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Abstract

We study a number of combinatorial and algebraic structures arising from walks on the two-dimensional
integer lattice. To a given step set X ⊆ Z2, there are two naturally associated monoids: FX , the monoid
of all X-walks/paths; and AX , the monoid of all endpoints of X-walks starting from the origin O. For
each A ∈ AX , write πX(A) for the number of X-walks from O to A. Calculating the numbers πX(A) is a
classical problem, leading to Fibonacci, Catalan, Motzkin, Delannoy and Schröder numbers, among many
other famous sequences and arrays. Our main results give the precise relationships between finiteness
properties of the numbers πX(A), geometrical properties of the step set X, algebraic properties of the
monoid AX , and combinatorial properties of a certain bi-labelled digraph naturally associated to X. There
is an intriguing divergence between the cases of finite and infinite step sets, and some constructions rely
on highly non-trivial properties of real numbers. We also consider the case of walks constrained to stay
within a given region of the plane, and present a number of algorithms for computing the combinatorial
data associated to finite step sets. Several examples are considered throughout to highlight the sometimes-
subtle nature of the theoretical results.
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1 Introduction

The study of lattice paths is a cornerstone of enumerative combinatorics, and important applications exist
in almost all areas of mathematics. The subject arguably goes back at least to the likes of Fermat and
Pascal in the 1600s, and it would be impossible to adequately recount here its fascinating development over
the subsequent centuries. Fortunately, we may direct the reader to the survey of Humphreys [29] for an
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excellent historical treatment, and the recent thesis of Bostan [7], which contains 397 references. The current
authors came to the topic through our interest in diagram semigroups and algebras, where an important
role is played by Catalan and Motzkin paths, Riordan arrays, and so on; see for example [12–14,16,25].

Many kinds of lattice path problems have been considered in the literature, but the main ones we are
interested in are related to the following questions (formal definitions will be given below):

• Suppose we have a subset X of the two-dimensional integer lattice Z2. Starting from some designated
origin, which points from Z2 can we get to by taking a “walk” using “steps” from X?

• Further, given a point from Z2, how many such “X-walks” will take us to this point?

Sometimes constraints are also imposed, so that the X-walks must stay within a specified region of the plane
(e.g., the first quadrant). In what follows, the set of all endpoints of (unconstrained) X-walks beginning at
the origin O = (0, 0) will be denoted AX ; this set is always an additive submonoid of Z2. For any point
A ∈ Z2, we write πX(A) for the number of X-walks from O to A; this number could be anything from 0
to ∞.

Answers to the above questions are well known in many special cases, and lead to famous number
sequences, triangles and arrays, including Fibonacci, Catalan, Motzkin, Delannoy and Schröder numbers, as
well as binomial and multinomial coefficients. Many of these will be discussed in examples below, and many
more can be found in the above-mentioned surveys and references therein, as well as the Online Encyclopedia
of Integer Sequences [1], which was as ever a valuable tool while conducting the research reported here. Even
for (apparently) simple step sets, solving these problems can be very difficult. As noted in [29], infinite step
sets are rarely studied, as are boundaries with irrational slope; both feature strongly in the present work.

The current article takes a kind of meta-level approach to lattice path problems, and addresses broad
questions of the following type: Given a certain property, which step sets X possess that property? The
kinds of properties we study include the following:

• the monoid AX is a group, or

• πX(A) is finite for all A ∈ AX , in which case we say X has the Finite Paths Property (FPP), or

• πX(A) is infinite for all A ∈ AX , in which case we say X has the Infinite Paths Property (IPP).

One of our main results, Theorem 2.44, states (among other things) that every finite step set has either
the FPP or the IPP, and gives a number of equivalent geometric characterisations of both properties.
The situation for infinite step sets is far more complicated, and there is a whole spectrum of interesting
behaviours that can occur; the geometric conditions alluded to just above are no longer equivalent, and there
are step sets with neither the FPP nor the IPP. Rather, the geometric conditions and finiteness properties fit
together into a kind of “implicational hierarchy” that limits the (ostensibly) possible combinations of these
conditions/properties. Characterising the combinations that actually do occur is a major part of the paper,
and to achieve this we will need to construct some fairly strange step sets; some of these constructions rely
on highly non-trivial properties of real numbers. The paper is organised as follows.

Section 2 concerns unconstrained walks. We begin with the basic definitions in Section 2.1, and then
introduce the above-mentioned finiteness properties and geometric conditions in Sections 2.2 and 2.3. A
method for recursively enumerating lattice paths in certain circumstances is given in Section 2.4, and then
applied to classify the algebraic structure of the monoids arising from step sets of size at most 2 in Section 2.5.
The first main result of the paper (Theorem 2.36) is given in Section 2.6; it provides geometric, algebraic
and combinatorial characterisations of the IPP, showing among other things that X has the IPP if and
only if the origin belongs to Conv(X), the convex hull of X. Section 2.7 contains the above-mentioned
implicational hierarchy (Theorem 2.44); this hierarchy simplifies dramatically in the case of finite step sets,
leading in particular to the FPP/IPP dichotomy alluded to above (Corollary 2.46). The main result of
Section 2.8 (Theorem 2.51) states that the monoid AX is a non-trivial group if and only if the origin
belongs to the relative interior of Conv(X); a number of other equivalent geometric characterisations are
also given. Finally, Sections 2.9 and 2.10 classify the combinations of finiteness properties and geometric
conditions that can be attained by step sets. The above-mentioned Theorem 2.44 (proved in Section 2.7)
limits the set of ostensibly possible combinations to ten, and these are enumerated in Table 1. Curiously,
we will see that exactly one of these combinations can never occur (Proposition 2.60), but that the nine
remaining combinations can; this is shown by constructing step sets with the relevant properties. One of
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these constructions utilises an ingenious argument from Stewart Wilcox, which demonstrates the existence
of certain sequences of real numbers; this is given in Section 2.10, which serves as an appendix to Section 2
and is written jointly with Wilcox.

Section 3 gives a somewhat parallel treatment of walks that are constrained to stay within a specified
region of the plane. As well as reducing the number of walks, these contraints also somewhat limit the extent
to which general results can be proved. However, in certain natural cases (such as when the bounding region
of the plane happens to be a monoid), it is possible to give constrained analogues of many of the results from
Section 2. Section 3.1 gives the basic definitions, and then Section 3.2 extends the recursive enumeration
method from Section 2.4 to constrained walks (Proposition 3.7). Section 3.3 gives a constrained version
of the implicational hierarchy (Theorem 3.19); even in the finite case, the situation is more complicated
than for unconstrained walks, as for one thing, the FPP/IPP dichotomy no longer holds. Propositions 3.23
and 3.24 are analogues of the above-mentioned Theorems 2.36 and 2.51, respectively. Finally, Section 3.4
explores the natural idea of admissible steps, and shows how these allow for some stronger general results
on constrained walks, especially in the case that the bounding region of the plane contains a lattice cone
(Theorems 3.26 and 3.31).

Section 4 presents a number of computer algorithms that may be used to calculate the combinatorial
data corresponding to a finite step set, in both the constrained and unconstrained cases. These algorithms
have been implemented in C++, and are available at [26].

Numerous examples are given throughout the exposition. Some of these are used to illustrate the under-
lying ideas, while some are crucial in establishing theoretical results. The properties of these step sets, and
the combinatorial data associated to them, are displayed conveniently in certain edge- and vertex-labelled
digraphs; these are defined in Sections 2.1 and 3.1, and can be seen in many of the figures throughout the
document. The above-mentioned algorithms [26] were used to generate the LATEX/TikZ code for producing
many of these diagrams.

Among the questions not considered in the current paper, we believe that one of the most interesting
is the following: When are step sets X and Y “equivalent” in various senses? One sense might be for the
monoids AX and AY to be isomorphic, although it is easy for this to occur; just take Y = X ∪ {A} for
any A ∈ AX \ X. (Gubeladze has considered the isomorphism problem for submonoids of Z2 in [23], and
more generally for Zn in [24], where he showed that monoid isomorphism is equivalent to isomorphism of
monoid rings.) It can often be the case that the monoids AX and AY are isomorphic (or even equal), but
the associated numbers πX(A) and πY (A) are very different; thus, if one mostly cares about the number
sequences, one might prefer a different notion of equivalence. Another such notion might be to require the
existence of a bijection φ : X → Y that lifts to a monoid isomorphism Φ : AX → AY , and such that
πX(A) = πY (Φ(A)) for all A ∈ AX : i.e., such that that following diagram commutes:

these constructions utilises an ingenious argument from Stewart Wilcox, which demonstrates the existence
of certain sequences of real numbers; this is given in Section 2.10, which serves as an appendix to Section 2
and is written jointly with Wilcox.

Section 3 gives a somewhat parallel treatment of walks that are constrained to stay within a specified
region of the plane. As well as reducing the number of walks, these contraints also somewhat limit the extent
to which general results can be proved. However, in certain natural cases (such as when the bounding region
of the plane happens to be a monoid), it is possible to give constrained analogues of many of the results from
Section 2. Section 3.1 gives the basic definitions, and then Section 3.2 extends the recursive enumeration
method from Section 2.4 to constrained walks (Proposition 3.7). Section 3.3 gives a constrained version
of the implicational hierarchy (Theorem 3.19); even in the finite case, the situation is more complicated
than for unconstrained walks, as for one thing, the FPP/IPP dichotomy no longer holds. Propositions 3.23
and 3.24 are analogues of the above-mentioned Theorems 2.36 and 2.51, respectively. Finally, Section 3.4
explores the natural idea of admissible steps, and shows how these allow for some stronger general results
on constrained walks, especially in the case that the bounding region of the plane contains a lattice cone
(Theorems 3.26 and 3.31).

Section 4 presents a number of computer algorithms that may be used to calculate the combinatorial
data corresponding to a finite step set, in both the constrained and unconstrained cases. These algorithms
have been implemented in C++, and are available at [26].

Numerous examples are given throughout the exposition. Some of these are used to illustrate the under-
lying ideas, while some are crucial in establishing theoretical results. The properties of these step sets, and
the combinatorial data associated to them, are displayed conveniently in certain edge- and vertex-labelled
digraphs; these are defined in Sections 2.1 and 3.1, and can be seen in many of the figures throughout the
document. The above-mentioned algorithms [26] were used to generate the LATEX/TikZ code for producing
many of these diagrams.

Among the questions not considered in the current paper, we believe that one of the most interesting
is the following: When are step sets X and Y “equivalent” in various senses? One sense might be for the
monoids AX and AY to be isomorphic, although it is easy for this to occur; just take Y = X [ {A} for
any A 2 AX \ X. (Gubeladze has considered the isomorphism problem for submonoids of Z2 in [23], and
more generally for Zn in [24], where he showed that monoid isomorphism is equivalent to isomorphism of
monoid rings.) It can often be the case that the monoids AX and AY are isomorphic (or even equal), but
the associated numbers ⇡X(A) and ⇡Y (A) are very di↵erent; thus, if one mostly cares about the number
sequences, one might prefer a di↵erent notion of equivalence. Another such notion might be to require the
existence of a bijection � : X ! Y that lifts to a monoid isomorphism � : AX ! AY , and such that
⇡X(A) = ⇡Y (�(A)) for all A 2 AX : i.e., such that that following diagram commutes:

AX AY

N [ {1}
⇡X

�

⇡Y

This occurs in several places in the current paper; for instance, see Examples 2.1, 2.22 and 2.23 (cf. Figures 2
and 10). Alternatively, one might simply require the existence of such an isomorphism � : AX ! AY that
does not necessarily restrict to a bijection X ! Y . For a striking instance of this latter phenomenon in the
constrained case, see Examples 3.3 and 3.17 (cf. Figures 19 and 25); one of these step sets has size 2, while
the other is infinite (with no redundant steps), yet exactly the same numbers are produced.

There is also of course scope to extend the current program into higher dimensions, or to non-rectangular
lattices. Most of our results on finite step sets work with Z2 replaced by Q2, since we may multiply
throughout by a common denominator, but infinite step sets with rational coordinates (or arbitrary step
sets with real coordinates) behave very di↵erently.

Throughout, we assume familiarity with basic linear algebra, number theory, and plane (convex) ge-
ometry and topology. We denote by R, Q and Z the sets of reals, rationals and integers; we also write
N = {0, 1, 2, . . .} and P = {1, 2, 3, . . .} for the sets of natural numbers and positive integers. We use bxc to
denote the floor of the real number x: i.e., the greatest integer not exceeding x. We interpret a binomial
coe�cient

�
n
k

�
to be zero if n is not a non-negative integer, or if k is not an integer satisfying 0  k  n. For

three distinct points A, B, C 2 R2, we write \ABC for the angle between the line segments AB and BC;

if not otherwise specified, this will always be the non-reflex angle; we write
��!
AB for the displacement vector

from A to B.
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three distinct points A,B,C ∈ R2, we write ∠ABC for the angle between the line segments AB and BC;

if not otherwise specified, this will always be the non-reflex angle; we write
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2 Unconstrained walks

2.1 Definitions and basic examples

We write Z2
× = Z2 \ {O}, where O = (0, 0), and we define a step set to be any subset of Z2

×; we allow step
sets to be finite or (countably) infinite. If X ⊆ Z2

× is such a step set, then we may consider two natural
monoids associated to X. The first is the free monoid on X, which we denote by FX , and which consists
of all words over X under the operation of word concatenation. So elements of FX are words of the form
u = A1 · · ·Ak, where k ∈ N and A1, . . . , Ak ∈ X. The length of the word u = A1 · · ·Ak is defined to be k,
and is denoted `(u); when k = 0, we interpret u to be the empty word, which we denote by ε, and which is
the identity element of FX . For reasons that will become clear shortly, we will also refer to the elements
of FX as X-walks.

The second kind of monoid associated to a step set X ⊆ Z2
× is the additive submonoid of Z2 generated

by X, which we will denote by AX . So AX consists of all points of the form A = A1 + · · ·+Ak, where k ∈ N
and A1, . . . , Ak ∈ X; when k = 0, we interpret A = O = (0, 0), which is the identity element of AX .

There is a natural monoid surmorphism (surjective homomorphism)

αX : FX → AX defined by αX(A1 · · ·Ak) = A1 + · · ·+Ak.

In particular, note that αX(A) = A for all A ∈ X. Consider a word u = A1 · · ·Ak ∈ FX , and let B ∈ Z2 be
an arbitrary lattice point. Then u determines a walk beginning at B, and ending at B+αX(u). The letters
A1, . . . , Ak determine the steps taken in the walk, and the points visited are:

B → B +A1 → B +A1 +A2 → · · · → B +A1 +A2 + · · ·+Ak = B + αX(u).

We say that u is an X-walk from B to B + αX(u). In particular, if B = O = (0, 0), then u corresponds to
a walk from O to αX(u); we say that u is an X-walk to αX(u).

We illustrate these ideas with (arguably) the most well-studied step set:

Example 2.1. Consider the step set X = {E,N}, where E = (1, 0) and N = (0, 1) represent steps
of one unit East and North, respectively. So AX = {aE + bN : a, b ∈ N} = {(a, b) : a, b ∈ N} = N2.
Consider the two words u = EENEN and v = NNEEE from FX . Although u 6= v, we note that
αX(u) = αX(v) = 3E + 2N = (3, 2). We may picture the walks from O to (3, 2) determined by u and v as
in Figure 1. It is easy to see that there are

(
5
3

)
=
(

5
2

)
= 10 words w from FX such that αX(w) = (3, 2); such

a word w must have three E’s and two N ’s. We say that there are ten X-walks to (3, 2). More generally,
for any (a, b) ∈ AX = N2, there are

(
a+b
a

)
=
(
a+b
b

)
X-walks to (a, b). In fact, this formula is valid for any

(a, b) ∈ Z2 since, by convention, we interpret a binomial coefficient
(
m
k

)
= 0 if m < k or if k < 0.

u

v

Figure 1: Two X-walks from O to (3, 2), where X = {(1, 0), (0, 1)}; cf. Example 2.1.

Consider an arbitrary step set X ⊆ Z2
×. For arbitrary lattice points A,B ∈ Z2, we define

ΠX(A,B) = {u ∈ FX : A+ αX(u) = B} and πX(A,B) = |ΠX(A,B)|.

So ΠX(A,B) is the (possibly empty) set of all X-walks from A to B, and πX(A,B) is the number of such
walks. Note that it is possible to have πX(A,B) = 0 or ∞. Also note that we always have πX(A,A) ≥ 1 for
any A ∈ Z2, since the empty word ε always belongs to ΠX(A,A). It is clear that

ΠX(A+C,B+C) = ΠX(A,B) and πX(A+C,B+C) = πX(A,B) for any A,B,C ∈ Z2. (2.2)
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Consequently, the numbers πX(A,B), A,B ∈ Z2, may all be recovered from the values πX(O,A), A ∈ Z2.
Accordingly, for any A ∈ Z2, we define

ΠX(A) = ΠX(O,A) and πX(A) = πX(O,A)

to be the set and number of X-walks from O to A, respectively; note that ΠX(A) = α−1
X (A) for any A ∈ Z2.

If A = (a, b) ∈ Z2, we will write πX(A) = πX(a, b), rather than πX((a, b)). For example, if X = {E,N} is
the step set from Example 2.1, then for any a, b ∈ Z, we have πX(a, b) =

(
a+b
a

)
=
(
a+b
b

)
.

Given a step set X, the values of πX(A) may be conveniently displayed on an edge- and vertex-labelled
digraph, which we denote by ΓX , and define as follows:

• The vertices of ΓX are the elements of AX , and each vertex A ∈ AX is labelled by πX(A).

• For each vertex A ∈ AX , and for each B ∈ X, ΓX has the labelled edge A
B−−→ A+B.

Since the vertices of the graph ΓX are actually elements of Z2, we generally draw ΓX in the plane R2, with
the vertices in the specified position. So ΓX is the Cayley graph of AX with respect to the generating set X,
embedded in the plane, and with each vertex labelled by the number of factorisations in the generators. As
an example, Figure 2 pictures the graph ΓX , where X = {E,N} is the step set from Example 2.1. One may
easily see that this is a rotation of Pascal’s triangle [31].

Consequently, the numbers ⇡X(A, B), A, B 2 Z2, may all be recovered from the values ⇡X(O, A), A 2 Z2.
Accordingly, for any A 2 Z2, we define

⇧X(A) = ⇧X(O, A) and ⇡X(A) = ⇡X(O, A)

to be the set and number of X-walks from O to A, respectively; note that ⇧X(A) = ↵�1
X (A) for any A 2 Z2.

If A = (a, b) 2 Z2, we will write ⇡X(A) = ⇡X(a, b), rather than ⇡X((a, b)). For example, if X = {E, N} is
the step set from Example 2.1, then for any a, b 2 Z, we have ⇡X(a, b) =

�
a+b
a

�
=
�
a+b

b

�
.

Given a step set X, the values of ⇡X(A) may be conveniently displayed on an edge- and vertex-labelled
digraph, which we denote by �X , and define as follows:

• The vertices of �X are the elements of AX , and each vertex A 2 AX is labelled by ⇡X(A).

• For each vertex A 2 AX , and for each B 2 X, �X has the labelled edge A
B��! A + B.

Since the vertices of the graph �X are actually elements of Z2, we generally draw �X in the plane R2, with
the vertices in the specified position. So �X is the Cayley graph of AX with respect to the generating set X,
embedded in the plane, and with each vertex labelled by the number of factorisations in the generators. As
an example, Figure 2 pictures the graph �X , where X = {E, N} is the step set from Example 2.1. One may
easily see that this is a rotation of Pascal’s triangle [31].
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Figure 2: The graph �X , where X = {(1, 0), (0, 1)}; cf. Example 2.1.

The next example is an obvious sequel to Example 2.1.

Example 2.3. Let X = {N, E, S, W}, where N = (0, 1), E = (1, 0), S = (0,�1) and W = (�1, 0). Then
of course AX = Z2, and ⇡X(A) =1 for all A 2 Z2. See Figure 3 (left) for an illustration of �X .

