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8 About the ordinances of the vectors of the

n-dimensional Boolean cube in accordance with

their weights
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∗

Abstract

The problem ”Given a Boolean function f of n variables by its
truth table vector. Find (if exists) a vector α ∈ {0, 1}n of maximal (or
minimal) weight, such that f(α) = 1.” arises in computing the alge-
braic degree of Boolean functions or vectorial Boolean functions called
S-boxes. The solutions to this problem have useful generalizations and
applications. To find effective solutions we examine the ways of order-
ing the vectors of the Boolean cube in accordance with their weights.
The notion ”k-th layer” of the n-dimensional Boolean cube is involved
in the definition and examination of the ”weight order” relation. It
is compared with the known relation ”precedes”. We enumerate the
maximum chains for both relations. An algorithm that generates the
vectors of the n-dimensional Boolean cube in accordance with their
weights is developed. The lexicographic order is chosen as a second cri-
terion for an ordinance of the vectors of equal weights. The algorithm
arranges the vectors in a unique way called a weight-lexicographic or-
der. It is represented by the serial numbers of the vectors, instead of
the vectors itself. Its time and space complexities are Θ(2n), i.e., of
linear type with respect to the size of the output. The obtained results
are summarized and added as a new sequence (A294648) in the OEIS.

Keywords: Boolean cube, binary vector, serial number, lexicographic or-
der, weight order, maximum chains enumerating, weight-lexicographic order
generating, power set generating, ranking
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1 Introduction

The binary vectors (binary words, binary sequences, bit strings, etc.) play
an important role in all areas of Discrete mathematics and Computer sci-
ence. The set of all n-dimensional binary vectors {0, 1}n is often called
an n-dimensional Boolean cube (hypercube). The most natural order of its
vectors is the lexicographic order, which is a total order. There are other
important orders—for example, in a Gray code (various types, considered
exhaustively in the survey of C. Savage [20]), or in accordance with the
relation ”precedence” which is a partial order. Here we consider a similar
one—order in accordance with the weights of the binary vectors. Our study
of this order is motivated by searching for efficient solutions to the following
problem: ”Given a Boolean function f of n variables by its Truth Table
vector, denoted by TT (f). Find (if exists) a vector α ∈ {0, 1}n of maximal
(or minimal) weight, such that f(α) = 1.”. This problem arises in comput-
ing the algebraic degree of Boolean functions or vectorial Boolean functions
(called S-boxes) [4, 5]. The solutions to this problem have useful general-
izations and applications that are commented here. The most natural way
to solve this problem is to perform an exhaustive (linear) search: for any
vector β ∈ {0, 1}n it checks whether f(β) = 1 and selects the one with a
maximal (resp. minimal) weight. Since the values of TT (f) correspond to
the lexicographic order of the vectors of the n-dimensional Boolean cube,
such solution needs Θ(2n) checks. However, if the search checks the values
of TT (f) in accordance with the vectors’ weights, the search will finish after
finding the first vector β ∈ {0, 1}n, such that f(β) = 1. Once the desired
order of the vectors has been obtained, this approach needs O(2n) opera-
tions. This order can be obtained by an algorithm that: (1) computes the
vectors’ weights and (2) sorts the vectors in accordance with their weights.
So it needs at least Θ(n.2n) operations.

The ways for ordering the vectors of the Boolean cube in accordance with
their weights are examined here. The necessary basic notions concerning the
Boolean cube and their properties are given in Section 2. In Section 3 the
key notion ”k-th layer” of the Boolean cube is involved in discussing the
ways for an ordinance of the vectors of the Boolean cube in accordance with
their weights. The corresponding relation ”precedes by weight” is defined,
investigated and compared with the known relation ”precedes”. The max-
imum chains for the Partially Ordered Sets (POSets) determined by both
relations are enumerated (the corresponding notes are appended to the se-
quences A051459 and A000142 in the OEIS [21]). A special way for an
ordinance of the vectors in weight order (WO) is defined in the second part
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of Section 3. It is represented by the serial numbers of the vectors instead of
the vectors themselves. Theorem 6 shows that the lexicographic order is the
second criterion for an ordinance of the vectors of equal weights in their WO.
So a unique order is obtained and it is called a Weight-Lexicographic Order
(WLO). An algorithm that generates the sequence of the serial numbers of
all n-dimensional binary vectors in WLO is created. It is represented in Sec-
tion 4. The essential parts of its code (in the C programming language) and
some results of its performance are given. These results are summarized and
added as a new sequence (A294648) in the OEIS [21]. The correctness of the
algorithm is shown and its time and space complexities are evaluated—they
are both Θ(2n). Some concluding remarks are given in the last section.

