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Abstract. In this article, q-regular sequences in the sense of Allouche and
Shallit are analysed asymptotically. It is shown that the summatory function of
a regular sequence can asymptotically be decomposed as a finite sum of periodic
fluctuations multiplied by a scaling factor. Each of these terms corresponds to
an eigenvalue of the sum of matrices of a linear representation of the sequence;
only the eigenvalues of absolute value larger than the joint spectral radius of
the matrices contribute terms which grow faster than the error term.

The paper has a particular focus on the Fourier coefficients of the periodic
fluctuations: They are expressed as residues of the corresponding Dirichlet
generating function. This makes it possible to compute them in an efficient
way. The asymptotic analysis deals with Mellin–Perron summations and uses
two arguments to overcome convergence issues, namely Hölder regularity of
the fluctuations together with a pseudo-Tauberian argument.

Apart from the very general result, three examples are discussed in more
detail:
• sequences defined as the sum of outputs written by a transducer when

reading a q-ary expansion of the input;
• the amount of esthetic numbers in the first N natural numbers; and
• the number of odd entries in the rows of Pascal’s rhombus.

For these examples, very precise asymptotic formulæ are presented. In the
latter two examples, prior to this analysis only rough estimates were known.
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imposes a restriction on the asymptotic growth. The extended abstract [30] (with appendices
containing proofs available as arXiv:1808.00842) lifts this restriction by completely getting rid of
the corresponding technical condition. This article now contains the full (majorly restructured)
proof covering all cases. It is shorter and simpler. We now use a generating functions approach
which also gives additional insights. For example, the cancellations in the proof in [31] seem to be
a kind of magic at that point, but with the new approach, it is now clear and no surprise anymore
that they have to appear. Besides, the examples investigated in [31, 30] are now presented with
full details. A new part on computational aspects of the computation of Fourier coefficients is
added. Reading strategies for various interests are now outlined in Part I so that readers find their
ways through this article.
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Part I. Introduction

1. Synopsis: The Objects of Interest and the Result

In this paper, we study the asymptotic behaviour of the summatory function of
a q-regular sequence x(n). At this point, we give a short overview of the notion of
q-regular sequences1 and our main result.

One characterisation of a q-regular sequence is as follows: The sequence x(n) is
said to be q-regular if there are square matrices A0, . . . , Aq−1 and a vector-valued
sequence v(n) such that

v(qn+ r) = Arv(n) for 0 ≤ r < q and n ≥ 0

and such that x(n) is the first component of v(n).
Regular sequences are intimately related to the q-ary expansion of their arguments.

They have been introduced by Allouche and Shallit [2]; see also [3, Chapter 16].
Many special cases have been investigated in the literature; this is also due to their
relation to divide-and-conquer algorithms. Moreover, every q-automatic sequence—
those sequences are defined by finite automata—is q-regular as well. Take also a
look at the book [3] for many examples.

Our main result is, roughly speaking, that the summatory function of a q-regular
sequence x(n) has the asymptotic form∑

n<N

x(n) =
J∑
j=1

N logq λj (logN)kj
kj !

Φkj ({logq N}) +O(N logq R) (1.1)

as N → ∞ for a suitable positive integer J , suitable constants λj ∈ C, suitable
non-negative integers kj , a suitable R and q-periodic continuous functions Φkj . The
λj will turn out to be eigenvalues of C := A0 + · · ·+Aq−1, the kj be related to the
multiplicities of these eigenvalues and the constant R will be a bound for the joint
spectral radius of the matrices A0, . . . , Aq−1.

While (1.1) gives the shape of the asymptotic form, gathering as much information
as possible on the periodic fluctuations Φkj is required to have a full picture. To this
aim, we will give a description of the Fourier coefficients of the Φkj which allows to
compute them algorithmically and therefore to describe these periodic fluctuations
with high precision. In particular, this allows to detect non-vanishing fluctuations.
Code2 is provided to compute the Fourier coefficients.

We close this introductory section by noting that the normalized sum 1
N

∑
n<N x(n)

enlightens us about the expectation of a random element of the sequence x(n) with
respect to uniform distribution on the non-negative integers smaller than a certain N .

2. How to Read this Paper

This is a long (and perhaps sometimes technical) paper and not all readers might
find the time to read it from the very beginning to the very end. We therefore
outline reading strategies for various interests.

For the reader who wants to apply our results to a particular problem: Read
Section 3.1 on the definition of q-regular sequences and Section 3.2 containing the
main result in a condensed version which should cover most applications. These
two sections also have a simple, illustrative and well-known running example. If it

1 In the standard literature [2, 3] these sequences are called k-regular sequences (instead of
q-regular sequences).

2The code accompanying this article can be found at https://gitlab.com/dakrenn/
regular-sequence-fluctuations . It is meant to be used with the open source mathematics
software SageMath [39].

https://gitlab.com/dakrenn/regular-sequence-fluctuations
https://gitlab.com/dakrenn/regular-sequence-fluctuations
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turns out that the refined versions of the results are needed, follow the upcoming
paragraph below.

For the reader who still wants to apply our results to a particular problem but finds
the condensed version insufficient, turn to the overview of the results (Section 4.1)
and then continue with Section 6 where the notations and results are stated in full
generality. Formulating them will need quite a number of definitions provided in
Section 6.2. In order to cut straight to the results themselves, we will refrain from
motivations and comments on these definitions and postpone those comments to
Section 7.

For the reader who wants to determine the asympotics of a regular sequence
instead of determining the asymptotics of the summatory function of the regular
sequence, advice is given in Section 3.3.

For the reader who wants to read more about showcase applications of our method
yielding new asymptotic results, additionally to Section 3 read Section 5 where an
overview of the examples in this paper is given and then Part II where these examples
are discussed in detail. For many more examples to which the methods can be
applied, read the original papers [2, 4] and the book by Allouche and Shallit [3]
which contain many examples of q-regular sequences.

For the reader who wants to compute the Fourier coefficients for a particular
application, use the provided code. Read Part IV for more details, in particular, see
Section 19 for some comments on how to decide whether fluctuations are constant
or even vanish.

Moreover, for the reader who is interested in the background on the algorithmic
aspects and details of the implementation of the actual computation, we also refer
to Part IV; this part will also be useful for the reader who wants to review the code
written for SageMath.

For the reader who is interested in the history of the problem, we refer to
Section 4.4.

For the reader who wants to see a heuristic argument why everything works out,
there is Section 4.2 where it is shown that once one does not care about convergence
issues, the Mellin–Perron summation formula of order zero explains the result.

For the reader who wants to understand the idea of the proof, there is Section 4.3
with a high level overview of the proof how the above mentioned convergence issues
with the Mellin–Perron summation formula can be overcome by a pseudo-Tauberian
argument.

For the reader who wants to overcome convergence problems with Mellin–Perron
summation formula in other contexts involving periodic fluctuations, we note that
the pseudo-Tauberian argument (Proposition 14.1) is completely independent of our
application to q-regular sequences; the only prerequisite is the knowledge on the
existence of the fluctuation and sufficient knowledge on analyticity and growth of the
Dirichlet generating function. As a consequence, Theorem E has been formulated
as an independent result and provisions have been made for several applications of
the pseudo-Tauberian argument.

Finally, for the reader who wants to fully understand the proof : We have no
other advice than reading the whole introduction, the whole Section 6 on results
and the whole Part III on the proofs starting with a very short Section 11 where a
few notations used throughout the proofs are fixed.

3. User-friendly Main Result and a First Example Application

3.1. q-Regular Sequences. We start by giving a definition of q-regular sequences;
see Allouche and Shallit [2]. Let q ≥ 2 be a fixed integer and x be a sequence on
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Z≥0.3 Then x is said to be (C, q)-regular (briefly: q-regular or simply regular) if
the C-vector space generated by its q-kernel{

x ◦ (n 7→ qjn+ r) : integers j ≥ 0, 0 ≤ r < qj
}

has finite dimension. In other words, x is q-regular if there is an integer D and
sequences x1, . . . , xD such that for every j ≥ 0 and 0 ≤ r < qj there exist integers
c1, . . . , cD with

x(qjn+ r) = c1x1(n) + · · ·+ cDxD(n) for all n ≥ 0.

By Allouche and Shallit [2, Theorem 2.2], the sequence x is q-regular if and only
if there exists a vector-valued sequence v whose first component coincides with x
and there exist square matrices A0, . . . , Aq−1 ∈ Cd×d such that

v(qn+ r) = Arv(n) for 0 ≤ r < q and n ≥ 0. (3.1)

This is called a q-linear representation of the sequence x.
The best-known example for a 2-regular function is the binary sum-of-digits

function.

Example 3.1. For n ≥ 0, let x(n) = s(n) be the binary sum-of-digits of n. We clearly
have

x(2n) = x(n),
x(2n+ 1) = x(n) + 1

(3.2)

for n ≥ 0. Indeed, we have

x(2jn+ r) = x(n) + x(r) · 1

for integers j ≥ 0, 0 ≤ r < 2j and n ≥ 0; i.e., the complex vector space generated
by the 2-kernel is generated by x and the constant sequence n 7→ 1.

Alternatively, we set v = (x, n 7→ 1)> and have

v(2n) =
(
x(n)

1

)
=
(

1 0
0 1

)
v(n),

v(2n+ 1) =
(
x(n) + 1

1

)
=
(

1 1
0 1

)
v(n)

for n ≥ 0. Thus (3.1) holds with

A0 =
(

1 0
0 1

)
, A1 =

(
1 1
0 1

)
.

At this point, we note that a linear representation (3.1) immediately leads to an
explicit expression for x(n) by induction.

Remark 3.2. Let r`−1 . . . r0 be the q-ary digit expansion4 of n. Then

x(n) = e1Ar0 · · ·Ar`−1v(0)

where e1 =
(
1 0 . . . 0

)
.

3We use a functional notation for sequences, i.e., a sequence x on Z≥0 is seen as function
x : Z≥0 → C.

4 Whenever we write that r`−1 . . . r0 is the q-ary digit expansion of n, we mean that rj ∈
{0, . . . , q− 1} for 0 ≤ j < `, r`−1 6= 0 and n =

∑
0≤j<`

rjq
j . In particular, the q-ary expansion of

zero is the empty word.
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3.2. Condensed Main Result. We are interested in the asymptotic behaviour of
the summatory function X(N) =

∑
0≤n<N x(n).

At this point, we give a simplified version of our results. We choose any vector
norm ‖ · ‖ on Cd and its induced matrix norm. We set C :=

∑
0≤r<q Ar. We

choose R > 0 such that ‖Ar1 · · ·Ar`‖ = O(R`) holds for all ` ≥ 0 and r1, . . . ,
r` ∈ {0, . . . , q − 1}. In other words, R is an upper bound for the joint spectral
radius of A0, . . . , Aq−1. The spectrum of C, i.e., the set of eigenvalues of C, is
denoted by σ(C). For λ ∈ C, let m(λ) denote the size of the largest Jordan block of
C associated with λ; in particular, m(λ) = 0 if λ /∈ σ(C). Finally, we consider the
scalar-valued Dirichlet series X and the vector-valued Dirichlet series V defined by5

X (s) =
∑
n≥1

n−sx(n) and V(s) =
∑
n≥1

n−sv(n)

where v(n) is the vector-valued sequence defined in (3.1). Of course, X (s) is the
first component of V(s). The principal value of the complex logarithm is denoted
by log. The fractional part of a real number z is denoted by {z} := z − bzc.

Theorem A (User-friendly All-In-One Theorem). With the notations above, we
have

X(N) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<m(λ)

(logN)k

k! Φλk({logq N})

+O
(
N logq R(logN)max{m(λ) : |λ|=R}) (3.3)

for suitable 1-periodic continuous functions Φλk. If there are no eigenvalues λ ∈ σ(C)
with |λ| ≤ R, the O-term can be omitted.

For |λ| > R and 0 ≤ k < m(λ), the function Φλk is Hölder continuous with any
exponent smaller than logq(|λ|/R).

The Dirichlet series V(s) converges absolutely and uniformly on compact subsets
of the half plane <s > logq R+ 1 and can be continued to a meromorphic function
on the half plane <s > logq R. It satisfies the functional equation(

I − q−sC
)
V(s) =

∑
1≤n<q

n−sv(n) + q−s
∑

0≤r<q
Ar
∑
k≥1

(
−s
k

)(r
q

)k
V(s+ k) (3.4)

for <s > logq R. The right-hand side of (3.4) converges absolutely and uniformly
on compact subsets of <s > logq R. In particular, V(s) can only have poles where
qs ∈ σ(C).

For λ ∈ σ(C) with |λ| > R, the Fourier series

Φλk(u) =
∑
`∈Z

ϕλk` exp(2`πiu)

converges pointwise for u ∈ R where the Fourier coefficients ϕλk` are defined by the
singular expansion6

x(0) + X (s)
s

�
∑

λ∈σ(C)
|λ|>R

∑
`∈Z

∑
0≤k<m(λ)

ϕλk`(
s− logq λ− 2`πi

log q
)k+1 (3.5)

for <s > logq R.

5 Note that the summatory function X(N) contains the summand x(0) but the Dirichlet series
cannot. This is because the choice of including x(0) into X(N) will lead to more consistent results.

6We use the notion of singular expansion as defined by Flajolet, Gourdon and Dumas [18,
Definition 2]: it is the formal sum of the principal parts of a meromorphic function over all poles
in the domain given.
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This theorem is proved in Section 15. We note:
• We write Φλk({logq N}) to optically emphasise the 1-periodicity; technically,
we have Φλk({logq N}) = Φλk(logq N).
• The arguments in the proof could be used to meromophically continue the

Dirichlet series to the complex plane, but we do not need this result for our
purposes. See [1] for the corresponding argument for automatic sequences.
• Sometimes, it will be convenient to write (3.5) in the equivalent explicit
formulation

ϕλk` = Res
(
x(0) + X (s)

s

(
s− logq λ−

2`πi
log q

)k
, s = logq λ+ 2`πi

log q

)
. (3.6)

In particular, this can be used to algorithmically compute the ϕλk`.
• Computing the Fourier coefficients ϕλk` via the explicit formulation (3.6) by

reliable numerical arithmetic (see Part IV for details) enables us to detect the
non-vanishing of a fluctuation; see also the example below and in Section 8
(on sequences defined by transducers) for examples where the fluctuation
of the leading term is in fact constant. There, additional arguments are
required to actually prove this fact; see Section 19 for more details.

We come back to the binary sum of digits.

Example 3.3 (Continuation of Example 3.1). We have C = A0 + A1 =
(

2 1
0 2
)
.

As A0 is the identity matrix, any product Ar1 · · ·Ar` has the shape Ak1 =
(

1 k
0 1
)

where k is the number of factors A1 in the product. This implies that R with
‖Ar1 · · ·Ar`‖ = O(R`) may be chosen to be any number greater than 1. As C is a
Jordan block itself, we simply read off that the only eigenvalue of C is λ = 2 with
m(2) = 2.

Thus Theorem A yields

X(N) = N(logN) Φ21({log2N}) +N Φ20({log2N})

for suitable 1-periodic continuous functions Φ21 and Φ20.
In principle, we can now use the functional equation (3.4) to obtain the Dirichlet

series X . Due to the fact that one component of v is the constant sequence where
everything is known, it is more efficient to use an ad-hoc calculation for X by
splitting the sum according to the parity of the index and using the recurrence
relation (3.2) for x(n). We obtain

X (s) =
∑
n≥1

x(2n)
(2n)s +

∑
n≥0

x(2n+ 1)
(2n+ 1)s

= 2−s
∑
n≥1

x(n)
ns

+
∑
n≥0

x(n)
(2n+ 1)s +

∑
n≥0

1
(2n+ 1)s

= 2−sX (s) + x(0)
1s +

∑
n≥1

x(n)
(2n)s +

∑
n≥1

x(n)
( 1

(2n+ 1)s −
1

(2n)s
)

+ 2−s
∑
n≥0

1(
n+ 1

2
)s

= 21−sX (s) + 2−s ζ
(
s, 1

2
)

+
∑
n≥1

x(n)
( 1

(2n+ 1)s −
1

(2n)s
)
,

where the Hurwitz zeta function ζ(s, α) :=
∑
n+α>0(n+ α)−s has been used. We

get (
1− 21−s)X (s) = 2−s ζ

(
s, 1

2
)

+
∑
n≥1

x(n)
( 1

(2n+ 1)s −
1

(2n)s
)
. (3.7)
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As the sum of digits is bounded by the length of the expansion, we have x(n) =
O(logn). By combining this estimate with

(2n+ 1)−s − (2n)−s =
∫ 2n+1

2n

( d
dt t
−s
)

dt =
∫ 2n+1

2n
(−s)t−s−1 dt = O

(
|s|n−<s−1),

we see that the sum in (3.7) converges absolutely for <s > 0 and is therefore analytic
for <s > 0.

Therefore, the right-hand side of (3.7) is a meromorphic function for <s > 0
whose only pole is simple and at s = 1 which originates from ζ

(
s, 1

2
)
. Thus, X (s) is

a meromorphic function for <s > 0 with a double pole at s = 1 and simple poles at
1 + 2`πi

log 2 for ` ∈ Z \ {0}.
This gives us

Φ21(u) = ϕ210 = Res
(X (s)(s− 1)

s
, s = 1

)
= Res

(2−s(s− 1)
1− 21−s ζ

(
s, 1

2
)
, s = 1

)
= 1

2(log 2)

(3.8)

by (3.6) and (3.7).
We conclude that

X(N) = 1
2N log2N +N Φ20({log2N}).

We will explain in Part IV how to compute rigorous numerical values for the Fourier
coefficients, in our case those of the fluctuation Φ20 which can be deduced from
(3.7). In this particular case of the binary sum-of-digits, simpler and even explicit
expressions for the Fourier coefficients have been stated and derived by other authors:
They can be obtained in our set-up by rewriting the residues of X (s) in terms of
shifted residues of

∑
n≥1
(
x(n)−x(n−1)

)
n−s and by computing the latter explicitly;

see [32, Proof of Corollary 2.5]. This yields the well-known result by Delange [9].
It will also turn out that (3.8) being a constant function is an immediate conse-

quence of the fact that
(
0 1

)
is a left eigenvector of both A0 and A1 associated

with the eigenvalue 1; see Theorem B.

3.3. Asymptotics of Regular Sequences. This article is written with a focus
on the sequence of partial sums of a regular sequence. In this section, however, we
explain how to use all material for the regular sequence itself.

Let x(N) be a q-regular sequence. We may rewrite it as a telescoping sum

x(N) = x(0) +
∑
n<N

(
x(n+ 1)− x(n)

)
. (3.9)

By [2, Theorems 2.5 and 2.6], the sequence of differences x(n+ 1)− x(n) is again q-
regular. Conversely, it is also well-known that the summatory function of a q-regular
sequence is itself q-regular. (This is an immediate consequence of [2, Theorem 3.1].)

Therefore, we might also start to analyse a regular sequence by considering it to
be the summatory function of its sequence of differences as in (3.9). In this way, we
can apply all of the machinery developed in this article.

We end this short section with some remarks on why focusing on the sequence of
partial sums can be rewarding. When modelling a quantity by a regular sequences,
its asymptotic behaviour is often not smooth, but the asymptotic behaviour of its
summatory function is. Moreover, we will see throughout this work that from a
technical perspective, considering partial sums is appropriate. Therefore, we adopt
this point of view of summatory functions of q-regular sequences throughout this
paper.
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4. Overview of the Full Results and Proofs

4.1. Overview of the Results. We have already seen the main results collected
in a user-friendly simplified version as Theorem A which was written down in a
self-contained way in Section 3.2.

In Theorem B the assumptions are refined. In particular, this theorem uses
the joint spectral radius R of the matrices in a linear representation of the se-
quence (instead of a suitable bound for this quantity in Theorem A). Theorem B
states the contribution of each eigenvalue of the sum C of matrices of the linear
representation—split into the three cases of smaller, equal and larger in absolute
value than R, respectively. This is formulated in terms of generalized eigenvectors.
As a consequence of this precise breakdown of contributions, Theorem C, which
collects the different cases into one result, provides a condition on when the error
term vanishes.

Theorem D brings up the full formulation of the functional equation of the
Dirichlet series associated to our regular sequence. This is accompanied by a
meromorphic continuation as well as bounds on the growth of the Dirichlet series
along vertical lines (i.e., points with fixed real value). The analytic properties
provided by Theorem D will be used to verify the assumptions of Theorem E.

Theorem E is in fact stated and proved very generally: It is not limited to
Dirichlet series coming from matrix products and regular sequences, but it works
for general Dirichlet series provided that periodicity and continuity properties of
the result are known a priori. This theorem handles the Mellin–Perron summation
and the theoretical foundations for the computation of the Fourier coefficients of
the appearing fluctuations.

We want to point out that Theorem E can be viewed as a “successful” version
of the Mellin–Perron summation formula of order zero. In fact, the theorem states
sufficient conditions to provide the analytic justification for the zeroth order formula.

Note that there is another result shown in this article, namely a pseudo-Tauberian
theorem for summing up periodic functions. This is formulated as Proposition 14.1,
and all the details around this topic are collected in Section 14.1. This pseudo-
Tauberian argument is an essential step in proving Theorem E.

4.2. Heuristic Approach: Mellin–Perron Summation. The purpose of this
section is to explain why the formula (3.5) for the Fourier coefficients is expected.
The approach here is heuristic and non-rigorous because we do not have the required
growth estimates. See also [11].