The next example involves a step set strictly between those of Examples 2.1 and 2.3.

Example 2.4. Let X = {N, E, S}, where N = (0, 1), E = (1, 0) and S = (0,�1). Then AX = N⇥ Z, and
⇡X(A) =1 for all A 2 AX . The graph �X is pictured in Figure 3 (right).

We conclude this section by considering a collection of infinite step sets.

Example 2.5. Let X = {1}⇥ Z = {(1, a) : a 2 Z}. Then one may easily check that

AX = {O} [ (P⇥ Z) = {O} [ {(a, b) 2 Z2 : a � 1},

and that for any a, b 2 Z,

⇡X(a, b) =

8
><
>:

1 if (a, b) = O or a = 1

1 if a � 2

0 otherwise.

The graph �X is pictured in Figure 4 (left). Note that while there are infinitely many X-walks to any
(a, b) 2 AX with a � 2, any such walk is of length a. Figure 4 (right) also pictures the graph associated to
a di↵erent step set, whose steps point in the same direction as the steps from the current one; more details
will be given in Example 2.25.
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Figure 2: The graph ΓX , where X = {(1, 0), (0, 1)}; cf. Example 2.1.

The next example is an obvious sequel to Example 2.1.

Example 2.3. Let X = {N,E, S,W}, where N = (0, 1), E = (1, 0), S = (0,−1) and W = (−1, 0). Then
of course AX = Z2, and πX(A) =∞ for all A ∈ Z2. See Figure 3 (left) for an illustration of ΓX .

The next example involves a step set strictly between those of Examples 2.1 and 2.3.

Example 2.4. Let X = {N,E, S}, where N = (0, 1), E = (1, 0) and S = (0,−1). Then AX = N× Z, and
πX(A) =∞ for all A ∈ AX . The graph ΓX is pictured in Figure 3 (right).

We conclude this section by considering a collection of infinite step sets.

Example 2.5. Let X = {1} × Z = {(1, a) : a ∈ Z}. Then one may easily check that

AX = {O} ∪ (P× Z) = {O} ∪ {(a, b) ∈ Z2 : a ≥ 1},
and that for any a, b ∈ Z,

πX(a, b) =





1 if (a, b) = O or a = 1

∞ if a ≥ 2

0 otherwise.

The graph ΓX is pictured in Figure 4 (left). Note that while there are infinitely many X-walks to any
(a, b) ∈ AX with a ≥ 2, any such walk is of length a. Figure 4 (right) also pictures the graph associated to
a different step set, whose steps point in the same direction as the steps from the current one; more details
will be given in Example 2.25.
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ples 2.5 and 2.25. All edges are directed to the right.
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The next two examples are natural companions to the previous one.

Example 2.6. Let X = {1} × N. Then AX = {O} ∪ (P× N). The graph ΓX is pictured in Figure 5 (left).
The vertex labels πX(A), A ∈ AX , were calculated by simply counting paths in the graph, but it appears
that these are binomial coefficients: specifically, that

πX(a, b) =

(
a+ b− 1

b

)
for (a, b) ∈ P× N.

We will see later that this formula is indeed correct; cf. Remark 2.20.

It is curious that (apart from the extra “1”, and modulo a small translation), the infinite step set from
Example 2.6 produces the same numbers as the finite step set from Example 2.1.

Example 2.7. Let X = {1} × P. Then AX = {O} ∪ {(a, b) ∈ P2 : a ≤ b}. The graph ΓX is pictured in
Figure 5 (right). Again, the labels appear to be binomial coefficients (cf. Remark 2.20): this time,

πX(a, b) =

(
a− 1

b− 1

)
for (a, b) ∈ AX \ {O}.

The next two examples are natural companions to the previous one.

Example 2.6. Let X = {1}⇥ N. Then AX = {O} [ (P⇥ N). The graph �X is pictured in Figure 5 (left).
The vertex labels ⇡X(A), A 2 AX , were calculated by simply counting paths in the graph, but it appears
that these are binomial coe�cients: specifically, that

⇡X(a, b) =

✓
a + b� 1

b

◆
for (a, b) 2 P⇥ N.

We will see later that this formula is indeed correct; cf. Remark 2.20.

It is curious that (apart from the extra “1”, and modulo a small translation), the infinite step set from
Example 2.6 produces the same numbers as the finite step set from Example 2.1.

Example 2.7. Let X = {1} ⇥ P. Then AX = {O} [ {(a, b) 2 P2 : a  b}. The graph �X is pictured in
Figure 5 (right). Again, the labels appear to be binomial coe�cients (cf. Remark 2.20): this time,

⇡X(a, b) =

✓
a� 1

b� 1

◆
for (a, b) 2 AX \ {O}.
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Figure 5: The graph �X , where X = {1}⇥ N (left) and X = {1}⇥ P (right); cf. Examples 2.6 and 2.7. All
edges are directed to the right.

The next example is a minor variation of the previous one.

Example 2.8. Let X = {(0, 1)}[ ({1}⇥P). Then AX = {(a, b) 2 N2 : a  b}. The graph �X is pictured in
Figure 6. The labels again appear to be binomial coe�cients, though not all of them, and the exact formula
is not completely obvious. Entering the first few values on the OEIS [1] yields Sequence A085478, which (if
the match is perfect) suggests the formula

⇡X(a, b) =

✓
a + b

b� a

◆
for (a, b) 2 AX .

Again this turns out to be correct; cf. Remark 2.20.

We leave the reader to investigate the step set X = P2.

2.2 Finiteness properties: FPP, IPP and BPP

Inspired by Examples 2.1 and 2.3 above, we introduce the following two properties that might be satisfied
by a step set X ✓ Z2

⇥.

• We say X has the Finite Paths Property (FPP) if ⇡X(A) <1 for all A 2 AX .

• We say X has the Infinite Paths Property (IPP) if ⇡X(A) =1 for all A 2 AX .
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Figure 5: The graph ΓX , where X = {1} × N (left) and X = {1} × P (right); cf. Examples 2.6 and 2.7. All
edges are directed to the right.

The next example is a minor variation of the previous one.

Example 2.8. Let X = {(0, 1)}∪ ({1}×P). Then AX = {(a, b) ∈ N2 : a ≤ b}. The graph ΓX is pictured in
Figure 6. The labels again appear to be binomial coefficients, though not all of them, and the exact formula
is not completely obvious. Entering the first few values on the OEIS [1] yields Sequence A085478, which (if
the match is perfect) suggests the formula

πX(a, b) =

(
a+ b

b− a

)
for (a, b) ∈ AX .

Again this turns out to be correct; cf. Remark 2.20.

We leave the reader to investigate the step set X = P2.

2.2 Finiteness properties: FPP, IPP and BPP

Inspired by Examples 2.1 and 2.3 above, we introduce the following two properties that might be satisfied
by a step set X ⊆ Z2

×.

• We say X has the Finite Paths Property (FPP) if πX(A) <∞ for all A ∈ AX .

• We say X has the Infinite Paths Property (IPP) if πX(A) =∞ for all A ∈ AX .
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Figure 6: The graph �X , where X = {(0, 1)} [ ({1}⇥ P); cf. Example 2.8. All edges are directed upwards.

Example 2.5 shows that some step sets satisfy neither the FPP nor the IPP; cf. Figure 4 (left). By contrast,
we will see later that finite step sets must satisfy one or the other. Example 2.5 does suggest a third property
worthy of attention:

• We say a step set X ✓ Z2
⇥ has the Bounded Paths Property (BPP) if, for all A 2 AX , the set

{`(w) : w 2 ⇧X(A)} has a maximum element (equivalently, this set is finite).

We begin with a simple result concerning the IPP. Recall that the empty word " belongs to ⇧X(O) for any
step set X, so that ⇡X(O) � 1.

Lemma 2.9. Let X ✓ Z2
⇥ be an arbitrary step set. Then the following are equivalent:

(i) X has the IPP, (ii) ⇡X(O) =1, (iii) ⇡X(O) � 2.

Proof. Clearly (i)) (ii)) (iii). Now assume (iii) holds, and let A 2 AX be arbitrary. Let u 2 ⇧X(O)\{"}
and v 2 ⇧X(A). Then ukv 2 ⇧X(A) for all k � 0, from which it follows that ⇡X(A) =1.

The next result demonstrates a basic relationship between the three properties, in particular showing
that the BPP is an intermediate between the FPP and ¬IPP (the symbol ¬ denotes negation). Specifically,
we have FPP ) BPP ) ¬IPP.

Lemma 2.10. Let X ✓ Z2
⇥ be an arbitrary step set.

(i) If X has the FPP, then X has the BPP.

(ii) If X has the BPP, then X does not have the IPP.

Proof. (i). If ⇧X(A) is finite, then so too is {`(w) : w 2 ⇧X(A)}.

(ii). If the set {`(w) : w 2 ⇧X(O)} is finite, then ⇡X(O) = 1; cf. Lemma 2.9 and its proof.

We will see later that the three conditions FPP, BPP and ¬IPP are equivalent for finite step sets.

2.3 Geometric conditions: CC, SLC and LC

A line splits the plane R2 into two open subsets, one on each side of the line; we will call these open sets
half-planes, and we will say that they are opposites of each other. By a cone we mean an intersection of
two half-planes whose bounding lines are not parallel; the intersection of these bounding lines is called the
vertex of the cone; by the opposite of such a cone, we mean the intersection of the opposite half-planes. See
Figure 7. Note that half-planes and cones are always open sets. Note also that half-planes are not cones.

Now let X ✓ Z2
⇥ be an arbitrary step set.

• We say X satisfies the Line Condition (LC) if it is contained in a half-plane bounded by a line through
the origin.
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Figure 6: The graph ΓX , where X = {(0, 1)} ∪ ({1} × P); cf. Example 2.8. All edges are directed upwards.

Example 2.5 shows that some step sets satisfy neither the FPP nor the IPP; cf. Figure 4 (left). By contrast,
we will see later that finite step sets must satisfy one or the other. Example 2.5 does suggest a third property
worthy of attention:

• We say a step set X ⊆ Z2
× has the Bounded Paths Property (BPP) if, for all A ∈ AX , the set

{`(w) : w ∈ ΠX(A)} has a maximum element (equivalently, this set is finite).

We begin with a simple result concerning the IPP. Recall that the empty word ε belongs to ΠX(O) for any
step set X, so that πX(O) ≥ 1.

Lemma 2.9. Let X ⊆ Z2
× be an arbitrary step set. Then the following are equivalent:

(i) X has the IPP, (ii) πX(O) =∞, (iii) πX(O) ≥ 2.

Proof. Clearly (i)⇒ (ii)⇒ (iii). Now assume (iii) holds, and let A ∈ AX be arbitrary. Let u ∈ ΠX(O)\{ε}
and v ∈ ΠX(A). Then ukv ∈ ΠX(A) for all k ≥ 0, from which it follows that πX(A) =∞.

The next result demonstrates a basic relationship between the three properties, in particular showing
that the BPP is an intermediate between the FPP and ¬IPP (the symbol ¬ denotes negation). Specifically,
we have FPP ⇒ BPP ⇒ ¬IPP.

Lemma 2.10. Let X ⊆ Z2
× be an arbitrary step set.

(i) If X has the FPP, then X has the BPP.

(ii) If X has the BPP, then X does not have the IPP.

Proof. (i). If ΠX(A) is finite, then so too is {`(w) : w ∈ ΠX(A)}.
(ii). If the set {`(w) : w ∈ ΠX(O)} is finite, then πX(O) = 1; cf. Lemma 2.9 and its proof.

We will see later that the three conditions FPP, BPP and ¬IPP are equivalent for finite step sets.

2.3 Geometric conditions: CC, SLC and LC

A line splits the plane R2 into two open subsets, one on each side of the line; we will call these open sets
half-planes, and we will say that they are opposites of each other. By a cone we mean an intersection of
two half-planes whose bounding lines are not parallel; the intersection of these bounding lines is called the
vertex of the cone; by the opposite of such a cone, we mean the intersection of the opposite half-planes. See
Figure 7. Note that half-planes and cones are always open sets. Note also that half-planes are not cones.
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Figure 7: A pair of opposite half-planes (left) and a pair of opposite cones (right).

Now let X ⊆ Z2
× be an arbitrary step set.

• We say X satisfies the Line Condition (LC) if it is contained in a half-plane bounded by a line through
the origin.

• We say X satisfies the Strong Line Condition (SLC) if it is contained in a half-plane whose opposite
half-plane contains the origin.

• We say X satisfies the Cone Condition (CC) if it is contained in a cone with the origin as its vertex.

We say that a line L through the origin witnesses the LC (for X) if X is contained in one of the half-planes
determined by L . Similarly, we may speak of a line (not through the origin) witnessing the SLC, or of a
pair of lines (through the origin) witnessing the CC, or of a cone (with vertex O) witnessing the CC.

At this point, the reader may wonder why we have not defined a Strong Cone Condition. For complete-
ness, we do so here (in the obvious way) but show immediately that it is equivalent to the ordinary Cone
Condition.

• We say a step set X ⊆ Z2
× satisfies the Strong Cone Condition (SCC) if it is contained in a cone whose

opposite cone contains the origin.

Lemma 2.11. A step set X ⊆ Z2
× satisfies the CC if and only if it satisfies the SCC.

Proof. (SCC ⇒ CC). Any cone whose opposite cone contains the origin is contained in a cone with O as
its vertex.

(CC⇒ SCC). Suppose X satisfies the CC, as witnessed by the cone C bounded by lines L1 and L2. Choose
any points A ∈ L1 and B ∈ L2, both on the boundary of C. As the triangle 4AOB has finite area, it
contains only finitely many elements of X (perhaps none). So we may slide the points A and B towards the
origin, along L1 and L2, until we reach points C ∈ L1 and D ∈ L2, both on the boundary of C, and such
that the triangle 4COD contains no elements of X. Now let E be an arbitrary point in the interior of this
triangle. Then the SCC is witnessed by the line through C and E and the line through D and E. All of
this is pictured in Figure 8.

We will also have occasion to speak of a Weak Line Condition (WLC), but since we will not need it
until Section 2.8 we will not give the definition here.

Lemma 2.12. Let X ⊆ Z2
× be an arbitrary step set.

(i) If X satisfies the CC, then X satisfies the SLC.

(ii) If X satisfies the SLC, then X satisfies the LC.

(iii) If X is finite and satisfies the LC, then X satisfies the CC.

Proof. (i). If X satisfies the CC, then by Lemma 2.11 it satisfies the SCC. If a cone C witnesses the SCC,
then the bounding lines of C both witness the SLC.

(ii). If the SLC condition is witnessed by L , then clearly the LC is witnessed by the line through O parallel
to L .

9
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O
L1

L2

C

Figure 8: Schematic diagram of the proof of Lemma 2.11. The elements of X are drawn as black dots.

(iii). Suppose the LC is witnessed by L , where X is finite. Let A be an arbitrary point on L other than O
(note that A 6∈ X). Let B ∈ X be such that the non-reflex angle ∠AOB is minimal among all points
from X; this is well defined because X is finite, and we have 0 < ∠AOB < π because no point from X lies
on L . Let L ′ be the line that bisects the angle ∠AOB. Then L and L ′ witness the CC. This is all shown
in Figure 9.

L

L ′

O

A

B

Figure 9: The points A,B and line L ′ constructed during the proof of Lemma 2.12(iii).

It follows from Lemma 2.12 that the three conditions CC, SLC and LC are equivalent for finite step sets.
The step sets from Examples 2.1, 2.6, 2.7 and 2.8 satisfy all three conditions, and that from Example 2.3
satisfies none of them. The step set from Example 2.5 satisfies the SLC (and hence also the LC) but not
the CC. Example 2.29 below shows it is possible to satisfy the LC but not the SLC (and hence also not
the CC).

It will also be convenient to prove the following technical result, which will be used on many occasions.

Lemma 2.13. Let X ⊆ Z2
× be a step set with the LC witnessed by a unique line L . Then

(i) X does not satisfy the CC,

(ii) if X satisfies the SLC, then this can only be witnessed by lines parallel to L .

Proof. (i). If some cone witnessed the CC, then the two bounding lines would both witness the LC.

(ii). If a line L ′ witnesses the SLC, then (as in the proof of Lemma 2.12(ii)) the LC is witnessed by the
line through the origin parallel to L ′. By assumption, this must be L .
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2.4 Recursion and further examples

Our next goal is to prove a simple result (Proposition 2.15) that enables us to recursively enumerate the
values of πX(A) in some cases. The basic motivation for this result is the fact that well-known number arrays
that arise from lattice paths are generated by simple recursions: for example, the binomial coefficients, which
satisfy

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
. It turns out that it is the BPP (defined in Section 2.2) that allows such recursive

generation of the numbers πX(A).
We begin with a lemma. For the statement and proof, if U ⊆ FX is a set of words, and if w ∈ FX is a

fixed word, we write Uw = {uw : u ∈ U}. In particular, if A ∈ X, then UA = {uA : u ∈ U}. We use t to
denote disjoint union.

Lemma 2.14. Let X ⊆ Z2
× be an arbitrary step set.

(i) For any A ∈ Z2 and B ∈ X, we have ΠX(A)B ⊆ ΠX(A+B).

(ii) For any A ∈ Z2
×,

ΠX(A) =
⊔

B∈X
ΠX(A−B)B and πX(A) =

∑

B∈X
πX(A−B).

Proof. (i). If w ∈ ΠX(A), then wB is clearly an X-walk from O to A+B, so that wB ∈ ΠX(A+B).

(ii). First let w ∈ ΠX(A). Since A 6= O, we have w = B1 · · ·Bk for some k ≥ 1 and B1, . . . , Bk ∈ X. Put
w′ = B1 · · ·Bk−1. Then A = αX(w) = B1 + · · ·+Bk−1 +Bk = αX(w′) +Bk, so that αX(w′) = A−Bk and
w′ ∈ ΠX(A−Bk), giving

w = w′Bk ∈ ΠX(A−Bk)Bk ⊆
⋃

B∈X
ΠX(A−B)B.

Conversely, part (i) gives ΠX(A−B)B ⊆ ΠX(A−B+B) = ΠX(A) for all B ∈ X. This completes the proof
that ΠX(A) =

⋃
B∈X ΠX(A−B)B, and this union is clearly disjoint. We then deduce

πX(A) =

∣∣∣∣∣
⊔

B∈X
ΠX(A−B)B

∣∣∣∣∣ =
∑

B∈X
|ΠX(A−B)B| =

∑

B∈X
|ΠX(A−B)| =

∑

B∈X
πX(A−B).

Lemma 2.14(ii) says nothing about πX(O). However, Lemma 2.9 says that πX(O) can only ever be
equal to 1 or ∞, and that in the latter case we also have πX(A) = ∞ for all A ∈ AX (i.e., X has the IPP,
as defined in Section 2.2). Thus, if one was primarily interested in enumeration, one would focus on step
sets with πX(O) = 1. Having πX(O) = 1 still does not guarantee “interesting” enumeration, however.
For instance, Example 2.5 gives a step set for which the only values of πX(A) are 1 and ∞ (cf. Figure 4);
for an even more extreme situation, Example 2.29 below shows that it is possible to have πX(O) = 1 but
πX(A) =∞ for all A ∈ AX \ {O}.

The next result concerns the BPP (also defined in Section 2.2), and shows how to enumerate the values
of πX(A) for any step set X with this property.