2 Basic notions and properties

After studying numerous books and textbooks, we could not find a whole
topic (part or chapter), devoted to the n-dimensional Boolean cube. The
notions and the assertions given in this part can be found in most of the
sources cited here. However, they are scattered in different parts and have
different names and notations. So we represent the necessary basic notions
about the Boolean cube and its properties following [3].

Here N denotes the set of natural numbers. We consider that 0 ∈ N and
N
+ = N\{0} is the set of positive natural numbers.
Usually, the n-dimensional Boolean cube is defined as {0, 1}n = {(x1, x2,

. . . , xn) : xi ∈ {0, 1}, for i = 1, 2, . . . , n}, i.e., the set of all n-dimensional
binary vectors. So their number is |{0, 1}n| = |{0, 1}|n = 2n. The follow-
ing alternative, inductive and constructive definition is more useful for us
further.

Definition 1. 1) The set {0, 1} = {(0), (1)} is called one-dimensional
Boolean cube and its elements (0) and (1) are called one-dimensional bi-
nary vectors.

2) Let {0, 1}n−1 = {α0, α1, . . . , α2n−1−1} be the (n − 1)-dimensional
Boolean cube and α0, α1, . . . , α2n−1−1 be its (n− 1)-dimensional binary vec-
tors.

3) The n-dimensional Boolean cube {0, 1}n is built by taking the vectors
of {0, 1}n−1 twice: firstly, each vector of {0, 1}n−1 is prefixed by zero, and
thereafter each vector of {0, 1}n−1 is prefixed by one, i.e.,

{0, 1}n = {(0, α0), (0, α1), . . . , (0, α2n−1−1), (1, α0), (1, α1), . . . , (1, α2n−1−1)}.
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Figure 1 shows how the vectors of the n-dimensional Boolean cube are
obtained following the definition.

Figure 1: Building of {0, 1}n in accordance with Definition 1

Definition 2. Let α = (a1, a2, . . . , an) ∈ {0, 1}n be an arbitrary vector.
The natural number #α =

∑n
i=1

ai.2
n−i is called a serial number of the

vector α. In other words #α is the natural number whose n-digit binary
representation is a1a2 . . . an.

This notion and some of the following ones are illustrated in Figure 2.
Furthermore, they are shown in Example 1.

Definition 3. Let α = (a1, a2, . . . , an) ∈ {0, 1}n be an arbitrary vector. A
weight (or Hamming weight) of α is the natural number wt(α), equal to the
number of non-zero coordinates of α, i.e., wt(α) =

∑n
i=1

ai.

Definition 4. For arbitrary vectors α = (a1, a2, . . . , an) and β = (b1, b2,
. . . , bn) ∈ {0, 1}n the relation lexicographic precedence R≤ ⊆ {0, 1}n×{0, 1}n

is defined as follows: (α, β) ∈ R≤, if α = β or ∃ i, 0 ≤ i < n, such that
a1 = b1, a2 = b2, . . . , ai = bi, but ai+1 < bi+1. When (α, β) ∈ R≤ we say
that α lexicographically precedes β and write α ≤ β.

It is easy to verify that the relation R≤ is reflexive, antisymmetric and
transitive. So R≤ is a partial order in the cube. Furthermore, each pair
of vectors α, β ∈ {0, 1}n are comparable with respect to R≤, i.e., either
α ≤ β, or β ≤ α holds—this property is called a totality. So R≤ is a total
order in {0, 1}n. This means that its vectors can be ordered (or sorted)
lexicographically in a unique way in the sequence α0, α1, . . . , αk, . . . , α2n−1,
such that αl ≤ αk, for all l < k, and αk ≤ αr, for all k < r, and for any
k = 0, 1, . . . , n. This order is called also a standard order.
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Theorem 1. The vectors of {0, 1}n, obtained in accordance with Definition
1 are in lexicographic order, for any n ∈ N

+.

Proof. Following Definition 1, the proof of the theorem by induction is easy.
1) For k = 1 the assertion is obvious.
2) Suppose that for arbitrary integer k > 1 the vectors of {0, 1}k are in

lexicographic order.
3) We consider the vectors of {0, 1}k+1. The first half of them are ob-

tained from {0, 1}k by adding zero in the beginning of each of them. In
accordance with the inductive suggestion, they are in lexicographic order.
The second half of them are obtained by adding one in the beginning of each
vector of {0, 1}k and so they are in lexicographic order too. Finally, since
each vector from the first half begins with zero, it precedes lexicographically
each vector from the second half (because it begins with one). Therefore
the vectors of {0, 1}k+1 are in lexicographic order.

So the theorem holds for any n ∈ N
+.

