l) + 1) = a(a(l) + 1) + (2n−1 − 2)(a(l) + 1)− (2n−2 − 1).

So, since A ∪ (A+ 1) = N, the formula is valid for all k. �

4.2. Fractional Parts Identities with respect to the 3-set Partition. Let D be column
D1, C be column D2, and S be column D3 in the definition of 3-set partition.

From the definition of h(k) and t(k), we already know that D = {d(k)} = {(2n−1−1)a(k)+
k} and that C = {c(k)} = {d(k) − 2n−2} ∪ {d(k) + 2n−2}. From Theorem 4.2, we get the
formula c(k) = a(k) + (2n−1 − 2)k − (2n−2 − 1) for column C. So in the 3-set case, we have

D = {d(k)} = {3a(k) + k},
C = {c(k)} = {a(k) + 2k − 1},
S = {s(k)} = {c(k) − 1} ∪ {c(k) + 1}.

Now we will derive some fractional parts identities with respect to d(k), c(k), and s(k), which
will be of use in the investigation of the interaction between the A,B Beatty partition and
the 3-set partition.

Theorem 4.3. {d(k)φ} = 1−
√
5

φ2 {kφ}.
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Proof. Using the identity φ2 = φ + 1 and the KLM formula with K = 3, L = 1,M = 0, we
can write

{d(k)φ} = d(k)φ − ⌊d(k)φ⌋ = (3a(k) + k)φ− a(3a(k) + k)

= 3a(k)φ + kφ− 3b(k) − a(k)− ⌊(φ− 3) · {kφ}
φ

⌋.

Now, since φ−3
φ < (φ− 3) · {kφ}

φ < 0, we have that ⌊(φ− 3) · {kφ}
φ ⌋ = −1. This gives

{d(k)φ)} = 3(kφ− {kφ})φ + {kφ} − 3(kφ− {kφ}) − 3k + 1

= {kφ}(4 − 3φ) + 1 = 1−
√
5

φ2
{kφ}.

�

Theorem 4.4.

{c(k)φ} =

{

√
5
φ {kφ} + 1−

√
5

2 , if {kφ} > 1√
5
,

√
5
φ {kφ} + 3−

√
5

2 , if {kφ} < 1√
5
.

Proof. Using the KLM formula where K = 1, L = 2,M = −1,

{c(k)φ} = c(k)φ− ⌊c(k)φ⌋ = (a(k) + 2k − 1)φ− a(a(k) + 2k − 1)

= a(k)φ+ 2kφ− φ− b(k)− 2a(k) − ⌊−φ+ (2φ− 1) · {kφ}
φ

⌋

Since −φ < −φ + (2φ − 1) · {kφ}
φ < 2 − φ − 1

φ = 3 − 2φ, where −φ = −1.6180339 . . . and

3− 2φ = −0.2360679 . . ., we need to consider two cases: −φ+ (2φ− 1) · {kφ}φ ∈ (−φ,−1) and

−φ+(2φ−1) · {kφ}φ ∈ (−1, 3−2φ), which are equivalent to {kφ} ∈ (0, 1√
5
) and {kφ} ∈ ( 1√

5
, 1)

respectively.

In the first case, we have ⌊−φ+ (2φ − 1) · {kφ}
φ ⌋ = −2, so

{c(k)φ} = (kφ− {kφ})φ + 2kφ− φ− (kφ− {kφ}) − k − 2(kφ− {kφ}) + 2

= (3− φ){kφ} + 2− φ =

√
5

φ
{kφ} + 3−

√
5

2
.

In the second case, we have ⌊−φ+ (2φ − 1) · {kφ}
φ ⌋ = −1, so {c(k)φ} =

√
5
φ {kφ} + 3−

√
5

2 − 1,

and the result follows. �

Corollary 4.5.

{c(n)φ} + φ{d(n)φ} =

{

1, if {nφ} > 1√
5
,

2, if {nφ} < 1√
5
.