Proposition 2.15. Let X ⊆ Z2
× be an arbitrary step set with the BPP. Then the values πX(A), A ∈ Z2,

are generated by the recurrence

πX(O) = 1 (2.16)

πX(A) = 0 if A ∈ Z2 \AX (2.17)

πX(A) =
∑

B∈X
πX(A−B) if A ∈ AX \ {O}. (2.18)

Proof. Certainly (2.16)–(2.18) hold, using Lemmas 2.9 and 2.10(ii) for (2.16), and Lemma 2.14(ii) for (2.18).
For A ∈ AX , let L(A) = max{`(w) : w ∈ ΠX(A)}; so L(A) is well defined by the BPP. We prove the result
by induction on L(A). If L(A) = 0, then A = O, so (2.16) gives πX(A) = 1. Suppose now that L(A) ≥ 1.
By (2.18), it suffices to show that we can calculate πX(A−B) for all B ∈ X. Now, (2.17) gives πX(A−B) = 0
if A−B 6∈ AX . Next, supposeB ∈ X and A−B ∈ AX , and write A−B = A1+· · ·+Ak, where A1, . . . , Ak ∈ X
and k = L(A−B). Then A = A1 + · · ·+Ak +B, so that L(A) ≥ k+ 1 > k = L(A−B); thus, by induction,
we may calculate πX(A−B) using (2.16)–(2.18).
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Remark 2.19. Often when specifying recurrence relations for number sequences, several non-trivial bound-
ary values are given; for example, with binomial coefficients, we usually specify

(
n
0

)
=
(
n
n

)
= 1 for all n ∈ N,

and
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
for n ≥ 2 and 1 ≤ k ≤ n − 1. But Proposition 2.15 gives πX(O) = 1 as the only

non-zero boundary value; the other boundary values are πX(A) = 0 for A 6∈ AX . Thus, we could define the
binomial coefficients in this way by specifying

(
0
0

)
= 1,

(
n
k

)
= 0 if k < 0 or k > n, and

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)

if n ≥ 1 and 0 ≤ k ≤ n. Of course this is a minor difference, but it means that instead of creating Pascal’s
Triangle by starting with “walls of 1’s”, we instead start with a “sky of 0’s” and a single 1 at the top.

Remark 2.20. We will say more in Section 4 about the practical implementation of the recurrence from
Proposition 2.15; it turns out that calculaing the numbers L(A) defined in the above proof is the key step.
But we note here that if one has a proposed formula for πX(A), then one might use Proposition 2.15 to
prove this, even if X is infinite. For instance, if X = {1} × N, as in Example 2.6, then we have

πX(a, b) =

(
a+ b− 1

b

)
for all (a, b) ∈ P× N. (2.21)

Indeed, we can prove this by induction on a + b. Now (2.21) is clear if a = 1 or b = 0 (cf. Figure 5), so
suppose a ≥ 2 and b ≥ 1. Then using (2.18) twice, the induction hypothesis, and the standard binomial
recurrence, we have

πX(a, b) =

b∑

r=0

πX(a− 1, r) = πX(a− 1, b) +

b−1∑

r=0

πX(a− 1, r) = πX(a− 1, b) + πX(a, b− 1)

=

(
a+ b− 2

b

)
+

(
a+ b− 2

b− 1

)
=

(
a+ b− 1

b

)
.

A similar calculation establishes the formula for πX(A) for the step set in Example 2.7.
We may also prove the formula πX(a, b) =

(
a+b
b−a
)

=
(
a+b
2a

)
, 0 ≤ a ≤ b, for the step set from Example 2.8.

This is of course true if a = 0 or if a = b (cf. Figure 6), and (2.18) gives the recurrence (suppressing terms
obviously equal to zero):

πX(a, b) = πX(a, b− 1) +
b−1∑

r=a−1

πX(a− 1, r).

Inductively assuming that πX(c, d) =
(
c+d
2c

)
for c+ d < a+ b, and using the identity

∑m
k=n

(
k
n

)
=
(
m+1
n+1

)
, we

have

πX(a, b) =

(
a+ b− 1

2a

)
+

b−1∑

r=a−1

(
a− 1 + r

2a− 2

)
=

(
a+ b− 1

2a

)
+

a+b−2∑

s=2a−2

(
s

2a− 2

)

=

(
a+ b− 1

2a

)
+

(
a+ b− 1

2a− 1

)
=

(
a+ b

2a

)
.

This verifies that the numbers πX(A) do indeed match [1, Sequence A085478], which at the time of writing
had no reference to lattice walks.

We now consider several further examples. The next three well-studied examples are closely related,
and involve step sets that are used to define the well-known Catalan and Motzkin numbers, which we will
examine in more detail in Section 3.2. The first two produce the same numbers (binomial coefficients) as
Example 2.1.

Example 2.22. Let X = {U,F}, where U = (1, 1) and F = (1, 0). It is easy to see that

AX = {(a, b) ∈ N2 : b ≤ a}.
Also, for any (a, b) ∈ AX , and any word u ∈ FX , we have (a, b) = αX(u) if and only if `(u) = a and u
has b U ’s (and a− b F ’s). It follows that for any a, b ∈ Z,

πX(a, b) =

(
a

b

)
.

(Note that
(
a
b

)
= 0 if (a, b) ∈ Z2 \ AX .) The graph ΓX is pictured in Figure 10 (left). Note that Proposi-

tion 2.15 yields the usual recurrence

πX(a, b) = πX(a− 1, b− 1) + πX(a− 1, b).
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Example 2.23. Let X = {U,D}, where U = (1, 1) and D = (1,−1). This time we have

AX =
{

(a, b) ∈ N× Z : |b| ≤ a, a ≡ b (mod 2)
}
,

and for any a, b ∈ Z,

πX(a, b) =

(
a
a+b

2

)
.

The graph ΓX is pictured in Figure 10 (middle). Proposition 2.15 yields the recurrence

πX(a, b) = πX(a− 1, b− 1) + πX(a− 1, b+ 1).

One can see that Examples 2.22 and 2.23 produce the same numbers, but that these are just placed in
different locations. However, for any x, y ∈ N, one has

π{U,F}(xU + yF ) = π{U,D}(xU + yD) =
(
x+y
x

)
=
(
x+y
y

)
.

See also Remark 2.33(iv) below.

Example 2.24. Let X = {U,D, F}, where U = (1, 1), D = (1,−1) and F = (1, 0). Then

AX = {(a, b) ∈ N× Z : |b| ≤ a}.
The numbers πX(a, b) are not as easy to determine as those in the previous examples. Figure 10 (right)
gives the graph ΓX , using Proposition 2.15 to compute the values of πX(a, b); note that (2.18) yields the
recurrence

πX(a, b) = πX(a− 1, b− 1) + πX(a− 1, b) + πX(a− 1, b+ 1).

The numbers πX(A) may be found in [1, A027907 or A111808]; note that [1, A027907] lists two step sets
different from ours that yield the same numbers, while [1, A111808] implicitly uses our step set in speaking
of king paths of length n from (0, 0) to (n, k) on an infinite chess board. The central terms πX(n, 0), n ∈ N,
appear in [1, A002426], which mentions this step set and several equivalent ones including {1} × {0, 1, 2}
(note that the step set in the current example is {1} × {−1, 0, 1}). The numbers arising from the step sets
{1} × {0, 1, 2, 3} and {1} × {0, 1, 2, 3, 4} appear in [1, A008287 and A035343].

Examining Figure 2, one may notice that the column sums give powers of 3: i.e.,
∑a

r=−a πX(a, r) = 3a.
The reason for this is simple: the sum gives the number of X-walks from O to any point in the ath column,
which is equal to the number of words of length a over X: i.e., |X|a = 3a. This is similar to the well-known
identity

∑n
k=0

(
n
k

)
= 2n, and of course generalises to step sets of the form {1} × S where S ⊆ Z is arbitrary

(finite or infinite). By a simple inductive argument, one may also show that πX(a, b) is the coefficient of
xa+b in (1 + x+ x2)a, for each −a ≤ b ≤ a. For example,

(1 + x+ x2)4 = 1 + 4x+ 10x2 + 16x3 + 19x4 + 16x5 + 10x6 + 4x7 + x8.

This yields another simple proof that the column sums produce powers of 3. We may also use the Binomial
Theorem (multiple times) to expand

(1 + x+ x2)a =
[
(1 + x) + x2

]a
=
[
(1 + x2) + x

]a
=
[
(x+ x2) + 1

]a
,

yielding formulae such as

πX(a, b) =
a∑

r=0

(
a

r

)(
r

a− b− r

)
=

a∑

r=0

(
a

r

)(
r

a+ b− r

)
=

a∑

r=0

(
a

r

)(
a− r
r − b

)
=

a∑

r=0

(
a

r

)(
a− r
r + b

)
=

a∑

r=0

(
a

r

)(
r
b+r

2

)
.

Note that the above sums involve binomial coefficients
(
m
k

)
that evaluate to 0 because k 6∈ {0, 1, . . . ,m}. A

similar formula may be obtained directly. Indeed, if w ∈ ΠX(a, b) has r occurrences of the letter F , then
deleting all F ’s from w yields a word w′ from Π{U,D}(a − r, b). There are

(
a
r

)
ways to choose the positions

for these F ’s, and π{U,D}(a− r, b) =
( a−r

a+b−r
2

)
choices for w′. Summing over r gives

πX(a, b) =
a∑

r=0

(
a

r

)(
a− r
a+b−r

2

)
.

Instead fixing the number r of D’s in w ∈ ΠX(a, b), one obtains

πX(a, b) =
a∑

r=0

(
a

r

)
π{U,F}(a− r, b+ r) =

a∑

r=0

(
a

r

)(
a− r
b+ r

)
.
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Figure 10: The graph �X , where X = {(1, 1), (1, 0)} (left), X = {(1, 1), (1,�1)} (middle) and X =
{(1, 1), (1, 0), (1,�1)} (right); cf. Examples 2.22, 2.23 and 2.24. All edges are directed to the right.

The next three examples each involve infinite step sets; these will be crucial in establishing theoretical
results in Section 2.7.

Example 2.25. Let X = {(1, 0)}[{(a, ±a2) : a 2 P}. Note that the steps in X point in the same directions
as those from the step set of Example 2.5. Here it is not so easy to give a uniform description of the elements
of the monoid AX , or to draw the graph �X , but see Figure 4 (right) for the first few columns. Clearly X
satisfies the SLC.

Less trivially, we claim that X does not satisfy the CC. To see this, consider some line L given by
y = mx. Let n be an arbitrary integer with n > |m|. Then the points (n, n2) and (n,�n2) from X lie on
opposite sides of L , meaning that L does not witness the LC. Thus, x = 0 is the unique line witnessing
the LC, so the claim follows from Lemma 2.13(i).

It is also the case that X has the FPP. Indeed, one may easily prove this directly, but it also follows
from Lemma 2.43(i) below, so we will not provide any further details.

Example 2.26. Let X = {(0,�1)} [ {(a, a2) : a 2 P}. We claim that

AX = {(x, y) 2 Z2 : x � 0, y  x2}.

To prove this, let ⌃ denote the set on the right-hand side. Since X is contained in ⌃, and since ⌃ is a
submonoid of Z2 (as follows from the identity x2

1 + x2
2  (x1 + x2)

2 for x1, x2 � 0), we have AX ✓ ⌃.
Conversely, if (x, y) 2 ⌃, then (x, y) = (x, x2) + (x2 � y)(0,�1) 2 AX .

Next note that X does not satisfy the LC: indeed, the line x = 0 contains (0,�1), and any other line
through the origin has (0,�1) below it and infinitely many points from X above it. As in the previous
example, X has the FPP, as also follows from Lemma 2.43 below.

For use in the next example, we prove the following lemma, which is a slight strengthening of a classical
result of Kempner [30, Theorem 2]. The additional strength is not needed immediately, but will be useful
later.

Lemma 2.27. Let R be an arbitrary positive real number. Between any two parallel lines of irrational slope,
there exists a lattice point with x-coordinate at least R, and a lattice point with x-coordinate at most �R.

Proof. By symmetry, we just show the existence of a lattice point with x-coordinate at least R. Let the
lines have equations y = ↵x + � and y = ↵x + �, where ↵ is irrational, and � < �. We must show that there
exists (u, v) 2 Z2 such that u > R and ↵u + � < v < ↵u + �: i.e., � < v � ↵u < �.
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Figure 10: The graph ΓX , where X = {(1, 1), (1, 0)} (left), X = {(1, 1), (1,−1)} (middle) and X =
{(1, 1), (1, 0), (1,−1)} (right); cf. Examples 2.22, 2.23 and 2.24. All edges are directed to the right.

The next three examples each involve infinite step sets; these will be crucial in establishing theoretical
results in Section 2.7.

Example 2.25. Let X = {(1, 0)}∪{(a,±a2) : a ∈ P}. Note that the steps in X point in the same directions
as those from the step set of Example 2.5. Here it is not so easy to give a uniform description of the elements
of the monoid AX , or to draw the graph ΓX , but see Figure 4 (right) for the first few columns. Clearly X
satisfies the SLC.

Less trivially, we claim that X does not satisfy the CC. To see this, consider some line L given by
y = mx. Let n be an arbitrary integer with n > |m|. Then the points (n, n2) and (n,−n2) from X lie on
opposite sides of L , meaning that L does not witness the LC. Thus, x = 0 is the unique line witnessing
the LC, so the claim follows from Lemma 2.13(i).

It is also the case that X has the FPP. Indeed, one may easily prove this directly, but it also follows
from Lemma 2.43(i) below, so we will not provide any further details.

Example 2.26. Let X = {(0,−1)} ∪ {(a, a2) : a ∈ P}. We claim that

AX = {(x, y) ∈ Z2 : x ≥ 0, y ≤ x2}.

To prove this, let Σ denote the set on the right-hand side. Since X is contained in Σ, and since Σ is a
submonoid of Z2 (as follows from the identity x2

1 + x2
2 ≤ (x1 + x2)2 for x1, x2 ≥ 0), we have AX ⊆ Σ.

Conversely, if (x, y) ∈ Σ, then (x, y) = (x, x2) + (x2 − y)(0,−1) ∈ AX .
Next note that X does not satisfy the LC: indeed, the line x = 0 contains (0,−1), and any other line

through the origin has (0,−1) below it and infinitely many points from X above it. As in the previous
example, X has the FPP, as also follows from Lemma 2.43 below.

For use in the next example, we prove the following lemma, which is a slight strengthening of a classical
result of Kempner [30, Theorem 2]. The additional strength is not needed immediately, but will be useful
later.

Lemma 2.27. Let R be an arbitrary positive real number. Between any two parallel lines of irrational slope,
there exists a lattice point with x-coordinate at least R, and a lattice point with x-coordinate at most −R.

Proof. By symmetry, we just show the existence of a lattice point with x-coordinate at least R. Let the
lines have equations y = αx+ γ and y = αx+ δ, where α is irrational, and γ < δ. We must show that there
exists (u, v) ∈ Z2 such that u > R and αu+ γ < v < αu+ δ: i.e., γ < v − αu < δ.
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Consider the set M = {q − αp : p ∈ P, q ∈ Z}. First we make the following claim:

• For any ε > 0 there exists s, t ∈M such that −ε < s < 0 < t < ε.

To prove the claim, let ε > 0 be arbitrary. By Dirichlet’s Theorem (see for example [33, Theorem 1A]),
there exist p ∈ P and q ∈ Z such that |q − αp| < ε. Since α is irrational and p 6= 0, we have q − αp 6= 0. We
assume q−αp > 0, the other case being symmetrical. Put t = q−αp, noting that t ∈M and 0 < t < ε. Now
consider the numbers t, 2t, 3t, . . .; since 0 < t < ε, at least one of these belongs to the interval 1− ε < x < 1,
say 1− ε < kt < 1 where k ∈ P. Then put s = kt− 1 = (kq − 1)− α(kp).

Returning to the main proof now, we consider three cases.

Case 1. If γ < 0 < δ, then by the claim (with ε = δ
R) there exists p ∈ P and q ∈ Z such that 0 < q−αp < δ

R .

Since γ < 0 it follows that γ
R < q − αp < δ

R . We then take (u, v) = (Rp,Rq).

Case 2. If 0 ≤ γ < δ, then we put ε = δ−γ
R . By the claim there exists p ∈ P and q ∈ Z such that t = q−αp

satisfies 0 < t < ε. Again one of the numbers t, 2t, 3t, . . . must lie in the interval γ
R < x < δ

R , say γ
R < kt < δ

R
where k ∈ P. We then take (u, v) = (Rkp,Rkq).

Case 3. The case in which γ < δ ≤ 0 is symmetrical.

Remark 2.28. Consider two parallel lines of irrational slope, say L and L0. By Lemma 2.27 there is a
lattice point A1 = (x1, y1) between L and L0 with x1 ≥ 1. Now let L1 be the line parallel to L through A1.
By Lemma 2.27 again, there is a lattice point A2 = (x2, y2) between L and L1 with x2 ≥ x1 +1. Continuing
in this way, we obtain a sequence of lattice points Ai = (xi, yi), i ∈ P, satisfying 1 ≤ x1 < x2 < x3 < · · · .
Moreover, if we write δi (i ∈ P) for the distance from L toAi, then we have δi > 0 for all i, δ1 > δ2 > δ3 > · · · ,
and limi→∞ δi = 0.

Example 2.29. Let L be any line through the origin of irrational slope, let H be one of the (open) half-
planes bounded by L , and let X = H ∩ Z2 be the set of all lattice points contained in H. Since H, and
hence X, is closed under addition, we have AX = {O} ∪ X, and also πX(O) = 1. We claim that for any
A ∈ X = AX \ {O}, there are arbitrarily long X-walks from O to A.

To prove the claim, let A ∈ X, and let k ≥ 2 be arbitrary. We will show that there is an X-walk
from O to A of length k (this is obviously true for k = 1 as well). Let L0 = L , let Lk be the line parallel
to L through A, and let L1, . . . ,Lk−1 be a sequence of distinct lines each parallel to L such that Li is
between Li−1 and Li+1 for each 1 ≤ i ≤ k − 1. All of this (and more information to follow) is pictured in
Figure 11. By Lemma 2.27, we may choose lattice points A1, . . . , Ak−1 ∈ Z2 such that Ai is between Li−1

and Li for each 1 ≤ i ≤ k − 1. Also define A0 = O and Ak = A. Let Bi = Ai − Ai−1 for each 1 ≤ i ≤ k.
The claim will be established if we can show that B1 · · ·Bk is an X-walk from O to A. Indeed, we certainly
have B1 + · · ·+Bk = A, so it just remains to check that Bi ∈ X for each i. But if u is a vector perpendicular

to L pointing into H, we have u · −→OAi−1 < u · −→OAi for each 1 ≤ i ≤ k (by construction), from which it

follows that u · −−→OBi = u · (−→OAi −
−→
OAi−1) > 0 for each such i, giving Bi ∈ H, and so Bi ∈ X.

With the claim now established, there are two immediate consequences:

• πX(A) =∞ for all A ∈ AX \ {O}, and

• X does not have the BPP.

Since πX(O) = 1, as mentioned above, it follows also that:

• X has neither the IPP nor the FPP.

In terms of the geometric conditions, first note that X satisfies the LC, as witnessed by L itself. But,
since there are points from X arbitrarily close to L (by Lemma 2.27), it follows that no line parallel to L
witnesses the SLC. Since it is also clear that no other line (through the origin) witnesses the LC, it follows
from Lemma 2.13(ii) that X does not satisfy the SLC. Combining this with Lemma 2.12(i), X does not
satisfy the CC either.
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Figure 11: Schematic diagram of the proof of the claim in Example 2.29 (with k = 5).

2.5 Small step sets

In this section, we give a complete description of the additive monoids AX , and the numbers πX(A),
when X ⊆ Z2

× is a step set of size at most 2. We begin with a lemma describing certain 2-generated
submonoids of the additive group (Z,+); it follows from [22, Corollary II.4.2], but we include a direct proof
for convenience. For a1, . . . , ak ∈ Z, we will write Mon〈a1, . . . , ak〉 for the submonoid of Z generated by
a1, . . . , ak. If a, b ∈ Z, we write a | b to indicate that a divides b (i.e., b = ax for some x ∈ Z); if a and b
are not both zero, we write gcd(a, b) for their greatest common divisor. Throughout this section, we use
elementary number theoretic facts, as found for example in [28].