Theorem 2. Let the vectors of {0, 1}n be in lexicographic order. Then:
1) The serial numbers of the vectors form the sequence of natural num-

bers: 0, 1, . . . , 2n − 1. So, α ≤ β if and only if #α ≤ #β.
2) The weights of the vectors in the second half of {0, 1}n are obtained

by adding 1 to the weights of corresponding vectors from the first half of the
cube.

The proof of this theorem is analogous to the proof of Theorem 1. The
theorem states the bijection between the vectors in lexicographic order and
their serial numbers. It also shows the relation between the vectors in lex-
icographic order and their weights. Its assertion is illustrated in Figure 2.

Definition 5. Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bn) be arbitrary
vectors of {0, 1}n. A Hamming distance between α and β is the natural
number d(α, β) equal to the number of coordinates in which α and β differ.
If d(α, β) = 1, then α and β are called adjacent, or more precisely adjacent
in i-th coordinate, if they differ in this coordinate only. If d(α, β) = n, the
vectors α and β are called opposite to each other.

The graph of the n-dimensional boolean cube is defined asHn = (Vn, En),
where Vn = {0, 1}n (i.e., the vectors of the cube are vertices of Hn) and
En = {{α, β}|α, β ∈ {0, 1}n : d(α, β) = 1} (i.e., each pair adjacent vectors
are connected by an edge). The graphs H1, . . . ,H4 are shown in Figure
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Figure 2: Illustration of the statement of Theorem 2

3. The geometric reasons that determine the name cube (or more precisely
hypercube) can be seen in the figure.

Figure 3: The graphs H1, . . . ,H4

Besides the lexicographic order and the order of the vectors of {0, 1}n in
a Gray code, another important order is given by the following relation.

Definition 6. The precedence relation is denoted by R� and it is defined
as follows: for arbitrary vectors α = (a1, a2, . . . , an), β = (b1, b2, . . . , bn)
∈ {0, 1}n, (α, β) ∈ R� if ai ≤ bi,∀ i = 1, 2, . . . , n. When (α, β) ∈ R� we say
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that α precedes β and write α � β. When α � β or β � α the vectors α
and β are called comparable, and otherwise—incomparable.

It is easy to verify that R� is reflexive, antisymmetric and transitive.
So R� is a partial order in {0, 1}n. In other words {0, 1}n is a partially
ordered set (POSet) with respect to R� and it is denoted by ({0, 1}n, R�)
or simply by ({0, 1}n,�). Since not all pairs α = (a1, a2, . . . , an), β =
(b1, b2, . . . , bn) ∈ {0, 1}n are comparable (for example, all vectors of equal
weights are incomparable), R� is not a total order, unlike the lexicographic
order.

The vector α ∈ {0, 1}n is called a minimal element of the POSet ({0, 1}n,
R�), if α � β, for any β ∈ {0, 1}n. Analogously, the vector δ is called a
maximal element of {0, 1}n with respect to R�, if γ � δ, for any γ ∈ {0, 1}n.
So, the zero vector (0, 0, . . . , 0) (i.e., the all zeros vector of n-coordinates,
denoted by 0̃n further) and the unit vector (1, 1, . . . , 1) (i.e., the all ones
vector of n-coordinates, denoted by 1̃n further) are the minimal and the
maximal element of the POSet ({0, 1}n,�), correspondingly. If any pair of
vectors of the subset C ⊂ {0, 1}n are comparable, they can be ordered in
a unique way in a chain, for example αi1 , αi2 , . . . , αik , . . . , αim , such that
αil � αik , for l < k, and αik � αir , for k < r, and for k = 1, 2, . . . ,m. So
C is a totally ordered set. A chain that is not a proper subset of any other
chain is amaximal chain. For example, (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1) is a
maximal chain in {0, 1}3, whereas (0, 1, 0, 0), (0, 1, 0, 1), (1, 1, 0, 1), (1, 1, 1, 1)
is not a maximal chain in {0, 1}4—see Figure 3. The maximal chain should
contain the minimal and the maximal element of the POSet with respect to
the corresponding relation. Each chain of the greatest possible size is called
a maximum (or longest) chain.

Definition 7. Let U = {x1, x2, . . . , xn} be a given set, n ∈ N
+, and X ⊆ U .

The vector α = (a1, a2, . . . , an) ∈ {0, 1}n, defined as:

ai =

{

0, if xi /∈ X ,
1, if xi ∈ X ,

for i = 1, 2, . . . , n, is called a characteristic vector of the set X.