By the Mellin–Perron summation formula of order 0 (see, for example, [19,
Theorem 2.1]), we have∑

1≤n<N
x(n) + x(N)

2 = 1
2πi

∫ max{logq R+2,1}+i∞

max{logq R+2,1}−i∞
X (s)N

s ds
s

.

By Remark 3.2 and the definition of R, we have x(N) = O(Rlogq N ) = O(N logq R).
Adding the summand x(0) to match our definition of X(N) amounts to adding O(1).
Shifting the line of integration to the left—we have no analytic justification that
this is allowed—and using the location of the poles of X claimed in Theorem A yield

X(N) =
∑

λ∈σ(C)
|λ|>R

∑
`∈Z

Res
(X (s)Ns

s
, s = logq λ+ 2`πi

log q

)

+ 1
2πi

∫ logq R+ε+i∞

logq R+ε−i∞
X (s)N

s ds
s

+O(N logq R + 1)
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for some ε > 0. Expanding Ns as

Ns =
∑
k≥0

(logN)k

k! N logq λ+ 2`πi
log q

(
s− logq λ−

2`πi
log q

)k
and assuming that the remainder integral converges absolutely yield

X(N) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<mλ`

(logN)k

k!
∑
`∈Z

ϕλk` exp
(
2`πi logq N

)
+O(N logq R+ε + 1)

where mλ` denotes the order of the pole of X (s)/s at logq λ+ 2`πi
log q and ϕλk` is as in

(3.5). (For λ = 1 and k = 0, the contribution of x(0)/s in (3.5) is absorbed by the
error term O(1) here.)

Summarising, this heuristic approach explains most of the formulæ in Theorem A.
Some details (exact error term and order of the poles) are not explained by this
approach. A result “repairing” the zeroth order Mellin–Perron formula is known as
Landau’s theorem; see [5, § 9]. It is not applicable to our situation due to multiple
poles along vertical lines which then yield the periodic fluctuations. Instead, we
present Theorem E which provides the required justification (not by estimating
the relevant quantities, but by reducing the problem to higher order Mellin–Perron
summation). The essential assumption is that the summatory function can be
decomposed into fluctuations multiplied by some growth factors such as in (3.3).

4.3. High Level Overview of the Proof. As we want to use Mellin–Perron
summation in some form, we derive properties of the Dirichlet series associated to
the regular sequence. In particular, we derive a functional equation which allows to
compute the Dirichlet series and its residues with arbitrary precision (Theorem D).

We cannot directly use Mellin–Perron summation of order zero for computing the
Fourier coefficients of the fluctuations of interest. As demonstrated in Section 4.2,
however, our theorems coincide with the results which Mellin–Perron summation of
order zero would give if the required growth estimates could be provided. Unfortu-
nately, we are unable to prove these required growth estimates. Therefore, we have
to circumvent the problem by applying a generalisation of the pseudo-Tauberian
argument by Flajolet, Grabner, Kirschenhofer, Prodinger and Tichy [19].

In order to use this argument, we have to know that the asymptotic formula
has the shape (3.3). Note that a successful application (not directly possible!) of
Mellin–Perron summation of order zero would give this directly. Therefore, we
first prove (3.3) and the existence of the fluctuations (Theorems B and C). To do
so, we decompose the problem into contributions of the eigenspaces of the matrix
C = A0 + · · ·+Aq−1. The regular sequence is then expressed as a matrix product.
Next, we construct the fluctuations by elementary means: We replace finite sums
occurring in the summatory functions by infinite sums involving digits using the
factorisation as a matrix product.

Then the pseudo-Tauberian argument states that the summatory function of
the fluctuation is again a fluctuation and there is a relation between the Fourier
coefficients of these fluctuations. The Fourier coefficients of the summatory function
of the fluctuation, however, can be computed by Mellin–Perron summation of order
one, so the Fourier coefficients of the original fluctuation can be recovered; see
Theorem E.

4.4. Relation to Previous Work. The asymptotics of the summatory function
of specific examples of regular sequences has been studied in [24], [25], [15]. There,
various methods have been used to show that the fluctuations exist; then the original
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pseudo-Tauberian argument by Flajolet, Grabner, Kirschenhofer, Prodinger and
Tichy [19] is used to compute the Fourier coefficients of the fluctuations.

The first version of the pseudo-Tauberian argument in Theorem E was provided
in [19]: There, no logarithmic factors were allowed, only values κ with <κ > 0 were
allowed and the result contained an error term of o(1) whereas we give a more
precise error estimate in order to allow repeated application.

Dumas [13, 14] proved the first part of Theorem A using dilation equations.
We re-prove it here in a self-contained way because we need more explicit results
than obtained by Dumas (e.g., we need explicit expressions for the fluctuations)
to explicitly get the precise structure depending on the eigenspaces (Theorem B).
Notice that the order of factors in Dumas’ paper is inconsistent between his versions
of (3.1) and Remark 3.2.

A functional equation for the Dirichlet series of an automatic sequence has been
proved by Allouche, Mendès France and Peyrière [1].

In Section 8 we study transducers. The sequences there are defined as the output
sum of transducer automata in the sense of [32]. They are a special case of regular
sequences and are a generalisation of many previously studied concepts. In that
case, much more is known (variance, limiting distribution, higher dimensional input);
see [32] for references and results. A more detailed comparison can be found in
Section 8. Divide and conquer recurrences (see [12] and [33]) can also be seen as
special cases of regular sequences.

The present manuscript gives a unified approach which covers all cases of regular
sequences. As long as the condition on the joint spectral radius are met, the main
asymptotic terms are not absorbed by the error terms. Otherwise, the regular
sequence is so irregular that the summatory function is not smooth enough to allow
a result of this shape.

5. Overview of the Examples

We take a closer look at three particular examples. In this section, we provide
an overview of these examples; all details can be found in Part II.

At first gance it seems that these examples are straight-forward applications of
the results. However, we have to reformulate the relevant questions in terms of
a q-regular sequence and will then provide shortcuts for the computation of the
Fourier series. We put a special effort on the details which gives additional insights
like dependencies on certain residue classes; see Section 5.3. Moreover, the study of
these examples also encourages us to investigate symmetries in the eigenvalues; see
Section 5.4 for an overview and Section 6.6 for general considerations.

We start with transducer automata. Transducers have been chosen in order to
compare the results here with the previously available results [32]. In some sense,
the results complement each other: While the results in [32] also contain information
on the variance and the limiting distribution, our approach here yields more terms
of the asymptotic expansion of the mean, at least in the general case. Also, it is a
class of examples.

We then continue with esthetic numbers. These numbers are an example of an
automatic sequence, therefore can be treated by a transducer. However, it turns out
that the generic results (the results here and in [32]) degenerate: They are too weak
to give a meaningful main term. Therefore a different effort is needed for esthetic
numbers. No precise asymptotic results were known previously.

The example on Pascal’s Rhombus is a choice of a regular sequence where all
components of the vector sequence have some combinatorial meaning. Again, no
precise asymptotic results were known previously.
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Section 5.6 contains further examples. Note that there are the two additional
Sections 5.3 and 5.4 pointing out phenomena appearing in the analysis of our
examples.

5.1. Transducers. The sum T (n) of the output labels of a complete deterministic
finite transducer T when reading the q-ary expansion of an integer n has been
investigated in [32]. As this can be seen as a q-regular sequence, we reconsider
the problem in the light of our general results in this article; see Section 8. For
the summatory function, the main terms corresponding to the eigenvalue q can
be extracted by both results; if there are further eigenvalues larger than the joint
spectral radius, our Corollary F allows to describe more asymptotic terms which
are absorbed by the error term in [32]. Note, however, that our approach here does
not give any readily available information on the variance (this could somehow be
repaired for specific examples because regular sequences are known to form a ring)
nor on the limiting distribution.

5.2. Esthetic Numbers. In this article, we also contribute a precise asymptotic
analysis of q-esthetic numbers; see De Koninck and Doyon [8]. These are numbers
whose q-ary digit expansion satisfies the condition that neighboring digits differ
by exactly one. The sequence of such numbers turns out to be q-automatic, thus
are q-regular and can also be seen as an output sum of a transducer; see the first
author’s joint work with Kropf and Prodinger [32] or Section 8. However, the
asymptotics obtained by using the main result of [32] is degenerated in the sense
that the provided main term and second order term both equal zero; only an error
term remains. On the other hand, using a more direct approach via our main
theorem brings up the actual main term and the fluctuation in this main term.
We also explicitly compute the Fourier coefficients. The full theorem is formulated
in Section 9. Prior to this precise analysis, the authors of [8] only performed an
analysis of esthetic numbers by digit-length (and not by the number itself).

The approach used in the analysis of q-esthetic numbers can easily be adapted to
numbers defined by other conditions on the word of digits of their q-ary expansion.

5.3. Dependence on Residue Classes. The analysis of q-esthetic numbers also
brings another aspect into the light of day, namely a quite interesting dependence
of the behaviour with respect to q on different moduli:

• The dimensions in the matrix approach of [8] need to be increased for certain
residue classes of q modulo 4 in order to get a formulation as a q-automatic
and q-regular sequence, respectively.
• The main result in [8] already depends on the parity of q (i.e., on q modulo 2).
This reflects our Corollary G by having 2-periodic fluctuations (in contrast
to 1-periodic fluctuations in the main Theorem A).
• Surprisingly, the error term in the resulting formula of Corollary G depends
on the residue class of q modulo 3. This can be seen in the spectrum of
the matrix C =

∑
0≤r<q Ar: There is an appearance of an eigenvalue 1 in

certain cases.
• As an interesting side-note: In the spectrum of C, the algebraic multiplicity
of the eigenvalue 0 changes again only modulo 2.

5.4. Symmetrically Arranged Eigenvalues. Fluctuations with longer periods
(like in the second of the four bullet points above) come from a particular configura-
tion in the spectrum of C. Whenever eigenvalues are arranged as vertices of a regular
polygon, then their influence can be collected; this results in periodic fluctuations
with larger period than 1. We elaborate on the influence of such eigenvalues in
Section 6.6. This is then used in the particular cases of esthetic numbers and in
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conjunction with the output sum of transducers. More specifically, in the latter
example this yields the second order term in Corollary F; see also [32].

5.5. Pascal’s Rhombus. Beside esthetic numbers, we perform an asymptotic
analysis of the number of ones in the rows of Pascal’s rhombus. The rhombus is in
some sense a variant of Pascal’s triangle—its recurrence is similar to that of Pascal’s
triangle. It turns out that the number of ones in the rows of Pascal’s rhombus can
be modelled by a 2-regular sequence.

The authors of [22] investigate this number of ones, but only for blocks whose
number of rows is a power of 2. In the precise analysis in Section 10 we not only
obtain the asymptotic formula, we also explicitly compute the Fourier coefficients.

5.6. Further Examples. There are many further examples of specific q-regular
sequences which await precise asymptotic analysis, for example the Stern–Brocot
sequence [37, A002487], the denominators of Farey tree fractions [37, A007306], the
number of unbordered factors of length n of the Thue–Morse sequence (see [23]).

The Stern–Brocot sequence is a typical example: It is defined by x(0) = 0,
x(1) = 1 and

x(2n) = x(n),
x(2n+ 1) = x(n) + x(n+ 1),

(5.1)

i.e., the right-hand sides are linear combinations of shifted versions of the original
sequence.

Note that recurrence relations like (5.1) are not proper linear representations of
regular sequences in the sense of (3.1). The good news, however, is that in general,
such a sequence is q-regular. The following remark formulates this more explicitly.

Remark 5.1. Let x(n) be a sequence such that there are fixed integers ` ≤ 0 ≤ u
and constants crk for 0 ≤ r < q and ` ≤ k ≤ u such that

x(qn+ r) =
∑
`≤k≤u

crkx(n+ k)

holds for 0 ≤ r < q and n ≥ 0. Then the sequence x(n) is q-regular with q-linear
representation for v(n) =

(
x(n+ `′), . . . , x(n), . . . , x(n+ u′)

)> where

`′ =
⌊ q`

q − 1

⌋
, u′ =

⌈ qu

q − 1

⌉
.

Note that if `′ < 0, then a simple permutation of the components of v(n) brings x(n)
to its first component (so that the above is indeed a proper linear representation as
defined in Section 3.1).

By using this remark on (5.1), we set v(n) =
(
x(n), x(n + 1), x(n + 2)

)> and
obtain the 2-linear representation

v(2n) =

1 0 0
1 1 0
0 1 0

 v(n), v(2n+ 1) =

1 1 0
0 1 0
0 1 1

 v(n)

for n ≥ 0 for the Stern–Brocot sequence.

6. Full Results

In this section, we fully formulate our results. As pointed out in Remark 3.2,
regular sequences can essentially be seen as matrix products. Therefore, we will
study these matrix products instead of regular sequences. Theorem A can then be
proved as a simple corollary of the results for matrix products; see Section 15.

https://oeis.org/A002487
https://oeis.org/A007306
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6.1. Problem Statement. Let q ≥ 2, d ≥ 1 be fixed integers and A0, . . . , Aq−1 ∈
Cd×d. We investigate the sequence f of d× d matrices such that

f(qn+ r) = Arf(n) for 0 ≤ r < q, 0 ≤ n with qn+ r 6= 0 (6.1)
and f(0) = I.

Let n be an integer with q-ary expansion r`−1 . . . r0. Then it is easily seen that
(6.1) implies that

f(n) = Ar0 . . . Ar`−1 . (6.2)
We are interested in the asymptotic behaviour of F (N) :=

∑
0≤n<N f(n).

6.2. Definitions and Notations. In this section, we give all definitions and nota-
tions which are required in order to state the results. For the sake of conciseness, we
do not give any motivations for our definitions here; those are deferred to Section 7.

The following notations are essential:
• Let ‖ · ‖ denote a fixed norm on Cd and its induced matrix norm on Cd×d.
• We set Br :=

∑
0≤r′<r Ar′ for 0 ≤ r < q and C :=

∑
0≤r<q Ar.

• The joint spectral radius of A0, . . . , Aq−1 is denoted by

ρ := inf
`

sup
{
‖Ar1 . . . Ar`‖

1/` : r1, . . . , r` ∈ {0, . . . , q − 1}
}
.

If the set of matrices A0, . . . , Aq−1 has the finiteness property, i.e., there is
an ` > 0 such that

ρ = sup
{
‖Ar1 . . . Ar`‖

1/` : r1, . . . , r` ∈ {0, . . . , q − 1}
}
,

then we set R = ρ. Otherwise, we choose R > ρ in such a way that there is
no eigenvalue λ of C with ρ < |λ| ≤ R.
• The spectrum of C, i.e., the set of eigenvalues of C, is denoted by σ(C).
• For a positive integer n0, let Fn0 be the matrix-valued Dirichlet series
defined by

Fn0(s) :=
∑
n≥n0

n−sf(n)

for a complex variable s.
• Set χk := 2πik

log q for k ∈ Z.
In the formulation of Theorem B and Theorem C, the following constants are

needed additionally:
• Choose a regular matrix T such that TCT−1 =: J is in Jordan form.
• Let D be the diagonal matrix whose jth diagonal element is 1 if the jth

diagonal element of J is not equal to 1; otherwise the jth diagonal element
of D is 0.
• Set C ′ := T−1DJT .
• Set K := T−1DT (I − C ′)−1(I −A0).
• For a λ ∈ C, let m(λ) be the size of the largest Jordan block associated
with λ. In particular, m(λ) = 0 if λ 6∈ σ(C).
• For m ≥ 0, set

ϑm := 1
m!T

−1(I −D)T (C − I)m−1(I −A0);

here, ϑ0 remains undefined if 1 ∈ σ(C).7
• Define ϑ := ϑm(1).

All implicit O-constants depend on q, d, the matrices A0, . . . , Aq−1 (and therefore
on ρ), as well as on R.

7 If 1 ∈ σ(C), then the matrix C − I is singular. In that case, ϑ0 will never be used.
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6.3. Decomposition into Periodic Fluctuations. Instead of considering F (N),
it is certainly enough to consider wF (N) for all generalised left eigenvectors w of C,
e.g., the rows of T . The result for F (N) then follows by taking appropriate linear
combinations.
Theorem B. Let w be a generalised left eigenvector of rank m of C corresponding
to the eigenvalue λ.

(1) If |λ| < R, then
wF (N) = wK + (logq N)mwϑm +O(N logq R).

(2) If |λ| = R, then
wF (N) = wK + (logq N)mwϑm +O(N logq R(logN)m).

(3) If |λ| > R, then there are 1-periodic continuous functions Φk : R → Cd,
0 ≤ k < m, such that

wF (N) = wK + (logq N)mwϑm +N logq λ
∑

0≤k<m
(logq N)kΦk({logq N})

for N ≥ qm−1. The function Φk is Hölder continuous with any exponent
smaller than logq|λ|/R.

If, additionally, the left eigenvector w(C − λI)m−1 of C happens to be a
left eigenvector to each matrix A0, . . . , Aq−1 associated with the eigenvalue 1,
then

Φm−1(u) = 1
qm−1(m− 1)!w(C − qI)m−1

is constant.
Here, wK = 0 for λ = 1 and wϑm = 0 for λ 6= 1.

This theorem is proved in Section 12. Note that in general, the three summands
in the theorem have different growths: a constant, a logarithmic term and a term
whose growth depends essentially on the joint spectral radius and the eigenvalues
larger than the joint spectral radius, respectively. The vector w is not directly
visible in front of the third summand; instead, the vectors of its Jordan chain are
part of the function Φk.

Expressing the identity matrix as linear combinations of generalised left eigenval-
ues and summing up the contributions of Theorem B essentially yields the following
corollary.
Theorem C. With the notations above, we have

F (N) =
∑

λ∈σ(C)
|λ|>ρ

N logq λ
∑

0≤k<m(λ)

(logq N)kΦλk({logq N}) + (logq N)m(1)ϑ+K

+O
(
N logq R(logN)max{m(λ) : |λ|=R})

for suitable 1-periodic continuous functions Φλk. If 1 is not an eigenvalue of C,
then ϑ = 0. If there are no eigenvalues λ ∈ σ(C) with |λ| ≤ ρ, then the O-term can
be omitted.

For |λ| > R, the function Φλk is Hölder continuous with any exponent smaller
than logq(|λ|/R).

This theorem is proved in Section 12.4.
Remark 6.1. We want to point out that the condition |λ| > R is inherent in the
problem: Single summands f(n) might be as large as nlogq R and must therefore be
absorbed by the error term in any smooth asymptotic formula for the summatory
function.
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6.4. Dirichlet Series. This section gives the required result on the Dirichlet se-
ries Fn0 . For theoretical purposes, it is enough to study F := F1; for numerical
purposes, however, convergence improves for larger values of n0. This is because for
large n0 and large <s, the value of Fn0(s) is roughly n−s0 f(n0); see also Part IV.

Theorem D. Let n0 be a positive integer. Then the Dirichlet series Fn0(s) converges
absolutely and uniformly on compact subsets of the half plane <s > logq ρ+ 1, thus
is analytic there.

We have (
I − q−sC

)
Fn0(s) = Gn0(s) (6.3)

for <s > logq ρ+ 1 with

Gn0(s) =
∑

n0≤n<qn0

n−sf(n) + q−s
∑

0≤r<q
Ar
∑
k≥1

(
−s
k

)(r
q

)k
Fn0(s+ k). (6.4)

The series in (6.4) converge absolutely and uniformly on compact sets for <s > logq ρ.
Thus (6.3) gives a meromorphic continuation of Fn0(s) to the half plane <s > logq ρ
with possible poles at s = logq λ + χ` for each λ ∈ σ(C) with |λ| > ρ and ` ∈ Z
whose pole order is at most m(λ).

Let δ > 0. For real z, we set
µδ(z) = max{1− (z − logq ρ− δ), 0},

i.e., the linear function on the interval [logq ρ+δ, logq ρ+δ+1] with µδ(logq ρ+δ) = 1
and µδ(logq ρ+ δ + 1) = 0. Then

Fn0(s) = O
(
|=s|µδ(<s)

)
(6.5)

holds uniformly for logq ρ+ δ ≤ <s and |qs − λ| ≥ δ for all eigenvalues λ ∈ σ(C).
Here, the implicit O-constant also depends on δ.

Note that by the introductory remark on Fn0(s), the infinite sum over k in (6.4)
can be well approximated by a finite sum. Detailed error bounds are discussed in
Part IV. Therefore the theorem allows to transfer the information on Fn0(s) for
large <s where convergence is unproblematical to values of s where the convergence
of the Dirichlet series Fn0 itself is bad.

Remark 6.2. By the identity theorem for analytic functions, the meromorphic
continuation of Fn0 is unique on the domain given in the theorem. Therefore, the
bound (6.5) does not depend on the particular expression for the meromorphic
continuation given in (6.3) and (6.4).

Theorem D is proved in Section 13. In the proof we translate the linear repre-
sentation of f into a system of equations involving Fn0(s) and shifted versions like∑
n≥n0

f(n)(n + β)−s. We will have to bound the difference between the shifted
and unshifted versions of the Dirichlet series. These bounds are provided by the
following lemma. It will turn out to be useful to have it as a result listed in this
section and not buried in the proofs sections.

Lemma 6.3. Let D(s) =
∑
n≥n0

d(n)/ns be a Dirichlet series with coefficients
d(n) = O(n− logq R

′
) for all R′ > ρ. Let β ∈ C with |β| < n0 and δ > 0. Set

Σ(s, β,D) :=
∑
n≥n0

d(n)
(n+ β)s −D(s).