Lemma 2.30. Let a, b ∈ P, and put d = gcd(a, b). Then Mon〈a,−b〉 = Mon〈±d〉. In particular, Mon〈a,−b〉
is a non-trivial subgroup of Z, and is therefore isomorphic to (Z,+).

Proof. Write M = Mon〈a,−b〉. Now, a = xd and b = yd (so −b = y(−d)) for some x, y ∈ P, so it follows
immediately that M ⊆ Mon〈±d〉. It therefore remains to show that d,−d ∈ M . In fact, it is enough to
show that either of d,−d belongs to M . Indeed, if d ∈M , then we would also have −d = −yd+ (y− 1)d =
(−b) + (y− 1)d ∈ Mon〈−b, d〉 ⊆M . The implication −d ∈M ⇒ d ∈M is proved in similar fashion. Now,

d = ua+ v(−b) (2.31)

for some u, v ∈ Z. If u, v ≥ 0 or u, v ≤ 0, then (2.31) would give d ∈ M or −d ∈ M (respectively), and
in either case the proof would then be complete, by the above observation. We note that it is impossible
to have u ≤ 0 and v ≥ 0 or else then (2.31) would give d ≤ 0. Finally, suppose u ≥ 0 and v ≤ 0.
We cannot have u = v = 0, since d > 0. Suppose first that u ≥ 1. Together with v ≤ 0, this gives
d = ua + v(−b) ≥ 1a + 0(−b) = a. Since also d = gcd(a, b) ≤ a, it follows that d = a ∈ M . Similarly, if
v ≤ −1, then we would deduce that d = b, so that −d = −b ∈M .

Recall that Euclid’s Lemma states that if a, b, c ∈ Z are such that gcd(a, b) = 1, then a | bc ⇒ a | c.

Proposition 2.32. Consider a step set X ⊆ Z2
×.

(i) If X = {A}, then AX
∼= (N,+).

(ii) If X = {A,B} where A 6= B and ∠AOB = 0, then AX is isomorphic to a 2-generated submonoid
of (N,+).

(iii) If X = {A,B} where ∠AOB = π, then AX
∼= (Z,+).

(iv) If X = {A,B} where 0 < ∠AOB < π, then AX
∼= (N× N,+).

Proof. The first part being clear, for the duration of the proof, let A = (a, b) and B = (c, d) be distinct
points from Z2

×.
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(ii). Suppose ∠AOB = 0. So A and B both lie on the same side of the origin on a straight line, L . If
the line L is y = 0, then clearly AX = Mon〈(a, 0), (c, 0)〉 is isomorphic to the submonoid Mon〈a, c〉 of N if
a, c > 0, or to Mon〈−a,−c〉 if a, c < 0. A similar argument covers the case in which L is x = 0. So suppose
instead that L has finite and non-zero gradient. Since the lattice points A,B lie on L , its gradient must
be rational, so we may assume L has equation y = m

n x, where m,n ∈ Z, n 6= 0 and m
n is in reduced form

(i.e., gcd(m,n) = 1). Since ∠AOB = 0, we may further assume that n has the same sign as a and c. Since
A = (a, b) is on L , we see (using Euclid’s Lemma) that

b = m
n a ⇒ n | ma ⇒ n | a ⇒ a = kn for some k ∈ P.

So A = (a, b) = k(n,m). Similarly, B = l(n,m) for some l ∈ P. But then clearly AX = Mon〈A,B〉 is
isomorphic to the submonoid Mon〈k, l〉 of (N,+) generated by k, l.

(iii). Suppose ∠AOB = π. As in the previous case, the result is trivial if A,B both lie on x = 0 or y = 0.
Otherwise, we may similarly show that A = k(n,m) and B = l(n,m) for some m,n ∈ Z with gcd(m,n) = 1
and some non-zero k, l ∈ Z, but this time k, l have opposite sign. It follows that AX = Mon〈A,B〉 is
isomorphic to M = Mon〈k, l〉, the submonoid of (Z,+) generated by k, l, and the proof in this case concludes
after applying Lemma 2.30.

(iv). Finally, suppose 0 < ∠AOB < π. Now, AX = Mon〈A,B〉 = {kA+ lB : k, l ∈ N}, so it follows that
the map

φ : N× N→ AX defined by φ(k, l) = kA+ lB

is a surmorphism. Injectivity of φ follows quickly from the linear independence of A and B.

Remark 2.33. We can say something about the values of πX(a, b) in the case that the step set X has one
of the forms enumerated in Proposition 2.32:

(i) If X = {A}, then AX
∼= (N,+), and πX(C) = 1 for all C ∈ AX .

(ii) If X = {A,B} where A 6= B and ∠AOB = 0, then as in the above proof, we may assume that A = kC
and B = lC, where k, l ∈ P, and C ∈ Z2

× is some fixed point. Using Proposition 2.15, the numbers
an = πX(nC), n ∈ Z, satisfy

an = 0 (n < 0), a0 = 1, an = an−k + an−l (n > 0).

Thus, for example, we obtain the Fibonacci sequence when (k, l) = (1, 2), the Narayana’s Cows se-
quence when (k, l) = (1, 3), the Padovan sequence when (k, l) = (2, 3), and so on; see [1, A000045,
A000930 and A000931]. The study of submonoids of N is a considerable topic, known as numerical
semigroup theory ; see for example [2,32]. Submonoids of N2 (and more generally Nk, k ≥ 2) have been
studied for example in [10], where the situation is rather more complicated. For example, every sub-
monoid of N is finitely generated, so there are only countably many of them (even up to isomorphism);
but even N2 contains uncountably many pairwise non-isomorphic subdirect products [10, Theorem C].

(iii) If X = {A,B} where ∠AOB = π, then AX
∼= (Z,+), and clearly πX(C) =∞ for all C ∈ AX .

(iv) Finally, if X = {A,B} where 0 < ∠AOB < π, then AX = {xA+ yB : x, y ∈ N} ∼= (N × N,+),
and πX(xA + yB) =

(
x+y
x

)
=
(
x+y
y

)
. This can be seen directly, or by applying Proposition 2.15:

cf. Examples 2.1, 2.22 and 2.23.

Remark 2.34. One could readily classify step sets X = {A,B,C} ⊆ Z2
× of size 3, although there are

several more cases to consider. Some general results from the coming sections are useful to complete the
classification.

2.6 Geometric, algebraic and combinatorial characterisations of the IPP

Recall that a convex combination of a finite collection of points A1, . . . , Ak ∈ R2 is a point of the form
λ1A1 + · · ·+ λkAk where λ1, . . . , λk ≥ 0 and λ1 + · · · + λk = 1. The convex hull of a (finite or infinite)
subset X ⊆ R2, denoted Conv(X), is the set of all convex combinations of (finite collections of) points
from X. For background on basic convex geometry, see for example [8, Section 2].

The main result of this section shows that a step set X has the IPP if and only if the origin O is in the
convex hull of X; see Theorem 2.36 below, which also gives algebraic and combinatorial characterisations of
the IPP in terms of the monoid AX and the graph ΓX . First we need a lemma.
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Lemma 2.35. Suppose A,B,C ∈ R2 \{O} are such that A, B, C and O are not all collinear. If there exists
scalars α, β, γ ∈ R such that α+ β + γ = 1 and αA+ βB + γC = O, then there exist unique such scalars.

Proof. Write a,b, c,0 for the position vectors of A,B,C,O, respectively, noting that αa+βb+γc = 0. By
the non-collinear assumption, and renaming the points A,B,C if necessary, we may assume that a and b
are linearly independant. First note that we must have γ 6= 0; otherwise, we would have αa + βb = 0,
giving α = β = 0 (by linear independance), contradicting α+β+γ = 1. It then follows that c = −α

γ a−
β
γb.

Suppose now that α′A+ β′B + γ′C = O where α′ + β′ + γ′ = 1. Then

α′a + β′b = −γ′c = −γ′
(
−α
γ a−

β
γb
)

= αγ′
γ a + βγ′

γ b.

It then follows (by linear independence) that α′ = αγ′
γ and β′ = βγ′

γ . But then

1 = α′ + β′ + γ′ = αγ′
γ + βγ′

γ + γγ′
γ = γ′

γ (α+ β + γ) = γ′
γ ,

so that γ′ = γ. We deduce also that α′ = αγ′
γ = α and β′ = βγ′

γ = β.

Recall that an element of a monoid is a unit if it is invertible with respect to the identity of the monoid;
the set of all units is a subgroup. Here are the promised characterisations of the IPP.

Theorem 2.36. Let X ⊆ Z2
× be an arbitrary step set. Then the following are equivalent:

(i) X has the IPP,

(ii) O ∈ Conv(X),

(iii) AX has non-trivial units,

(iv) ΓX has non-trivial directed cycles.

Proof. (i) ⇒ (ii). If X has the IPP, then O = A1 + · · ·+ Ak for some k ≥ 1 and some A1, . . . , Ak ∈ X, in
which case O = 1

kA1 + · · ·+ 1
kAk ∈ Conv(X).

(ii) ⇒ (iii). Suppose O ∈ Conv(X). So O is a convex combination of some non-empty collection of points
A1, . . . , Ak from X, and we assume that k is minimal, noting that k ≥ 2. If k = 2, then ∠A1OA2 = π, so
πX(O) ≥ π{A1,A2}(O) = ∞; cf. Remark 2.33(iii). So suppose now that k ≥ 3. Then by minimality of k,
Conv(A1, . . . , Ak) is a non-degenerate convex k-gon in R2; relabelling if necessary, we may assume the vertices
of this polygon taken clockwise are A1, . . . , Ak. Since the triangles 4A1A2A3,4A1A3A4, . . . ,4A1Ak−1Ak
make up the whole polygon, we see that O lies in one of these triangles, say 4A1Am−1Am. (Incidentally,
this shows that k = 3; cf. Carathéodory’s Theorem [8, Corollary 2.4].) Write A = A1, B = Am−1 and
C = Am. Since O ∈ Conv(A,B,C), we have

O = αA+ βB + γC for some α, β, γ ∈ R with α, β, γ ≥ 0 and α+ β + γ = 1. (2.37)

By the minimality of k ≥ 3, it follows that α, β, γ are all non-zero. Write A = (a, b), B = (c, d), C = (e, f).
So (2.37) gives

aα+ cβ + eγ = 0, bα+ dβ + fγ = 0, α+ β + γ = 1.

That is, (x, y, z) = (α, β, γ) is a solution to the system of linear equations

ax+ cy + ez = 0, bx+ dy + fz = 0, x+ y + z = 1. (2.38)

Since 4ABC is a non-degenerate triangle, certainly A,B,C,O are not all collinear, so Lemma 2.35 says
that (2.38) has a unique solution. Since the solution is unique, it may be found by inverting the coefficient

matrix
[ a c e
b d f
1 1 1

]
; since this matrix has integer entries, its inverse has rational entries, and so the solution

to (2.38) is rational; that is, α, β, γ are rational. Since we already know that α, β, γ > 0, there exists δ ∈ P
such that x = αδ, y = βδ and z = γδ are all (positive) integers. But then (2.37) gives O = xA+ yB + zC,
and since x > 0, it follows that A is a unit (with inverse (x− 1)A+ yB + zC).

(iii) ⇒ (iv). Suppose A ∈ AX is a non-trivial unit, and let B ∈ AX be its inverse. Write A = A1 + · · ·+Ak
and B = B1 + · · · + Bl where k, l ≥ 1 and the Ai, Bi belong to X. Then the edges A1, . . . , Ak, B1, . . . , Bl
determine a directed cycle from O to O in ΓX .

(iv)⇒ (i). If A
B1−−−→ A+B1

B2−−−→ · · · Bk−−−→ A is a non-trivial directed cycle in ΓX , then A = A+B1+· · ·+Bk,
which implies O = B1 + · · · + Bk, and so B1 · · ·Bk ∈ ΠX(O) \ {ε}; Lemma 2.9 then says that X has
the IPP.
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Remark 2.39. Theorem 2.36 implies that ΓX is a directed acyclic graph (DAG) if and only if X does not
have the IPP.

Remark 2.40. One may compare Theorem 2.36 with the various examples considered in Sections 2.1
and 2.4. Of these, only the step sets from Examples 2.3 and 2.4 had the IPP, and these are of course the
only step sets containing O in their convex hulls. But note that O is in the closure of the convex hulls
of the step sets from Examples 2.26 and 2.29. Despite having this feature in common, the step sets from
Examples 2.26 and 2.29 are very different. The step set from Example 2.26 has the FPP (as far away from
the IPP as possible), while that from Example 2.29 has πX(A) = ∞ for all A ∈ AX \ {O} (as close to
the IPP as possible without actually attaining it).

2.7 An implicational hierarchy

We have considered many examples of step sets so far in this paper, and these satisfy various combinations of
the finiteness properties (FPP, IPP, BPP) and geometric conditions (CC, SLC, CC) defined in Sections 2.2
and 2.3. Theorem 2.44 below establishes a kind of “implicational hierarchy” of these properties and condi-
tions, and thus limits the (ostensibly) possible combinations a step set could have; this idea will be explored
in more detail in Sections 2.9 and 2.10.

We begin with two lemmas.

Lemma 2.41. Let X ⊆ Z2
× be an arbitrary step set.

(i) If X satisfies the CC, then X has the FPP.

(ii) If X satisfies the SLC, then X has the BPP.

(iii) If X satisfies the LC, then X does not have the IPP.

Proof. We prove the three items in reverse order.

(iii). Let L be a line witnessing the LC, and let u be a vector perpendicular to L pointing into the

half-plane containing X. So u · −→OA > 0 for all A ∈ X. By linearity, it follows that u · −→OA > 0 for all
A ∈ AX \ {O}, and so there are no non-empty X-walks to O; thus, πX(O) = 1.

(ii). Let L be a line witnessing the SLC, and let u be a unit vector perpendicular to L pointing towards

the side of L containing X. Let δ be the (perpendicular) distance from O to L , noting that u · −−→OB > δ for

all B ∈ X. Now let A ∈ AX be arbitrary, and write λ = u · −→OA. Consider an X-walk w = B1 · · ·Bk to A,
where B1, . . . , Bk ∈ X. Since A = B1 + · · ·+Bk, we have

λ = u · −−→OB1 + · · ·+ u · −−→OBk. (2.42)

Since u · −−→OBi > δ for each i, it follows from (2.42) that λ > kδ, and so k < λ
δ . We have shown that the

length of any X-walk to A is bounded by λ
δ ; since A ∈ AX was arbitrary, it follows that X has the BPP.

(i). Let C be a cone witnessing the CC, and suppose C is bounded by the lines L1 and L2. Let C ∈ L1

and D ∈ L2 be the points constructed during the proof of Lemma 2.11; cf. Figure 8. Let L be the line
through C and D, and note that L witnesses the SLC. Let u and δ be as in the proof of (ii) above, defined

with respect to L . Further, for µ ≥ 0 define the set Xµ = {A ∈ X : u · −→OA ≤ µ}. Now let A ∈ AX be

arbitrary. We must show that πX(A) <∞. Let λ = u · −→OA, and suppose w = B1 · · ·Bk is an X-walk to A,

where B1, . . . , Bk ∈ X. It follows from (2.42), and the fact that each u · −−→OBi > 0, that u · −−→OBi ≤ λ for
each i. That is, we must have Bi ∈ Xλ for each i. As in the proof of (ii), we must also have k < λ

δ . The
proof of this part will therefore be complete if we can show that Xλ is finite. But if we write L ′ for the
line parallel to L and λ units from O, then Xλ is contained in the triangle bounded by the lines L1, L2

and L ′; since this triangle has finite area, it follows that Xλ is finite, as required.

The next technical lemma concerns a special type of step set, namely one with no steps to the left of the
y-axis. It will be used in the proof of the theorem following it, and also in Section 2.9. The first part of the
lemma has already been used to establish the FPP in Examples 2.25 and 2.26.
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Lemma 2.43. Consider a step set X ⊆ N × Z. For k ∈ N define the sets Yk = {y ∈ Z : (k, y) ∈ X},
Y +
k = Yk ∩ P and Y −k = Yk ∩ (−P).

(i) If Y +
0 = ∅, and if Y +

k is finite for each k ∈ P, then X has the FPP.

(ii) If Y −0 6= ∅, and if Y +
k is infinite for some k ∈ P, then X does not have the BPP.

Proof. (i). For k ∈ N, let Xk = {k} × Yk be the set of all steps from X with x-coordinate k. Let
A = (a, b) ∈ AX be arbitrary. Fix some w ∈ ΠX(A), and write w = A1 · · ·Al, where each Ai = (xi, yi)
belongs to X. For all i, we have a = x1 + · · · + xl ≥ xi ≥ 0, so that each Ai belongs to the subset
Z = X0 ∪X1 ∪ · · · ∪Xa of X. This means that ΠX(A) = ΠZ(A). Let m = max(Y +

1 ∪ · · · ∪ Y +
a ); this is well

defined by assumption. Then the lines with equations y = (m+ 1)x and y = (m+ 2)x both witness the LC
for Z (see Figure 12, which only pictures the line y = (m+ 1)x); hence, these lines together witness the CC
for Z; it follows from Lemma 2.41(i) that Z has the FPP. Thus, πX(A) = πZ(A) <∞, as required.

(ii). Let A = (0,−n) where −n ∈ Y −0 where n ∈ P, and fix some k ∈ P such that Y +
k is infinite. For each

i ∈ {0, 1, . . . , n− 1}, let Y +
k,i =

{
y ∈ Y +

k : y ≡ i (modn)
}

. Since Y +
k is infinite, at least one of these subsets

must be infinite, say Y +
k,i. Write Y +

k,i = {i + b1n, i + b2n, . . .}, where b1 < b2 < · · · . For each p ∈ N, let

Bp = (k, i+ bpn) ∈ X. But then for any p ∈ N we have Bp + bpA = (k, i), meaning that BpA
bp ∈ ΠX(k, i).

Since `(BpA
bp) = 1 + bp, this shows that X does not have the BPP.

a

m

O

Figure 12: Schematic diagram of the proof of Lemma 2.43(i). The (closed) blue region contains Z, and the
line y = (m+ 1)x is indicated in red.

Theorem 2.44. (i) For an arbitrary step set X ⊆ Z2
×, we have:

CC SLC LC

FPP BPP ¬IPP⇒ ⇒

⇒ ⇒
⇓ ⇓ ⇓

(2.45)

(ii) For an arbitrary finite step set X ⊆ Z2
×, all of the implications in (2.45) are reversible; that is, we

have:

CC SLC LC

FPP BPP ¬IPP⇔ ⇔

⇔ ⇔
m m m

(iii) In general, none of the implications in (2.45) are reversible.
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Proof. (i). These implications were proved in Lemmas 2.10, 2.12 and 2.41.

(ii). Let X ⊆ Z2
× be a finite step set. In light of the previous part, it suffices to show that ¬IPP ⇒ CC; in

fact, by Lemma 2.12(iii), it is enough to show that ¬IPP ⇒ LC. With this in mind, suppose X does not
have the IPP. We must show that X satisfies the LC. This is obvious if X is empty, so suppose otherwise.

Pick an arbitrary point A ∈ X, and let L1 be the line through O and A; note that O splits L1 into
two open half-lines, L ′

1 and L ′′
1 say, where A ∈ L ′

1. Since X does not have the IPP, Theorem 2.36 gives
X ∩L ′′

1 = ∅. If X is contained in L1, then X is contained in L ′
1 and so clearly X satisfies the LC. Thus,

for the remainder of the proof we assume X is not contained in L1, and we fix some B ∈ X \L1. Let L2

be the line through O and B, and let L ′
2 and L ′′

2 be the half-lines split by O, with B ∈ L ′
2, and note again

that X ∩L ′′
2 = ∅. All this is shown in Figure 13 (left).