Example 1. Let U = {a, b, c, d, e, f}, X = {b, c, e} and Y = {c, a, f, d}.
Since |U | = 6, α = (0, 1, 1, 0, 1, 0) ∈ {0, 1}6 is the characteristic vector of
X, and β = (1, 0, 1, 1, 0, 1)—the characteristic vector of Y . The vectors
γ = 0̃6 and δ = 1̃6 are the characteristic vectors of ∅ ⊆ U and U ⊆ U ,
correspondingly. Furthermore:
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• #α = 26, #β = 45, #γ = 0, #δ = 26 − 1 = 65;

• wt(α) = 3, wt(β) = 4, wt(γ) = 0, wt(δ) = 6;

• d(α, γ) = 3, d(α, β) = 5 d(β, δ) = 2, etc.;

• γ ≤ α ≤ β ≤ δ, in accordance with Definition 4 and Theorem 2;

• γ � α, γ � β, α � δ, β � δ, etc., but α and β are incomparable
with respect to R�.

Theorem 3. Let U be an n-element set, n ∈ N
+, and P(U) be the power set

of U . Let f : P(U) → {0, 1}n be a function defined as follows: f(X) = α,
where α ∈ {0, 1}n is the characteristic vector of X, for any X ∈ P(U).
Then f is a bijection.

The proof of the theorem is easy and we omit it. The theorem states
that the vectors of the n-dimensional Boolean cube are bijectively related
to the subsets of a given n-dimensional set by the notion of ”characteristic
vector”. Furthermore, the function f from Theorem 3 bijectively relates
(maps) the bitwise operations on the binary vectors to the operations on the
subsets of a given n-element set U as follows: ∨ (disjunction) and ∪ (union);
∧ (conjunction) and ∩ (intersection); (negation) and (complement);
⊕ (sum modulo 2, XOR) and ∆ (symmetric difference), correspondingly.
These properties are generalized in the following theorem [3,7, 8, 12,13].

Theorem 4. Let U be an n-element set, n ∈ N
+. Then the Boolean algebras

(P(U), ∪,∩, , ∅, U) and ({0, 1}n,∨,∧, , 0̃n, 1̃n) are isomorphic.

The bijection f from Theorem 3 concerns the relations R⊆ (defined on
a given universal set U , |U | = n ∈ N

+) and R� (defined on {0, 1}n). For
arbitrary A,B ⊆ U , having characteristic vectors α, β ∈ {0, 1}n, correspond-
ingly, it is easy to prove that:

A ⊆ B ⇔ α � β, i.e., (A,B) ∈ R⊆ ⇔ (f(A), f(B)) ∈ R�.

Thus f is an isomorphism between the POSets (P(U), R⊆) and ({0, 1}n,
R�) that preserves the relations and the orders corresponding to them.
This property is illustrated in Figure 6 by the graphs of the corresponding
relations, for n = 3.

These important structural properties are used for:
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• Computer representations of sets by binary vectors or arrays and per-
formance of the basic operations on them—see [1,2,6,9–14,16–19,22],
etc. The serial numbers of the vectors of {0, 1}n are used for ranking
the subsets of U by the notion characteristic vector and this is the
most natural ranking function. We note that in this way, the lexico-
graphic order of the vectors (i.e. the natural numbers 0, 1, . . . , 2n − 1)
corresponds to the reverse lexicographic order of the subsets of U .

• Generating all subsets of a given n-element set in a definite order.
This topic is considered exhaustively in [9,19], other good expositions
are [14–16,20,22], etc.

• Generating the k-elements subsets (combinations) of a given n-element
set in a definite order. Such algorithms are considered in [9,14–16,19,
20,22].

• Ranking and unranking of combinatorial structures. Such algorithms
are discussed in [9, 15,19,22], etc.

The following exposition is related to all these applications.

3 Ordinances of the vectors of the Boolean cube

in accordance with their weights

We start with the following key notion.

Definition 8. For an arbitrary k ∈ N, k ≤ n, the set of all n-dimensional
binary vectors of weight k is called a k-th layer of the n-dimensional Boolean
cube. We denote it by Ln,k = {α|α ∈ {0, 1}n : wt(α) = k}.