Then
Σ(s, β,D) =

∑
k≥1

(
−s
k

)
βkD(s+ k),
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where the series converges absolutely and uniformly on compact sets for <s > logq ρ,
thus Σ(s, β,D) is analytic there. Moreover, with µδ as in Theorem D,

Σ(s, β,D) = O
(
|=s|µδ(<s)

)
as |=s| → ∞ holds uniformly for logq ρ+ δ ≤ <s ≤ logq ρ+ δ + 1.

6.5. Fourier Coefficients. As discussed in Section 4.2, we would like to apply
the zeroth order Mellin–Perron summation formula but need analytic justification.
In the following theorem we prove that whenever it is known that the result is
a periodic fluctuation, the use of zeroth order Mellin–Perron summation can be
justified. In contrast to the remaining parts of the paper, this theorem does not
assume that f(n) is a matrix product.

Theorem E. Let f be a sequence on Z>0, let κ0 ∈ R\Z≤0 and κ ∈ C with <κ > κ0,
δ > 0, q > 1 be real numbers with δ ≤ π/(log q) and δ < <κ − κ0, and let m be
a positive integer. Moreover, let Φj be Hölder continuous (with exponent α with
<κ− κ0 < α ≤ 1) 1-periodic functions for 0 ≤ j < m such that

F (N) :=
∑

1≤n<N
f(n) =

∑
j+k=m−1

0≤j<m

Nκ (logN)k

k! Φj({logq N}) +O(Nκ0) (6.6)

for integers N →∞.
For the Dirichlet series F(s) :=

∑
n≥1 n

−sf(n) assume that

• there is some real number σabs ≥ <κ such that F(s) converges absolutely
for <s > σabs;
• the function F(s)/s can be continued to a meromorphic function for <s >
κ0− δ such that poles can only occur at κ+χ` for ` ∈ Z and such that these
poles have order at most m and a possible pole at 0; the local expansions
are written as

F(s)
s

= 1
(s− κ− χ`)m

∑
j≥0

ϕj`(s− κ− χ`)j (6.7)

with suitable constants ϕj` for j, ` ∈ Z;
• there is some real number η > 0 such that for κ0 ≤ <s ≤ σabs and |s− κ−
χ`| ≥ δ for all ` ∈ Z, we have

F(s) = O
(
|=s|η

)
(6.8)

for |=s| → ∞.
All implicit O-constants may depend on f , q, m, κ, κ0, α, δ, σabs and η.

Then

Φj(u) =
∑
`∈Z

ϕj` exp(2`πiu) (6.9)

for u ∈ R, ` ∈ Z and 0 ≤ j < m.
If κ0 < 0 and κ /∈ 2πi

log qZ, then F(0) = 0.

This theorem is proved in Section 14. The theorem is more general than necessary
for q-regular sequences because Theorem D shows that we could use some 0 < η < 1.
However, it might be applicable in other cases, so we prefer to state it in this more
general form.
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6.6. Fluctuations of Symmetrically Arranged Eigenvalues. In our main re-
sults, the occurring fluctuations are always 1-periodic functions. However, if eigenval-
ues of the sum of matrices of the linear representation are arranged in a symmetric
way, then we can combine summands and get fluctuations with longer periods. This
is in particular true if all vertices of a regular polygon (with center 0) are eigenvalues.

Proposition 6.4. Let λ ∈ C, and let k ≥ 0 and p > 0 be integers. Denote by
Up the set of pth roots of unity. Suppose for each ζ ∈ Up we have a continuous
1-periodic function

Φ(ζλ)(u) =
∑
`∈Z

ϕ(ζλ)` exp(2`πiu)

whose Fourier coefficients are

ϕ(ζλ)` = Res
(
D(s)

(
s− logq(ζλ)− 2`πi

log q

)k
, s = logq(ζλ) + 2`πi

log q

)
for a suitable function D.

Then∑
ζ∈Up

N logq(ζλ)(logq N)kΦ(ζλ)({logq N}) = N logq λ(logq N)kΦ(p{logqp N}) (6.10)

with a continuous p-periodic function

Φ(u) =
∑
`∈Z

ϕ` exp
(2`πi

p
u
)

whose Fourier coefficients are

ϕ` = Res
(
D(s)

(
s− logq λ−

2`πi
p log q

)k
, s = logq λ+ 2`πi

p log q

)
.

Note that we again write Φ(p{logqp N}) to optically emphasise the p-periodicity.
Moreover, the factor (logq N)k in (6.10) could be cancelled, however it is there to
optically highlight the similarities to the main results (e.g. Theorem A). The proof
of Proposition 6.4 can be found in Section 16.

The above proposition will be used for proving Corollary F which deals with
transducer automata; there, the second order term exhibits a fluctuation with
possible period larger than 1. We will also use the proposition for the analysis of
esthetic numbers in Section 9.

Remark 6.5. We can view Proposition 6.4 from a different perspective: A q-regular
sequence is qp-regular as well (by [2, Theorem 2.9]). Then, all eigenvalues ζλ of the
original sequence become eigenvalues λp whose algebraic multiplicity is the sum of
the individual multiplicities but the sizes of the corresponding Jordan blocks do
not change. Moreover, the joint spectral radius is also taken to the pth power. We
apply, for example, Theorem A in our qp-world and get again 1-period fluctuations.
Note that for actually computing the Fourier coefficients, the approach presented in
the proposition seems to be more suitable.

7. Remarks on the Definitions

In this section, we give some motivation for and comments on the definitions
listed in Section 6.2.
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7.1. q-Regular Sequences vs. Matrix Products. We note one significant dif-
ference between the study of q-regular sequences as in (3.1) and the study of matrix
products (6.2). The recurrence (3.1) is supposed to hold for qn + r = 0, too;
i.e. v(0) = A0v(0). This implies that v(0) is either the zero vector (which is not
interesting at all) or that v(0) is a right eigenvector of A0 associated with the
eigenvalue 1.

We do not want to impose this condition in the study of the matrix product (6.2).
Therefore, we exclude the case qn+ r = 0 in (6.1). This comes at the price of the
terms K, ϑm, ϑ in Theorem B which vanish if multiplied by a right eigenvector
to the eigenvalue 1 of A0 from the right. This is the reason why Theorem A has
simpler expressions than those encountered in Theorem B.

7.2. Joint Spectral Radius. Let

ρ` := sup
{
‖Ar1 . . . Ar`‖

1/` : r1, . . . , r` ∈ {0, . . . , q − 1}
}
.

Then the submultiplicativity of the norm and Fekete’s subadditivity lemma [16]
imply that lim`→∞ ρ` = inf`>0 ρ` = ρ; cf. [38]. In view of equivalence of norms,
this shows that the joint spectral radius does not depend on the chosen norm. For
our purposes, the important point is that the choice of R ensures that there is an
`0 > 0 such that ρ`0 ≤ R, i.e., ‖Ar1 . . . Ar`0 ‖ ≤ R`0 for all rj ∈ {0, . . . , q − 1}. For
any ` > 0, we use long division to write ` = s`0 + r, and by submultiplicativity of
the norm, we get ‖Ar1 . . . Ar`‖ ≤ Rs`0ρrr and thus

‖Ar1 . . . Ar`‖ = O(R`) (7.1)
for all rj ∈ {0, . . . , q − 1} and ` → ∞. We will only use (7.1) and no further
properties of the joint spectral radius. Note that (6.2) and (7.1) imply that

f(n) = O(Rlogq n) = O(nlogq R)
for n→∞.

As mentioned, we say that the set of matrices A0, . . . , Aq−1, has the finiteness
property if there is an ` > 0 with ρ` = ρ; see [35, 36].

7.3. Constants for Theorem B. In contrast to usual conventions, we write matrix
representations of endomorphisms as multiplications x 7→ xM where x is a (row)
vector in Cd and M is a matrix. Note that we usually denote this endomorphism by
the corresponding calligraphic letter, for example, the endomorphism represented
by the matrix M is denoted byM.

Consider the endomorphism C which maps a row vector x ∈ Cd to xC and its
generalised eigenspaces Wλ for λ ∈ C. (These are the generalised left eigenspaces
of C. If λ /∈ σ(C), then Wλ = {0}.) Then it is well-known that C|Wλ

is an
endomorphism of Wλ and that Cd =

⊕
λ∈σ(C)Wλ. Let T be the basis formed by

the rows of T . Then the matrix representation of C with respect to T is J .
Let now D be the endomorphism of Cd which acts as identity on Wλ for λ 6= 1

and as zero on W1. Its matrix representation with respect to the basis T is D; its
matrix representation with respect to the standard basis is T−1DT .

Finally, let C′ be the endomorphism C′ = C ◦ D. As C and D decompose along
Cd =

⊕
λ∈σ(C)Wλ and D commutes with every other endomorphism on Wλ for all

λ, we clearly also have C′ = D◦C. Thus the matrix representation of C′ with respect
to T is DJ = JD; its matrix representation with respect to the standard basis is
T−1DJT = C ′.

Now consider a generalised left eigenvector w of C. If it is associated to the
eigenvalue 1, then wT−1DT = D(w) = 0, wK = 0 and wC ′ = C′(w) = 0. Otherwise,
that is, if w is associated to an eigenvalue not equal to 1, we have wT−1DT =
D(w) = w, wC ′ = C′(w) = C(w) = wC, wC ′j = C′j(w) = Cj(w) = wCj for j ≥ 0
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and wϑm = 0. Also note that 1 is not an eigenvalue of C ′, thus I − C ′ is indeed
regular. If 1 is not an eigenvalue of C, then everything is simpler: D is the identity
matrix, C ′ = C, K = (I − C)−1(I −A0) and ϑ = 0.

Part II. Examples

In this part we investigate three examples in-depth. For an overview, we refer to
Section 5 where some of the appearing phenomena are discussed as well. Further
examples are also mentioned there.

8. Sequences Defined by Transducer Automata

We discuss the asymptotic analysis related to transducers; see also Section 5.1
for an overview.

8.1. Transducer and Automata. Let us start with two paragraphs recalling
some notions around transducer automata. A transducer automaton has a finite
set of states together with transitions (directed edges) between these states. Each
transition has an input label and an output label out of the input alphabet and the
output alphabet, respectively. A transducer is said to be deterministic and complete if
for every state and every letter of the input alphabet, there is exactly one transition
starting in this state with this input label.

A deterministic and complete transducer processes a word (over the input alpha-
bet) in the following way:

• It starts at its unique initial state.
• Then the transducer reads the word letter by letter and for each letter

– takes the transition with matching input label,
– the output label is written, and
– we proceed to the next state (according to the end of the transition).

• Each state has a final output label that is written when we halt in this final
state; we call a transducer with this property a subsequential transducer.

We refer to [6, Chapter 1] for a more detailed introduction to transducers and
automata.

Now we are ready to start with the set-up for our example.

8.2. Sums of Output Labels. Let q ≥ 2 be a positive integer. We consider a
complete deterministic subsequential transducer T with input alphabet {0, . . . , q−1}
and output alphabet C; see [32]. For a non-negative integer n, let T (n) be the
sum of the output labels (including the final output label) encountered when the
transducer reads the q-ary expansion of n. Therefore, letters of the input alphabet
will from now on be called digits.

This concept has been thoroughly studied in [32]: There, T (n) is considered
as a random variable defined on the probability space {0, . . . , N − 1} equipped
with uniform distribution. The expectation in this model corresponds (up to a
factor of N) to our summatory function

∑
0≤n<N T (n). We remark that in [32],

the variance and limiting distribution of the random variable T (n) have also been
investigated. Most of the results there are also valid for higher dimensional input.

The purpose of this section is to show that T (n) is a q-regular sequence and
to see that the corresponding results in [32] also follow from our more general
framework here. We note that the binary sum of digits considered in Example 3.1
is the special case of q = 2 and the transducer consisting of a single state which
implements the identity map. For additional special cases of this concept; see [32].
Note that our result here for the summatory function contains (fluctuating) terms
for all eigenvalues λ of the adjacency matrix of the underlying digraph with |λ| > 1
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whereas in [32] only contributions of those eigenvalues λ with |λ| = q are available,
all other contributions are absorbed by the error term there.

8.3. Some Perron–Frobenius Theory. We will need the following consequence
of Perron–Frobenius theory. By a component of a digraph we always mean a strongly
connected component. We call a component final if there are no arcs leaving the
component. The period of a component is the greatest common divisor of its cycle
lengths. The final period of a digraph is the least common multiple of the periods
of its final components.

Lemma 8.1. Let D be a directed graph where each vertex has outdegree q. Let M
be its adjacency matrix and p be its final period. Then M has spectral radius q, q is
an eigenvalue of M and for all eigenvalues λ of M of modulus q, the algebraic and
geometric multiplicities coincide and λ = qζ for some pth root of unity ζ.

This lemma follows from setting t = 0 in [32, Lemma 2.3]. As [32, Lemma 2.3]
proves more than we need here and depends on the notions of that article, we extract
the relevant parts of [32] to provide a self-contained (apart from Perron–Frobenius
theorem) proof of Lemma 8.1.

Proof. As usual, the condensation of D is the graph resulting from contracting each
component of the original digraph to a single new vertex. By construction, the
condensation is acyclic.

We choose a refinement of the partial order of the components given by the
successor relation in the condensation to a linear order in such a way that the
final components come last. Note that this implies that if there is an arc from one
component to another, the former component comes before the latter component in
our linear order. We then denote the components by C1, . . . , Ck, Ck+1, . . . , Ck+`
where the first k components are non-final and the last ` are final. Without loss of
generality, we assume that the vertices of the original digraph D are labeled such
that vertices within a component get successive labels and such that the linear order
of the components established above is respected.

Therefore, the adjacency matrix M is an upper block triagonal matrix of the
shape

M =



M1 ? ? ? ? ?
0 . . . ? ? ? ?
0 0 Mk ? ? ?
0 0 0 Mk+1 0 0
0 0 0 0 . . . 0
0 0 0 0 0 Mk+`


where Mj is the adjacency matrix of the component Cj .

Each row of the non-negative square matrix M has sum q by construction. Thus
‖M‖∞ = q and therefore the spectral radius of M is bounded from above by q. As
the all ones vector is obviously a right eigenvector associated with the eigenvalue q
of M , the spectral radius of M equals q. The same argument applies to Mk+1, . . . ,
Mk+`.

By construction, the matrices Mk+1, . . . , Mk+` are irreducible. For 1 ≤ j ≤ ` all
eigenvalues λ of Mk+j of modulus q have algebraic and geometric multiplicities 1
by Perron–Frobenius theory and λ = qζ for some pk+jth root of unity ζ where pk+j
is the period of Ck+j .

By construction, the vertices of the components Cj for 1 ≤ j ≤ k have out-degree
at most q. We add loops to these vertices to increase their out-degree to q, resulting
in C̃j . The corresponding adjacency matrices are denoted by M̃j . By the above
argument, M̃j has spectral radius q for 1 ≤ j ≤ k. As Mj ≤ M̃j (component-wise)
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and Mj 6= M̃j by construction, the spectral radius of Mj is strictly less than q by
[21, Theorem 8.8.1].

A left eigenvector vj of Mk+j for 1 ≤ j ≤ ` can easily be extended to a left
eigenvector (0, . . . , 0, vj , 0, . . . , 0) of M . This observation shows that the geometric
multiplicity of any eigenvalue of M of modulus q is at least its algebraic multiplicity.
This concludes the proof. �

8.4. Analysis of Output Sums of Transducers. We consider the states of T
to be numbered by {1, . . . , d} for some positive integer d ≥ 1 such that the initial
state is state 1. We set Tj(n) to be the sum of the output labels (including the final
output label) encountered when the transducer reads the q-ary expansion of n when
starting in state j. By construction, we have T (n) = T1(n) and Tj(0) is the final
output label of state j. We set y(n) =

(
T1(n), . . . , Td(n)

)
. For 0 ≤ r < q, we define

the d× d-dimensional {0, 1}-matrix Pr in such a way that there is a one in row j,
column k if and only if there is a transition from state j to state k with input label
r. The vector or is defined by setting its jth coordinate to be the output label of
the transition from state j with input label r.

For n0 ≥ 1, we set

X (s) =
∑
n≥1

n−sT (n), Yn0(s) =
∑
n≥n0

n−sy(n), ζn0(s, α) =
∑
n≥n0

(n+ α)−s.

The last Dirichlet series is a truncated version of the Hurwitz zeta function.

Corollary F. Let T be a transducer as described at the beginning of this section. Let
M be the adjacency matrix and p be the final period of the underlying digraph. For
λ ∈ C let m(λ) be the size of the largest Jordan block associated with the eigenvalue
λ of M .

Then the sequence n 7→ T (n) is a q-regular sequence and∑
0≤n<N

T (n) = eTN logq N +NΦ(logq N)

+
∑

λ∈σ(M)
1<|λ|<q

N logq λ
∑

0≤k<m(λ)

(logq N)kΦλk(logq N)

+O
(
(logN)max{m(λ) : |λ|=1})

(8.1)

for some continuous p-periodic function Φ, some continuous 1-periodic functions Φλk
for λ ∈ σ(M) with 1 < |λ| < q and 0 ≤ k < m(λ) and some constant eT .

Furthermore,

Φ(u) =
∑
`∈Z

ϕ` exp
(2`πi

p
u
)

with

ϕ` = Res
(X (s)

s
, s = 1 + 2`πi

p log q

)
for ` ∈ Z. The Fourier series expansion of Φλk for λ ∈ σ(M) with 1 < |λ| < q is
given in Theorem A.

The Dirichlet series Yn0 satisfies the functional equation(
I − q−sM

)
Yn0(s) =

∑
n0≤n<qn0

n−sy(n) + q−s
∑

0≤r<q
ζn0

(
s, rq
)
or

+ q−s
∑

0≤r<q
Pr
∑
k≥1

(
−s
k

)(r
q

)k
Yn0(s+ k).

(8.2)
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Note that the functional equation (8.2) is preferrable over the functional equation
given in Theorem D for the generic case of a regular sequence: The generic functional
equation suggests a double pole at s = 1 + χ` for all ` ∈ Z whereas the occurrence
of the Hurwitz zeta function in (8.2) shows that there is a double pole s = 1 but
single poles at s = 1 + χ` for all ` ∈ Z \ {0}. Numerically, the same occurrence of
the Hurwitz zeta function is also advantageous because it allows to decouple the
problem.

8.5. Proof of Corollary F.

Proof of Corollary F. The proof is split into several steps.

Recursive Description. We set v(n) =
(
T1(n), . . . , Td(n), 1

)>. For 1 ≤ j ≤ d and
0 ≤ r < q, we define t(j, r) and o(j, r) to be the target state and output label of the
unique transition from state j with input label r, respectively. Therefore,

Tj(qn+ r) = Tt(j,r)(n) + o(j, r) (8.3)

for 1 ≤ j ≤ d, n ≥ 0, 0 ≤ r < q with qn+ r > 0.
For 0 ≤ r < q, define Ar = (arjk)1≤j, k≤d+1 by

arjk =


[t(j, r) = k] if j, k ≤ d,
o(j, r) if j ≤ d, k = d+ 1,
[k = d+ 1] if j = d+ 1.

Then (8.3) is equivalent to
v(qn+ r) = Arv(n)

for n ≥ 0, 0 ≤ r < q with qn+ r > 0. Defining f(n) as in (6.1) for these Ar, we see
that v(n) = f(n)v(0).

q-Regular Sequence. If we insist on a proper formulation as a regular sequence, we
rewrite (8.3) to

Tj(qn+ r) = Tt(j,r)(n) + o(j, r) + [r = 0][n = 0]
(
Tj(0)− Tt(j,0)(0)− o(j, 0)

)
(8.4)

for 1 ≤ j ≤ d, n ≥ 0, 0 ≤ r < q. Setting ṽ(n) =
(
T1(n), . . . , Td(n), 1, [n = 0]

)
and

Ãr = (ãrjk)1≤j, k≤d+2 with

ãrjk =



[t(j, r) = k] if j, k ≤ d,
o(j, r) if j ≤ d, k = d+ 1,
[r = 0]

(
Tj(0)− Tt(j,0)(0)− o(j, 0)

)
if j ≤ d, k = d+ 2,

[k = d+ 1] if j = d+ 1,
[k = d+ 2][r = 0] if j = d+ 2,

the system (8.4) is equivalent to

ṽ(qn+ r) = Ãrṽ(n)

for n ≥ 0, 0 ≤ r < q.

Eigenvalue 1. By construction, the matrices Ar have the shape

Ar =
(
Pr or
0 1

)
.

It is clear that (0, . . . , 0, 1) is a left eigenvector of Ar associated with the eigenvalue 1.

Joint Spectral Radius. We claim that A0, . . . , Aq−1 have joint spectral radius 1.
Let ‖ · ‖∞ denote the maximum norm of complex vectors as well as the induced
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matrix norm, i.e., the maximum row sum norm. Let j1, . . . , j` ∈ {0, . . . , q − 1}. It
is easily shown by induction on ` that

Aj1 · · ·Aj` =
(
P bP
0 1

)
for some P ∈ Cd×d and bP ∈ Cd with ‖P‖∞ ≤ 1 and ‖bP ‖∞ ≤ `max0≤r<q‖or‖∞.
Thus, we obtain

‖Aj1 · · ·Aj`‖∞ ≤ 1 + ` max
0≤r<q

‖or‖∞.

As 1 is an eigenvalue of each matrix Ar for 0 ≤ r < q, the joint spectral radius
equals 1, which proves the claim.