The lines L1 and L2 define four (open) cones, which we label Ci (i = 1, 2, 3, 4) as also indicated in
Figure 13 (left). If X ∩ C3 6= ∅, say with C ∈ X ∩ C3, then we would have O ∈ Conv{A,B,C} ⊆ Conv(X),
contradicting Theorem 2.36, so we have X ∩ C3 = ∅.

If X ∩ C2 and X ∩ C4 are both empty, then clearly X satisfies the LC, so suppose this is not the case.
By symmetry, we assume that X ∩ C2 6= ∅. Let C ∈ X ∩ C2 be such that ∠BOC is maximal among all
points from X ∩ C2. Let L3 be the line through O and C, again split into two half-lines L ′

3 and L ′′
3 by O,

with C ∈ L ′
3. Again we have X ∩L ′′

3 = ∅. The line L3 splits C2 and C4 into (open) cones C′2, C′′2 and C′4, C′′4
as shown in Figure 13 (middle).

By the maximality of ∠BOC, we have X ∩ C′′2 = ∅. If X ∩ C′′4 6= ∅, say with D ∈ X ∩ C′′4 , then we
would have O ∈ Conv{B,C,D} ⊆ Conv(X), again contradicting Theorem 2.36, so we have X ∩ C′′4 = ∅. If
also X ∩ C′4 = ∅, then clearly X satisfies the LC, so suppose this is not the case. Let D ∈ X ∩ C′4 be such

that ∠AOD is maximal among all points from X ∩ C′4. Then the line L bisecting L ′′
3 and

−−→
OD witnesses

the LC; cf. Figure 13 (right).

(iii). The step set considered in Example 2.25 satisfies the SLC but not the CC; this shows that SLC 6⇒ CC in
general. Similarly, Example 2.29 shows that LC 6⇒ SLC and also that ¬IPP 6⇒ BPP, while Example 2.5 shows
that BPP 6⇒ FPP. This takes care of the “horizontal” implications in (2.45). The “vertical” implications
may be treated all at once by noting that the step set from Example 2.26 has the FPP (as follows from
Lemma 2.43(i)) but does not satisfy the LC.

L ′
1

L ′′
1

L ′
2

L ′′
2

O

A

B

C1

C2 C3

C4

L ′
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L ′′
1

L ′
2

L ′′
2

L ′
3

L ′′
3

O

A

B

C

C1

C′2

C′′2 C3

C′4

C′′4

L ′
1

L ′′
1

L ′
2

L ′′
2

L ′
3

L ′′
3

L

O

A

B

C

D

Figure 13: The points A,B,C,D and lines L1,L2,L3,L constructed during the proof of Theorem 2.44(ii).

The following simple consequence of Theorem 2.44(ii) seems worth singling out; it gives a natural di-
chotomy for finite step sets.

Corollary 2.46. If X ⊆ Z2
× is an arbitrary finite step set, then X has either the FPP or the IPP.

2.8 Groups

Theorem 2.36 shows (among other things) that for a step set X ⊆ Z2
×, the monoid AX contains non-trivial

units if and only if the origin O is contained in Conv(X), the convex hull of X. In this section, we show
that a stronger condition than O ∈ Conv(X) characterises the step sets for which AX is a group (i.e., all
elements of AX are units). Note that AX can contain non-trivial units without being a group; for instance,
if X is the step set from Example 2.4, then AX = N × Z has group of units {0} × Z (cf. Figure 3 (right)),
but note that O is on the boundary of Conv(X) in this example.
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In what follows, for an arbitrary subset U of R2, we write U and Rel-Int(U) for the closure and rel-
ative interior of U , respectively. (We use the relative interior, because we wish to speak of sets such as
Rel-Int(Conv(A,B)) for distinct points A,B ∈ R2, which consists of all points on the line segment strictly
between A and B, whereas the interior of Conv(A,B) is empty.)

Lemma 2.47. Let X ⊆ Z2
× be an arbitrary step set, and let A ∈ X. If there exist (not necessarily distinct)

points B,C ∈ X such that O ∈ Rel-Int(Conv(A,B,C)), then A is a unit of AX .

Proof. First we consider the case that B = C. Since O ∈ Rel-Int(Conv(A,B)), we have ∠AOB = π. By
Proposition 2.32(iii), the submonoid of AX generated by {A,B} is a group; in particular, A is invertible in
this submonoid, and hence in AX itself.

From now on, we assume that B 6= C. Following the proof of Theorem 2.36, we have O = xA+ yB + zC
where x, y, z ∈ N are not all zero. If x 6= 0, then it immediately follows that A is invertible (with inverse
(x − 1)A + yB + zC). If x = 0, then O ∈ Rel-Int(Conv(B,C)), and so B and C must be on a line L
through O, with O in between; in this case, since O ∈ Rel-Int(Conv(A,B,C)), A must also lie on L (or
else O would be on the boundary of Conv(A,B,C)). But then O belongs either to Rel-Int(Conv(A,B)) or
to Rel-Int(Conv(A,C)). As in the first paragraph it follows that A is a unit.

For the next statement, we say a step set X ⊆ Z2
× satisfies the Weak Line Condition (WLC) if it is

contained in the closure of a half-plane determined by a line through the origin. Clearly the LC implies
the WLC. The converse does not hold in general, as shown by the step set in Example 2.4.

Theorem 2.48. Let X ⊆ Z2
× be an arbitrary step set.

(i) If X is empty, then AX is a trivial group.

(ii) If X is non-empty, and is contained in a line L through the origin, then AX is a group if and only
if X contains points from L on both sides of the origin; in this case, AX is isomorphic to (Z,+).

(iii) If X is not contained in any line through the origin, then AX is a group if and only if X does not
satisfy the WLC; in this case, AX is isomorphic to (Z2,+).

Proof. By standard algebraic facts, any subgroup G of (Z2,+) is isomorphic to (Zd,+), where d is the
dimension of the vector space spanned by G. Thus, with (i) being clear, it suffices to prove the “if and only
if” statements in (ii) and (iii).

(ii). Suppose X 6= ∅ is contained in a line L through O, which splits L into two open half-lines L ′ and L ′′.
If X is contained in L ′ say, then X clearly satisfies the LC, and hence does not have the IPP, by

Theorem 2.44(i); but then Theorem 2.36 says that AX has no non-trivial units; since X 6= ∅, it follows
that AX is not a group.

To prove the other implication, supposeX contains points from both L ′ and L ′′. To prove AX is a group,
it suffices to show that all elements of X are invertible. So let A ∈ X be arbitrary. Renaming if necessary,
we may assume that A ∈ L ′. By assumption, there exists B ∈ X∩L ′′. But then O ∈ Rel-Int(Conv(A,B)),
and hence A is a unit by Lemma 2.47.

(iii). Suppose X is not contained in any line through the origin.
First suppose X satisfies the WLC, as witnessed by a line L through the origin. Let u be a vector

perpendicular to L , pointing towards the half-plane containing points from X (exactly one such half-plane

does contain points from X, as X is not contained in L ). The WLC says that u · −→OA ≥ 0 for all A ∈ X;

by linearity, it follows that u · −→OA ≥ 0 for all A ∈ AX . Since X is not contained in L , there exists B ∈ X
such that u · −−→OB > 0. But then for any A ∈ AX , we have u · (−→OA+

−−→
OB) ≥ u · −−→OB > 0, so that A+B 6= O;

this shows that B is not invertible, and hence AX is not a group.
Conversely, suppose X does not satisfy the WLC. We must show that AX is a group. To do so, it

suffices to show that each element of X is a unit. With this in mind, fix some A ∈ X. Let L be the line
through O and A, split by O into two open half-lines L ′ and L ′′ with A ∈ L ′. If X ∩L ′′ 6= ∅, then again
O ∈ Rel-Int(Conv(A,B)) for any B ∈ X ∩L ′′, and Lemma 2.47 says that A is invertible. From now on we
assume that X ∩L ′′ = ∅.

Let the two (open) half-planes bounded by L be H1 and H2, as shown in Figure 14 (left). Since X does
not satisfy the WLC, X ∩H1 and X ∩H2 are both non-empty. Let

β = sup{∠AOB : B ∈ X ∩H1} and γ = sup{∠AOC : C ∈ X ∩H2}.
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Here ∠AOB and ∠AOC denote non-reflex angles, and we note that β, γ are well defined since the relevant
sets are bounded above by π; this also guarantees that 0 < β, γ ≤ π. Either there exists B ∈ X ∩H1 such
that ∠AOB = β or else there is a sequence of points B1, B2, . . . ∈ X ∩H1 such that limn→∞∠AOBn = β;
if β = π, then the latter must be the case. A similar statement holds for γ.

Fix arbitrary points P ∈ H1 ∪ L ′′ and Q ∈ H2 ∪ L ′′ such that ∠AOP = β and ∠AOQ = γ. (Note
that P and Q need not belong to X, or even to Z2. Note also that we would need P ∈ L ′′ if β = π,
with a similar statement for Q.) Let L1 be the line through O and P , split by O into open half-lines L ′

1

and L ′′
1 with P ∈ L ′

1. Let L2 be the line through O and Q, split by O into open half-lines L ′
2 and L ′′

2

with Q ∈ L ′
2. This is all shown in Figure 14 (middle). The half-lines L ′,L ′

1,L
′
2 bound three open regions,

which we denote by R1, R2, R3 as also indicated in Figure 14 (middle). (These regions are either cones or
half-planes, depending on whether β and/or γ equals π; note that R3 = ∅ if β = γ = π.)

By construction, X is contained in R2 \ R3. Thus, since X does not satisfy the WLC, we must have
β+γ > π. For convenience, let δ = (β+γ)−π, so δ > 0. As noted above, there exist points B ∈ X∩(R1∪L ′

1)
and C ∈ X ∩ (R2 ∪L ′

2) such that ∠AOB > β − δ
2 and ∠AOC > γ − δ

2 ; write β′ = ∠AOB and γ′ = ∠AOC.
This is all pictured in Figure 14 (right). Then β′ + γ′ > β + γ − δ = π. Together with β′ < π and γ′ < π
(which follow from B ∈ H1 and C ∈ H2), it follows that O ∈ Rel-Int(Conv(A,B,C)), and so A is a unit by
Lemma 2.47.
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Figure 14: The points A,B,C, P,Q and lines L ,L1,L2 constructed during the proof of Theorem 2.48(iii).

Remark 2.49. For an arbitrary step set X, the implications from Theorem 2.44(i) may be extended as
follows:

CC SLC LC

FPP BPP ¬IPP⇒ ⇒

⇒ ⇒
⇓ ⇓ ⇓

WLC

AX 6∼= (Z2,+)⇒

⇒
m

Indeed:

(i) LC ⇒ WLC has already been mentioned and is obvious.

(ii) ¬IPP ⇒ AX 6∼= (Z2,+) follows from Theorem 2.36.

(iii) WLC ⇒ AX 6∼= (Z2,+) follows from all three parts of Theorem 2.48: if X satisfies the WLC, then
either X is empty, or is non-empty but contained in a line through O, or is not contained in any such
line; in all three cases, AX is either not a group, a trivial group, or else a group isomorphic to (Z,+).

(iv) ¬WLC⇒ AX
∼= (Z2,+) holds, since if X does not satisfy the WLC, then certainly X is not contained

in any line through O, in which case Theorem 2.48(iii) says that AX
∼= (Z2,+).

The implications (i) and (ii) are not reversible in general, even for finite X; consider Example 2.4 and
Proposition 2.32(iii), respectively.

Remark 2.50. If a step set X satisfies the WLC but not the LC, and is not contained in a line through O,
then the structure of AX could be simple or complicated. For example, if X = {N,E, S} as in Example 2.4,
then AX = N×Z. But if U ⊆ P is arbitrary, then with X = {N,S}∪{(u, 0) : u ∈ U} we have AX = M ×Z
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where M = Mon〈U〉 is the submonoid of N generated by U ; we have already noted that the study of such
monoids is a considerable topic [2, 32]. It is not hard to devise more complicated examples.

Here is an alternative characterisation of step sets X for which AX is a group. In the proof, we
write Int(U) for the (ordinary) interior of a subset U of R2. It is a basic fact that U1 ⊆ U2 implies
Int(U1) ⊆ Int(U2), although this does not hold for relative interiors.

Theorem 2.51. Let X ⊆ Z2
× be an arbitrary non-empty step set. Then AX is a group if and only

if O ∈ Rel-Int(Conv(X)).

Proof. We split the proof up into three cases.

Case 1. Suppose first that X is contained in some line L through O. Then by Theorem 2.48(ii), AX is
a group if and only if X contains points from L on both sides of O; since X ⊆ L , this latter condition is
clearly equivalent to O ∈ Rel-Int(Conv(X)).

Case 2. Next suppose X is contained in some line L not through O. Then the line through O parallel to L
witnesses the LC. It follows from Theorem 2.44(i) that X does not have the IPP, and then from Theorem 2.36
that AX contains no non-trivial units; since X is non-empty we deduce that AX is not a group. Since X
does not have the IPP, Theorem 2.36 also tells us that O 6∈ Conv(X), so certainly O 6∈ Rel-Int(Conv(X)).

Case 3. Finally, suppose X is not contained in any line. This means that X is two-dimensional, and so too
therefore is Conv(X); consequently, we have Rel-Int(Conv(X)) = Int(Conv(X)).

Suppose first that AX is not a group. Then by Theorem 2.48(iii), X satisfies the WLC, so that X ⊆ H
for some (open) half-plane H bounded by a line through O. But then

Rel-Int(Conv(X)) = Int(Conv(X)) ⊆ Int(Conv(H)) = Int(H) = H.

Since O 6∈ H, it follows that O 6∈ Rel-Int(Conv(X)).
Conversely, suppose AX is a group. Then by Theorem 2.48(iii), X does not satisfy the WLC. Let A ∈ X

be arbitrary, and let L be the line through O and A, split into L ′ and L ′′ by O, with A ∈ L ′. If
X ∩L ′′ = ∅, then as in the proof of Theorem 2.48(iii), O is in the interior of the (non-degenerate) triangle
4ABC = Conv(A,B,C) for some B,C ∈ X, and so

O ∈ Int(Conv(A,B,C)) ⊆ Int(Conv(X)) = Rel-Int(Conv(X)).

Suppose now that X ∩L ′′ 6= ∅, say with D ∈ X ∩L ′′; see Figure 15. Let the half-planes bounded by L
be H1 and H2. Since X does not satisfy the WLC, there exist E ∈ X ∩ H1 and F ∈ X ∩ H2. But then
the (non-degenerate) triangles 4ADE = Conv(A,D,E) and 4ADF = Conv(A,D,F ) are both contained
in Conv(A,D,E, F ). Since O is on the common side of these two triangles, we have

O ∈ Int(Conv(A,D,E, F )) ⊆ Int(Conv(X)) = Rel-Int(Conv(X)).

L ′

L ′′

O

A

D

E

F

H1

H2

Figure 15: The points A,D,E, F and line L constructed during the proof of Theorem 2.51.

Remark 2.52. One may compare Theorems 2.48 and 2.51 with the various examples considered in Sec-
tions 2.1 and 2.4. In particular, for the step set X from Example 2.4, O belongs to Conv(X) but not to
Rel-Int(Conv(X)); the monoid AX has non-trivial units but is not a group, and X satisfies the WLC.
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2.9 Possible combinations of finiteness properties and geometric conditions

Theorem 2.44(i) describes a kind of hierarchy among the various geometric conditions (CC, SLC, LC) and
finiteness properties (FPP, BPP, ¬IPP) associated to step sets. Specifically, the implications in (2.45)
restrict the possible combinations of these conditions/properties that a given step set could have. For
a step set X ⊆ Z2

×, consider the 2 × 3 matrix of Y’s and N’s indicating whether X has each of these
conditions/properties: [

CC? SLC? LC?
FPP? BPP? ¬IPP?

]
(2.53)

Ostensibly, by Theorem 2.44(i), there are ten possibilities, and these are all enumerated in Table 1. Of
course (I) and (X) are the only combinations that can actually occur for finite step sets, by Theorem 2.44(ii).
Intriguingly, it turns out that for infinite X, all but one of combinations (II)–(IX) can occur as well. We show
in Proposition 2.60 below that combination (VIII) can never occur. Some of the remaining combinations have
already been seen in various examples considered so far; the others will be covered by further examples in this
section and the next; see the final column of Table 1 for the locations of such examples. Combination (V)
is the most involved of all, and will be treated separately in Section 2.10, using a clever construction
communicated to us by Stewart Wilcox.

Label Combination Occurs? Reference

(I)

[
Y Y Y
Y Y Y

]
Yes Example 2.1

(II)

[
N Y Y
Y Y Y

]
Yes Example 2.25

(III)

[
N Y Y
N Y Y

]
Yes Example 2.5

(IV)

[
N N Y
Y Y Y

]
Yes Example 2.55

(V)

[
N N Y
N Y Y

]
Yes Example 2.70

(VI)

[
N N Y
N N Y

]
Yes Example 2.29

(VII)

[
N N N
Y Y Y

]
Yes Example 2.26

(VIII)

[
N N N
N Y Y

]
No Proposition 2.60

(IX)

[
N N N
N N Y

]
Yes Example 2.54

(X)

[
N N N
N N N

]
Yes Example 2.3

Table 1: The combinations of finiteness properties and geometric conditions on step sets that are ostensibly
possible after taking Theorem 2.44(i) into account; cf. (2.53).

Here is a step set with combination (IX):

Example 2.54. It is easy to check that the step set X = {(0,−1)} ∪ ({1}×N) does not satisfy the LC. By
Lemma 2.43(ii) X does not have the BPP, and by Theorem 2.36 it does not have the IPP.

Here is a step set with combination (IV):

Example 2.55. For p ∈ N, let Lp and L ′
p be the lines with equations y =

√
2(x −

√
2p) and y = −

√
2p,

respectively. (Any irrational number greater than 1 could be used in place of
√

2.) For p ∈ N, let Rp be the
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open region bounded by the lines Lp and Lp+1. For p, q ∈ N, let Rp,q be the open region bounded by the
lines Lp, Lp+1, L ′

q and L ′
q+1. So the sets Rp,q, p, q ∈ N, are congruent (open) rhombuses, and they each

contain at least one lattice point (as their height and base-length are both greater than 1); for each p, q ∈ N
we fix one such point Ap,q ∈ Z2 ∩Rp,q. We now define the step set

X = X1 ∪X2 where X1 = R0 ∩ P2 and X2 = {Ap,p2 : p ∈ N}.

This is all shown in Figure 16. We claim that:

(i) X satisfies the LC,

(ii) X does not satisfy the SLC,

(iii) X has the FPP.

Clearly L0 witnesses the LC, so (i) is true. For (ii), first note that the line x = 0 obviously does not witness
the LC (note that A2,4 = (−1,−6) is to the left of x = 0; cf. Figure 16). Now consider the line L with
equation y = αx, where α is any real number other than

√
2. If α >

√
2, then all of X1 is to the right of L ,

and infinitely many points from X2 are to the left (as the points from X2 approximately trace a kind of
“skew parabola”). If 0 ≤ α <

√
2, then all of X2 is below L , and infinitely many points from X1 are above

(cf. Lemma 2.27 and Remark 2.28). If α < 0, then all of X1 is above L , and infinitely many points from X2

are below. It follows that L0 is the only line witnessing the LC. Since X1 contains points arbitrarily close
to L0 (again, cf. Lemma 2.27 and Remark 2.28) no line parallel to L0 witnesses the SLC. Together with
Lemma 2.13(ii), it therefore follows that X does not satisfy the SLC, completing the proof of (ii).