Theorem 4.6. {s(k)φ} =
√
5

2φ {kφ} + b, where b ∈ {0, 1−
√
5

4 , 5−
√
5

4 } if k is even, and b ∈
{−1

2 ,
1
2 ,

3−
√
5

4 , 1 −
√
5
2 , 2 −

√
5
2 } if k is odd. In each case, the value of b depends on the value

of {kφ}.
For the proof, we need to write s(k) as a function of c(k). Define ∆ as the gap function of

column C such that

∆(k) = c(k + 1)− c(k) = ⌊(k + 1)φ⌋ − ⌊kφ⌋+ 2.
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Then since ⌊(k + 1)φ⌋ − ⌊kφ⌋ ∈ (φ − 1, φ + 1) and ∆(k) ∈ N, we have ∆(k) = 3 or 4. So
c(k + 1) − 1 > c(k) + 1, which means {c(k) − 1} ∩ {c(k) + 1} = ∅. Now since S = {s(k)} =
{c(k) − 1} ∪ {c(k) + 1}, each two of the elements in S are exactly generated by one element
in C, and we have

s(k) =

{

c(k2 ) + 1, if k is even,

c(k+1
2 )− 1, if k is odd.

So we can see that to obtain the fractional properties of {s(k)φ}, we need to investigate
the fractional properties of {k

2φ} and {k+1
2 φ}, which can be written in the form of {kφ}.

These are established in the following lemma.

Lemma 4.7. When k is an odd positive integer, {k+1
2 φ} = 1

2φ+ 1
2{kφ} or 1

2(φ− 1) + 1
2{kφ}

or 1
2 (φ− 2) + 1

2{kφ}. When k is an even positive integer, {k
2φ} = 1

2{kφ} or 1
2(1 + {kφ}).

Proof. When k is an odd positive integer, since {kφ} = {k+1
2 φ + k+1

2 φ − φ} = {2{k+1
2 φ} −√

5−1
2 }, we need to consider the following three cases:

2{k + 1

2
φ} −

√
5− 1

2
∈ (1, 2) or (0, 1) or (−1, 0).

In the first case, where 2{k+1
2 φ} −

√
5−1
2 ∈ (1, 2), we have {k+1

2 φ} = 1
2φ + 1

2{kφ}. In the

second case, where 2{k+1
2 φ} −

√
5−1
2 ∈ (0, 1), we have {k+1

2 φ} = 1
2 (φ − 1) + 1

2{kφ}. In the

third case, where 2{k+1
2 φ} −

√
5−1
2 ∈ (−1, 0), we have {k+1

2 φ} = 1
2(φ− 2) + 1

2{kφ}.
When k is an even positive integer, {kφ} = {k

2φ+
k
2φ} = {2{k

2φ}}, and we need to consider
the following two cases:

{k
2
φ} ∈ (0,

1

2
), and {k

2
φ} ∈ (

1

2
, 1).

In the first case, {k
2φ} = 1

2{kφ}. In the second case, {k
2φ} = 1

2 (1 + {kφ}). �

Now we can proceed to the proof of Theorem 4.6. We need to consider two cases: when k
is an odd positive integer and when k is an even positive integer.

Case 1. Let k be even. Let n be k
2 . Using the KLM formula with K = 1, L = 2,M = 0, we

have

{s(k)φ} = {(c(k/2) + 1)φ} = (c(n) + 1)φ− a(c(n) + 1) = (a(n) + 2n)φ− a(a(n) + 2n)

= a(n)φ+ 2nφ− b(n)− 2a(n)− ⌊(2φ − 1) · {nφ}/φ⌋ ((2φ− 1) · {nφ}/φ = {nφ}(3 − φ))

= (nφ− {nφ})φ+ 2nφ− (nφ− {nφ})− n− 2(nφ− {nφ})− ⌊{nφ}(3 − φ)⌋
= −{nφ}φ+ 3{nφ} − ({nφ}(3 − φ)− {{nφ}(3 − φ)})
= {{nφ}(3 − φ)} = {2{nφ} + (1− φ){nφ}}
= {{2nφ} + (1− φ){nφ}} = {{kφ} + (1− φ){φ · k/2}}.

From Lemma 4.7 we know that when k is even, {k
2φ} = 1

2{kφ} or 1
2 (1 + {kφ}).

Case 1.1. {k
2φ} = 1

2{kφ}. Then
{s(k)φ} = {{kφ} + (1− φ){kφ}2 } = {5−

√
5

4 {kφ} + 0} =
√
5

2φ {kφ}+ 0.