Eigenvectors and Asymptotics. We now consider C =
∑

0≤r<q Ar. It has the shape

C =
(
M bM
0 q

)
where bM is some complex vector.

Let w1, . . . , w` be a linearly independent system of left eigenvectors of M
associated with the eigenvector q. If wjbM = 0 for 1 ≤ j ≤ `, then (w1, 0), . . . ,
(w`, 0), (0, 1) is a linearly independent system of left eigenvectors of C associated with
the eigenvalue q. In that case and because of Lemma 8.1, algebraic and geometric
multiplicities of q as an eigenvalue of C are both equal to `+ 1.

Otherwise, assume without loss of generality that w1bM = 1. Then(
w2 − (w2bM )w1, 0

)
, . . . ,

(
w` − (w`bM )w1, 0

)
,
(
0, 1
)

is a linearly independent system of left eigenvectors of C associated with the
eigenvalue q. Additionally, (w1, 0) is a generalised left eigenvector of rank 2 of C
associated with the eigenvalue q with (w1, 0)(C − qI) = (0, 1). As noted above, the
vector (0, 1) is a left eigenvector to each matrix A0, . . . , Aq−1.

Similarly, it is easily seen that any left eigenvector of M associated with some
eigenvalue λ 6= q can be extended uniquely to a left eigenvector of C associated with
the same eigenvalue. The same is true for chains of generalised left eigenvectors
associated with λ 6= q.

Therefore, in both of the above cases, Theorem B yields∑
0≤n<N

T (N) = eTN logq N +
∑
ζ∈Up

N logq(qζ)Φ(qζ)({logq N})

+
∑

λ∈σ(M)
1<|λ|<q

N logq λ
∑

0≤k<m(λ)

(logq N)kΦλk(logq N)

+O
(
(logN)max{m(λ) : |λ|=1})

for some constant eT (which vanishes in the first case) and some 1-periodic continuous
functions Φ(qζ) and Φλk where ζ runs through the pth roots of unity Up and λ
through the eigenvalues of M with 1 < |λ| < q and 0 ≤ k < m(λ).

Proposition 6.4 leads to (8.1).

Fourier Coefficients. By Theorem A, we have

Φ(qζ)(u) =
∑
`∈Z

ϕ(qζ)` exp(2`πiu)

with

ϕ(qζ)` = Res
(T (0) + X (s)

s
, s = 1 + logq ζ + 2`πi

log q

)
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Figure 9.1. Automaton A recognizing esthetic numbers.

for a pth root of unity ζ ∈ Up and ` ∈ Z. Therefore and by noting that T (0) does
not contribute to the residue, Proposition 6.4 leads to the Fourier series given in
the corollary.

Functional Equation. By (8.3), we have

Yn0(s) =
∑

n0≤n<qn0

n−sy(n) +
∑
n≥n0

∑
0≤r<q

(qn+ r)−sy(qn+ r)

=
∑

n0≤n<qn0

n−sy(n) +
∑
n≥n0

∑
0≤r<q

(qn+ r)−s
(
Pry(n) + or

)
=

∑
n0≤n<qn0

n−sy(n) + q−s
∑

0≤r<q
Pr
∑
n≥n0

(
n+ r

q

)−s
y(n)

+ q−s
∑

0≤r<q
ζn0

(
s, rq
)
or.

Using Lemma 6.3 yields the result. �

9. Esthetic Numbers

We discuss the asymptotic analysis of esthetic numbers; see also Section 5.2 for
an overview.

Let again be q ≥ 2 a fixed integer. We call a non-negative integer n a q-esthetic
number (or simply an esthetic number) if its q-ary digit expansion r`−1 . . . r0 satisfies
|rj − rj−1| = 1 for all j ∈ {1, . . . , `− 1}; see De Koninck and Doyon [8].

In [8] the authors count q-esthetic numbers with a given length of their q-ary
digit expansion. They provide an explicit (in form of a sum of q summands) as well
as an asymptotic formula for these counts. We aim for a more precise analysis and
head for an asymptotic description of the amount of q-esthetic numbers up the an
arbitrary value N (in contrast to only powers of q in [8]).

9.1. A q-Linear Representation. The language consisting of the q-ary digit
expansions (seen as words of digits) which are q-esthetic is a regular language,
because it is recognized by the automaton A in Figure 9.1. Therefore, the indicator
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sequence of this language, i.e., the nth entry is 1 if n is q-esthetic and 0 otherwise is a
q-automatic sequence and therefore also q-regular. Let us name this sequence x(n).

Let A0, . . . , Aq−1 be the transition matrices of the automaton A, i.e., Ar is the
adjacency matrix of the directed graph induced by a transition with digit r. To
make this more explicit, we have the following (q + 1)-dimensional square matrices:
Each row and column corresponds to the states 0, 1, . . . , q− 1, I. In matrix Ar, the
only non-zero entries are in column r ∈ {0, 1, . . . , q − 1}, namely 1 in the rows r − 1
and r + 1 (if available) and in row I as there are transitions from these states to
state r in the automaton A.

Let us make this more concrete by considering q = 4. We obtain the matrices

A0 =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 , A1 =


0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0

 ,

A2 =


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0

 , A3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0

 .

We are almost at a q-linear representation of our sequence; we still need vectors
on both sides of the matrix products. We have

x(n) = eq+1Ar0 · · ·Ar`−1v(0)

for r`−1 . . . r0 being the q-ary expansion of n and vectors eq+1 =
(
0 . . . 0 1

)
and

v(0) =
(
0 1 . . . 1

)>. As A0v(0) = 0 6= v(0), this is not a linear representation
of a regular sequence. Thus we cannot use Theorem A, but need to use Theorem B.
However, the difference is slight: we simply cannot omit the contributions of the
constant vector Kv(0). However, it will turn out that the joint spectral radius is 1,
so the contribution will be absorbed by the error term anyway.

To see that the above holds, we have two different interpretations: The first is
that the row vector

w(n) = eq+1Ar0 · · ·Ar`−1

is the unit vector corresponding to the most significant digit of the q-ary expansion
of n or, in view of the automaton A, corresponding to the final state. Note that we
read the digit expansion from the least significant digit to the most significant one
(although it would be possible the other way round as well). We have w(0) = eq+1
which corresponds to the empty word and being in the initial state I in the
automaton. The vector v(0) corresponds to the fact that all states of A except 0
are accepting.

The other interpretation is: The rth component of the column vector

v(n) = Ar0 · · ·Ar`−1v(0)

has the following two meanings:
• In the automaton A, we start in state r and then read the digit expansion

of n. The rth component is then the indicator function whether we remain
esthetic, i.e., end in an accepting state.
• To a word ending with r we append the digit expansion of n. The rth
component is then the indicator function whether the result is an esthetic
word.
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At first glance, our problem here seems to be a special case of the transducers
studied in Section 8. However, the automaton A is not complete. Adding a sink
to have a formally complete automaton, however, adds an eigenvalue q and thus
a much larger dominant asymptotic term, which would then be multiplied by 0.
Therefore, the results of [32] do not apply to this case here.

9.2. Full Asymptotics. We now formulate our main result for the amount of
esthetic numbers smaller than a given integer N . We abbreviate this amount by

X(N) =
∑

0≤n<N
x(n)

and have the following corollary.

Corollary G. Fix an integer q ≥ 2. Then the number X(N) of q-esthetic numbers
smaller than N is

X(N) =
∑

j∈{1,2,...,d q−2
3 e}

N logq(2 cos(jπ/(q+1)))Φj(2{logq2 N})

+O
(
(logN)[q≡−1 (mod 3)]) (9.1)

with 2-periodic continuous functions Φj. Moreover, we can effectively compute the
Fourier coefficients of each Φj (as explained in Part IV). If q is even, then the
functions Φj are actually 1-periodic. If q is odd, then the functions Φj for even j
vanish.

If q = 2, then the corollary results in X(N) = O(logN). However, for each length,
the only word of digits satisfying the esthetic number condition has alternating
digits 0 and 1, starting with 1 at its most significant digit. The corresponding
numbers n form the so-called Lichtenberg sequence [37, A000975].

Back to a general q: For the asymptotics, the main quantities influencing the
growth are the eigenvalues of the matrix C = A0 + · · · + Aq−1. Continuing our
example q = 4 above, this matrix is

C = A0 +A1 +A2 +A3 =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
1 1 1 1 0

 ,

and its eigenvalues are ±2 cos(π5 ) = ± 1
2
(√

5 + 1
)

= ±1.618 . . . , ±2 cos( 2π
5 ) =

± 1
2
(√

5 − 1
)

= ±0.618 . . . and 0, all with algebraic and geometric multiplicity 1.
Therefore it turns out that the growth of the main term is N log4(

√
5+1)− 1

2 = N0.347...,
see Figure 9.2. The first few Fourier coefficients are shown in Table 9.1.

9.3. Eigenvectors. Before proving Corollary G, we collect information on the
eigenvalues of C.

The matrix C = A0 + · · ·+Aq−1 has a block decomposition into

C =
(
M 0
1 0

)
for vectors 0 (vector of zeros) and 1 (vector of ones) of suitable dimension. Therefore,
one eigenvalue of C is 0 and the others are the eigenvalues of M .

https://oeis.org/A000975
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4.75

5.00

9 10 11 12

Figure 9.2. Fluctuation in the main term of the asymptotic ex-
pansion of X(N) for q = 4. The figure shows Φ1(u) (red) approx-
imated by its trigonometric polynomial of degree 1999 as well as
X(4u)/Nu(log4(

√
5+1)− 1

2 ) (blue).

` ϕ1`

0 4.886821584515
1 0.036565359077− 0.012421753685i
2 0.0131103199420− 0.017152133508i
3 −0.0023895069366− 0.0506880727105i
4 −0.017328669452 + 0.025036392542i
5 0.011186380630− 0.0066357472861i
6 0.0086354015002 + 0.018593736873i
7 −0.014899262928 + 0.0297436287202i
8 −0.003867454968 + 0.0064534688733i
9 0.0033747695643 + 0.006159612843i

10 −0.002149675882 + 0.006474570022i

Table 9.1. Fourier coefficients of Φ1 for q = 4 (Corollary G). All
stated digits are correct; see also Part IV.

In contrast to [8, Sections 4 and 5], we use the Chebyshev polynomials89 Un of
the second kind defined by

U0(X) = 1, U1(X) = 2X, Un+1(X) = 2X Un(X)− Un−1(X)

for n ≥ 1. It is well-known that

Un(cosϕ) = sin((n+ 1)ϕ)
sin(ϕ) (9.2)

and, as a consequence, the roots of Un are given by

cos
( kπ

n+ 1

)
, 1 ≤ k ≤ n,

for n ≥ 1.
The following lemma is similar to [8, Proposition 3].

Lemma 9.1. Let v 6= 0 be a vector and λ ∈ C.

8Chebyshev polynomials are frequently occurring phenomena in lattice path analysis, see for
instance [7, 17]. We have such a lattice path here, so their appearance is not surprising.

9Up to replacing 2X by X, the polynomials Un used here correspond to the polynomials pn

used in [8].
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Then v is an eigenvector to the eigenvalue λ of M if and only if λ = 2 cos( kπ
q+1 )

for some 1 ≤ k ≤ q and

v =
(
Uj

(λ
2

))
0≤j<q

(up to a scalar factor).
In particular, 0 is an eigenvalue of M if and only if q is odd.

Proof. See the statement and the proof of [8, Proposition 3]. �

Lemma 9.2. Let 1 ≤ k ≤ q, λ = 2 cos(kπ/(q + 1)) and v be an eigenvector of M
to λ. Then 〈1, v〉 = 0 holds if and only if k is even.

Proof. We write ϕ := kπ/(q+ 1). By Lemma 9.1 and (9.2) and a summation similar
to the Dirichlet kernel, we have

〈1, v〉 =
∑

0≤j<q
Uj(cosϕ)

= 1
sinϕ

∑
0≤j<q

sin((j + 1)ϕ)

= 1
sinϕ=

∑
0≤j<q

exp(iϕ)j+1

= 1
sinϕ=

(
exp(iϕ)1− exp(iqϕ)

1− exp(iϕ)

)
= 1

sinϕ=
(

exp
( i(q + 1)ϕ

2

)exp
(
− iqϕ2

)
− exp

(
iqϕ
2
)

exp
(
− iϕ2

)
− exp

(
iϕ
2
) )

=
sin
(
qϕ
2
)

sinϕ sin
(
ϕ
2
)= exp

( i(q + 1)ϕ
2

)
=

sin
(
qϕ
2
)

sin
( (q+1)ϕ

2
)

sinϕ sin
(
ϕ
2
) .

Inserting the value of ϕ leads to

〈1, v〉 =
sin
(

qkπ
2(q+1)

)
sin
(
kπ
2
)

sin
(
kπ
q+1
)

sin
(

kπ
2(q+1)

) .
For 1 ≤ k ≤ q, it is clear that 0 < kπ/(q + 1) < π and 0 < kπ/(2(q + 1)) < π, so
the denominator of this fraction is non-zero. We also claim that sin

(
qkπ

2(q+1)
)
6= 0:

Otherwise, we have 2(q + 1) | qk, hence q + 1 | qk, which implies that q + 1 | k
because gcd(q, q + 1) = 1. However, it cannot be that q + 1 | k because 1 ≤ k ≤ q.

As a consequence, 〈1, v〉 = 0 if and only if k/2 is an integer. �

Lemma 9.3. The characteristic polynomial of C is

X
∏

1≤k≤q

(
X − 2 cos

( kπ

q + 1

))
.

In particular, all eigenvalues of M apart from 0 are eigenvalues of C with algebraic
multiplicity 1. If q is even, then 0 has algebraic multiplicity 1 as an eigenvalue of C;
if q is odd, then 0 has algebraic multiplicity 2 as an eigenvalue of C.

Proof. The matrix C is a block lower triangular matrix, so the characteristic
polynomial is the product of the characteristic polynomials of the matrices M and 0.

The statement on the algebraic multiplicities follows from Lemma 9.1. �
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We can summarise our findings on the eigenvectors and eigenvalues of C as
follows.

Proposition 9.4. Let v ∈ Cq, w ∈ C, not both 0, and let λ ∈ C.
Then

(
v
w

)
6= 0 is an eigenvector of C to the eigenvalue λ if and only if one of

the following conditions hold:
(1) 0 6= λ = 2 cos

(
kπ
q+1
)
for some 1 ≤ k ≤ q and k 6= q+1

2 , v is an eigenvector of
M to λ, and w = 0 if k is even and λw = 〈1, v〉 6= 0 if k is odd;

(2) λ = 0, v = 0, w 6= 0;
(3) λ = 0, q ≡ 3 (mod 4), v is an eigenvector of M and w = 0.
In particular, the eigenvalue λ = 0 of C has
• algebraic and geometric multiplicity 2 if q ≡ 3 (mod 4),
• algebraic multiplicity 2 and geometric multiplicity 1 if q ≡ 1 (mod 4), and
• algebraic and geometric multiplicity 1 for even q.

Proof. The vector
(
v
w

)
is an eigenvector if and only if

Mv = λv,

〈1, v〉 = λw.

First assume that λ 6= 0. Then v = 0 leads to w = 0, contradiction. Therefore, v
is an eigenvector of M to the eigenvalue λ and λ = 2 cos

(
kπ
q+1
)
for some 1 ≤ k ≤ q

by Lemma 9.1. Then w = 0 if and only if k is even by Lemma 9.2.
Now assume that λ = 0 and q is even. Then 0 is not an eigenvalue of M by

Lemma 9.1. Thus v = 0 and w 6= 0.
Now, assume that λ = 0 and q ≡ 3 (mod 4). Then λ = 2 cos

(
π
2
)

= 2 cos
( q+1

2 π

q+1
)
.

By Lemma 9.2, the eigenvector v of M leads to an eigenvector
(
v
0
)
of C; and there

is an additional eigenvector
(

0
w

)
6= 0.

Finally, assume that λ = 0 and q ≡ 1 (mod 4). In this case, by Lemma 9.2, it
cannot be that v 6= 0 is an eigenvector of M because this would lead to 0 6= 〈1, v〉 =
λw = 0, a contradiction. Thus the only eigenvector is

(
0
w

)
6= 0. �

9.4. Proof of the Asymptotic Result.

Proof of Corollary G. We work out the conditions and parameters for using Theo-
rem A.
Joint Spectral Radius. As all the square matrices A0, . . . , Aq−1 have a maximum
absolute row sum norm equal to 1, the joint spectral radius of these matrices is
bounded by 1.

Let r ∈ {1, . . . , q − 1}. Then any product with alternating factors Ar−1 and Ar,
i.e., a finite product Ar−1ArAr−1 · · · , has absolute row sum norm at least 1 as the
word (r−1)r(r−1) . . . is q-esthetic. Therefore the joint spectral radius of Ar−1 and
Ar is at least 1. Consequently, the joint spectral radius of A0, . . . , Aq−1 equals 1.
Asymptotics. We apply our Theorem A. We have λj = −λq+1−j , so we combine our
approach with Proposition 6.4. Moreover, we have λj > 1 iff j

q+1 <
1
3 iff j ≤ d q−2

3 e.
This results in (9.1).

We now assume that q is even. In this case, we still have to show that the
functions Φj are actually 1-periodic. We now need to use Theorem B. Let w1, w2,
. . . , wq−1, wq be the rows of T where the order is chosen in such a way that

J = diag
(

2 cos
( π

q + 1

)
, . . . , 2 cos

( qπ

q + 1

)
, 0
)
.

We write eq+1 =
∑q
k=1 ckwk for suitable ck ∈ R. Setting c :=

(
c1 c2 · · · cq

)
,

this means that eq+1 = cT , or equivalently, c = eq+1T
−1. The columns of T−1 are
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Figure 10.1. Pascal’s rhombus modulo 2.

the right eigenvectors of C described in Proposition 9.4. Then Proposition 9.4 (1)
implies that ck = 0 for even k with 1 ≤ k ≤ q. This means that all fluctuations
corresponding to eigenvalues 2 cos(kπ/(q + 1)) for even k with 1 ≤ k ≤ q are
multiplied by 0 and do not contribute to the result. As |cos( q+1−k

q+1 π)| = |cos( k
q+1π)|,

but q + 1− k and k have different parities, there is no need to use Proposition 6.4
and all fluctuations are 1-periodic.

The same argument can be used for the case of odd q, but in this case, q + 1− k
and k have the same parity. So Proposition 6.4 is used for odd k, and fluctuations to
both eigenvalues 2 cos(kπ/(q + 1)) and 2 cos((q + 1− k)π/(q + 1)) vanish for even k.

Fourier Coefficients. We can compute the Fourier coefficients according to Theo-
rem A and Proposition 6.4; see also Part IV. �

10. Pascal’s Rhombus

We discuss the asymptotic analysis of odd entries in Pascal’s rhombus; see also
Section 5.5 for an overview.

We consider Pascal’s rhombus R which is, for integers i ≥ 0 and j, the array
with entries ri,j , where

• r0,j = 0 all j,
• r1,0 = 1 and r1,j = 0 for all j 6= 0,
• and

ri,j = ri−1,j−1 + ri−1,j + ri−1,j+1 + ri−2,j

for i ≥ 1.
We are interested in the number of odd entries in the first N rows of this rhombus.

In [22] the authors investigate this quantity for N being a power of 2. We again
aim for a more precise analysis and asymptotic description.
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So, let X be equal to R but with entries taken modulo 2; see also Figure 10.1.
We partition X into the four sub-arrays

• E consisting only of the rows and columns of X with even indices, i.e., the
entries r2i,2j ,
• Y consisting only of the rows with odd indices and columns with even
indices, i.e., the entries r2i−1,2j ,
• Z consisting only of the rows with even indices and columns with odd indices,
i.e., the entries r2i,2j−1, and
• N consisting only of the rows and columns with odd indices, i.e., the
entries r2i−1,2j−1.

Note that E = X and N = 0; see [22].

10.1. Recurrence Relations and 2-Regular Sequences. Let X(N), Y (N) and
Z(N) be the number of ones in the first N rows (starting with row index 1) of X,
Y and Z, respectively.

Goldwasser, Klostermeyer, Mays and Trapp [22, (12)–(14)] get the recurrence
relations

X(N) = X(bN2 c) + Y (dN2 e) + Z(bN2 c),
Y (N) = X(dN2 e) +X(bN2 c − 1) + Z(bN2 c) + Z(dN2 e − 1),
Z(N) = 2X(bN2 c) + 2Y (dN2 e).

for N ≥ 2, and X(0) = Y (0) = Z(0) = 0, X(1) = 1, Y (1) = 1 and Z(1) = 2 (cf. [22,
Figures 2 and 3]). Distinguishing between even and odd indices gives

X(2N) = X(N) + Y (N) + Z(N),
X(2N + 1) = X(N) + Y (N + 1) + Z(N),

Y (2N) = X(N) +X(N − 1) + Z(N) + Z(N − 1),
Y (2N + 1) = X(N + 1) +X(N − 1) + 2Z(N),

Z(2N) = 2X(N) + 2Y (N),
Z(2N + 1) = 2X(N) + 2Y (N + 1)

for all N ≥ 1. Now we build the backward differences x(n) = X(n) − X(n − 1),
y(n) = Y (n)− Y (n− 1) and z(n) = Z(n)− Z(n− 1). These x(n), y(n) and z(n)
are the number of ones in the nth row of X, Y and Z, respectively, and clearly

X(N) =
∑

1≤n≤N
x(n), Y (N) =

∑
1≤n≤N

y(n), Z(N) =
∑

1≤n≤N
z(n)

holds. We obtain

x(2n) = x(n) + z(n), x(2n+ 1) = y(n+ 1), (10.1a)
y(2n) = x(n− 1) + z(n), y(2n+ 1) = x(n+ 1) + z(n), (10.1b)
z(2n) = 2x(n), z(2n+ 1) = 2y(n+ 1) (10.1c)

for n ≥ 1, and x(0) = y(0) = z(0) = 0, x(1) = 1, y(1) = 1 and z(1) = 2.
Let use write our coefficients as the vector

v(n) =
(
x(n), x(n+ 1), y(n+ 1), z(n), z(n+ 1)

)>
. (10.2)

It turns out that the components included into v(n) are sufficient for a self-contained
linear representation of v(n). In particular, it is not necessary to include y(n). By
using the recurrences (10.1), we find that

v(2n) = A0v(n) and v(2n+ 1) = A1v(n)
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Figure 10.2. Fluctuation in the main term of the asymptotic
expansion of X(N). The figure shows Φ(u) (red) approximated by
its trigonometric polynomial of degree 1999 as well as X(2u)/2uκ
(blue).

for all10 n ≥ 0 with the matrices

A0 =


1 0 0 1 0
0 0 1 0 0
0 1 0 1 0
2 0 0 0 0
0 0 2 0 0

 and A1 =


0 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 2 0 0
0 2 0 0 0

 ,

and with v(0) = (0, 1, 1, 0, 2)>. Therefore, the sequences x(n), y(n) and z(n) are
2-regular.