To prove (iii), we first introduce some more notation. Let u be a vector perpendicular to L0, pointing

into the half-plane containing X (see Figure 16). Since u · −→OA > 0 for all A ∈ X, this is also true of all

A ∈ AX \ {O}. For p ∈ N, let λp = u · −→OAp,p2 . By construction (cf. Figure 16) we have

0 < λ0 < λ1 < λ2 < · · · and lim
p→∞

λp =∞. (2.56)

Now let A ∈ AX be arbitrary, and write λ = u · −→OA. Let q = max{p ∈ N : λp ≤ λ}; this is well defined
because of (2.56). Fix some w ∈ ΠX(A), and write w = B1 · · ·Bk, where B1, . . . , Bk ∈ X. Also write
Bi = (xi, yi) for each i. Let I = {i ∈ {1, . . . , k} : Bi ∈ X1} and J = {j ∈ {1, . . . , k} : Bj ∈ X2}, and write
I = {i1, . . . , il} and J = {j1, . . . , jm} where i1 < · · · < il and j1 < · · · < jm. Define the words

u = Bi1 · · ·Bil and v = Bj1 · · ·Bjm .

We will show that:

(iv) there are only finitely many possibilities for v, and

(v) given some such v, there are only finitely many possibilities for u.

Since w is obtained by “shuffling” u and v together in some order, and since there are only finitely many
ways to do this, it will follow that there are only finitely many possibilities for w: i.e., that πX(A) is finite.
That is, the proof of (iii) above will be complete if we can prove (iv) and (v).

We begin with (iv). For each j ∈ J , let pj ∈ N be such that Bj = Apj ,p2j
. Now,

λ = u · −→OA = u · (−−→OB1 + · · ·+−−→OBk) ≥ u · (−−→OBj1 + · · ·+−−→OBjm) = λpj1 + · · ·+ λpjm ≥ mλ0,

so that m ≤ λ
λ0

; since m is an integer, it follows that m ≤ b λλ0 c. But also for any j ∈ J , we have

λ ≥ λpj1 + · · ·+ λpjm ≥ λpj ,

so that pj ≤ q for all j ∈ J (q was defined just after (2.56)). The previous two conclusions show that v has
length at most b λλ0 c, and is a word over {A0,0, A1,1, . . . , Aq,q2}. Since λ, λ0 and q depend only on A (and X),
this completes the proof of item (iv).

To prove (v), first define the points

U = αX(u) = Bi1 + · · ·+Bil and V = αX(v) = Bj1 + · · ·+Bjm ,
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noting that A = U + V . Write A = (a, b), U = (c, d) and V = (e, f). Now, d = yi1 + · · · + yil ≥ l, as the
y-coordinate of each element from X1 is at least 1. Let r be the minimum y-coordinate of all the points
from {A0,0, A1,1, . . . , Aq,q2}, where q is as defined in the previous paragraph (note that q depends on u).
Then since each Bj (j ∈ J) belongs to {A0,0, A1,1, . . . , Aq,q2}, we have f = yj1 + · · ·+ yjm ≥ mr. Together
with d ≥ l and b = d+ f , it follows that

l ≤ d = b− f ≤ b−mr.

Since b depends only on the point A, andm and r only on the word v, it follows that the length of u is bounded
above by a constant depending only on A and v. Also, since (a− e, b− f) = A− V = U = Bi1 + · · ·+Bil ,
and since yi ≥ 1 for each i ∈ I (as Bi ∈ X1), it follows that b− f = yi1 + · · ·+ yim ≥ yi for each i ∈ I. Since
there are only finitely many elements of X1 with y-coordinate at most b− f , it follows that v is a word over
the finite subset {B ∈ X1 : the y-coordinate of B is at most b− f}. Since we have already shown that the
length of v is bounded above by b−mr, this completes the proof of (v), and indeed (as noted above) of (iii).

L0 L1 L2 L3 L4 L5

L ′
0

L ′
1

L ′
2

L ′
3

L ′
4

L ′
5

u

O

A0,0

A1,1

A2,4

Figure 16: The step set X = X1 ∪X2 from Example 2.55 (drawn to scale). Points from X1 and X2 are in
the regions shaded red and blue, respectively.

Next we wish to show that combination (VIII) is impossible. This will be achieved in Proposition 2.60
below, where we show that any step set X ⊆ Z2

× with the BPP but not the LC must also have the FPP; we
first demonstrate this in the special case that X contains no steps to the left of the y-axis.

Lemma 2.57. If a step set X ⊆ N×Z does not satisfy the LC but does have the BPP, then X has the FPP.

Proof. Suppose X ⊆ N×Z does not satisfy the LC but does have the BPP. Define the sets Yk, Y
+
k and Y −k ,

for each k ∈ N, as in Lemma 2.43. Since X does not satisfy the LC, X must contain at least one point from
the y-axis; by symmetry, we assume this point is on the negative part of the y-axis. If X also contained a
point from the positive part of the y-axis, then X would have the IPP by Theorem 2.36, so this must not
be the case (as BPP ⇒ ¬IPP, by Theorem 2.44(i)). So far we have shown that Y −0 6= ∅ and Y +

0 = ∅.
If Y +

k was infinite for some k ∈ P, then X would not have the BPP, by Lemma 2.43(ii), a contradiction; so
it follows that Y +

k is finite for all k ∈ P. But then Lemma 2.43(i) now tells us that X has the FPP.

To extend Lemma 2.57 to arbitrary step sets (in Proposition 2.60), we need the next lemma. In the
proof, and later, we use the well-known fact that the (perpendicular) distance of a point (u, v) to the line
with equation ax+ by + c = 0 is equal to

|au+ bv + c|√
a2 + b2

. (2.58)
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Lemma 2.59. Let L be the line with equation ax+by = 0, where a, b ∈ Z are not both zero and gcd(a, b) = 1.
Then the lines parallel to L containing lattice points are precisely the lines parallel to L whose (perpendic-
ular) distance from L is an integer multiple of 1√

a2+b2
.

Proof. Throughout the proof, we write δ = 1√
a2+b2

. First suppose L ′ is parallel to L and contains some

lattice point (u, v) ∈ Z2. By (2.58), the distance from (u, v) to L (and hence the distance from L ′ to L )

is equal to |au+bv|√
a2+b2

, which is an integer multiple of δ.

Conversely, let k ∈ P be arbitrary; there are two lines parallel to L a distance of kδ from L ; to show
these both contain lattice points, it suffices to show that there are lattice points on both sides of L a
distance of kδ from L . Since gcd(a, b) = 1, there exist integers u, v ∈ Z such that au+ bv = 1. Using (2.58)
again, we see that the points ±(ku, kv) are both a distance of kδ from L , as required.

Here is the promised result showing that combination (VIII) is impossible; cf. Table 1.

Proposition 2.60. If a step set X ⊆ Z2
× does not satisfy the LC but does have the BPP, then X has

the FPP.

Proof. Suppose X ⊆ Z2
× does not satisfy the LC but does have the BPP. Because of the BPP, Theo-

rem 2.44(i) says that X does not have the IPP.
First note that X satisfies the WLC, as defined in Section 2.8; indeed, if it did not, then as in Re-

mark 2.49, AX would be a group isomorphic to (Z2,+), in which case AX would contain non-trivial units,
and so X would satisfy the IPP by Theorem 2.36, a contradiction. So let L0 be a line witnessing the WLC,
and let H be the half-plane bounded by L0 such that X ⊆ H. Since X does not satisfy the LC, we must
have X ∩L0 6= 0. See Figure 17, which displays this, and all the coming information about X.

Since L0 also contains the origin, it has rational (or vertical) slope, so we may assume its equation is
ax+by = 0, where a, b ∈ Z are not both zero and gcd(a, b) = 1. Put δ = 1√

a2+b2
. Let u be a vector of length δ

perpendicular to L0 and pointing into H. For p ∈ P, let Lp be the line defined by Lp = pu + L0; so Lp is
parallel to L , is contained in H, and is a distance of pδ from L0. By Lemma 2.59, and since X ⊆ H ∩ Z2,
every element of X is contained in one of the lines Lp (p ∈ N).

Let L ′
0 be the line through O perpendicular to L0; so L ′

0 has equation bx−ay = 0. Let v be a vector of
length δ and perpendicular to L ′

0 (pointing in either of the two possible directions). For q ∈ Z, let L ′
q be the

line defined by L ′
q = L ′

0 +qv. Again, by Lemma 2.59, each element of X lies on one of the lines L ′
q (q ∈ Z).

So far we have seen that every step from X is on the intersection of Lp and L ′
q for some p ∈ N and q ∈ Z;

this point is pU + qV , where U, V ∈ Z2 are such that u =
−−→
OU and v =

−−→
OV . (The points U and V do not

necessarily belong to X.) Write

Y =
{

(p, q) ∈ N× Z : pU + qV ∈ X
}
,

and define the linear transformation φ : R2 → R2 by φ(U) = (1, 0) and φ(V ) = (0, 1). Note that φ acts
geometrically on R2 by first rotating L0 and L ′

0 onto the y- and x-axes, respectively, and then scaling
down by a factor of δ (and then possibly reflecting in the x-axis, depending on the direction chosen for v).
Also, φ maps X bijectively onto Y , and AX isomorphically onto AY ; further, it is clear that the induced
isomorphism FX → FY maps ΠX(A) bijectively onto ΠY (φ(A)) for all A ∈ AX ; it follows that Y has
the BPP (since X does), and that X has the FPP if and only if Y does. Moreover, given the above
geometric interpretation of φ, it is clear that if a line L witnessed the LC for Y , then the line φ−1(L )
would witness the LC for X; since X does not satisfy the LC, it follows that Y does not either. Thus,
since Y ⊆ N × Z, it follows from Lemma 2.57 that Y has the FPP; as noted above, it follows that X too
has the FPP.

2.10 Appendix (with a contribution from Stewart Wilcox): Combination (V)

For a long time, the authors (East and Ham) were unable to determine whether or not a step set could
actually have combination (V); cf. Table 1. We were able to show that the existence of such step sets
was equivalent to the existence of certain sequences of real numbers (defined below), but were unable to
determine whether such sequences could exist either. In this section, we present (with kind permission) an
ingenious construction due to Stewart Wilcox showing that such sequences, and hence such step sets, do
indeed exist; see Proposition 2.64 and Example 2.70.
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Figure 17: Schematic diagram of the proof of Proposition 2.60.

For the duration of this section, we fix a positive irrational number ξ, and we denote by

M = {a+ bξ : a, b ∈ Z, a+ bξ ≥ 0}

the additive monoid consisting of all non-negative Z-linear combinations of 1 and ξ. Note that a or b might
be negative in a+ bξ ∈M , but we require a+ bξ itself to be non-negative. So M is a submonoid of R≥0, and
is dense in R≥0; cf. the claim in the proof of Lemma 2.27. Since 1 and ξ are linearly independent over Q,
there is a well defined (and surjective) monoid homomorphism

φ : M → Z given by φ(a+ bξ) = b.

During this section, if a, b ∈ R, we will write [a, b] and (a, b) for the closed and open intervals of all x ∈ R
satisfying a ≤ x ≤ b or a < x < b, respectively; we also write [a, b) and (a, b] for the half-open intervals,
with the obvious meanings. If Σ ⊆ R, we will also write [a, b]Σ = [a, b] ∩ Σ, with similar notation for other
kinds of intervals; for example, if a, b ∈ Z and a ≤ b, then [a, b]Z = {a, a + 1, . . . , b}. If x is a real number,
we will write ((x)) = x− bxc for the fractional part of x.

Lemma 2.61. There is a mapping P→ P : k 7→ pk such that

φ−1
(
[p, p+ pk]Z

)
∩ (α, α+ 1

k ) 6= ∅ for all p ∈ Z and α ∈ R≥0.

Proof. Fix some k ∈ P. By the claim in the proof of Lemma 2.27, there exists l ∈ P and a ∈ Z such that
0 < lξ − a < 1

k . Let pk ∈ P be arbitrary so that

pk > l(1 + 1
lξ−a).

Now suppose we are given p ∈ Z and α ∈ R≥0. Define

t = 1 +

⌊
((α− pξ))
lξ − a

⌋
.

Then

1 ≤ t ≤ 1 +
((α− pξ))
lξ − a < 1 +

1

lξ − a <
pk
l
. (2.62)
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We also claim that

0 < t(lξ − a)− ((α− pξ)) < 1

k
. (2.63)

Indeed, for the inequality 0 < t(lξ− a)− ((α− pξ)), note that if we write β = lξ− a and γ = ((α− pξ)), then
we have

tβ − γ = (1 + b γβ c)β − γ = β
(
1− ( γβ − b

γ
β c)
)

= β
(
1− (( γβ ))

)
> β(1− 1) = 0,

while for the inequality t(lξ − a)− ((α− pξ)) ≤ lξ − a, we continue from above to obtain

tβ − γ = β
(
1− (( γβ ))

)
≤ β = lξ − a < 1

k
.

Now that we have established (2.63), adding α throughout gives

α < t(lξ − a) + α− ((α− pξ)) < α+
1

k
.

Since α− ((α− pξ)) = α− (α− pξ) + bα− pξc = pξ + bα− pξc, it follows that

α < t(lξ − a) + pξ + bα− pξc < α+ 1
k .

That is,
α < b+ cξ < α+ 1

k where b = bα− pξc − ta and c = tl + p.

So b+ cξ ∈ (α, α+ 1
k ), and also b+ cξ ∈ φ−1

(
[p, p+ pk]Z

)
since φ(b+ cξ) = c = tl+ p clearly satisfies p ≤ c,

while c ≤ p+ pk follows from t < pk
l which is itself part of (2.62).

For the rest of this section, we fix the mapping P → P : k 7→ pk from Lemma 2.61. In fact, by suitably
increasing each pk if necessary, we may assume that p1 < p2 < · · · .

In what follows, for any subset Σ of R, we write Sn(Σ) = {σ1 + · · ·+ σn : σ1, . . . , σn ∈ Σ} for the set of
all sums of n elements of Σ. Clearly if Σ is finite, then |Sn(Σ)| ≤ |Σ|n.

For each l ∈ P, we define

B(l) = φ−1
(
(−l, l)Z

)
∩ [0, l) ⊆M and nl = l + l3 ∈ P.

Note that the “[0, l)” in the definition of B(l) is not “[0, l)Z”; in particular, B(l) contains non-integers. We
clearly have B(1) ⊆ B(2) ⊆ · · · , and we also have M =

⋃
l∈PB(l). Indeed, for the latter, if α ∈ M , then

α ∈ B(l) for any l greater than both α and |φ(α)|. We aim to prove the following:

Proposition 2.64. There exist sequences αi, βi, γi (i ∈ P) of elements of M satisfying:

(i) limi→∞ αi = 0,

(ii) limi→∞ γi = 1,

(iii) γi > 1 for all i ∈ P,

(iv) βi + γi = 4 for all i ∈ P, and

(v) Sn(Σ) ∩B(l) = ∅ for all l ∈ P and n > nl, where Σ = {αi, βi, γi : i ∈ P}.
To prove the proposition, we will construct the αi series shortly, and after that the βi, γi series inductively.

We will write A = {αi : i ∈ P} and Ak = {αi : i ∈ {1, . . . , k}} for each k ∈ P, and similarly define the
sets B, C, Bk and Ck. (Of course these sets are only well-defined once their elements have been specified.)

For k ∈ P, define

Rk = (2k + pk + 1)

(
1 +

nk∑

n=0

nk(3k)n

)
∈ P,

noting that R1 < R2 < · · · . For each k ∈ P, let αk ∈ M ∩ ( 1
k ,

2
k ) be such that φ(αk) > k(1 + Rk); such an

element αk exists by Lemma 2.61.
We will now inductively construct βk, γk (k ∈ P) satisfying βk + γk = 4, γk ∈ (1, 1 + 1

k ] and

Sn(A ∪Bk ∪Ck) ∩B(l) = ∅ for all l ∈ P and n > nl.

For the base of the induction, we set β1 = γ1 = 2. We must show the following:
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Lemma 2.65. With the above notation, we have Sn(A ∪ {2}) ∩B(l) = ∅ for all l ∈ P and n > nl.

Proof. Suppose to the contrary that there exists ε ∈ Sn(A ∪ {2}) ∩B(l) for some l ∈ P and n > nl. Then
there exist integers ci, d ∈ N (i ∈ P) such that

ε =
∑

i∈P
ciαi + 2d and

∑

i∈P
ci + d = n.

In particular, recalling the definition of B(l), we have l > ε > ciαi >
ci
i for each i ∈ P, so that ci < il for

each i. Similarly l > 2d ≥ d. Again recalling the definition of B(l), we also have

∑

i∈P
ciφ(αi) = φ(ε) < l.

But φ(αi) > i(1 + Ri) for all i, so it follows that φ(αi) ≥ 0 for all i ∈ P, and that φ(αi) > l for i > l. This
gives ci = 0 for all i > l. Putting all of the above together, we have

l + l3 = nl < n =
∑

i≤l
ci + d < (l + 2l + · · ·+ l2) + l =

l2(l + 1)

2
+ l ≤ l2(l + l)

2
+ l = l3 + l,

a contradiction.

Now suppose k > 1, and that we have defined the sequences βi, γi as desired for all i < k. Let K > k be
such that

RK > |φ(βi)|, |φ(γi)| for all i < k.

Define the sets

Ω =

nK⋃

n=0

nK⋃

t=1

φ
(
Sn(AK ∪Bk−1 ∪Ck−1)

)

t
and Γ = Ω ∪ (−Ω).

Note that

|Γ| ≤ 2|Ω| ≤ 2

nK∑

n=0

nK∑

t=1

∣∣Sn(AK ∪Bk−1 ∪Ck−1)
∣∣ ≤ 2

nK∑

n=0

nK(3K)n.

It quickly follows that
(
|Γ|+ 1

)
(2K + pk + 1) < 2RK , and so there exists an integer p ∈ Z such that

[p, p+ 2K + pk]Z ⊆ (−RK , RK)Z \ Γ. (2.66)

By Lemma 2.61, we may fix some

γk ∈ φ−1
(
[p+K, p+K + pk]Z

)
∩ (1, 1 + 1

k ) and we also put βk = 4− γk.

Since φ(γk) ∈ [p + K, p + K + pk]Z ⊆ [p, p + 2K + pk]Z ⊆ (−RK , RK)Z, we have |φ(γk)| < RK ; since
φ(βk) = −φ(γk), it follows that |φ(βk)| < RK as well. We also claim that

|φ(γk)± ω| > K for all ω ∈ Ω. (2.67)

Indeed, we have φ(γk) ∈ [p + K, p + K + pk]Z, so the set of all integers of distance at most K from φ(γk)
is contained in [p, p + 2K + pk]Z, and by (2.66) the latter interval is disjoint from Γ. Thus, for any ω ∈ Ω,
since ∓ω ∈ Γ, it follows that the distance from φ(γk) to ∓ω is greater than K: i.e., |φ(γk) − (∓ω)| > K,
completing the proof of (2.67).

To make sure that βk, γk have all the desired properties, it remains to prove the following.

Lemma 2.68. With the above notation, we have Sn(A ∪Bk ∪Ck) ∩B(l) = ∅ for all l ∈ P and n > nl.

Proof. Suppose to the contrary that there exists ε ∈ Sn(A ∪Bk ∪Ck) ∩ B(l) for some l ∈ P and n > nl.
Then there exist integers ci, di, ei ∈ N such that

ε =
∑

i∈P
ciαi +

k∑

i=1

(diβi + eiγi) ∈ B(l) and
∑

i∈P
ci +

k∑

i=1

(di + ei) = n.
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Since βk+γk = β1 +γ1, we may assume without loss of generality that dk = 0 or ek = 0. But we note that dk
and ek cannot both be zero, or else then ε ∈ Sn(A ∪ Bk−1 ∪ Ck−1) ∩ B(l), contradicting the assumption
that βi, γi (i = 1, . . . , k− 1) have the desired properties. As in the proof of Lemma 2.65, we have ci < il for
all i ∈ P.