Case 1.2. {k
2φ} = 1

2(1 + {kφ}). Then
{s(k)φ} = {{kφ} + (1 − φ)1+{kφ}

2 } = {5−
√
5

4 {kφ} + 1−
√
5

4 }. If {kφ} ∈ ( 1√
5
, 1), then {s(k)φ}

=
√
5

2φ {kφ}+ 1−
√
5

4 . If {kφ} ∈ (0, 1√
5
), then {s(k)φ} =

√
5

2φ {kφ}+ 5−
√
5

4 .
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To summarize, when k is even, {s(k)φ} =
√
5

2φ {kφ} + b, where b ∈ {0, 1−
√
5

4 , 5−
√
5

4 }.

Case 2. Let k be odd. Let n = k+1
2 , then by KLM formula where K = 1, L = 2,M = −2,

we have

{s(k)φ} = {c(k + 1

2
)− 1)φ} = {(a(n) + 2n− 2)φ} = (a(n) + 2n− 2)φ− a(a(n) + 2n− 2)

= a(n)φ+ 2nφ− 2φ− b(n)− 2a(n)− ⌊−2φ+ (2φ− 1) · {nφ}/φ⌋
= a(n)φ+ 2nφ− 2φ− b(n)− 2a(n)− ⌊−2φ+ {nφ}(3− φ)⌋
= −{nφ}φ− 2φ+ 3{nφ} − (−2φ+ {nφ}(3 − φ)− {−2φ+ {nφ}(3 − φ)})
= {−2φ+ {nφ}(3− φ)} = {−2φ+ {nφ}(2 − 1/φ)} = {−φ+ {(2n − 1)φ} − (1/φ){nφ}}

= { 1

φ2
+ {kφ} − 1

φ
{k + 1

2
φ}} = {3−

√
5

2
+ {kφ} + 1−

√
5

2
{k + 1

2
φ}}.

From Lemma 4.7 we know that when k is odd, {k+1
2 φ} = 1

2φ + 1
2{kφ} or 1

2 (φ − 1) +
1
2{kφ} or 1

2(φ− 2) + 1
2{kφ}.

Case 2.1. {k+1
2 φ} = 1

2φ+ 1
2{kφ}. Then

{s(k)φ} = {3−
√
5

2
+ {kφ}+ 1−

√
5

2
(
1

2
φ+

1

2
{kφ})}

= {5−
√
5

4
{kφ}+ 3−

√
5

2
− 1

2
} = {5−

√
5

4
{kφ} + 1−

√
5

2
}.

If 5−
√
5

4 {kφ}+1−
√
5
2 > 0, then {s(k)φ} =

√
5

2φ {kφ}+1−
√
5
2 . If 5−

√
5

4 {kφ}+1−
√
5
2 < 0, then

{s(k)φ} =
√
5

2φ {kφ}+ 2−
√
5
2 .

Case 2.2. {k+1
2 φ} = 1

2 (φ− 1) + 1
2{kφ}. Then

{s(k)φ} = {3−
√
5

2
+ {kφ}+ 1−

√
5

2
(
1

2
(φ− 1) +

1

2
{kφ})}

= {5−
√
5

4
{kφ}+ 3−

√
5

2
+

1−
√
5

2
·
√
5− 1

4
} = {5−

√
5

4
{kφ}+ 3−

√
5

4
}

=

√
5

2φ
{kφ}+ 3−

√
5

4
.

Case 2.3. {k+1
2 φ} = 1

2 (φ− 2) + 1
2{kφ}. Then

{s(k)φ} = {3−
√
5

2
+ {kφ} + 1−

√
5

2
(
1

2
{kφ} − 2− φ

2
)}

= {5−
√
5

4
{kφ} + 3−

√
5

2
+

√
5− 1

2
· 3−

√
5

4
} = {5−

√
5

4
{kφ} + 1

2
}.

If 5−
√
5

4 {kφ} + 1
2 < 1, then {s(k)φ} =

√
5

2φ {kφ} + 1
2 . If 5−

√
5

4 {kφ} + 1
2 > 1, then {s(k)φ} =

√
5

2φ {kφ} − 1
2 .

To summarize, when k is odd, {s(k)φ} =
√
5

2φ {kφ}+ b, where b ∈ {−1
2 ,

1
2 ,

3−
√
5

4 , 1−
√
5
2 , 2−

√
5
2 }. This proves the theorem.
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4.3. Main Theorem of Column Classifications. Now with the above results of fractional
parts identities, we can investigate how the elements of S,C,D are distributed among the
sets A,B. The following result illuminates this subject.