10.2. Full Asymptotics.

Corollary H. We have

X(N) =
∑

1≤n≤N
x(n) = Nκ Φ({log2N}) +O(N log2N) (10.3)

with κ = log2
(
3 +
√

17
)
− 1 = 1.83250638358045 . . . and a 1-periodic function Φ

which is Hölder continuous with any exponent smaller than κ− 1.
Moreover, we can effectively compute the Fourier coefficients of Φ (as explained

in Part IV).

We get analogous results for the sequences Y (N) and Z(N) (each with its own
periodic function Φ, but the same exponent κ). The fluctuation Φ of X(N) is
visualized in Figure 10.2 and its first few Fourier coefficients are shown in Table 10.1.

10.3. Proof of the Asymptotic Result. At this point, we only prove (10.3)
of Corollary H. We deal with the Fourier coefficients in Section 10.5. As in the
introductory example of the binary sum-of-digits functions (Example 3.1), we could
get Fourier coefficients by Theorem A and the 2-linear representation of Section 10.1
directly. However, the information in the vector v(n) (see (10.2)) is redundant with
respect to the asymptotic main term as it contains x(n) and z(n) as well as x(n+ 1)
and z(n+ 1); both pairs are asymptotically equal in the sense of (10.3). Therefore,
we head for an only 3-dimensional functional system of equations for our Dirichlet
series of x(n), y(n) and z(n) (instead of a 5-dimensional system).

10 Note that v(0) = A0v(0) and v(1) = A1v(0) are indeed true.
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` ϕ`

0 0.6911615112341912755021246
1 −0.01079216311240407872950510− 0.0023421761940286789685827i
2 0.00279378637350495172116712− 0.00066736128659728911347756i
3 −0.00020078258323645842522640− 0.0031973663977645462669373i
4 0.00024944678921746747281338− 0.0005912995467076061497650i
5 −0.0003886698612765803447578 + 0.00006723866319930148568431i
6 −0.0006223575988893574655258 + 0.00043217220614939859781542i
7 0.00023034317364181383130476− 0.00058663168772856091427688i
8 0.0005339060804798716172593− 0.0002119380802590974909465i
9 0.0000678898389770175928529− 0.00038307823285486235280185i

10 −0.00019981745997355255061991− 0.00031394569060142799808175i

Table 10.1. Fourier coefficients of Φ (Corollary H). All stated
digits are correct; see also Part IV.

Proof of (10.3). We use Theorem A.

Joint Spectral Radius. First we compute the joint spectral radius ρ of A0 and
A1. Both matrices have a maximum absolute row sum equal to 2, thus ρ ≤ 2,
and both matrices have 2 as an eigenvalue. Therefore we obtain ρ = 2. Moreover,
the finiteness property of the linear representation is satisfied by considering only
products with exactly one matrix factor A0 or A1.

Thus, we have R = ρ = 2.

Eigenvalues. Next, we compute the spectrum σ(C) of C = A0 +A1. The matrix
C has the eigenvalues λ1 =

(
3 +
√

17
)
/2 = 3.5615528128088 . . ., λ2 = 2, λ3 = −2,

λ4 = −1 and λ5 =
(
3 −
√

17
)
/2 = −0.5615528128088 . . . (each with multiplicity

one). Note that λ1 and λ5 are the zeros of the polynomial U2 − 3U − 2.

Asymptotics. By using Theorem A, we obtain an asymptotic formula for X(N − 1).
Shifting from N − 1 to N does not change this asymptotic formula, as this shift is
absorbed by the error term O(N log2N). �

10.4. Dirichlet Series and Meromorphic Continuation. In the lemma below,
we provide the functional equation (10.4) as a system of three equations. This is
in contrast to the generic functional equation provided by Theorem D which is a
system of five equations.

Let n0 ≥ 2 be an integer and define

Xn0(s) =
∑
n≥n0

x(n)
ns

, Yn0(s) =
∑
n≥n0

y(n)
ns

, Zn0(s) =
∑
n≥n0

z(n)
ns

.

Lemma 10.1. Set

M = I −

 2−s 2−s 2−s
21−s 0 21−s

21−s 21−s 0

 .

Then

M

Xn0(s)
Yn0(s)
Zn0(s)

 =

Jn0(s)
Kn0(s)
Ln0(s)

, (10.4)
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where

Jn0(s) = 2−s Σ(s,− 1
2 ,Yn0) + IJn0

(s),

IJn0
(s) = − y(n0)

(2n0 − 1)s +
∑

n0≤n<2n0

x(n)
ns

,

Kn0(s) = 2−s Σ(s, 1,Xn0) + 2−s Σ(s,− 1
2 ,Xn0) + 2−s Σ(s, 1

2 ,Zn0) + IKn0
(s),

IKn0
(s) = x(n0 − 1)

(2n0)s − x(n0)
(2n0 − 1)s +

∑
n0≤n<2n0

y(n)
ns

,

Ln0(s) = 21−s Σ(s,− 1
2 ,Yn0) + ILn0

(s),

ILn0
(s) = − 2y(n0)

(2n0 − 1)s +
∑

n0≤n<2n0

z(n)
ns

,

with the notion of Σ as in Lemma 6.3, provides meromorphic continuations of the
Dirichlet series Xn0(s), Yn0(s), and Zn0(s) for <s > κ0 = 1 with the only possible
poles at κ+ χ` for ` ∈ Z, all of which are simple poles.

Proof. We split the proof into several steps.

Functional Equation. From (10.1b) we obtain

Yn0(s) =
∑

n0≤n<2n0

y(n)
ns

+
∑
n≥n0

x(n− 1)
(2n)s +

∑
n≥n0

z(n)
(2n)s

+
∑
n≥n0

x(n+ 1)
(2n+ 1)s +

∑
n≥n0

z(n)
(2n+ 1)s

=
∑

n0≤n<2n0

y(n)
ns

+ 2−s
∑
n≥n0

x(n)
(n+ 1)s + x(n0 − 1)

(2n0)s + 2−s
∑
n≥n0

z(n)
ns

+ 2−s
∑
n≥n0

x(n)
(n− 1

2 )s
− x(n0)

(2n0 − 1)s + 2−s
∑
n≥n0

z(n)
(n+ 1

2 )s

=
∑

n0≤n<2n0

y(n)
ns

+ 2−s(Xn0(s) + Σ(s, 1,Xn0)) + x(n0 − 1)
(2n0)s + 2−sZn0(s)

+ 2−s
(
Xn0(s) + Σ(s,− 1

2 ,Xn0)
)
− x(n0)

(2n0 − 1)s

+ 2−s
(
Zn0(s) + Σ(s, 1

2 ,Zn0)
)
.

(10.5)

The second row of (10.4) follows. Similarly, (10.1a) and (10.1c) yield the first and
third rows of (10.4), respectively.

Determinant and Zeros. The determinant of M is

∆(s) = detM = 2−3s(22s − 3 · 2s − 2
)(

2s + 2
)
.

It is an entire function.
All zeros of ∆ are simple zeros. In particular, solving ∆(s) = 0 gives 2s =

3/2±
√

17/2 (the two zeros of U2 − 3U − U) and 2s = −2. A solution ∆(s0) = 0
implies that s0 + 2πi`/ log 2 with ` ∈ Z satisfies the same equation as well.

Moreover, set κ = log2
(
3 +
√

17
)
−1 = 1.8325063835804 . . . . Then the only zeros

with <s > κ0 = 1 are at κ+ χ` with χ` = 2πi`/ log 2 for ` ∈ Z.
It is no surprise that the κ of this lemma and the κ in the proof of Corollary H

which comes from the 2-linear representation of Section 10.1 coincide.
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Meromorphic Continuation. Let Dn0 ∈ {Xn0 ,Yn0 ,Zn0}. The Dirichlet series Dn0(s)
is analytic for <s > 2 = log2 ρ + 1 with ρ = 2 being the joint spectral radius by
Theorem D. We use the functional equation (10.4) which provides the continuation,
as we write Dn0(s) in terms of Jn0(s), Kn0(s) and Ln0(s). By Lemma 6.3, these
three functions are analytic for <s > 1.

The zeros (all are simple zeros) of the denominator ∆(s) are the only possibilities
for the poles of Dn0(s) for <s > 1. �

10.5. Fourier Coefficients. We are now ready to prove the rest of Corollary H.

Proof of Corollary H. We verify that we can apply Theorem E.
The steps of this proof in Section 10.2 provided us already with an asymptotic

expansion (10.3). Lemma 10.1 gives us the meromorphic function for <s > κ0 = 1
which comes from the Dirichlet series

(
Xn0(s),Yn0(s),Zn0(s)

)>. It can only have
poles (all simple) at s = κ+χ` for ` ∈ Z and satisfies the assumptions in Theorem E
by Theorem D and Remark 6.2.

Therefore a computation of the Fourier coefficients via computing residues (see
(3.6)) is possible by Theorem E, and this residue may be computed from (10.4) via
Cramer’s rule. �

We refer to Part IV for details on the actual computation of the Fourier coefficients.

Part III. Proofs

Before reading this part on the collected proofs, it is recommended to recall the
definitions and notations of Section 6.2. Some additional notations which are only
used in the proofs are introduced in the following section.

11. Additional Notations

We use Iverson’s convention [expr ] = 1 if expr is true and 0 otherwise, which
was popularised by Graham, Knuth and Patashnik [27]. We use the notation
z` := z(z − 1) · · · (z − `+ 1) for falling factorials. We use

(
n

k1,...,kr

)
for multinomial

coefficients. We sometimes write a binomial coefficient
(
n
a

)
as
(
n
a,b

)
with a+ b = n

when we want to emphasise the symmetry and analogy to a multinomial coefficient.

12. Decomposition into Periodic Fluctuations: Proof of Theorem B

We first give an overview over the proof.

Overview of the Proof of Theorem B. The first step will be to express the summa-
tory function F in terms of the matrices C, Br and Ar. Essentially, this corresponds
to the fact that the summatory function of a q-regular function is again q-regular.
This expression of F will consist of two terms: the first is a sum over 0 ≤ j < logq N
involving a jth power of C and matrices Br and Ar depending on the `− j most
significant digits of N . The second term is again a sum, but does not depend on
the digits of N ; it only encodes the fact that f(0) = A0f(0) may not hold. The fact
that we are interested in wF (N) for the generalised left eigenvector w corresponding
to the eigenvalue λ allows to express wCj in terms of wλj (plus some other terms if
w is not an eigenvector).

The second term can be disposed of by elementary observations using a geometric
series. We reverse the order of summation in the first summand and extend it to
an infinite sum. The infinite sum is written in terms of periodic fluctuations; the
difference between the infinite sum and the finite sum is absorbed by the error term.
In order not to have to deal with ambiguities due to non-unique q-ary expansions of
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real numbers, we define the fluctuations on an infinite product space instead of the
unit interval. �

12.1. Upper Bound for Eigenvalues of C. We start with an upper bound for
the eigenvalues of C in terms of the joint spectral radius.

Lemma 12.1. Let λ ∈ σ(C). Then |λ| ≤ qρ.

Proof. For `→∞, we have

|λ|` ≤ max{|λ| : λ ∈ σ(C)}` = O
(
‖C`‖

)
and

‖C`‖ ≤
∑

0≤r1,...,r`<q
‖Ar1 · · ·Ar`‖ = O(q`R`)

by (7.1). Taking `th roots and the limit `→∞ yields |λ| ≤ qR. This last inequality
does not depend on our particular (cf. Section 6.2) choice of R > ρ, so the inequality
is valid for all R > ρ, and we get the result. �

12.2. Explicit Expression for the Summatory Function. In this section, we
give an explicit formula for F (N) =

∑
0≤n<N f(n) in terms of the matrices Ar, Br

and C.

Lemma 12.2. Let N be an integer with q-ary expansion r`−1 . . . r0. Then

F (N) =
∑

0≤j<`
CjBrjArj+1 · · ·Ar`−1 +

∑
0≤j<`

Cj(I −A0).

Proof. We claim that

F (qN + r) = CF (N) +Brf(N) + (I −A0)[qN + r > 0] (12.1)

holds for non-negative integers N and r with 0 ≤ r < q.
We now prove (12.1): Using (6.1) and f(0) = I yields

F (qN + r) = f(0) [qN + r > 0] +
∑

0<qn+r′<qN+r
0≤n

0≤r′<q

f(qn+ r′)

= f(0) [qN + r > 0] +
∑

0<qn+r′<qN+r
0≤n

0≤r′<q

Ar′f(n)

=
(
f(0)−A0f(0)

)
[qN + r > 0] +

∑
0≤qn+r′<qN+r

0≤n
0≤r′<q

Ar′f(n)

= (I −A0)[qN + r > 0] +
∑

0≤n<N

∑
0≤r′<q

Ar′f(n) +
∑

0≤r′<r
Ar′f(N)

= (I −A0)[qN + r > 0] + CF (N) +Brf(N).

This concludes the proof of (12.1).
Iteration of (12.1) and using (6.2) yield the assertion of the lemma; cf. [32,

Proposition 3.6]. �
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12.3. Proof of Theorem B.

Proof of Theorem B. For readability, this proof is split into several steps.

Setting. Before starting the actual proof, we introduce the setting using an infinite
product space which will be used to define the fluctuations Φk. We also introduce
the maps linking the infinite product space to the unit interval.

We will first introduce functions Ψk defined on the infinite product space

Ω :=
{

x = (x0, x1, . . .) : xj ∈ {0, . . . , q − 1} for j ≥ 0, x0 6= 0
}
.

We equip it with the metric such that two elements x 6= x′ with a common prefix of
length j and xj 6= x′j have distance q−j . We consider the map lval : Ω→ [0, 1] with

lval(x) := logq
∑
j≥0

xjq
−j ;

see Figure 12.1. By using the assumption that the zeroth component of elements of
Ω is assumed to be non-zero, we easily check that lval is Lipschitz-continuous; i.e.,∣∣lval(x)− lval(x′)

∣∣ = O(q−j) (12.2)

for x 6= x′ with a common prefix of length j.

Ω Cd

[0, 1]

Ψ

lval Φ
reprq

Figure 12.1. Maps in the proof of Theorem B.

For y ∈ [0, 1), let reprq(y) be the unique x ∈ Ω with lval(x) = y such that x does
not end on infinitely many digits q − 1, i.e., reprq(y) represents a q-ary expansion of
qy. This means that lval ◦ reprq is the identity on [0, 1).

From the definition of the metric on Ω, recall that a function Ψ: Ω → Cd is
continuous if and only if for each ε > 0, there is a j such that ‖Ψ(x′)−Ψ(x)‖ < ε
holds for all x and x′ that have a common prefix of length j. Further recall from
the universal property of quotients that if such a continuous function Ψ satisfies
Ψ(x) = Ψ(x′) whenever lval(x) = lval(x′), then there is a unique continuous function
Φ: [0, 1] → Cd such that Φ ◦ lval = Ψ. This will be used in the “Descent”-step of
the proof.

Notation. We will deal with the two sums in Lemma 12.2 separately. We will first
introduce notations corresponding to this split and to the eigenvector structure.

Let N have the q-ary expansion r`−1 . . . r0 and set

F1(N) :=
∑

0≤j<`
CjBrjArj+1 . . . Ar`−1 , F2(N) :=

∑
0≤j<`

Cj(I −A0)

so that F (N) = F1(N) + F2(N) by Lemma 12.2.
We consider the Jordan chain w = v′0, . . . , v′m−1 generated by w, i.e., v′k =

w(C − λI)k for 0 ≤ k < m and v′m−1 is a left eigenvector of C. Thus we have
wCj =

∑
0≤k<m

(
j
k

)
λj−kv′k for all j ≥ 0. If λ 6= 0, choose vectors v0, . . . , vm−1 ∈ Cd

such that
wCj = λj

∑
0≤k<m

jkvk (12.3)
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holds for all j ≥ 0. These vectors are suitable linear combinations of the vectors v′0,
. . . , v′m−1. We note that we have

vm−1 = 1
λm−1(m− 1)!v

′
m−1. (12.4)

Second Summand. We will now rewrite wF2(N) by evaluating the geometric sum
and rewriting it in terms of a fluctuation.

We claim that

wF2(N) = wK +N logq λ
∑

0≤k<m
(logq N)kΦ(2)

k ({logq N})

+ (logq N)mwϑm + [λ = 0]O(N logq R) (12.5)

for suitable continuously differentiable functions Φ(2)
k on R, 0 ≤ k < m. If R = 0,

then O(N logq R) shall mean that the error vanishes for almost all N .
Consider first the case that λ 6= 1. Because of wCj = wC ′

j and wT−1DT = w
(see Section 7.3) we have

wF2(N) =
∑

0≤j<`
wC ′

j(
I −A0

)
= w

(
I − C ′`

)(
I − C ′

)−1(
I −A0

)
= wK − wC`

(
I − C ′

)−1(
I −A0

)
.

If λ = 0, then wC` = 0 for almost all `. We may set Φ(2)
k = 0 for 0 ≤ k < m and

(12.5) is shown. Otherwise, as we have `− 1 = blogq Nc = logq N − {logq N} and
by (12.3), we can rewrite wC` as

wC` = λ`
∑

0≤k′<m
`k
′
vk′ = λ1+logq N−{logq N}

∑
0≤k′<m

(logq N + 1− {logq N})k
′
vk′ .

Let
G2(L, ν) := −λ1−ν

∑
0≤k′<m

(L+ 1− ν)k
′
vk′(I − C ′)−1(I −A0)

for reals L and ν, i.e.,

wF2(N) = wK + λlogq NG2(logq N, {logq N}).

By the binomial theorem, we have

G2(L, ν) = −λ1−ν
∑

0≤k<m
Lk

∑
0≤r

k+r<m

(
k + r

k, r

)
(1− ν)rvk+r(I − C ′)−1(I −A0).

This leads to a representation G2(L, ν) =
∑

0≤k<m L
kΦ(2)

k (ν) for continuously
differentiable functions

Φ(2)
k (ν) = −λ1−ν

∑
0≤r<m−k

(
k + r

k, r

)
(1− ν)rvk+r(I − C ′)−1(I −A0)

for 0 ≤ k < m. As the functions Φ(2)
k are continuously differentiable, they are

Lipschitz continuous on compact subsets of R. We note that in the case k = m− 1,
the only occurring summand is for r = 0, which implies that

Φ(2)
m−1(ν) = −λ1−νvm−1(I − C ′)−1(I −A0). (12.6)

Rewriting λlogq N as N logq λ and recalling that wϑm = 0 yields (12.5) for λ 6= 1.
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We now turn to the case λ = 1. We use wCj =
∑

0≤k<m
(
j
k

)
v′k for j ≥ 0 as above.

Thus

wF2(N) =
∑

0≤j<`

∑
0≤k<m

(
j

k

)
v′k(I −A0)

=
∑

0≤k<m
v′k(I −A0)

∑
0≤j<`

(
j

k

)

=
∑

0≤k<m
v′k(I −A0)

(
`

k + 1

)
,

where the identity [27, (5.10)] (“summation on the upper index”) has been used in
the last step.

Thus wF2(N) is a polynomial in ` of degree m. By writing ` = 1 + logq N −
{logq N}, we can again rewrite this as a polynomial in logq N whose coefficients
depend on {logq N}. The coefficient of (logq N)m comes from v′m−1(I − A0)

(
`
m

)
,

therefore, this coefficient is
1
m!v

′
m−1(I −A0) = 1

m!w(C − I)m−1(I −A0) = wϑm.

The additional factor T−1(I−D)T in ϑm has been introduced in order to annihilate
generalised eigenvectors to other eigenvalues. By construction ofK, we have wK = 0.
Thus we have shown (12.5) for λ = 1, too.
Lifting the Second Summand. For later use—at this point, this may seem to be
quite artificial—we set Ψ(2)

k = Φ(2)
k ◦ lval. As Φ(2)

k is continuously differentiable, it is
Lipschitz continuous on [0, 1]. As lval is also Lipschitz continuous, so is Ψ(2)

k .
First Summand. We now turn to wF1(N). To explain our plan, assume that w is in
fact an eigenvector. Then wF1(N) =

∑
0≤j<` λ

jwBrjArj+1 . . . Ar`−1 . For |λ| ≤ R,
it will be rather easy to see that the result holds. Otherwise, we will factor out
λ` and write the sum as wF1(N) = λ`

∑
0≤j<` λ

−(`−j)wBrjArj+1 . . . Ar`−1 . We will
then reverse the order of summation and extend the sum to an infinite sum, which
will be represented by periodic fluctuations. The difference between the finite and
the infinite sums will be absorbed by the error term. The periodic fluctuations will
be defined on the infinite product space Ω.