Case 1. Suppose first that dk = 0, so that ek > 0 as just noted. Also, since each βi, γi > 1 and each αi > 0,
and since ε ∈ B(l), we have

∑k
i=1(di + ei) <

∑k
i=1(diβi + eiγi) ≤ ε < l. Next note that

l > φ(ε) =
∑

i∈P
ciφ(αi) +

k∑

i=1

(
diφ(βi) + eiφ(γi)

)
≥
∑

i∈P
ciφ(αi)−

k∑

i=1

(
di|φ(βi)|+ ei|φ(γi)|

)
,

from which it follows that

∑

i∈P
ciφ(αi) < l+

k∑

i=1

(
di|φ(βi)|+ei|φ(γi)|

)
< l+

k∑

i=1

(diRK+eiRK) = l+RK

k∑

i=1

(di+ei) < l(1+RK). (2.69)

We now consider two subcases.

Case 1.1. Suppose l ≥ K. Then (2.69) gives

l(1 +RK) >
∑

i≥K
ciφ(αi) ≥

∑

i≥K
cii(1 +Ri) ≥

∑

i≥K
ci(1 +RK) ⇒

∑

i≥K
ci < l.

From this it follows that

l+ l3 = nl < n =
∑

i<K

ci +
∑

i≥K
ci +

k∑

i=1

(di + ei) < (l+ 2l+ · · ·+ (K − 1)l) + l+ l = l
K(K − 1)

2
+ 2l ≤ l3

2
+ 2l.

But l + l3 < l3

2 + 2l implies l2 < 2, a contradiction since l ≥ K > 1.

Case 1.2. Now suppose l < K. For i ≥ K we have φ(αi) > i(1 +Ri) ≥ K(1 +RK). Together with (2.69),
it follows that for any such i,

ciK(1 +RK) ≤ ciφ(αi) < l(1 +RK) < K(1 +RK) so that ci = 0 for all i ≥ K.

Setting t = ek ≥ 1, we have

ε− tγk =
∑

i<K

ciαi +
∑

i<k

(diβi + eiγi) ∈ Sn−t(AK ∪Bk−1 ∪Ck−1).

But also

n− t < n =
∑

i<K

ci +
k∑

i=1

(di + ei) < (l + 2l + · · ·+ (K − 1)l) + l = l
K(K − 1)

2
+ l <

K3

2
+K < nK ,

and t = ek ≤
∑

i∈P ci+
∑k

i=1(di+ei) = n < nK . So it follows that φ(ε)−tφ(γk) ∈ tΩ, say φ(ε)−tφ(γk) = tω.
Then by (2.67),

|φ(ε)| = t|φ(γk) + ω| > tK ≥ K.
But also from ε ∈ B(l), we have |φ(ε)| < l < K, so we have arrived at a contradiction again.

Case 2. The case in which ek = 0 and dk > 0 is almost identical, since φ(βk) = −φ(γk).

We are now ready to tie together the loose ends.

Proof of Proposition 2.64. With respect to the sequences αi, βi, γi (i ∈ P) constructed above, conditions
(i)–(iv) are immediate, while (v) follows from the fact that

Sn(Σ) ∩B(l) = Sn(A ∪B ∪C) ∩B(l) =
⋃

k∈P

(
Sn(A ∪Bk ∪Ck) ∩B(l)

)
for all n, l ∈ P.
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We now show how to use Proposition 2.64 to provide an example of a step set X ⊆ Z2
× with combina-

tion (V):

Example 2.70. Let ξ be a positive irrational number, and keep the notation above: in particular, the
monoid M = {a+ bξ : a, b ∈ Z, a+ bξ ≥ 0} and the sequences αi, βi, γi (i ∈ P). Also let

N =
{

(a, b) ∈ Z2 : a+ bξ ≥ 0
}

be the additive submonoid of Z2 consisting of all lattice points on or above the line L with equation x+ ξy = 0.
The map

ψ : N →M : (a, b) 7→ a+ bξ

is clearly a surjective monoid homomorphism. In fact, ψ is an isomorphism, as injectivity follows quickly
from the irrationality of ξ. For each i ∈ P, let

Ai = ψ−1(αi), Bi = ψ−1(βi), Ci = ψ−1(γi),

and put X = {Ai, Bi, Ci : i ∈ P}. Also let E = (1, 0) = ψ−1(1). We claim that:

(i) X does not satisfy the SLC,

(ii) X satisfies the LC,

(iii) X does not have the FPP,

(iv) X has the BPP.

First note that (ii) is clear, as L itself witnesses the LC (as ξ is irrational, the only lattice point on L is O).
Item (iii) follows quickly from the fact that βi + γi = 4 for all i ∈ P; indeed, since ψ is an isomorphism, this
implies that Bi + Ci = ψ−1(4) = (4, 0) = 4E for all i, and hence πX(4E) =∞.

To establish the remaining items, first define η =
√

1 + ξ2. For A = (u, v) ∈ N write δ(A) for the
(perpendicular) distance from A to L . Then by (2.58), and since u+ vξ ≥ 0 as A ∈ N , we have

δ(A) =
u+ vξ√

1 + ξ2
=
ψ(A)

η
.

Next, let L ′ and L ′′ be the lines obtained, respectively, by sliding L a distance of 1
η or 3

η units into
the half-plane on the side of L containing X (or, equivalently, by sliding L by 1 or 3 units to the right,
since δ(E) = 1

η ). This is all shown in Figure 18. Now,

lim
i→∞

δ(Ai) = lim
i→∞

αi
η

= 0.

This shows that X contains points arbitrarily close to L ; and consequently that:

(v) no line parallel to L witnesses the SLC.

We also have

lim
i→∞

δ(Ci) = lim
i→∞

γi
η

=
1

η
and lim

i→∞
δ(Bi) = lim

i→∞
βi
η

= lim
i→∞

4− γi
η

=
3

η
.

This means that the points C1, C2, . . . approach L ′ from the right, while B1, B2, . . . approach L ′′ from
the left. Since the points C1, C2, . . . are between the lines L ′ and L ′′, and since a bounded region of R2

contains only finitely many lattice points, the y-coordinates of C1, C2, . . . are unbounded, either above or
below or both; it follows (since Bi = 4E − Ci for all i) that the y-coordinates of B1, B2, . . . are unbounded
below or above or both, respectively. Thus, X contains points between L ′ and L ′′ with arbitrarily large
positive and negative y-coordinates, and it quickly follows that:

(vi) L is the only line through O that witnesses the LC.
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Items (v) and (vi), together with Lemma 2.13(ii), show that X does not satisfy the SLC. Figure 18 depicts
all the above, but only showing subsequences Ai (i ∈ I), and Bj , Cj (j ∈ J) with monotone y-coordinates
(with the y-coordinates of Ai, Cj increasing, and those of Bj decreasing).

Finally, the BPP follows quickly from the properties of the αi, βi, γi sequences. Indeed, let D ∈ AX be
arbitrary, and fix some w ∈ ΠX(D). Write w = F1 · · ·Fk, where F1, . . . , Fk ∈ X, so that D = F1 + · · ·+ Fk.
Now consider the real number ψ(D) ∈M , and let l ∈ P be such that ψ(D) ∈ B(l); the set B(l) ⊆ M
was defined just before Proposition 2.64. Now, ψ(D) = ψ(F1) + · · · + ψ(Fk), and ψ(F1), . . . , ψ(Fk) all
belong to Σ = {αi, βi, γi : i ∈ P}. This means that ψ(D) ∈ Sk(Σ) ∩ B(l), and so Proposition 2.64 gives
`(w) = k ≤ nl = l + l3. This shows that the set {`(w) : w ∈ ΠX(D)} is contained in {1, . . . , nl}, and hence
is finite. Since D ∈ AX was arbitrary, the BPP has been established.

O E 3E 4E

L L ′ L ′′

Ai1

Ai2

Ai3

Ai4

Ai5

Ai6

Cj1

Cj2

Cj3

Cj4

Cj5

Bj1

Bj2

Bj3

Bj4

Bj5

Figure 18: A subset of the step set from Example 2.70 (not to scale). Some X-walks of the form BjCj
from ΠX(4E) are shown in red.

3 Constrained walks

3.1 Definitions and basic examples

Suppose now that we have a step set X ⊆ Z2
×, and that we wish to enumerate X-walks that stay within

a certain region of the plane. For any word w = A1 · · ·Ak ∈ FX , and for any 0 ≤ m ≤ k, we write
σm(w) = A1 · · ·Am for the initial subword consisting of the first m letters of w. Note that σ0(w) = ε
and σ`(w)(w) = w for any word w. Considering the letters A1, . . . , Ak as steps in a walk from O to
αX(w) = A1 + · · ·+Ak, we see that the points visited during the walk are

O = αX(σ0(w)) → αX(σ1(w)) → αX(σ2(w)) → · · · → αX(σk(w)) = αX(w). (3.1)
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(The surmorphism αX : FX → AX was defined in Section 2.1.)
Now fix a subset C of Z2 with O ∈ C . Consider a word w = A1 · · ·Ak ∈ FX ; so w is an X-walk from O

to αX(w), visiting the points listed in (3.1). We are interested in the walks that are constrained in such a
way that all of these points belong to C ; we call such a walk an (X,C )-walk. Accordingly, we define

FC
X =

{
w ∈ FX : αX(σm(w)) ∈ C for all 0 ≤ m ≤ `(w)

}
and A C

X = αX(FC
X ) = {αX(w) : w ∈ FC

X }.

So FC
X is the set of all (X,C )-walks, and A C

X is the set of all endpoints of such walks. Note that
A C
X ⊆ AX ∩ C , but that this inclusion may be strict; consider X = {(1, 0)} and C = 2N × {0}. Note

also that ε ∈ FC
X and O ∈ A C

X for any X and C , but that neither FC
X nor A C

X need be monoids in general;
consider X = {(1, 0)} and C = {(0, 0), (1, 0)}. However, we do have the following general result.

Lemma 3.2. If X ⊆ Z2
× is a step set, and if C is a submonoid of Z2, then FC

X and A C
X are submonoids

of FX and AX , respectively.

Proof. Since A C
X = αX(FC

X ), and since αX is a homomorphism, it suffices to prove the statement con-
cerning FC

X . With this in mind, let u, v ∈ FC
X , and write k = `(u) and l = `(v). We must show that

αX(σm(uv)) ∈ C for all 0 ≤ m ≤ `(uv) = k + l. Now, if 0 ≤ m ≤ k, then αX(σm(uv)) = αX(σm(u)) ∈ C
since u ∈ FC

X . If k ≤ m ≤ k + l, then

αX(σm(uv)) = αX(uσm−k(v)) = αX(u) + αX(σm−k(v)) ∈ C

since u, v ∈ FC
X and since C is a submonoid.

In what follows, it is often necessary to assume that the constraint set C is a submonoid of Z2 in order
to prove a general result, although there are some notable exceptions (e.g., Proposition 3.7).

Consider a step set X ⊆ Z2
× and a submonoid C of Z2. Recall that for any A ∈ Z2,

ΠX(A) = α−1
X (A) = {w ∈ FX : αX(w) = A} and πX(A) = |ΠX(A)|

are the set and number of X-walks from O to A, respectively. Analogously, for A ∈ Z2, we define

ΠC
X(A) = α−1

X (A) ∩FC
X = {w ∈ FC

X : αX(w) = A} and πC
X(A) = |ΠC

X(A)|.

So ΠC
X(A) is the set of all (X,C )-walks from O to A, and πC

X(A) is the number of such walks. Clearly
πC
X(A) ≤ πX(A) for all A. If AX ⊆ C , then ΠC

X(A) = ΠX(A) and πC
X(A) = πX(A) for all A; in particular,

this occurs when C = Z2, in which case we are dealing with unconstrained walks as in Section 2.
Consider a step set X ⊆ Z2

× and a subset C ⊆ Z2 with O ∈ C . As in Section 2, the combinatorial data
corresponding to the pair (X,C ) may be conveniently displayed in a graph, ΓC

X , defined as follows:

• The vertex set of ΓC
X is A C

X ; a vertex A ∈ A C
X is drawn in the appropriate position in the plane, and

is labelled πC
X(A).

• If A ∈ A C
X and B ∈ X are such that A+B ∈ A C

X , then ΓC
X has the labelled edge A

B−−→ A+B.

We noted in Section 2.1 that ΓX is the Cayley graph of the monoid AX with respect to the generating set X
(with additional vertex labels showing the numbers πX(A)). It is important to note, however, that ΓC

X is
generally not a Cayey graph of the monoid A C

X ; in fact, X is not even a subset of A C
X in general, let alone

a generating set.
At this point it is worth considering some basic examples.

Example 3.3 (cf. Examples 2.1 and 2.3). Let X = {N,E} and Y = {N,E, S,W}, where N = (0, 1),
E = (1, 0), S = (0,−1) and W = (−1, 0). Also let C = {(a, b) ∈ N2 : b ≤ a}. Then A C

X = A C
Y = C . The

graphs ΓC
X and ΓC

Y are pictured in Figure 19; we will say more about the numbers πC
X(A) in Example 3.11;

see also Example 3.17.

Example 3.4. Let X = {N,E, S,W,U}, where N = (0, 1), E = (1, 0), S = (0,−1), W = (−1, 0) and
U = (1, 1). The graphs ΓC1

X , ΓC2
X and ΓC3

X are pictured in Figure 20, for the three submonoids

C1 = {(a, a) : a ∈ Z}, C2 = N2, C3 = {O} ∪ P2.

In particular, we see from the pair (X,C1) that it is possible for AX and C both to be groups, but A C
X not

to be.

35



1 1

1

1

2

2

1

3

5

5

1

4

9

14

14

1

5

14

28

42

42

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 19: The graphs �C
X (left) and �C

Y , where X = {(1, 0), (0, 1)}, Y = {(±1, 0), (0, ±1)} and C =
{(a, b) 2 N2 : b  a}; cf. Example 3.3.
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Figure 20: The graphs �C1
X (left), �C2

X (middle) and �C3
X (right), where X = {(±1, 0), (0, ±1), (1, 1)}, C1 =

{(a, a) : a 2 Z}, C2 = N2 and C3 = {O} [ P2; cf. Example 3.4.

Remark 3.5. Consider a step set X ✓ Z2
⇥ and a submonoid C of Z2. Above, we have only spoken of

(X, C )-walks from the origin O to a point A, but it is possible to speak of (X, C )-walks from A to B
for arbitrary A, B 2 Z2. These would be X-walks w 2 ⇧X(A, B) such that A + ↵X(�m(w)) 2 C for all
0  m  `(w); for such a walk to exist, it must of course be the case that A, B 2 C . Let ⇧C

X(A, B) and
⇡C

X(A, B) denote the set and number of (X, C )-walks from A to B. Then one may easily show that

⇧C
X(A, B) ✓ ⇧C

X(A + C, B + C) and ⇡C
X(A, B)  ⇡C

X(A + C, B + C) for any C 2 C ,

though these can be strict. (For instance, if X and C are as in Example 3.3, then with A = (0, 0), B = (1, 1)
and C = (1, 0), we have NE 2 ⇧C

X(A+C, B+C)\⇧C
X(A, B); cf. Figure 19.) Thus, the (X, C )-walks from the

origin alone do not generally capture all information about (X, C )-walks between arbitrary points, in contrast
to the situation with unconstrained walks; cf. (2.2). It is possible to define a structure that incorporates all
such (X, C )-walks; namely, the category with object set C , and morphism sets Hom(A, B) = ⇧C

X(A, B) for
each A, B 2 C . We believe it would be interesting to study such categories, but it is beyond the scope of
the current work.

3.2 Recursion and further examples

The next result is a constrained version of Lemma 2.14; note that in the statement we do not assume C is
a monoid. The proof is a simple adaptation of that of Lemma 2.14; one must just check at various stages
that certain points belong to C . Again, we use t to denote disjoint union.
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Figure 19: The graphs ΓC
X (left) and ΓC

Y , where X = {(1, 0), (0, 1)}, Y = {(±1, 0), (0,±1)} and C =
{(a, b) ∈ N2 : b ≤ a}; cf. Example 3.3.
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Figure 19: The graphs �C
X (left) and �C

Y , where X = {(1, 0), (0, 1)}, Y = {(±1, 0), (0, ±1)} and C =
{(a, b) 2 N2 : b  a}; cf. Example 3.3.
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Figure 20: The graphs �C1
X (left), �C2

X (middle) and �C3
X (right), where X = {(±1, 0), (0, ±1), (1, 1)}, C1 =

{(a, a) : a 2 Z}, C2 = N2 and C3 = {O} [ P2; cf. Example 3.4.

Remark 3.5. Consider a step set X ✓ Z2
⇥ and a submonoid C of Z2. Above, we have only spoken of

(X, C )-walks from the origin O to a point A, but it is possible to speak of (X, C )-walks from A to B
for arbitrary A, B 2 Z2. These would be X-walks w 2 ⇧X(A, B) such that A + ↵X(�m(w)) 2 C for all
0  m  `(w); for such a walk to exist, it must of course be the case that A, B 2 C . Let ⇧C

X(A, B) and
⇡C

X(A, B) denote the set and number of (X, C )-walks from A to B. Then one may easily show that

⇧C
X(A, B) ✓ ⇧C

X(A + C, B + C) and ⇡C
X(A, B)  ⇡C

X(A + C, B + C) for any C 2 C ,

though these can be strict. (For instance, if X and C are as in Example 3.3, then with A = (0, 0), B = (1, 1)
and C = (1, 0), we have NE 2 ⇧C

X(A+C, B+C)\⇧C
X(A, B); cf. Figure 19.) Thus, the (X, C )-walks from the

origin alone do not generally capture all information about (X, C )-walks between arbitrary points, in contrast
to the situation with unconstrained walks; cf. (2.2). It is possible to define a structure that incorporates all
such (X, C )-walks; namely, the category with object set C , and morphism sets Hom(A, B) = ⇧C

X(A, B) for
each A, B 2 C . We believe it would be interesting to study such categories, but it is beyond the scope of
the current work.

3.2 Recursion and further examples

The next result is a constrained version of Lemma 2.14; note that in the statement we do not assume C is
a monoid. The proof is a simple adaptation of that of Lemma 2.14; one must just check at various stages
that certain points belong to C . Again, we use t to denote disjoint union.
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Figure 20: The graphs ΓC1
X (left), ΓC2

X (middle) and ΓC3
X (right), where X = {(±1, 0), (0,±1), (1, 1)}, C1 =

{(a, a) : a ∈ Z}, C2 = N2 and C3 = {O} ∪ P2; cf. Example 3.4.

Remark 3.5. Consider a step set X ⊆ Z2
× and a submonoid C of Z2. Above, we have only spoken of

(X,C )-walks from the origin O to a point A, but it is possible to speak of (X,C )-walks from A to B
for arbitrary A,B ∈ Z2. These would be X-walks w ∈ ΠX(A,B) such that A + αX(σm(w)) ∈ C for all
0 ≤ m ≤ `(w); for such a walk to exist, it must of course be the case that A,B ∈ C . Let ΠC

X(A,B) and
πC
X(A,B) denote the set and number of (X,C )-walks from A to B. Then one may easily show that

ΠC
X(A,B) ⊆ ΠC

X(A+ C,B + C) and πC
X(A,B) ≤ πC

X(A+ C,B + C) for any C ∈ C ,

though these can be strict. (For instance, if X and C are as in Example 3.3, then with A = (0, 0), B = (1, 1)
and C = (1, 0), we have NE ∈ ΠC

X(A+C,B+C)\ΠC
X(A,B); cf. Figure 19.) Thus, the (X,C )-walks from the

origin alone do not generally capture all information about (X,C )-walks between arbitrary points, in contrast
to the situation with unconstrained walks; cf. (2.2). It is possible to define a structure that incorporates all
such (X,C )-walks; namely, the category with object set C , and morphism sets Hom(A,B) = ΠC

X(A,B) for
each A,B ∈ C . We believe it would be interesting to study such categories, but it is beyond the scope of
the current work.