3.1 The weight-order relation

Figure 3 illustrates the notion of layer from Definition 8. All vectors in the
same horizontal level in the figure form the corresponding layer of the cube.
Since k coordinates can be chosen (and filled in with ones) among n coor-
dinates in

(

n
k

)

ways, hence |Ln,k| =
(

n
k

)

, for k = 0, 1, . . . , n. These numbers
(i.e., binomial coefficients) form the n-th row of Pascal’s triangle and it is
well-known that

∑n
k=0

(

n
k

)

= 2n = |{0, 1}n|. Obviously, the family of all lay-
ers Ln = {Ln,0, Ln,1, . . . , Ln,n} is a partition of the n-dimensional Boolean
cube into layers. Moreover, the sequence of layers Ln,0, Ln,1, . . . , Ln,n is an
order of the vectors of {0, 1}n in accordance with their weights. This means
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that when α, β ∈ {0, 1}n and wt(α) < wt(β), then α precedes β in the se-
quence of layers, and when wt(α) = wt(β) = k, then α, β ∈ Ln,k and there
is no precedence between them. More precisely, the corresponding relation
R<wt

can be defined as follows: for arbitrary α, β ∈ {0, 1}n, (α, β) ∈ R<wt
if

wt(α) < wt(β). We want R<wt
to be reflexive and so we set (α,α) ∈ R<wt

.
When (α, β) ∈ R<wt

we say that ”α precedes by weight β” and write also
α <wt β. It is easy to verify that R<wt

is a partial order in {0, 1}n and we
refer to it as a Weight-Order (WO) further.

The vectors of Ln,k can be rearranged in
(

n
k

)

! ways, for k = 0, 1, . . . , n.
Thus we obtain

∏n
k=0

(

n
k

)

! ways for WO of the vectors of {0, 1}n. The prod-
uct values obtained for n = 1, 2, 3, 4, . . . are 1, 2, 36, 414720, . . . , correspond-
ingly. They form the sequence A051459 in the OEIS [21], which is defined
(by Yuval Dekel, Nov 15 2003) very shortly as ”Number of orderings of the
subsets of a set with n elements that are compatible with the subsets’ sizes;
i.e., if A, B are two subsets with A <= B then Card(A) <= Card(B)”.
This description corresponds to the assertion of Theorem 3 and to the no-
tion WO, since the vectors in the layer Ln,k are characteristic vectors of all
k-element subsets of an n-element set, for k = 0, 1, . . . , n. In addition, we
conclude that

∏n
k=0

(

n
k

)

! is the number of :

• all maximum chains in the POSet ({0, 1}n, R<wt
);

• all possible topological orders (or sorts) of the directed acyclic graph
defined by the same POSet.

The corresponding comments were added to A051459.
Let us consider the connection between the relations R<wt

and R�. We
note that α � β always implies α <wt β. However, α <wt β does not
imply α � β in the general case. Here is a simple example that confirms
this assertion—if α = (1, 0, 0, 0) and β = (0, 1, 1, 0), then α <wt β, whereas
α and β are incomparable with respect to the relation ”�”. Therefore
R� ⊂ R<wt

.
Now we shall enumerate the maximum chains in the POSet ({0, 1}n, R�).

The following assertion will help for this goal.

Lemma 1. Let α be an arbitrary vector of the layer Ln,k, for some integer
k, 0 < k < n. Then α has k adjacent vectors in the layer Ln,k−1 and also
n− k adjacent vectors in the layer Ln,k+1.

Proof. We consider an arbitrary vector β ∈ Ln,k and we assume that β
contains units in the coordinates i1, i2, . . . , ik, where 1 ≤ i1 ≤ · · · ≤ ik ≤ n.
The set of all vectors adjacent to β is partitioned into two subsets. The
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first one contains all vectors α, such that α � β, i.e., exactly one of the
coordinates i1, i2, . . . , ik is inverted to zero and all remaining coordinates
are the same. So they are elements of Ln,k−1 and there are k such vectors.
The second subset contains all vectors γ, such that β � γ, i.e., all coordinates
i1, i2, . . . , ik are ones and exactly one of the remaining n− k coordinates is
inverted to one. Analogously, all these vectors are elements of Ln,k−1 and
their number is n− k.

Theorem 5. The number of maximum chains in the POSet ({0, 1}n, R�)
is equal to n! , for any n ∈ N

+.

Proof. Obviously, the length of any maximum chain is equal to the number
of layers in {0, 1}n, which is n + 1. Let 0̃n, α1, . . . , αk, . . . , αn−1, 1̃n be a
maximum chain. Starting from the vector 0̃n and following Lemma 1, there
are n possible ways to choose the vector α1 ∈ Ln,1 which is adjacent to 0̃n.
There are n−1 possible ways to choose a vector α2 ∈ Ln,2 which is adjacent
to α1, etc. There are k ways to choose a vector αk which is adjacent to αk−1,
etc. Finally, the last vector 1̃n can be chosen in a unique way. Applying the
multiplication rule we obtain that n.(n−1) . . . (n−k) . . . 2.1 = n! maximum
chains can be obtained.