We now return to the general case of a generalised eigenvector w and the actual
proof. If λ = 0, we certainly have |λ| ≤ R and we are in one of the first two cases of
this theorem. Furthermore, we have wCj = 0 for j ≥ m, thus

wF1(N) = O

( ∑
0≤j<m

R`−j
)

= O(R`) = O(N logq R)

by using (7.1). Together with (12.5), the result follows.
From now on, we may assume that λ 6= 0. By using (12.3), we have

wF1(N) =
∑

0≤j<`
λj
( ∑

0≤k<m
jkvk

)
BrjArj+1 . . . Ar`−1 . (12.7)

We first consider the case that |λ| < R (corresponding to Theorem B, (1)). We get

wF1(N) = O

( ∑
0≤j<`

|λ|jjm−1R`−j
)

= O

(
R`

∑
0≤j<`

jm−1
( |λ|
R

)j)
= O(R`) = O(N logq R),
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where (7.1) was used. Together with (12.5), the result follows.
Next, we consider the case where |λ| = R (Theorem B, (2)). In that case, we get

wF1(N) = O

( ∑
0≤j<`

|λ|jjm−1R`−j
)

= O

(
R`

∑
0≤j<`

jm−1
)

= O(R``m).

Again, the result follows.
From now on, we may assume that |λ| > R. We set Q := |λ|/R and note that

1 < Q ≤ q by assumption and Lemma 12.1. We claim that there are continuous
functions Ψ(1)

k on Ω for 0 ≤ k < m such that

wF1(N) = N logq λ
∑

0≤k<m
(logq N)k Ψ(1)

k

(
reprq({logq N})

)
(12.8)

and such that ∥∥Ψ(1)
k (x)−Ψ(1)

k (x′)
∥∥ = O(jm−1Q−j) (12.9)

when the first j entries of x and x′ ∈ Ω coincide.
WriteN = q`−1+{logq N} and let x = reprq({logq N}), i.e., x is the q-ary expansion

of q{logq N} = N/q`−1 ∈ [1, q) ending on infinitely many zeros. This means that
xj = r`−1−j for 0 ≤ j < ` and xj = 0 for j ≥ `. Reversing the order of summation
in (12.7) yields

wF1(N) = λ`−1
∑

0≤j<`
λ−j

( ∑
0≤k<m

(`− 1− j)kvk
)
BxjAxj−1 . . . Ax0 .

For j ≥ `, we have xj = 0 and therefore Bxj = 0. Thus we may extend the sum to
run over all j ≥ 0, i.e.,

wF1(N) = λ`−1
∑
j≥0

λ−j
( ∑

0≤k<m
(`− 1− j)kvk

)
BxjAxj−1 . . . Ax0 .

We insert `− 1 = logq N − {logq N} and obtain

wF1(N) = λlogq N G1
(
logq N, reprq({logq N})

)
where

G1(L,x) = λ−lval(x)
∑
j≥0

λ−j
( ∑

0≤k<m
(L− lval(x)− j)kvk

)
BxjAxj−1 . . . Ax0

= λ−lval(x)
∑
j≥0

λ−j
( ∑

0≤a, 0≤r, 0≤s
a+r+s<m

La(−j)r
(
a+ r + s

a, r, s

)

×
(
−lval(x)

)s
va+r+s

)
BxjAxj−1 . . . Ax0

for L ∈ R and x ∈ Ω. Note that in contrast to G2, the second argument of G1 is an
element of Ω instead of R. Collecting G1(L,x) by powers of L, we get

G1(L,x) =
∑

0≤k<m
LkΨ(1)

k (x)

where
Ψ(1)
k (x) =

∑
j≥0

λ−j
∑

0≤r<m−k
jr ψkr

(
lval(x)

)
BxjAxj−1 . . . Ax0

for functions

ψkr(ν) = λ−ν(−1)r
∑

0≤s<m−k−r

(
k + r + s

k, r, s

)
(−ν)svk+r+s
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which are continuously differentiable and therefore Lipschitz continuous on the unit
interval. This shows (12.8). For k = m− 1, only summands with r = s = 0 occur,
thus

Ψ(1)
m−1(x) =

∑
j≥0

λ−j−lval(x)vm−1BxjAxj−1 . . . Ax0 . (12.10)

Note that Ψ(1)
k (x) is majorised by

O

(∑
j≥0
|λ|−jjm−1Rj

)
according to (7.1). We now prove (12.9). So let x and x′ have a common prefix of
length i. Consider the summand of Ψ(1)

k (x) with index j. First consider the case
that j < i. For all r, we have∥∥ψkr(lval(x)

)
− ψkr

(
lval(x′)

)∥∥ = O(q−i)

due to Lipschitz continuity of ψkr ◦ lval. As the matrix product Axj−1 . . . Ax0 is the
same for x and x′, the difference with respect to this summand is bounded by

O
(
|λ|−jjm−1q−iRj

)
= O(q−ijm−1Q−j).

Thus the total contribution of all summands with j < i is O(q−i). Any summand
with j ≥ i is bounded by O

(
|λ|−jjm−1Rj

)
= O(jm−1Q−j), which leads to a

total contribution of O(im−1Q−i). Adding the two bounds leads to a bound of
O(im−1Q−i), as requested.

Descent. As we have defined the periodic fluctuations Ψ(1)
k on the infinite product

space Ω, we now need to prove that the periodic fluctuation descends to a periodic
fluctuation on the unit interval. To do so, we will verify that the values of the
fluctuation coincide whenever sequences in the infinite product space correspond to
the same real number in the interval.

By setting Ψk(x) = Ψ(1)
k (x) + Ψ(2)

k (x), we obtain

wF (N) = wK +N logq λ
∑

0≤k<m
(logq N)k Ψk

(
reprq({logq N})

)
+ (logq N)mwϑm

(12.11)
and

‖Ψk(x)−Ψk(x′)‖ = O(jm−1Q−j) (12.12)
whenever x and x′ ∈ Ω have a common prefix of length j.

It remains to show that Ψk(x) = Ψk(x′) holds whenever lval(x) = lval(x′) or
lval(x) = 0 and lval(x′) = 1.

Choose x and x′ such that one of the above two conditions on lval holds and such
that xj = 0 for j ≥ j0 and x′j = q − 1 for j ≥ j0. Be aware that now the prefixes of
x and x′ of length j0 do not coincide except for the trivial case j0 = 0.

Fix some j ≥ j0 and set x′′ to be the prefix of x′ of length j, followed by
infinitely many zeros. Note that we have qlval(x′′) = qlval(x′) − q−(j−1). Set n =
qj−1+lval(x′′). By construction, we have n+ 1 = qj−1+lval(x)+[lval(x)=0]. This implies
reprq({logq n}) = x′′ and reprq({logq(n+ 1)}) = x. Taking the difference of (12.11)
for n+ 1 and n yields

wf(n) = (n+ 1)logq λ
∑

0≤k<m

(
logq(n+ 1)

)kΨk(x)− nlogq λ
∑

0≤k<m
(logq n)kΨk(x′′)

+
(
(logq(n+ 1))m − (logq n)m

)
wϑm.
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We estimate n+ 1 as n(1 +O(1/n)) and get

wf(n) = nlogq λ
∑

0≤k<m
(logq n)k

(
Ψk(x)−Ψk(x′′)

)
+O

(
nlogq|λ|−1(logn)m−1).

(12.13)
We have wf(n) = O(Rj) = O(Rlogq n) = O(nlogq R) by (6.2) and (7.1). By (12.12),∥∥Ψk(x′′)−Ψk(x′)

∥∥ = O
(
(logn)m−1n− logq Q

)
which is used below to replace x′′ by x′. Inserting these estimates in (12.13) and
dividing by nlogq λ yields∑

0≤k<m
(logq n)k

(
Ψk(x′)−Ψk(x)

)
= O

(
n− logq Q(logn)2m−2). (12.14)

Note that Ψk(x′)−Ψk(x) does not depend on j. Now we let j (and therefore n)
tend to infinity. We see that (12.14) can only remain true if Ψk(x′) = Ψk(x) for
0 ≤ k < m, which we had set out to show.

Therefore, Ψk descends to a continuous function Φk on [0, 1] with Φk(0) = Φk(1);
thus Φk can be extended to a 1-periodic continuous function.

Hölder Continuity. We will now prove Hölder continuity. As the fluctuations have
been defined on the infinite product space Ω, we will basically have to prove Hölder
continuity there. The difficulty will be that points in the unit interval which are close
to each other there may have drastically different q-ary expansions, thus correspond
to drastically different points in the infinite product space Ω. To circumvent this
problem, the interval between the two points will be split into two parts.

We first claim that for 0 ≤ y < y′′′ < 1, we have∥∥Φk(y′′′)− Φk(y)
∥∥ = O

(
(log(qy

′′′
− qy))m−1(qy

′′′
− qy)logq Q

)
(12.15)

as y′′′ → y. To prove this, let x := reprq(y) and x′′′ := reprq(y′′′). Let ` be the
length of the longest common prefix of x and x′′′ and choose j ≥ 0 such that
q−j ≤ qy′′′ − qy < q−j+1. We define x′ and x′′ ∈ Ω such that

x = (x0, x1, . . . , x`−1, x`, x`+1, x`+2, . . .),
x′ = (x0, x1, . . . , x`−1, x`, q − 1, q − 1, . . .),
x′′ = (x0, x1, . . . , x`−1, x` + 1, 0, 0, . . .),
x′′′ = (x0, x1, . . . , x`−1, x

′′′
` , x′′′`+1, x

′′′
`+2, . . .)

and set y′ := lval(x′) and y′′ := lval(x′′). As lval(x) = y < y′′′ = lval(x′′′), we have
x′′′` > x`. We conclude that y ≤ y′ = y′′ ≤ y′′′. Therefore,

qy
′
− qy ≤ qy

′′′
− qy < q−j+1,

so in view of the fact that each entry of x′ is greater or equal than the corresponding
entry of x, the expansions x and x′ must have a common prefix of length j. Similarly,
the expansions x′′ and x′′′ must have a common prefix of length j. Thus (12.12)
implies that∥∥Φk(y′′′)− Φk(y)

∥∥ ≤ ∥∥Φk(y′′′)− Φk(y′′)
∥∥+

∥∥Φk(y′)− Φk(y)
∥∥

=
∥∥Ψk(x′′′)−Ψk(x′′)

∥∥+
∥∥Ψk(x′)−Ψk(x)

∥∥ = O(jm−1Q−j).

Noting that −j = logq(qy
′′′ − qy) +O(1) leads to (12.15).

In order to prove Hölder continuity with exponent α < logq Q, we first note that
Lipschitz-continuity of y 7→ qy on the interval [0, 1] shows that (12.15) implies∥∥Φk(y′′′)− Φk(y)

∥∥ = O
(
(y′′′ − y)α

)
.
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This can then easily be extended to arbitrary reals y < y′′′ by periodicity of Φk

because it is sufficient to consider small y′′′ − y and the interval may be subdivided
at an integer between y and y′′′.
Constant Dominant Fluctuation. To finally prove the final assertion on constant
fluctuations, we will have to inspect the explicit expression for the fluctuations using
the additional assumption.

Under the additional assumption that the vector w(C − I)m−1 = v′m−1 is a left
eigenvector to all matrices A0, . . . , Aq−1 associated with the eigenvalue 1, the same
holds for vm−1 by (12.4). Then vm−1 is also a left eigenvector of C associated with
the eigenvalue q. In particular, λ = q 6= 1.

We can compute Φ(2)
m−1(ν) using (12.6). As vm−1 ∈ Wq, we have vm−1C =

vm−1C
′ by definition of C ′ (see Section 7.3) which implies that vm−1(I − C ′)−1 =

1
1−qvm−1. As vm−1(I −A0) = 0 by assumption, we conclude that Φ(2)

m−1(ν) = 0 in
this case.

We use (12.10) to compute Ψ(1)
m−1(x). By assumption, vm−1Bxj = xjvm−1 which

implies that

Ψ(1)
m−1(x) = q−lval(x)

(∑
j≥0

q−jxj

)
vm−1 = q−lval(x)qlval(x)vm−1 = vm−1

by definition of lval.
Together with (12.4), we obtain the assertion. �

12.4. Proof of Theorem C.

Proof of Theorem C. We denote the rows of T as w1, . . . , wd and the columns of
T−1 by t1, . . . , td. Thus

∑
1≤j≤d tjwj = I and wj is a generalised left eigenvector

of C of some rank mj corresponding to some eigenvalue λj ∈ σ(C). Theorem B and
the fact that there are no eigenvalues of C of absolute value between ρ and R then
immediately imply that

F (N) =
∑

1≤j≤d
tjwjF (N)

= K +
∑

1≤j≤d
(logq N)mj tjwjϑmj

+
∑

1≤j≤d
|λj |>ρ

N logq λj
∑

0≤k<mj

(logq N)ktjΨjk({logq N})

+ [∃λ ∈ σ(C) : |λ| ≤ ρ]O
(
N logq R(logN)max{0}∪{mj : |λj |=R}

)
for some 1-periodic Hölder continuous functions Ψjk with exponent less than
logq|λj |/R. The first summand K as well as the error term already coincide
with the result stated in the theorem. From Section 7.3 we recall that wjϑmj = 0
for λj 6= 1.

We set
Φλk(u) :=

∑
1≤j≤d
λj=λ
k<mj

(
tjΨjk(u) + [λ = 1][mj = k]tjwjϑmj

)

for λ ∈ σ(C) with |λ| > ρ and 0 ≤ k < m(λ).
Then we still have to account for

(logq N)m(1)
∑

1≤j≤d
λj=1

mj=m(1)

tjwjϑm(1). (12.16)
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The factor (C − I)m(1)−1 in the definition of ϑm(1) implies that wjϑm(1) vanishes
unless λj = 1 and mj = m(1). Therefore, the sum in (12.16) equals ϑ. �

13. Meromorphic Continuation of the Dirichlet Series: Proof of
Theorem D

For future use, we state an estimate for the binomial coefficient. Unsurprisingly,
it is a consequence of a suitable version of Stirling’s formula. Alternatively, it can
be seen as the most basic case of Flajolet and Oldlyzko’s singularity analysis [20,
Proposition 1], where uniformity in s is easily checked.

Lemma 13.1. Let k ∈ Z, k ≥ 0. Then∣∣∣∣(−sk
)∣∣∣∣ ∼ 1

|Γ(s)|k
<s−1 (13.1)

uniformly for s in a compact subset of C and k →∞.

Proof. By [27, (5.14)] (“negating the upper index”), we rewrite the binomial coeffi-
cient as (

−s
k

)
= (−1)k

(
s+ k − 1

k

)
= (−1)k

Γ(s)
Γ(s+ k)
Γ(k + 1) .

Thus (13.1) follows by [10, 5.11.12] (which is an easy consequence of Stirling’s
formula for the Gamma function). �

Proof of Lemma 6.3. We have

Σ(s, β,D) =
∑
n≥n0

(
(n+ β)−s − n−s

)
d(n) (13.2)

for <s > logq R′ + 1. We note that

(n+ β)−s − n−s = n−s
((

1 + β

n

)−s
− 1
)

= O
(
|s|n−<s−1).

Therefore,

Σ(s, β,D) = O

(
|s|
∑
n≥n0

nlogq R
′−<s−1

)
,

and the series converges for <s > logq R′. As this holds for all R′ > ρ, we obtain
Σ(s, β,D) = O(|=s|) as |=s| → ∞ uniformly for logq ρ+ δ ≤ <s ≤ logq ρ+ δ+ 1. In
the language of [28, § III.3], Σ(s, β,D) has order at most 1 for logq ρ + δ ≤ <s ≤
logq ρ+ δ+ 1. As logq ρ+ δ+ 1 is larger than the abscissa of absolute convergence of
Σ(s, β,D), it is clear that Σ(s, β,D) = O(1) for <s = logq ρ+δ+1, i.e., Σ(s, β,D) has
order at most 0 for <s = logq ρ+δ+1. By Lindelöf’s theorem (see [28, Theorem 14]),
we conclude that Σ(s, β,D) = O

(
|=s|µδ(<s)

)
for logq ρ+ δ ≤ <s ≤ logq ρ+ δ + 1.

For <s > logq R′ + 1, we may rewrite (13.2) using the binomial series as

Σ(s, β,D) =
∑
n≥n0

n−s
∑
k≥1

(
−s
k

)
βk

nk
d(n)

=
∑
k≥1

(
−s
k

)
βk
∑
n≥n0

n−(s+k)d(n). (13.3)

Switching the order of summation was legitimate because∥∥∥∥∑
n≥n0

n−(s+k)d(n)
∥∥∥∥ ≤ ∑

n≥n0

n−(<s+k)‖d(n)‖

=
∑
n≥n0

O
(
nlogq R

′−<s−k) = O
(
n

logq R
′−<s−k+1

0
)

http://dlmf.nist.gov/5.11.E12
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for <s+ k > logq R′ + 1 and Lemma 13.1 imply absolute and uniform convergence
for s in a compact set. Noting that the previous arguments hold again for all R′ > ρ
and that the inner sum in (13.3) is D(s+ k) completes the proof. �

Proof of Theorem D. As f(n) = O(Rlogq n) = O(nlogq R) by (6.2) and (7.1), the
Dirichlet series Fn0(s) =

∑
n≥n0

n−sf(n) (see Section 6.2) converges absolutely and
uniformly on compact sets for <s > logq R + 1. As this holds for all R > ρ, i.e.,
does not depend on our particular (cf. Section 6.2) choice of R > ρ, this convergence
result holds for <s > logq ρ+ 1.

We use (6.1) and Lemma 6.3 (including its notation) to rewrite Fn0 as

Fn0(s) =
∑

n0≤n<qn0

n−sf(n) +
∑

0≤r<q

∑
n≥n0

(qn+ r)−sf(qn+ r)

=
∑

n0≤n<qn0

n−sf(n) + q−s
∑

0≤r<q
Ar

∑
n≥n0

(
n+ r

q

)−s
f(n)

=
∑

n0≤n<qn0

n−sf(n) + q−s
∑

0≤r<q
ArF (r/q)

n0
(s)

=
∑

n0≤n<qn0

n−sf(n) + q−sCFn0(s) +Hn0(s)

with
Hn0(s) := q−s

∑
0≤r<q

Ar Σ
(
s, rq ,Fn0

)
for <s > logq R+ 1. Thus(

I − q−sC
)
Fn0(s) =

∑
n0≤n<qn0

n−sf(n) +Hn0(s) (13.4)

for <s > logq R+1. By Lemma 6.3 we have Hn0(s) = O
(
|=s|µδ(<s)

)
for logq ρ+δ ≤

<s ≤ logq ρ+ δ + 1. Rewriting the expression for Hn0(s) using the binomial series
(see Lemma 6.3 again) yields

Hn0(s) = q−s
∑

0≤r<q
Ar
∑
k≥1

(
−s
k

)(r
q

)k
Fn0(s+ k).

Combining this with (13.4) yields the expression (6.4) for Gn0 .
Solving (6.3) for Fn0 yields the meromorphic continuation of Fn0(s) to <s >

logq R (and thus to <s > logq ρ) with possible poles where qs is an eigenvalue of C.
As long as qs keeps a fixed positive distance δ from the eigenvalues, the bound for
Gn0 (coming from the bound for Hn0) carries over to a bound for Fn0 , i.e., (6.5).

To estimate the order of the poles, let w be generalised left eigenvector of rank
m of C corresponding to an eigenvalue λ with |λ| > R. We claim that wFn0(s) has
a pole of order at most m at s = logq λ + χk and no other poles for <s > logq R.
We prove this by induction on m.

Set v := w(C − λI). By definition, v = 0 or v is a generalised eigenvector of rank
m− 1 of C. By induction hypothesis, vFn0(s) has a pole of order at most m− 1 at
s = logq λ+ χk for k ∈ Z and no other poles for <s > logq R.

Multiplying (6.3) by w, inserting the definition of v and reordering the summands
yields (

1− q−sλ
)
wFn0(s) = q−svFn0(s) + wGn0(s).

The right-hand side has a pole of order at most m− 1 at logq λ+ χk for k ∈ Z and
1− q−sλ has a simple zero at the same places. This proves the claim. �
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14. Fourier Coefficients: Proof of Theorem E

In contrast to the rest of this paper, this section does not directly relate to
a regular sequence but gives a general method to derive Fourier coefficients of
fluctuations.

14.1. Pseudo-Tauberian Theorem. In this section, we generalise the pseudo-
Tauberian argument by Flajolet, Grabner, Kirschenhofer, Prodinger and Tichy [19,
Proposition 6.4]. The basic idea is that for a 1-periodic Hölder-continuous function
Φ and κ ∈ C, there is a 1-periodic continuously differentiable function Ψ such that∑

1≤n<N
nκΦ(logq n) = Nκ+1Ψ(logq N) + o(N<κ+1),

and there is a straight-forward relation between the Fourier coefficients of Φ and
the Fourier coefficients of Ψ. This relation exactly corresponds to the additional
factor s+ 1 when transitioning from the zeroth order Mellin–Perron formula to the
first order Mellin–Perron formula.