Theorem 4.8. By classifying the three columns S,C,D of the 3-set partition into A and B
numbers, we only have 6 out of 8 possible classifications for each row of (S,C,D):
{(A,A,A), (A,A,B), (A,B,A), (B,A,A), (B,B,A), (B,A,B)}.

S C D

1 2 4

3 6 11

5 9 15

7 13 22

8 17 29

10 20 33
...

...
...

Table 2. 3-set Partition

S C D

A B A

A A A

B A B

B B A

A A A

B B A
...

...
...

Table 3. Column Classifications

Proof. Table 3 above shows some examples of how columns S,C,D in Table 2 are distributed
among the A and B numbers.

We first investigate how the elements in column C,D are distributed among column A and

column B. From Theorem 3.2 we know that {a(n)φ} = 1 − {nφ}
φ > 1 − 1

φ = 1
φ2 , {b(n)φ} =

{nφ}
φ2 < 1

φ2 . So by Theorem 4.3 and Theorem 4.4, we have the following results:

c(k) ∈ A means {c(k)φ} > 1
φ2 if and only if

{c(k)φ} =

{

√
5
φ {kφ}+ 1−

√
5

2 > 1
φ2 , when {kφ} > 1√

5
,

√
5
φ {kφ}+ 3−

√
5

2 > 1
φ2 , when {kφ} < 1√

5
.

This means that in the first case {kφ} > 5+
√
5

10 while in the second case {kφ} < 1√
5
.

c(k) ∈ B means {c(k)φ} < 1
φ2 if and only if

{c(k)φ} =

{

√
5
φ {kφ}+ 1−

√
5

2 < 1
φ2 , when {kφ} > 1√

5
,

√
5
φ {kφ}+ 3−

√
5

2 < 1
φ2 , when {kφ} < 1√

5
.

This means that we have 1√
5
< {kφ} < 5+

√
5

10 .

d(k) ∈ A means {d(k)φ} > 1
φ2 ⇐⇒ {d(k)φ} = 1−

√
5

φ2 {kφ} > 1
φ2 ⇐⇒ {kφ} < 5+

√
5

10 .

d(k) ∈ B means {d(k)φ} < 1
φ2 ⇐⇒ {d(k)φ} = 1−

√
5

φ2 {kφ} < 1
φ2 ⇐⇒ {kφ} > 5+

√
5

10 .

Combining the results of classifications for column C and D, we can conclude that c(k) ∈
A and d(k) ∈ A ⇐⇒ {kφ} ∈ (0, 1√

5
), c(k) ∈ A and d(k) ∈ B ⇐⇒ {kφ} ∈ (5+

√
5

10 , 1),

c(k) ∈ B and d(k) ∈ A ⇐⇒ {kφ} ∈ ( 1√
5
, 5+

√
5

10 ), c(k) ∈ B and d(k) ∈ B ⇐⇒ {kφ} ∈
( 1√

5
, 5+

√
5

10 ) and {kφ} ∈ (5+
√
5

10 , 1). In the last case, there is no k ∈ N such that (c(k), d(k)) ∈
(B ×B).



INTERPOLATING CLASSICAL PARTITIONS OF THE SET OF POSITIVE INTEGERS 25

So (c(k), d(k)) ∈ (A×A) ∪ (A×B) ∪ (B ×A), and s(k) can be either in A or in B. (The
density of the set of integers k such that s(k) ∈ A remains unknown). Hence, we have

(s(k), c(k), d(k)) ∈ (A×A×A) ∪ (A×A×B) ∪ (A×B ×A)

∪ (B ×A×A) ∪ (B ×B ×A) ∪ (B ×A×B).

This proves the theorem. �

Remark 4.9. If we instead investigate how the elements of A and B are distributed among
the S,C,D numbers, we can also observe that there are only 5 out of 9 cases occurring. Our
numerical data suggests the following density values:

Pair SC CS DS CD SS DC SS CC DD

Density 1
5

1
5

1
5

φ−1
5

3−φ
5 0 0 0 0

The exact reasoning of the distribution of these 9 pairs remains an open problem, but it is of
interest to further investigate such densities.
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