The values of n!, for n = 0, 1, 2, . . . form the sequence A000142 (called
Factorial numbers) in the OEIS [21]. Among its numerous comments, only
one corresponds to the assertion of Theorem 5. It was done on Feb 05 2006
by Rick L. Shepherd as follows: ”The number of chains of maximal length
in the power set of 1, 2, ..., n ordered by the subset relation.”. Beside
the assertion of Theorem 5, we added one more comment to the sequence
A000142—it contains the number of all shortest paths (obtained by Breadth
First Search, for example) between the nodes 0̃n and 1̃n in the graph Hn.

3.2 The weight-lexicographic order relation

For the problem formulated in Section 1 the WO of the vectors of {0, 1}n

is sufficient. However, we need the serial numbers of the vectors in the se-
quence of layers instead of the vectors themselves. So, we shall represent
the WO by a sequence with the serial numbers of the vectors in the layers,
in accordance with Theorem 2. For that purpose, for an arbitrary layer
Ln,k = {α0, α1, . . . , αm} of {0, 1}n, we denote by ln,k = #α0,#α1, . . . ,#αm

the sequence of serial numbers, corresponding to the vectors of Ln,k. If
ln = ln,0, ln,1, . . . , ln,n denotes the sequence of all serial numbers, corre-
sponding to the vectors in the sequence of layers Ln,0, Ln,1, . . . , Ln,n, then
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ln represents a WO of the vectors of {0, 1}n. Briefly, we refer to ln as a WO
sequence of {0, 1}n. One of all possible

∏n
k=0

(

n
k

)

! WO sequences deserves a
special attention. For its consideration, we need the following operation on
a sequence of integers.

Definition 9. Let n,m ∈ N
+ and s = a1, a2, . . . , an be a sequence of in-

tegers. We define the operation addition of the natural number m to the
sequence s as follows: s+m = a1 +m,a2 +m, . . . , an +m.

This operation can be seen in Figure 2. Following the idea in this figure
and Definition 1, we define the special WO sequence ln inductively.

Definition 10. 1) The WO sequence of the one-dimensional Boolean cube
is l1 = 0, 1.

2) Let ln−1 = ln−1,0, ln−1,1, . . . , ln−1,n−1 be the WO sequence of the (n−
1)-dimen-sional Boolean cube.

3) The WO sequence of the n-dimensional Boolean cube ln = ln,0, ln,1,
. . . , ln,n is defined as follows:

• ln,0 = 0 and it corresponds to the layer Ln,0 = {0̃n};
• ln,n = 2n − 1 and it corresponds to the layer Ln,n = {1̃n};
• ln,k = ln−1,k, ln−1,k−1 + 2n−1, for k = 1, 2, . . . , n − 1. Here ln,k is a

concatenation of two sequences: the sequence ln−1,k is taken (or copied)
firstly, and the sequence ln−1,k−1 + 2n−1 follows after it. The sequence ln,k
corresponds to the layer Ln,k.

The corresponding recursive definition of ln is:

If n = 1, l1 = 0, 1 .
If n > 1, ln = ln,0, . . . , ln,k, . . . , ln,n, where:

ln,k =







0, if k = 0,
2n − 1, if k = n,
ln−1,k, ln−1,k−1 + 2n−1, for 0 < k < n .

Figure 4 and Figure 5 illustrate how the WO sequences l2 and l3 are
obtained in accordance with Definition 10.

The last two definitions resemble the definition of Pascal’s triangle. As
we noted, the length of ln,k =

(

n
k

)

= |Ln,k|, for k = 0, 1, . . . , n. Instead of

the rule
(

n
k

)

=
(

n−1

k−1

)

+
(

n−1

k

)

used in Pascal’s triangle, we use a similar rule

ln,k = ln−1,k, ln−1,k−1 + 2n−1. The next theorem clarifies it.

Theorem 6. Let ln = ln,0, ln,1, . . . , ln,n be the WO sequence, obtained in
accordance with Definition 10, for an arbitrary n ∈ N

+. Then, the serial
numbers in the sequence ln,k determine a lexicographic order of the vectors
of the corresponding layer Ln,k, for k = 0, 1, . . . , n.

12



Figure 4: The WO sequence l2, obtained from l1

Proof. We prove the theorem by induction on m, m ∈ N
+, following Defini-

tion 10.
1) For m = 1 the assertion is obvious.
2) Suppose that the theorem holds, for an arbitrary integer m > 1,

and the sequence lm = lm,0, lm,1, . . . , lm,m is obtained in accordance with
Definition 10.