In contrast to [19, Proposition 6.4], we allow for an additional logarithmic factor,
have weaker growth conditions on the Dirichlet series and quantify the error. We
also extend the result to all complex κ. The generalisation from q = 2 there to our
real q > 1 is trivial.

Proposition 14.1. Let κ ∈ C and q > 1 be a real number, m be a positive integer,
Φ0, . . . , Φm−1 be 1-periodic Hölder continuous functions with exponent α > 0, and
0 < β < α. Then there exist continuously differentiable functions Ψ−1, Ψ0, . . . ,
Ψm−1, periodic with period 1, and a constant c such that

∑
1≤n<N

nκ
∑

j+k=m−1
0≤j<m

(logn)k

k! Φj(logq n)

= c+Nκ+1
∑

j+k=m−1
−1≤j<m

(logN)k

k! Ψj(logq N) +O
(
N<κ+1−β) (14.1)

for integers N →∞.
Denote the Fourier coefficients of Φj and Ψj by ϕj` :=

∫ 1
0 Φj(u) exp(−2`πiu) du

and ψj` :=
∫ 1

0 Ψj(u) exp(−2`πiu) du, respectively. Then the corresponding generating
functions fulfil∑

0≤j<m
ϕj`Z

j =
(
κ+ 1 + 2`πi

log q + Z
) ∑
−1≤j<m

ψj`Z
j +O(Zm) (14.2)

for ` ∈ Z and Z → 0.
If qκ+1 6= 1, then Ψ−1 vanishes.

Remark 14.2. Note that the constant c is absorbed by the error term if <κ+ 1 > α,
in particular if <κ > 0. Therefore, this constant does not occur in the article [19].

Remark 14.3. The factor κ + 1 + 2`πi
log q + Z in (14.2) will turn out to correspond

exactly to the additional factor s+ 1 in the first order Mellin–Perron summation
formula with the substitution s = κ+ 2`πi

log q +Z such that the local expansion around
the pole in s = κ+ 2`πi

log q of the Dirichlet generating function is conveniently written
as a Laurent series in Z. See the proof of Theorem E for details.

Before actually proving Proposition 14.1, we give an outline.
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Overview of the Proof of Proposition 14.1. We start with the left-hand side of (14.1)
and split the range of summation according to blogq nc, thereby, in terms of our
periodic functions, split after each period. We then use periodicity of the Φj and
collect terms. This results in Riemann sums which converge to the corresponding
integrals. Therefore, we can approximate these sums by the integrals.

More rewriting constructs and reveals the functions Ψj (of the right-hand side
of (14.1)): These functions are basically defined via the above mentioned integral.
We then show that these functions are indeed periodic and that their Fourier
coefficients relate to the Fourier coefficients of the Φj . The latter is done by a direct
computation of the integrals defining these coefficients.

For this proof, we use an approach via exponential generating functions. This
reduces the overhead for dealing with the logarithmic factors (logn)k in (14.1) such
that we can essentially focus on the case m = 1. The resulting formula (14.1) follows
by extracting a suitable coefficient of this power series.

There is another benefit of the generating function approach: This formulation
allows to easily translate the relation between the Fourier coefficients here to
the additional factors occurring when transitioning to higher order Mellin–Perron
summation formulæ, in particular the factor s+ 1 in the first order Mellin–Perron
summation. �

Proof of Proposition 14.1. We split the proof into six parts.

Notations. We start by defining quantities that are used through the whole proof.
Without loss of generality, we assume that q<κ+1 6= qα: otherwise, we slightly

decrease α keeping the inequality β < α intact. We use the abbreviations Λ :=
blogq Nc, ν := {logq N}, i.e., N = qΛ+ν . We use the generating functions

Φ(u, Z) :=
∑

0≤j<m
Φj(u)Zj ,

L(N,Z) :=
∑

1≤n<N
nκ+Z Φ(logq n,Z) =

∑
1≤n<N

nκ exp
(
(logn)Z

)
Φ(logq n,Z),

Q(Z) := qκ+1+Z

for 0 ≤ u ≤ 1 and 0 < |Z| < 2r where r > 0 is chosen such that r < (α− β)/2 and
such that Q(Z) 6= 1 and |Q(Z)| 6= qα for these Z. (The condition Z 6= 0 is only
needed for the case q1+κ = 1.) We will stick to the above choice of r and restrictions
for Z throughout the proof.

It is easily seen that the left-hand side of (14.1) equals [Zm−1]L(N,Z), where
[Zm−1] denotes extraction of the coefficient of Zm−1.

Approximation of the Sum by an Integral. We will now rewrite L(N,Z) so that
its shape is that of a Riemann sum, therefore enabling us to approximate it by an
integral.

Splitting the range of summation with respect to powers of q yields

L(N,Z) =
∑

0≤p<Λ

∑
qp≤n<qp+1

nκ+Z Φ(logq n,Z)

+
∑

qΛ≤n<qΛ+ν

nκ+Z Φ(logq n,Z).
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We write n = qpx (or n = qΛx for the second sum), use the periodicity of Φ in u
and get

L(N,Z) =
∑

0≤p<Λ

Q(Z)p
∑

x∈q−pZ
1≤x<q

xκ+Z Φ(logq x, Z) 1
qp

+ Q(Z)Λ
∑

x∈q−ΛZ
1≤x<qν

xκ+Z Φ(logq x, Z) 1
qΛ .

The inner sums are Riemann sums converging to the corresponding integrals for
p→∞. We set

I(u, Z) :=
∫ qu

1
xκ+Z Φ(logq x, Z) dx.

It will be convenient to change variables x = qw in I(u, Z) to get

I(u, Z) = (log q)
∫ u

0
Q(Z)w Φ(w,Z) dw. (14.3)

We define the error εp(u, Z) by∑
x∈q−pZ
1≤x<qu

xκ+Z Φ(logq x, Z) 1
qp

= I(u, Z) + εp(u, Z).

As the sum and the integral are both analytic in Z, their difference εp(u, Z) is
analytic in Z, too. We bound εp(u, Z) by the difference of upper and lower Darboux
sums (step size q−p) corresponding to the integral I(u, Z): On each interval of
length q−p, the maximum and minimum of a Hölder continuous function can differ
by at most O(q−αp). As the integration interval as well as the range for u and Z
are finite, this translates to the bound εp(u, Z) = O(q−αp) as p→∞ uniformly in
0 ≤ u ≤ 1 and |Z| < 2r. This results in

L(N,Z) = I(1, Z)
∑

0≤p<Λ

Q(Z)p +
∑

0≤p<Λ

Q(Z)pεp(1, Z)

+ I(ν, Z)Q(Z)Λ +Q(Z)ΛεΛ(ν, Z).

If |Q(Z)|/qα = q<κ+1+<Z−α < 1, i.e., <κ+ <Z < α− 1, the second sum involving
the integration error converges absolutely and uniformly in Z for Λ → ∞ to
some analytic function c′(Z); therefore, we can replace the second sum by c′(Z) +
O
(
q(<κ+1+2r−α)Λ) = c′(Z) + O

(
N<κ+1+2r−α) in this case. If <κ + <Z > α − 1,

then the second sum is O
(
q(<κ+2r+1−α)Λ) = O

(
N<κ+1+2r−α). By our choice of

r, the case <κ + <Z = α − 1 cannot occur. So in any case, we may write the
second sum as c′(Z) +O

(
N<κ+1−β) by our choice of r. The last summand involving

εΛ(ν, Z) is absorbed by the error term of the second summand. Note that the error
term is uniform in Z and, by its construction, analytic in Z.

Thus we end up with

L(N,Z) = c′(Z) + S(N,Z) +O
(
N<κ+1−β) (14.4)

where
S(N,Z) := I(1, Z)

∑
0≤p<Λ

Q(Z)p + I(ν, Z)Q(Z)Λ. (14.5)

It remains to rewrite S(N,Z) in the form required by (14.1). We emphasise that
we will compute S(N,Z) exactly, i.e., no more asymptotics for N → ∞ will play
any rôle.



50 C. HEUBERGER AND D. KRENN

Construction of Ψ. We will now rewrite the expression S(N,Z) such that the
generating function Ψ (i.e., the fluctuations of the right-hand side of (14.1)) ap-
pears. After this, we will gather properties of Ψ including properties of its Fourier
coefficients.

We rewrite (14.5) as

S(N,Z) = I(1, Z)1−Q(Z)Λ

1−Q(Z) + I(ν, Z)Q(Z)Λ
.

We replace Λ by logq N − ν and use

Q(Z)Λ = Q(Z)logq N Q(Z)−ν = Nκ+1+Z Q(Z)−ν

to get

S(N,Z) = I(1, Z)
1−Q(Z) +Nκ+1+ZΨ(ν, Z) (14.6)

with

Ψ(u, Z) := Q(Z)−u
(
I(u, Z)− I(1, Z)

1−Q(Z)

)
. (14.7)

Periodic Extension of Ψ. A priori, it is not clear that the function Ψ(u, Z) defined
above can be extended to a periodic function (and therefore Fourier coefficients can
be computed later on). The aim now is to show that it is possible to do so.

It is obvious that Ψ(u, Z) is continuously differentiable in u ∈ [0, 1]. We have

Ψ(1, Z) = I(1, Z)
Q(Z)

(
1− 1

1−Q(Z)

)
= − I(1, Z)

1−Q(Z) = Ψ(0, Z)

because I(0, Z) = 0 by (14.3). The derivative of Ψ(u, Z) with respect to u is

∂Ψ(u, Z)
∂u

= −
(
logQ(Z)

)
Ψ(u, Z) + (log q)Q(Z)−uQ(Z)u Φ(u, Z)

= −
(
logQ(Z)

)
Ψ(u, Z) + (log q) Φ(u, Z),

which implies that

∂Ψ(u, Z)
∂u

∣∣∣
u=1

= ∂Ψ(u, Z)
∂u

∣∣∣
u=0

.

We can therefore extend Ψ(u, Z) to a 1-periodic continuously differentiable function
in u on R.

Fourier Coefficients of Ψ. Knowing that Ψ is a periodic function, we can now head
for its Fourier coefficients and relate them to those of Φ.

By using equations (14.7) and (14.3), Q(Z) = qκ+1+Z , and exp(−2`πiu) = q−χ`u

with χ` = 2πi`
log q , we now express the Fourier coefficients of Ψ(u, Z) in terms of those
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of Φ(u, Z) by∫ 1

0
Ψ(u, Z) exp(−2`πiu) du

= (log q)
∫

0≤w≤u≤1
Q(Z)w−u Φ(w,Z)q−χ`u dw du

− I(1, Z)
1−Q(Z)

∫ 1

0
q−(κ+1+Z+χ`)u du

= (log q)
∫

0≤w≤1
Q(Z)w Φ(w,Z)

∫
w≤u≤1

q−(κ+1+Z+χ`)u dudw

− I(1, Z)
(1−Q(Z))(log q)(κ+ 1 + Z + χ`)

(
1− 1

Q(Z)

)
= 1
κ+ 1 + Z + χ`

∫ 1

0
Q(Z)w Φ(w,Z)

(
q−(κ+1+Z+χ`)w − 1

Q(Z)

)
dw

+ I(1, Z)
Q(Z)(log q)(κ+ 1 + Z + χ`)

= 1
κ+ 1 + χ` + Z

∫ 1

0
Φ(w,Z) exp(−2`πiw) dw

− 1
Q(Z)(κ+ 1 + χ` + Z)

∫ 1

0
Q(Z)w Φ(w,Z) dw

+ I(1, Z)
Q(Z)(log q)(κ+ 1 + Z + χ`)

.

The second and third summands cancel, and we get(
κ+ 1 + χ` + Z

)∫ 1

0
Ψ(u, Z) exp(−2`πiu) du =

∫ 1

0
Φ(w,Z) exp(−2`πiw) dw.

(14.8)

Extracting Coefficients. So far, we have proven everything in terms of generating
functions. We now extract the coefficients of these power series which will give us
the result claimed in Proposition 14.1.

By (14.7), Ψ(u, Z) is analytic in Z for 0 < |Z| < 2r. If qκ+1 6= 1, then it is
analytic in Z = 0, too. If qκ+1 = 1, then (14.7) implies that Ψ(u, Z) might have a
simple pole in Z = 0. Note that all other possible poles have been excluded by our
choice of r. For j ≥ −1, we write

Ψj(u) := [Zj ] Ψ(u, Z)

and use Cauchy’s formula to obtain

Ψj(u) = 1
2πi

∮
|Z|=r

Ψ(u, Z)
Zj+1 dZ.

This and the properties of Ψ(u, Z) established above imply that Ψj is a 1-periodic
continuously differentiable function.

Inserting (14.6) in (14.4) and extracting the coefficient of Zm−1 using Cauchy’s
theorem and the analyticity of the error in Z yields (14.1) with c = [Zm−1]

(
c′(Z) +

I(1,Z)
1−Q(Z)

)
. Rewriting (14.8) in terms of Ψj and Φj leads to (14.2). Note that we

have to add O(Zm) in (14.2) to compensate the fact that we do not include ψj` for
j ≥ m. �

We prove a uniqueness result.
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Lemma 14.4. Let m be a positive integer, q > 1 be a real number, κ ∈ C such that
κ /∈ 2πi

log qZ, c ∈ C, and Ψ0, . . . , Ψm−1 and Ξ0, . . . , Ξm−1 be 1-periodic continuous
functions such that∑

0≤k<m
(logq N)kΨk(logq N) =

∑
0≤k<m

(logq N)kΞk(logq N) + cN−κ + o(1) (14.9)

for integers N →∞. Then Ψk = Ξk for 0 ≤ k < m.

Proof. If <κ < 0 and c 6= 0, then (14.9) is impossible as the growth of the right-hand
side of the equation is larger than that on the left-hand side. So we can exclude
this case from further consideration. We proceed indirectly and choose k maximally
such that Ξk 6= Ψk. Dividing (14.9) by (logq N)k yields

(Ξk −Ψk)(logq N) = cN−κ[k = 0] + o(1) (14.10)

for N →∞. Let 0 < u < 1 and set Nj = bqj+uc. We clearly have limj→∞Nj =∞.
Then

j + u+ logq(1− q−j−u) = logq(qj+u − 1) ≤ logq Nj ≤ j + u.

We define νj := logq Nj−j−u and see that νj = O(q−j) for j →∞, i.e., limj→∞ νj =
0. This implies that limj→∞{logq Nj} = u and therefore

lim
j→∞

(Ξk −Ψk)(logq Nj) = lim
j→∞

(Ξk −Ψk)({logq Nj}) = Ξk(u)−Ψk(u).

Setting N = Nj in (14.10) and letting j →∞ shows that

Ξk(u)−Ψk(u) = lim
j→∞

cN−κj [k = 0]. (14.11)

If k 6= 0 or <κ > 0, we immediately conclude that Ξk(u)−Ψk(u) = 0. If <κ < 0 we
have c = 0, which again implies that Ξk(u)−Ψk(u) = 0.

Now we assume that <κ = 0 and k = 0. We set β := − log q
2πi κ, which implies

that N−κ = exp(2πiβ logq N). We choose sequences (r`)`≥1 and (s`)`≥1 such that
lim`→∞ s` = ∞ and lim`→∞|s`β − r`| = 0: For rational β = r/s, we simply take
r` = `r and s` = `s, and for irrational β, we consider the sequence of convergents
(r`/s`)`≥1 of the continued fraction of β and the required properties follow from the
theory of continued fractions; see for example [29, Theorems 155 and 164]. By using
logq Nj = j + u+ νj , we get

lim
`→∞

N−κs` = lim
`→∞

exp(2πi(r` + βu+ (s`β − r`) + βνs`) = exp(2πiβu),

lim
`→∞

N−κs`+1 = lim
`→∞

exp(2πi(r` + β + βu+ (s`β − r`) + βνs`+1) = exp
(
2πiβ(1 + u)

)
.

These two limits are distinct as β /∈ Z by assumption. Thus limj→∞N−κj does not
exist. Therefore, (14.11) implies that c = 0 and therefore Ξk(u)−Ψk(u) = 0.

We proved that Ξk(u) = Ψk(u) for u /∈ Z. By continuity, this also follows for all
u ∈ R; contradiction. �

14.2. Proof of Theorem E. We again start with an outline of the proof.

Overview of the Proof of Theorem E. The idea is to compute the repeated summa-
tory function of F twice: On the one hand, we use the pseudo-Tauberian Proposi-
tion 14.1 to rewrite the right-hand side of (6.6) in terms of periodic functions Ψaj .
On the other hand, we compute it using a higher order Mellin–Perron summation
formula, relating it to the singularities of F . More specifically, the expansions at
the singularities of F give the Fourier coefficients of Ψaj . The Fourier coefficients of
the functions Ψaj are related to those of the functions Φj via (14.2). �

And up next comes the actual proof.
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Proof of Theorem E. Initial observations and notations. As Φj is Hölder continu-
ous, its Fourier series converges by Dini’s criterion; see, for example, [40, p. 52].

For any sequence g on Z>0, we set (Sg)(N) :=
∑

1≤n<N g(n). We set A =
1 + max{bηc, 0}. In particular, A is a positive integer with A > η.
Asymptotic Summation. We first compute the Ath repeated summatory func-
tion SAF of F (i.e., the (A + 1)th repeated summatory function SA+1f of the
function f) by applying Proposition 14.1 A times. This results in an asymptotic
expansion involving new periodic fluctuations while keeping track of the relation
between the Fourier coefficients of the original fluctuations and those of the new
fluctuations.

A simple induction based on (6.6) and using Proposition 14.1, shows that there
exist 1-periodic continuous functions Ψaj for a ≥ 0 and −1 ≤ j < m and some
constants cab for 0 ≤ b < a such that

(Sa+1f)(N) =
∑

0≤b<a
cabN

b +Nκ+a
∑

j+k=m−1
−1≤j<m

(logN)k

k! Ψaj({logq N}) +O(Nκ0+a)

(14.12)
for integers N →∞. In fact, Ψ0j = Φj for 0 ≤ j < m. For a ≥ 1 and −1 ≤ j < m,
Ψaj is continuously differentiable. Note that the case that qκ+a+1 = 1 occurs for at
most one 0 ≤ a < A, which implies that the number of non-vanishing fluctuations
increases at most once in the application of Proposition 14.1. Also note that the
assumption α > <κ− κ0 implies that the error terms arising in the application of
Proposition 14.1 are absorbed by the error term stemming from (6.6).

We denote the corresponding Fourier coefficients by

ψaj` :=
∫ 1

0
Ψaj(u) exp(−2`πiu) du

for 0 ≤ a ≤ A, −1 ≤ j < m, ` ∈ Z. By (14.2) the generating functions of the Fourier
coefficients fulfil∑

−1≤j<m
ψaj`Z

j = (κ+ a+ 1 + χ` + Z)
∑

−1≤j<m
ψ(a+1)j`Z

j +O(Zm)

for 0 ≤ a < A, ` ∈ Z and Z → 0. Iterating this recurrence yields∑
0≤j<m

ψ0j`Z
j =

( ∏
1≤a≤A

(κ+ a+ χ` + Z)
) ∑
−1≤j<m

ψAj`Z
j +O(Zm) (14.13)

for ` ∈ Z and Z → 0.
Explicit Summation. We now compute SA+1f explicitly with the aim of decom-
posing it into one part which can be computed by the Ath order Mellin–Perron
summation formula and another part which is smaller and can be absorbed by an
error term.

Explicitly, we have

(Sa+1f)(N) =
∑

1≤n1<n2<···<na+1<N

f(n1) =
∑

1≤n<N
f(n)

∑
n<n2<···<na+1<N

1

for 0 ≤ a ≤ A. Note that we formally write the outer sum over the range 1 ≤ n < N
although the inner sum is empty (i.e., equals 0) for n ≥ N − a; this will be useful
later on. The inner sum counts the number of selections of a elements out of
{n+ 1, . . . , N − 1}, thus we have

(Sa+1f)(N) =
∑

1≤n<N

(
N − n− 1

a

)
f(n) =

∑
1≤n<N

1
a! (N − n− 1)af(n) (14.14)
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for 0 ≤ a ≤ A and falling factorials za := z(z − 1) · · · (z − a+ 1).
The polynomials 1

a! (U − 1)a, 0 ≤ a ≤ A, are clearly a basis of the space of
polynomials in U of degree at most A. Thus, there exist rational numbers b0, . . . ,
bA such that

UA

A! =
∑

0≤a≤A

ba
a! (U − 1)a.

Comparing the coefficients of UA shows that bA = 1. Substitution of U by N − n,
multiplication by f(n) and summation over 1 ≤ n < N yield

1
A!

∑
1≤n<N

(N − n)Af(n) =
∑

0≤a≤A
ba(Sa+1f)(N)

by (14.14). When inserting the asymptotic expressions from (14.12), the summands
involving fluctuations for 0 ≤ a < A are absorbed by the error term O(Nκ0+A) of
the summand for a = A because <κ− κ0 < 1. Thus there are some constants cb for
0 ≤ b < A such that

1
A!

∑
1≤n<N

(N − n)Af(n) =
∑

0≤b<A
cbN

b

+Nκ+A
∑

j+k=m−1
−1≤j<m

(logN)k

k! ΨAj({logq N}) +O(Nκ0+A) (14.15)

for integers N →∞.
If κ + A = b + χ`′ for some 0 ≤ b < A and `′ ∈ Z, then we assume without

loss of generality that cb = 0: Otherwise, we replace ΨA(m−1)(u) by ΨA(m−1)(u) +
cb exp(−2`′πiu) and cb by 0. Both (14.15) and (14.13) remain intact: The former
trivially, the latter because the factor for a = A− b in (14.13) equals κ+A− b−
χ`′ + Z = Z which compensates the fact that the Fourier coefficient ψA(m−1)(−`′) is
modified.