3) Let lm+1 = lm+1,0, lm+1,1, . . . , lm+1,m+1 be the sequence, obtained in
accordance with Definition 10. For lm+1,0 = 0 and lm+1,m+1 = 2m+1 − 1,
the corresponding layers Lm+1,0 = {0̃m+1} and Lm+1,m+1 = {1̃m+1} are in
lexicographic order. Furthermore, lm+1,0 and lm+1,m+1 are in their right
places in lm+1. Let lm+1,k be one of the rest of the subsequences in lm+1, for
an arbitrary integer k, 1 ≤ k ≤ m. In accordance with Definition 10, lm+1,k

is a concatenation of two subsequences: lm,k and lm,k−1 + 2m, placed in
that order. So, the layer Lm+1,k corresponding to lm+1,k is partitioned into
two groups. The first one consists of all vectors of Lm+1,k, that begin with
zero. Hence their serial numbers coincide with these in the sequence lm,k. It
corresponds to the layer Lm,k, whose vectors are in lexicographic order, in ac-
cordance with the inductive suggestion. So the vectors in the first group are
also in lexicographic order. The second group includes all vectors of Lm+1,k

that begin with one. So their serial numbers are obtained by an addition of
the integer 2m to the serial numbers of the sequence lm,k−1. Following the
inductive suggestion, the vectors of the corresponding layer Lm,k−1 are in
lexicographic order and therefore the vectors in the second group are also in
lexicographic order. Moreover, each vector from the first group precedes lex-
icographically each vector from the second group. Therefore, the sequence
lm+1,k determines a lexicographic order in the corresponding layer Lm+1,k.
This conclusion holds for any integer k, 1 ≤ k ≤ m, and so the theorem is
proven.

13



Figure 5: The WO sequence l3, obtained from l2

Theorem 6 states that Definition 10 determines a second criterion for
ordering in the WO of the Boolean cube—this is the lexicographic order.
Since it is a unique total order for each subsequence ln,k, 0 ≤ k ≤ n, a
unique total weight order for the sequence ln is obtained. We call it a
Weight-Lexicographic Order (WLO). It is represented by the corresponding
WLO sequence ln.

4 The WLO algorithm

We developed an algorithm called WLO algorithm that computes the se-
quence ln for a given input n ∈ N

+. The algorithm uses an array for the
binomial coefficients from Pascal’s triangle (i.e., the lengths of the subse-
quences), and one more array where the beginning of each subsequence is
computed and stored. The values in these two arrays are computed firstly.
The code of the corresponding function is given below in the C programming
language.

Listing 1: Filling in both additional arrays

typedef unsigned int u in t ;

14



// . . . d e f i n i t i o n s o f constants , v a r i a b l e s and arrays
// the array P t s tands f o r Pasca l ’ s t r i a n g l e
// the array s s b e g s tands f o r subsequence beg inn ing
void f i l l i n b o t h t r i a n g l e s ( int n) {

P t [ 0 ] [ 0 ]= 1 ;
for ( int r= 1 ; r<=n ; r++) { // r s tands f o r row

P t [ r ] [ 0 ]= 1 ; P t [ r ] [ 1 ]= r ;
s s beg [ r ] [ 0 ]= 0 ; s s beg [ r ] [ 1 ]= 1 ;
for ( int c= 2 ; c<r ; c++) { // c s tands f o r column

P t [ r ] [ c ]= P t [ r −1] [ c−1] + P t [ r −1] [ c ] ;
s s beg [ r ] [ c ]= ss beg [ r ] [ c−1] + P t [ r ] [ c−1] ;

}
P t [ r ] [ r ]= 1 ;
s s beg [ r ] [ r ]= ss beg [ r ] [ r−1] + P t [ r ] [ r −1] ;

}
}

The WLO algorithm is based on Definition 10. Starting from l1 it com-
putes consecutively the sequences l2, l3, . . . , ln in the array seqs as follows.

Listing 2: Computing the WLO sequence ln
void f i l l i n s e q s ( int n) {

s eq s [ 1 ] [ 0 ]= 0 ; s eq s [ 1 ] [ 1 ]= 1 ; // i n i t i a l i z a t i o n f o r n=1
u in t m= 2 ; // to be added to a subsequence , m=2ˆ1
for ( int r= 2 ; r<=n ; r++) {

s eq s [ r ] [ 0 ]= 0 ;
u in t k=1; // a second index f o r the array seqs
for ( int c=1; c<=r ; c++) {

u in t s eq l en= P t [ r −1] [ c ] ; // Preparing f o r the
u in t subseqbeg= ss beg [ r −1] [ c ] ; // f i r s t s t e p .
for ( u in t j =0; j<s eq l en ; j++) // I step−copying o f

s eq s [ r ] [ k++]= seq s [ r −1] [ subseqbeg+j ] ; // a subseq .
s eq l en= P t [ r −1] [ c−1] ; // Preparing f o r the
subseqbeg= ss beg [ r −1] [ c−1] ; // second s t ep .
for ( u in t j =0; j<s eq l en ; j++) // I I s tep−add i t i on

// the number m to a subsequence .
s eq s [ r ] [ k++]= seq s [ r −1] [ subseqbeg+j ] + m;

}
m ∗= 2 ;

}
}

Some results obtained by the algorithm, for n = 1, 2, . . . , 5, are given in
Table 1.