Mellin–Perron summation. We use the Ath order Mellin–Perron summation
formula to write the main contribution of SA+1f as determined above in terms of
new periodic fluctuations Ξj whose Fourier coefficients are expressed in terms of
residues of a suitably modified version of the Dirichlet generating function F .

Without loss of generality, we assume that σabs > 0: The growth condition (6.8)
trivially holds with η = 0 on the right of the abscissa of absolute convergence of
the Dirichlet series. By the Ath order Mellin–Perron summation formula (see [19,
Theorem 2.1]), we have

1
A!

∑
1≤n<N

(N − n)Af(n) = 1
2πi

∫ σabs+1+i∞

σabs+1−i∞

F(s)Ns+A

s(s+ 1) · · · (s+A) ds

with the arbitrary choice σabs + 1 > σabs for the real part of the line of integration.
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The growth condition (6.8) allows us to shift the line of integration to the left
such that

1
A!

∑
1≤n<N

(N − n)Af(n)

=
∑
`∈Z

Res
( F(s)Ns+A

s(s+ 1) · · · (s+A) , s = κ+ χ`

)
+

∑
0≤a≤min{−κ0,A}

(−1)a F(−a)
a!(A− a)!N

A−a
[
κ /∈ −a+ 2πi

log qZ
]

+ 1
2πi

∫ κ0+i∞

κ0−i∞

F(s)Ns+A

s(s+ 1) · · · (s+A) ds.

The summand for a in the second term corresponds to a possible pole at s = −a
which is not taken care of in the first sum; note that F(s) is analytic at s = −a in
this case by assumption because of κ0 < −a.

We now compute the residue at s = κ+ χ`. We use

Ns+A = Nκ+A+χ`
∑
k≥0

(logN)k

k! (s− κ− χ`)k

to split up the residue as

Res
( F(s)Ns+A

s(s+ 1) · · · (s+A) , s = κ+ χ`

)
= Nκ+A+χ`

∑
k+j=m−1
−1≤j<m

(logN)k

k! ξj`

with
ξj` = Res

(F(s)(s− κ− χ`)m−1−j

s(s+ 1) · · · (s+A) , s = κ+ χ`

)
(14.16)

for j ≥ −1. Note that we allow j = −1 for the case of κ ∈ −a + 2πi
log qZ for some

1 ≤ a ≤ A when F(s)/
(
s · · · (s+A)

)
might have a pole of order m+ 1 at s = −a.

Using the growth condition (6.8) and the choice of A yields
F(s)

s(s+ 1) · · · (s+A) = O
(
|=s|−1−A+η) = o

(
|=s|−1) (14.17)

for |=s| → ∞ and s which are at least a distance δ away from the poles κ + χ`.
By writing the residue in (14.16) in terms of an integral over a rectangle around
s = κ+ χ` (distance again at least δ away from κ+ χ`), we see that (14.17) implies

ξj` = O
(
|`|−1−A+η) = o

(
|`|−1) (14.18)

for |`| → ∞. Moreover, by (14.17), we see that
1

2πi

∫ κ0+i∞

κ0−i∞

F(s)Ns+A

s(s+ 1) · · · (s+A) ds = O(Nκ0+A).

Thus we proved that

1
A!

∑
1≤n<N

(N − n)Af(n) = Nκ+A
∑

k+j=m−1
−1≤j<m

(logN)k

k! Ξj(logq N)

+
∑

0≤a≤min{−κ0,A}

(−1)a F(−a)
a!(A− a)!N

A−a
[
κ /∈ −a+ 2πi

log qZ
]

+O(Nκ0+A) (14.19)

for
Ξj(u) =

∑
`∈Z

ξj` exp(2`πiu) (14.20)
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where the ξj` are given in (14.16). By (14.18), the Fourier series (14.20) converges
uniformly and absolutely. This implies that Ξj is a 1-periodic continuous function.

Fourier Coefficients. We will now compare the two asymptotic expressions for
SA+1f obtained so far to see that the fluctations coincide. We know explicit
expressions for the Fourier coefficients of the Ξj in terms of residues, and we know
how the Fourier coefficients of the fluctuations of the repeated summatory function
are related to the Fourier coefficients of the fluctuations of F . Therefore, we are
able to compute the latter.

By (14.15), (14.19), elementary asymptotic considerations for the terms N b with
b > <κ + A, Lemma 14.4 and the fact that cb = 0 if b ∈ κ + A + 2πi

log qZ for some
0 ≤ b < A, we see that Ξj = ΨAj for −1 ≤ j < m. This immediately implies that
F(0) = 0 if κ0 < 0 and κ /∈ 2πi

log qZ.
To compute the Fourier coefficients ψAj` = ξj`, we set Z := s − κ − χ` to

rewrite (14.16) using (6.7) as

ψAj` = [Z−1]
∑
b≥0 ϕb`Z

b−j−1∏
1≤a≤A(κ+ a+ χ` + Z) = [Zj ]

∑
b≥0 ϕb`Z

b∏
1≤a≤A(κ+ a+ χ` + Z)

for −1 ≤ j < m and ` ∈ Z. This is equivalent to∑
−1≤j<m

ψAj`Z
j =

∑
j≥0 ϕj`Z

j∏
1≤a≤A(κ+ a+ χ` + Z) +O(Zm)

for ` ∈ Z and Z → 0. Clearing the denominator and using (14.13) as announced in
Remark 14.3 lead to ∑

0≤j<m
ψ0j`Z

j =
∑
j≥0

ϕj`Z
j +O(Zm)

for ` ∈ Z and Z → 0. Comparing coefficients shows that ψ0j` = ϕj` for 0 ≤ j < m
and ` ∈ Z. This proves (6.9). �

15. Proof of Theorem A

Proof of Theorem A. By Remark 3.2, we have x(n) = e1f(n)v(0). If v(0) = 0, there
is nothing to show. Otherwise, as observed in Section 7.1, v(0) is a right eigenvector
of A0 associated to the eigenvalue 1. As a consequence, Kv(0), ϑmv(0) and ϑv(0)
all vanish. Therefore, (3.3) follows from Theorem C by multiplication by e1 and
v(0) from left and right, respectively. Note that the notation is somewhat different:
Instead of powers (logq N)k in Theorem C we write (logN)k/k! here.

The functional equation (3.4) follows from Theorem D for n0 = 1 by multiplication
from right by v(0).

For computing the Fourier coefficients, we denote the rows of T by w1, . . . , wd.
Thus wa is a generalised left eigenvector of C of some order ma associated to some
eigenvalue λa of C. We can write e1 =

∑
1≤a≤d cawa for some suitable constants c1,

. . . , cd. For 1 ≤ a ≤ d, we consider the sequence ha on Z>0 with

ha(n) = wa
(
v(n) + v(0)[n = 1]

)
.

The reason for incorporating v(0) into the value for n = 1 is that the corresponding
Dirichlet series H(a)(s) :=

∑
n≥1 n

−sha(n) only takes values at n ≥ 1 into account.
By definition, we have H(a)(s) = wav(0) + waV(s). Taking the linear combination
yields

∑
1≤a≤d caH(a)(s) = x(0) +X (s). We choose κ0 > logq R such that there are

no eigenvalues λ ∈ σ(C) with logq R < logq λ ≤ κ0 and such that κ0 /∈ Z≤0.
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By Theorem B, we have∑
1≤n<N

ha(n) = N logq λa
∑

0≤k<ma

(logN)k

k! Ψak({logq N}) +O(Nκ0) (15.1)

for N →∞ for suitable 1-periodic Hölder continuous functions Ψak (which vanish if
|λa| ≤ R). By Theorem D, the Dirichlet series H(a)(s) is meromorphic for <s > κ0
with possible poles at s = logq λa + χ` for ` ∈ Z.

The sequence ha satisfies the prerequisites of Theorem E, either with κ = logq λa
if < logq λa > κ0 or with arbitrary real κ > κ0 and Φj = 0 for all j if < logq λa ≤ κ0.
The theorem then implies that

H(a)(0) = 0 (15.2)
if κ0 < 0 and λa 6= 1.

If |λa| > R, Theorem E also yields

Ψak(u) =
∑
`∈Z

ψak` exp(2πi`u)

where the ψak` are given by the singular expansion
H(a)(s)

s
�
∑
`∈Z

∑
0≤k<ma

ψak`
(s− logq λa − χ`)k+1 (15.3)

for <s > κ0. Note that (15.2) ensures that there is no additional pole at s = 0 when
κ0 < 0 and λa 6= 1. Also note that in comparison to Theorem E, Φma−1−k there
corresponds to Ψak here.

We now have to relate the results obtained for the sequences ha with the results
claimed for the original sequence f . For λ ∈ σ(C) with |λ| > R, we have

Φλk(u) =
∑

1≤a≤d
λa=λ

caΨak(u).

We denote the Fourier coefficients of Φλk by ϕλk` for ` ∈ Z and will show that these
Fourier coefficients actually fullfil (3.5). Taking linear combinations of (15.3) shows
that ∑

1≤a≤d
λa=λ

caH(a)(s)
s

�
∑
`∈Z

∑
0≤k<m(λ)

ϕλk`
(s− logq λ− χ`)k+1

for <s > κ0.
Summing over all λ ∈ σ(C) yields (3.5) because summands λ with |λ| ≤ R are

analytic for <s > κ0 and do therefore not contribute to the right-hand side. �

It might seem to be somewhat artificial that Theorem E is used to prove that
H(j)(0) = 0 in some of the cases above. In fact, this can also be shown directly
using the linear representation; we formulate and prove this in the following remark.
Remark 15.1. With the notations of the proof of Theorem A, H(j)(0) = 0 if λj 6= 1
and R < 1 can also be shown using the functional equation (3.4).
Proof. We prove this by induction on mj . By definition of T , we have wj(C−λjI) =
[mj > 1]wj+1. (We have md = 1 thus wd+1 does not actually occur.) If mj > 1,
then H(j+1)(0) = 0 by induction hypothesis.

We add (I − q−s) v(0) to (3.4) and get(
I − q−sC

)(
v(0) + V(s)

)
=
(
I − q−sC

)
v(0) +

∑
1≤n<q

n−sv(n)

+ q−s
∑

0≤r<q
Ar
∑
k≥1

(
−s
k

)(r
q

)k
V(s+ k).



58 C. HEUBERGER AND D. KRENN

Multiplication by wj from the left yields(
1− q−sλ

)
H(j)(s) = [mj > 1] q−sH(j+1)(s)

+ wj
(
I − q−sC

)
v(0) + wj

∑
1≤n<q

n−sv(n)

+ wjq
−s

∑
0≤r<q

Ar
∑
k≥1

(
−s
k

)(r
q

)k
V(s+ k).

As R < 1 and λj 6= 1, the Dirichlet series H(j)(s) is analytic in s = 0 by Theorem D.
It is therefore legitimate to set s = 0 in the above equation. We use the induction
hypothesis that H(j+1)(0) = 0 as well as the fact that v(n) = Anv(0) (note that v(0)
is a right eigenvector of A0 to the eigenvalue 1; see Section 7.1) for 0 ≤ n < q to get

(1− λ)H(j)(0) = wj
∑

0≤n<q
Anv(0)− wjCv(0) = 0

because all binomial coefficients
(0
k

)
vanish. �

16. Proof of Proposition 6.4

Proof of Proposition 6.4. We set

j0 :=
⌊
−
p
(
π + arg(λ)

)
2π

⌋
+ 1

with the motive that
−π < arg(λ) + 2jπ

p
≤ π

holds for j0 ≤ j < j0 + p. This implies that for j0 ≤ j < j0 + p, the pth root of
unity ζj := exp(2jπi/p) runs through the elements of Up such that logq(λζj) =
logq(λ) + 2jπi/(p log q). Then

N logq(ζjλ) = N logq λ exp
(2jπi

p
logq N

)
= N logq λ exp(2jπi logqp N) = N logq λ exp(2jπi{logqp N}).

We set
Φ(u) :=

∑
j0≤j<j0+p

exp
(2jπi

p
u
)

Φ(ζjλ)(u),

thus Φ is a p-periodic function.
For the Fourier series expansion, we get

Φ(u) =
∑
`∈Z

∑
j0≤j<j0+p

Res
(
D(s)

(
s−logq λ−

2(`+ j
p )πi

log q

)k
, s = logq λ+

2(`+ j
p )πi

log q

)
× exp

(
2πi
(
`+ j

p

)
u
)

Replacing `p+ j by ` leads to the Fourier series claimed in the proposition. �

Part IV. Computational Aspects

The basic idea for computing the Fourier coefficients is to use the functional
equation in Theorem D. This part describes in detail how this is done. We basically
follow an approach found in Grabner and Hwang [26] and Grabner and Heuberger [24],
but provide error bounds.

An actual implementation is also available; SageMath [39] code can be found at
https://gitlab.com/dakrenn/regular-sequence-fluctuations . We use the

https://gitlab.com/dakrenn/regular-sequence-fluctuations
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Arb library [34] (more precisely, its SageMath bindings) for ball arithmetic which
keeps track of rounding errors such that we can be sure about the precision and
accuracy of our results.

We use the results of this part to compute Fourier coefficients for our examples,
in particular for esthetic numbers (Section 9) and Pascal’s rhombus (Section 10).

17. Strategy for Computing the Fourier Coefficients

The computation of the Fourier coefficients relies on the evaluation of Dirichlet
series at certain points s = s0. It turns out to be numerically preferable to split up
the sum as

F1(s0) =
∑

1≤n<n0

n−s0f(n) + Fn0(s0)

for some suitable n0 (see Section 18.2), compute the sum of the first n0−1 summands
directly and evaluate Fn0(s0) as it is described in the following.

For actually computing the Fourier coefficients, we use a formulation in terms
of a residue; for instance, see (3.6) where this is formulated explicitly in the set-up
of Theorem A. As said, we will make use of the functional equation (6.3) for the
matrix-valued Dirichlet series Fn0(s) with its right-hand side, the matrix-valued
Dirichlet series Gn0(s).

Let us make this explicit for a simple eigenvalue λ 6= 1 of C and a corresponding
eigenvector w. Then w(I − q−sC) = w(1− q−sλ) and (6.3) can be rewritten as

wF1(s) = 1
1− q−sλw G1(s)

Thus, wF1(s) has a simple poles at s = logq λ+ χ` for all ` ∈ Z, where χ` = 2`πi
log q .

By (6.7) and (6.9) of Theorem E (with κ = logq λ and m = 1), the `th Fourier
coefficient is given by the residue

Res
(wF1(s)

s
, s = logq λ+ χ`

)
= w G1(logq λ+ χ`)

1
(log q)(logq λ+ χ`)

.

Note that log q is the derivative of 1 − q−sλ with respect to s evaluated at the
pole s = logq λ.

By (6.4), Gn0(logq λ + χ`) is expressed in terms of an infinite sum containing
Fn0(logq λ+ χ` + k) for k ≥ 1. We truncate this sum and bound the error; this is
the aim of Section 18.1 and in particular Lemma 18.2. We can iterate the above
idea for the shifted Dirichlet series Fn0(logq λ+ χ` + k) which leads to a recursive
evaluation scheme. Note that once we have computed Gn0(logq λ+ χ` + k), we get
Fn0(logq λ+ χ` + k) by solving a system of linear equations.

18. Details on the Numerical Computation

18.1. Bounding the Error. We need to estimate the approximation error which
arises if the infinite sum over k ≥ 1 in (6.4) is replaced by a finite sum. It is clear
that for large <s and n0, the value Fn0(s) will approximately be of the size of its
first summand n−s0 f(n0). In view of ‖f(n0)‖ = O(ρlogq n0), this will be rather small.
We give a precise estimate in a first lemma.

Lemma 18.1. Let n0 > 1 and let M := max0≤r<q‖Ar‖. For <s > logqM + 1, we
have ∑

n≥n0

‖f(n)‖
n<s

≤ M

(<s− logqM − 1)(n0 − 1)<s−logqM−1 .
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Proof. By definition of M , we have ‖f(n)‖ ≤M1+logq n = MnlogqM . Therefore, we
have ∑

n≥n0

‖f(n)‖
n<s

≤M
∑
n≥n0

1
n<s−logqM

≤M
∫ ∞
n0−1

dn
n<s−logqM

= M

(<s− logqM − 1)(n0 − 1)<s−logqM−1

where we interpret the sum as a lower Riemann sum of the integral. �

We now give a bound for the approximation error in (6.4).

Lemma 18.2. Let n0 > 1 and M as in Lemma 18.1. Let K ≥ 1 and s ∈ C be such
that <s+K > max(logqM + 1, 0).

Then∥∥∥∥Gn0(s)−
∑

n0≤n<qn0

n−sf(n)− q−s
∑

0≤r<q
Ar

∑
1≤k<K

(
−s
k

)(r
q

)k
Fn0(s+ k)

∥∥∥∥
≤ q−<s

∣∣∣(−s
K

)∣∣∣ M

(<s+K − logqM − 1)(n0 − 1)<s+K−logqM−1

∑
0≤r<q

‖Ar‖
(r
q

)K
.

Proof. We set

D := Gn0(s)−
∑

n0≤n<qn0

n−sf(n)− q−s
∑

0≤r<q
Ar

∑
1≤k<K

(
−s
k

)(r
q

)k
Fn0(s+ k)

and need to estimate ‖D‖.
By definition of Gn0(s), we have
Gn0(s) = (1− q−sC)Fn0(s)

=
∑

n0≤n<qn0

n−sf(n) + Fqn0(s)− q−sCFn0(s)

=
∑

n0≤n<qn0

n−sf(n) +
∑

0≤r<q

∑
n≥n0

Arf(n)
(qn+ r)s − q

−sCFn0(s)

=
∑

n0≤n<qn0

n−sf(n) + q−s
∑

0≤r<q
Ar

∑
n≥n0

f(n)
ns

((
1 + r

qn

)−s
− 1
)
.

Thus we have

D = q−s
∑

0≤r<q
Ar

∑
n≥n0

f(n)
ns

((
1 + r

qn

)−s
−

∑
0≤k<K

(
−s
k

)( r

qn

)k)
.

For 0 ≤ x < 1, Taylor’s theorem (or induction on K ≥ 1 using integration by
parts) implies that

(1 + x)−s −
∑

0≤k<K

(
−s
k

)
xk = K

∫ x

0

(
−s
K

)
(1 + t)−s−K(x− t)K−1 dt.

For 0 ≤ t ≤ x < 1, we can bound |(1 + t)−s−K | from above by 1 since we have
assumed that <s+K > 0. Thus∣∣∣∣(1 + x)−s −

∑
0≤k<K

(
−s
k

)
xk
∣∣∣∣ ≤ K∣∣∣(−sK

)∣∣∣ ∫ x

0
(x− t)K−1 dt =

∣∣∣(−s
K

)∣∣∣xK .
Thus we obtain the bound

‖D‖ ≤ q−<s
∣∣∣(−s
K

)∣∣∣ ∑
0≤r<q

‖Ar‖
(r
q

)K ∑
n≥n0

‖f(n)‖
n<σ+K .
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Bounding the remaining Dirichlet series by Lemma 18.1 yields the result. �

18.2. Choices of Parameters. As mentioned at the beginning of this part, we
choose the Arb library [34] for reliable numerical ball arithmetic. In our examples
(esthetic numbers in Section 9 and Pascal’s rhombus in Section 10), we choose
n0 = 1024 and recursively compute Fn0(logq λ+ χ` + k) for k ≥ 1 by (6.4). In each
step, we keep adding summands for k ≥ 1 until the bound of the approximation error
in Lemma 18.2 is smaller than the smallest increment which can still be represented
with the chosen number of bits. For plotting the graphs, we simply took machine
precision; for the larger number of significant digits in Table 10.1, we used 128 bits
precision.

19. Non-vanishing Coefficients

Using reliable numerical arithmetic for the computations (see above) yields small
balls in which the true value of the Fourier coefficients is. If such a ball does not
contain zero, we know that the Fourier coefficient does not vanish. If the ball
contains zero, however, we cannot decide whether the Fourier coefficient vanishes.
We can only repeat the computation with higher precision and hope that this will
lead to a decision that the coefficient does not vanish, or we can try to find a direct
argument why the Fourier coefficient does indeed vanish, for instance using the final
statement of Theorem B (3).

Vanishing Fourier coefficients appear in our introductory Example 3.1: In its
continuation (Example 3.3) an alternative approach is used to compute these
coefficients explicitly symbolically. In this way a decision for them being zero is
possible. The same is true for the example of transducers in Section 8.

It should also be noted that in the analysis of esthetic numbers (example in
Section 9) we could have modelled the problem by a complete transducer (by just
introducing a sink) and then applied the results of Section 8. This would have led
to an asymptotic expansion where the fluctuations of the main term (corresponding
to the eigenvalue q) would in fact have vanished, but an argument would have been
needed. So we chose a different approach in Section 9 to avoid this problem. There
the eigenvalue q does no longer occur. This implies that the fluctuations for q of
the transducer approach vanish. Note also that half of the remaining fluctuations
still turn out to vanish: this is shown in the proof of Corollary G.
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