More results can be seen in the OEIS [21], sequence A294648.
Figure 6 summarizes some of discussed results and illustrates:

• the bijection between subsequences of l3 and the layers of {0, 1}3;
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Table 1: Results from the WLO algorithm, for n = 1, 2, . . . , 5
n ln

1 0, 1
2 0, 1, 2, 3
3 0, 1, 2, 4, 3, 5, 6, 7
4 0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 12, 7, 11, 13, 14, 15
5 0, 1, 2, 4, 8, 16, 3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 7, 11, 13, 14, 19, 21, 22, 25, . . .

• the bijection f between the vectors of {0, 1}3 and the subsets of {a, b, c}
(see Theorem 3);

• the isomorphism f between the POSets ({0, 1}3,�) and (P({a, b, c}),
⊆) by the graphs of the corresponding relations.

Figure 6: Illustration of the bijections between the sequence l3, the layers of
{0, 1}3 and the subsets of {a, b, c}, as well as the isomorphism between the
POSets ({0, 1}3,�) and (P({a, b, c}),⊆)

Like we said, the WLO algorithm is based on Definition 10 and it follows
its steps. This fact, Theorem 6 and the notes after it determine its correct-
ness. Let us consider the time complexity of the algorithm. The time for
filling in both additional arrays (for Pascal’s triangle and for the beginning
of each subsequence) is Θ(n2). The function fill in seqs in Listing 2 runs
as follows. On the k-th step, 2 ≤ k ≤ n, it copies generally 2k−1 − 1 values
from lk−1 to lk, and also it adds the constant 2k−1 to 2k−1 − 1 members of
lk−1 and stores them in lk. So, it performs Θ(2k) assignments and Θ(2k−1)
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summations, i.e., Θ(2k) operations generally on the k-th step. Therefore,
the time complexity of the algorithm is

n
∑

k=2

Θ(2k) = Θ(

n
∑

k=2

2k) = Θ(2n+1) = Θ(2n) .

So, the time complexity of the WLO algorithm is of an exponential type
with respect to the size of the input n. It can not be better since it produces
an output of exponential size. What is more important is that the algorithm
has a linear time complexity with respect to the size of the output.

Let us consider the space complexity of the WLO algorithm. For clarity,
in Listing 2 we use a two-dimensional array of size 2n × 2n and hence, the
space complexity is Θ(22n). We recall that the existence of lk is sufficient to
obtain lk+1. So, instead of the square array we can use:

• Two one-dimensional static arrays of size 2n—for the existing sequence
lk and for the new sequence lk+1. After we obtain lk+1, we change the
role of the arrays to obtain the next sequence lk+2, and so on.

• One-dimensional arrays of size 2k which are created dynamically in
the k-th step, for k = 1, 2, . . . , n.

In both cases the space complexity of the WLO algorithm reduces to Θ(2n).

5 Conclusions

Trying to find an efficient solution to the problem formulated in Section 1 we
considered the weight order of the vectors of the Boolean cube. We examined
this order more generally and we obtained solutions to two enumeration
problems, concerning the POSets ({0, 1}n, R<wt

) and ({0, 1}n, R�). The
corresponding notes were added to the sequences A051459 and A000142 in
the OEIS [21]. We defined one special WO—the WLO and proved that it
is a unique total order. Based on this, we developed the WLO algorithm
that generates all n-dimensional binary vectors in accordance with their
weights, where the lexicographical order is chosen as a second criterion.
The vectors of the cube in WLO have very compact representation by their
serial numbers. Following the obtained results, a new sequence (A294648)
was appended to the OEIS [21].

Our next goal is to perform tests and to evaluate the efficiency of the
proposed solution to the initial problem. Moreover, the bijection between
the n-dimensional Boolean cube and the power set of a given n-element set
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(Theorem 3) means that the WLO algorithm can have more general applica-
tions. For example, it can be used in solving problems related to representing
and generating the power set of a given set, or some of its subsets (for ex-
ample, k-element subsets, or combinations), etc., as it is shown in Figure 6.
In such cases, if the elements of a given set are in lexicographic order, the
WLO sequence of their characteristic vectors implies a cardinality order of
the subsets. However, the corresponding subsets of equal cardinalities will
be in a reverse lexicographic order.
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