3.2 Recursion and further examples

The next result is a constrained version of Lemma 2.14; note that in the statement we do not assume C is
a monoid. The proof is a simple adaptation of that of Lemma 2.14; one must just check at various stages
that certain points belong to C . Again, we use t to denote disjoint union.
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Lemma 3.6. Let X ⊆ Z2
× be an arbitrary step set, and let C be a subset of Z2 containing O.

(i) For any A ∈ Z2 and B ∈ X with A+B ∈ C , we have ΠC
X(A)B ⊆ ΠC

X(A+B).

(ii) For any A ∈ A C
X \ {O},

ΠC
X(A) =

⊔

B∈X
ΠC
X(A−B)B and πC

X(A) =
∑

B∈X
πC
X(A−B).

As in Proposition 2.15, we may use Lemma 3.6(ii) as the basis for a recurrence relation that may be
used to calculate the values of πC

X(A) in certain circumstances. For the statement of the next result, and
for future use, we make the following definition:

• We say that the pair (X,C ) has the Bounded Paths Property (BPP) if for all A ∈ A C
X , the set{

`(w) : w ∈ ΠC
X(A)

}
has a maximum element (equivalently, this set is finite).

There are also analogous notions of the FPP and IPP:

• We say that the pair (X,C ) has the Finite Paths Property (FPP) if πC
X(A) <∞ for all A ∈ A C

X .

• We say that the pair (X,C ) has the Infinite Paths Property (IPP) if πC
X(A) =∞ for all A ∈ A C

X .

Proposition 3.7. Let X ⊆ Z2
× be a step set, and C a subset of Z2 containing O, such that (X,C ) has

the BPP. Then the values πC
X(A), A ∈ Z2, are generated by the recurrence

πC
X(O) = 1 (3.8)

πC
X(A) = 0 if A ∈ Z2 \A C

X (3.9)

πC
X(A) =

∑

B∈X
πC
X(A−B) if A ∈ A C

X \ {O}. (3.10)

Proof. The proof is essentially the same as that of Proposition 2.15, this time utilising the parameter
defined by L(A) = max{`(w) : w ∈ ΠC

X(A)} for A ∈ A C
X .

We will say more in Section 4 about the practical implementation of the recurrence from Proposition 3.7.
We now consider several related families of examples. The first two use the (well-studied) step sets from
Examples 2.23 and 2.24.

Example 3.11 (Catalan triangle, cf. Example 2.23). Let X = {U,D}, where U = (1, 1) and D = (1,−1),
and let C = N2. Then A C

X =
{

(a, b) ∈ N× N : b ≤ a, a ≡ b (mod 2)
}

. The graph ΓC
X is pictured in

Figure 21 (left), with the values of πX(A) computed using Proposition 3.7; note that (3.10) yields the
recurrence

πC
X(a, b) = πC

X(a− 1, b− 1) + πC
X(a− 1, b+ 1).

Together with (3.8) and (3.9), it is easy to give an inductive proof of the well-known formula

πC
X(a, b) =

b+ 1

a+ 1

(
a+ 1
a−b

2

)
.

The numbers πC
X(A) form the Catalan Triangle; see [1, A009766, A033184 or A053121]. The numbers

Cn = πX(2n, 0) are the Catalan numbers, given by Cn = 1
2n+1

(
2n+1
n

)
= 1

n+1

(
2n
n

)
; see [1, A000108], and

also [34] for a recent account of the many places Catalan numbers appear; “Catalan mania” is also discussed
in [29, Section 3.5.2]. Note that the numbers arising in this example are the same as those in Example 3.3;
see also Example 3.17.

Example 3.12 (Motzkin triangle, cf. Example 2.24). Let X = {U,D, F}, where U = (1, 1), D = (1,−1)
and F = (1, 0), and let C = N2. Then A C

X = {(a, b) ∈ N× N : b ≤ a}. The graph ΓC
X is pictured in

Figure 21 (right), with the values of πC
X(A) computed using Proposition 3.7; note that (3.10) yields the

usual recurrence
πC
X(a, b) = πC

X(a− 1, b− 1) + πC
X(a− 1, b) + πC

X(a− 1, b+ 1).
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The numbers πC
X(A) form the Motzkin Triangle; see [1, A026300]. The numbers Mn = πC

X(n, 0) are the
Motzkin numbers; see [1, A001006]. To the authors’ knowledge, no closed formula is known for the num-
bers πC

X(a, b) or even for Mn. However, as in Example 2.24, by considering the effect of deleting all F ’s from
a word from ΠC

X(a, b), and using the formula for πC
{U,D}(A) from Example 3.11, we may obtain the (certainly

well-known) formula

πC
X(a, b) =

a∑

r=0

(
a

r

)
πC
{U,D}(a− r, b) =

a∑

r=0

b+ 1

a− r + 1

(
a

r

)(
a− r + 1
a−b−r

2

)
.

The sum “
∑a

r=0” in the last expression may be replaced by “
∑a−b

r=0” in light of the second binomial coefficient.
In particular, when (a, b) = (n, 0), we obtain the (well-known) formula for the nth Motzkin number:

Mn = πC
X(n, 0) =

n∑

r=0

(
n

r

)
1

n− r + 1

(
n− r + 1

n−r
2

)
=

n∑

r=0

(
n

r

)
C(n−r)/2,

where Ck = 1
2k+1

(
2k+1
k

)
is the kth Catalan number if k ∈ N, and Ck = 0 if k 6∈ N.

The numbers ⇡C
X(A) form the Motzkin Triangle; see [1, A026300]. The numbers Mn = ⇡C

X(n, 0) are the
Motzkin numbers; see [1, A001006]. To the authors’ knowledge, no closed formula is known for the num-
bers ⇡C

X(a, b) or even for Mn. However, as in Example 2.24, by considering the e↵ect of deleting all F ’s from
a word from ⇧C

X(a, b), and using the formula for ⇡C
{U,D}(A) from Example 3.11, we may obtain the (certainly

well-known) formula

⇡C
X(a, b) =

aX

r=0

✓
a

r

◆
⇡C

{U,D}(a� r, b) =
aX

r=0

b + 1

a� r + 1

✓
a

r

◆✓
a� r + 1

a�b�r
2

◆
.

The sum “
Pa

r=0” in the last expression may be replaced by “
Pa�b

r=0” in light of the second binomial coe�cient.
In particular, when (a, b) = (n, 0), we obtain the (well-known) formula for the nth Motzkin number:

Mn = ⇡C
X(n, 0) =

nX

r=0

✓
n

r

◆
1

n� r + 1

✓
n� r + 1

n�r
2

◆
=

nX

r=0

✓
n

r

◆
C(n�r)/2,

where Ck = 1
2k+1

�
2k+1

k

�
is the kth Catalan number if k 2 N, and Ck = 0 if k 62 N.

1 1 2 5 14

1 2 5 14

1 3 9 28

1 4 14

1 5 20

1 6

1 7

1

1

1 1 2 4 9 21 51 127 323

1 2 5 12 30 76 196 512

1 3 9 25 69 189 518

1 4 14 44 133 392

1 5 20 70 230

1 6 27 104

1 7 35

1 8

1

Figure 21: The graph �C
X , where X = {(1, 1), (1,�1)} (left) and X = {(1, 1), (1, 0), (1,�1)} (right), and

C = N2; cf. Examples 3.11 and 3.12. All edges are directed to the right.

The next example involves step sets that are natural generalisations of those in Examples 3.11 and 3.12.
Other generalisations lead to extensions of the classical ballot problem [4, 15, 20, 35] and connections with
Young tableaux [17], among others; see also [18,19] on applications to representation theory, [5,6] on matroid
theory, and [25, Chapter 4] on planar diagram monoids.

Example 3.13 (Generalised Catalan and Motzkin triangles). For m 2 P, define the steps Um = (1, m) and
Dm = (1,�m). Also write F = (1, 0), and define the step sets

Ym = {Ui, Di : 1  i  m} and Xm = Ym [ {F}.

So Y1 and X1 are the step sets considered in Examples 3.11 and 3.12, respectively. From now on, we assume
that m � 2. Let C = N2. One may check that (for m � 2)

AXm = {(a, b) 2 N⇥ Z : |b|  ma}, AYm = AXm \ {(1, 0)},

A C
Xm

= {(a, b) 2 N2 : b  ma}, A C
Ym

= A C
Xm

\ {(1, 0)}.

Formulae for the numbers ⇡Xm(A), ⇡C
Xm

(A), ⇡Ym(A) and ⇡C
Ym

(A) are given in [3] in terms of so-called

m-nomial and mock m-nomial coe�cients. If we write
�
n
k

�
m

and
�
n
k

�⇤
2m

for the coe�cients of xk in the
expansions of (1 + x + x2 + · · · + xm�1)n and (1 + x + · · · + xm�1 + xm+1 + xm+2 + · · · + x2m)n, respectively,
then [3, Theorems 4.3 and 4.8] give

⇡Xm(a, b) =

✓
a

b + ma

◆

2m+1

and ⇡Ym(a, b) =

✓
a

b + ma

◆⇤

2m

.
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Figure 21: The graph ΓC
X , where X = {(1, 1), (1,−1)} (left) and X = {(1, 1), (1, 0), (1,−1)} (right), and

C = N2; cf. Examples 3.11 and 3.12. All edges are directed to the right.

The next example involves step sets that are natural generalisations of those in Examples 3.11 and 3.12.
Other generalisations lead to extensions of the classical ballot problem [4, 15, 20, 35] and connections with
Young tableaux [17], among others; see also [18,19] on applications to representation theory, [5,6] on matroid
theory, and [25, Chapter 4] on planar diagram monoids.

Example 3.13 (Generalised Catalan and Motzkin triangles). For m ∈ P, define the steps Um = (1,m) and
Dm = (1,−m). Also write F = (1, 0), and define the step sets

Ym = {Ui, Di : 1 ≤ i ≤ m} and Xm = Ym ∪ {F}.
So Y1 and X1 are the step sets considered in Examples 3.11 and 3.12, respectively. From now on, we assume
that m ≥ 2. Let C = N2. One may check that (for m ≥ 2)

AXm = {(a, b) ∈ N× Z : |b| ≤ ma}, AYm = AXm \ {(1, 0)},
A C
Xm

= {(a, b) ∈ N2 : b ≤ ma}, A C
Ym = A C

Xm
\ {(1, 0)}.

Formulae for the numbers πXm(A), πC
Xm

(A), πYm(A) and πC
Ym

(A) are given in [3] in terms of so-called

m-nomial and mock m-nomial coefficients. If we write
(
n
k

)
m

and
(
n
k

)∗
2m

for the coefficients of xk in the
expansions of (1 + x+ x2 + · · ·+ xm−1)n and (1 + x+ · · ·+ xm−1 + xm+1 + xm+2 + · · ·+ x2m)n, respectively,
then [3, Theorems 4.3 and 4.8] give

πXm(a, b) =

(
a

b+ma

)

2m+1

and πYm(a, b) =

(
a

b+ma

)∗

2m

.
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Expressions for πC
Xm

and πC
Ym

are given in [3, Theorems 4.6 and 4.10] as sums of (mock) m-nomial coefficients.

The graphs ΓY2 and ΓX2 are given in Figure 22, and ΓC
Y2

and ΓC
X2

in Figure 23. One may see, for example,
the numbers in the third column of ΓY2 in the expansion

(1 + x+ x3 + x4)3 = x12 + 3x11 + 3x10 + 4x9 + 9x8 + 9x7 + 6x6 + 9x5 + 9x4 + 4x3 + 3x2 + 3x+ 1.

The article [3] contains numerous lists of relevant entries on the OEIS [1]. The step set Y3 is used to
model the change in score-differences in basketball games (where scores of 1, 2 or 3 are possible); given the
nationality of the authors, we believe it would be interesting to study the step set {U1, U6, D1, D6}.

Expressions for ⇡C
Xm

and ⇡C
Ym

are given in [3, Theorems 4.6 and 4.10] as sums of (mock) m-nomial coe�cients.

The graphs �Y2 and �X2 are given in Figure 22, and �C
Y2

and �C
X2

in Figure 23. One may see, for example,
the numbers in the third column of �Y2 in the expansion

(1 + x + x3 + x4)3 = x12 + 3x11 + 3x10 + 4x9 + 9x8 + 9x7 + 6x6 + 9x5 + 9x4 + 4x3 + 3x2 + 3x + 1.

The article [3] contains numerous lists of relevant entries on the OEIS [1]. The step set Y3 is used to
model the change in score-di↵erences in basketball games (where scores of 1, 2 or 3 are possible); given the
nationality of the authors, we believe it would be interesting to study the step set {U1, U6, D1, D6}.

1

1111

121242121

1334996994331

14681724222836282224178641

1510153051607510511010011010575605130151051

1

1111

121242121

1334996994331

14681724222836282224178641

1510153051607510511010011010575605130151051

1

11111

123454321

13610151819181510631

141020355268808580685235201041

1515357012118525532036538136532025518512170351551

1

11111

123454321

13610151819181510631

141020355268808580685235201041

1515357012118525532036538136532025518512170351551

Figure 22: The graphs �Y2 (top) and �X2 (bottom), where Y2 = {(1, ±1), (1, ±2)} and X2 =
{(1, 0), (1, ±1), (1, ±2)}; cf. Example 3.13. For reasons of space, the graphs have been rotated 90�. All
edges are directed towards the positive x-axis.

The next examples are infinite versions of the previous two families.

Example 3.14. We use the notation Um, Dm and F from Example 3.13. This time we define the step sets

Y = Y1 = {Ui, Di : i 2 P} and X = X1 = Y [ {F}.

Note that X = {1}⇥Z has already been considered (in the unconstrained setting) in Example 2.5. Neither X
nor Y has the FPP (or the IPP), though they both have the BPP by virtue of the SLC (cf. Theorem 2.44).
Thus, to obtain any interesting sequences to enumerate, we must consider X- and Y -walks restricted to
some region C . The most natural region is perhaps C = {(a, b) 2 N2 : b  a}. Then one may check that

A C
X = C and A C

Y = C \ {(1, 0), (2, 1)}.

The graphs �C
X and �C

Y are given in Figure 24, using Proposition 3.7 to compute the values of ⇡C
X(A)

and ⇡C
Y (A). As suggested by Figure 24, we have ⇡C

X(a, b) = a! for all (a, b) 2 A C
X . Indeed, this is easy

to understand. Any X-walk from O to (a, b) must have length a, as all steps from X have x-coordinate
equal to 1; for any such walk A1 · · · Aa 2 ⇧C

X(a, b), we may choose the steps A1, . . . , Aa�1 in 2, 3, . . . , a ways
(respectively), to ensure that we remain in C at each step, but then the step Aa is fixed. The formula
⇡C

X(a, b) = a! may also be deduced from the recurrence in Proposition 3.7.
To obtain a formula for ⇡C

Y (a, b), we begin with two claims. For convenience in what follows, we de-
fine (�1)! = 1.
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Figure 22: The graphs ΓY2 (top) and ΓX2 (bottom), where Y2 = {(1,±1), (1,±2)} and X2 =
{(1, 0), (1,±1), (1,±2)}; cf. Example 3.13. For reasons of space, the graphs have been rotated 90◦. All
edges are directed towards the positive x-axis.

The next examples are infinite versions of the previous two families.

Example 3.14. We use the notation Um, Dm and F from Example 3.13. This time we define the step sets

Y = Y∞ = {Ui, Di : i ∈ P} and X = X∞ = Y ∪ {F}.

Note that X = {1}×Z has already been considered (in the unconstrained setting) in Example 2.5. Neither X
nor Y has the FPP (or the IPP), though they both have the BPP by virtue of the SLC (cf. Theorem 2.44).
Thus, to obtain any interesting sequences to enumerate, we must consider X- and Y -walks restricted to
some region C . The most natural region is perhaps C = {(a, b) ∈ N2 : b ≤ a}. Then one may check that

A C
X = C and A C

Y = C \ {(1, 0), (2, 1)}.

The graphs ΓC
X and ΓC

Y are given in Figure 24, using Proposition 3.7 to compute the values of πC
X(A)

and πC
Y (A). As suggested by Figure 24, we have πC

X(a, b) = a! for all (a, b) ∈ A C
X . Indeed, this is easy

to understand. Any X-walk from O to (a, b) must have length a, as all steps from X have x-coordinate
equal to 1; for any such walk A1 · · ·Aa ∈ ΠC

X(a, b), we may choose the steps A1, . . . , Aa−1 in 2, 3, . . . , a ways
(respectively), to ensure that we remain in C at each step, but then the step Aa is fixed. The formula
πC
X(a, b) = a! may also be deduced from the recurrence in Proposition 3.7.

To obtain a formula for πC
Y (a, b), we begin with two claims. For convenience in what follows, we de-

fine (−1)! = 1.

39
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Figure 23: The graphs �C
Y2

(left) and �C
X2

(right), where Y2 = {(1, ±1), (1, ±2)} and X2 =
{(1, 0), (1, ±1), (1, ±2)}, and C = N2; cf. Example 3.13. All edges are directed to the right.

• Claim 1. For any a 2 N, we have ⇡C
Y (a, a) = (a� 1)!.

Indeed, this follows from essentially the same argument as used above to show that ⇡C
X(a, b) = a!: a Y -walk

from O to (a, a) involves an arbitrary Y -walk into the (a � 1)th column (of which there are (a � 1)!), and
then the appropriate (and uniquely determined) final step to end at (a, a). The same kind of argument also
shows the following:

• Claim 2. For any a 2 N, we have
Pa

r=0 ⇡
C
Y (a, r) = a!.

Now suppose (a, b) 2 A C
Y is such that b < a (so also a � 1). Proposition 3.7(iii) and Claim 2 give

⇡C
Y (a, b) =

aX

r=0
r 6=b

⇡C
Y (a� 1, r) =

aX

r=0

⇡C
Y (a� 1, r)� ⇡C

Y (a� 1, b) = (a� 1)!� ⇡C
Y (a� 1, b). (3.15)

If b < a� 1, we may apply (3.15) again to obtain

⇡C
Y (a, b) = (a� 1)!� ⇡C

Y (a� 1, b) = (a� 1)!� (a� 2)! + ⇡C
Y (a� 2, b).

Applying this repeatedly, until we reach a term involving ⇡C
Y (b, b) = (b� 1)!, we obtain

⇡C
Y (a, b) = (a� 1)!� (a� 2)! + · · · + (�1)a�b(b� 1)! =

a�1X

r=b�1

(�1)a�r+1r! =
a�b+1X

r=1

(�1)r+1(a� r)!, (3.16)

an alternating sum of factorials. In light of Claim 1, we see that (3.16) is also valid when b = a � 0, keeping
in mind the convention (�1)! = 1. Note that the sum in (3.16) gives 0 if (a, b) = (1, 0) or (2, 1).

At the time of writing, the numbers ⇡C
Y (a, b) did not appear on [1]. However, the numbers

⇡C
Y (n + 1, 0) = n!� (n� 1)! + (n� 2)!� · · · + (�1)n+11!

appear on [1, A005165]. (Note that the terms ±0! and ⌥(�1)! at the end of the sum for ⇡C
Y (n+1, 0) in (3.16)

cancel out.) This last number sequence appears on the x-axis in Figure 24 (right).
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Figure 23: The graphs ΓC
Y2

(left) and ΓC
X2

(right), where Y2 = {(1,±1), (1,±2)} and X2 =
{(1, 0), (1,±1), (1,±2)}, and C = N2; cf. Example 3.13. All edges are directed to the right.

• Claim 1. For any a ∈ N, we have πC
Y (a, a) = (a− 1)!.

Indeed, this follows from essentially the same argument as used above to show that πC
X(a, b) = a!: a Y -walk

from O to (a, a) involves an arbitrary Y -walk into the (a − 1)th column (of which there are (a − 1)!), and
then the appropriate (and uniquely determined) final step to end at (a, a). The same kind of argument also
shows the following:

• Claim 2. For any a ∈ N, we have
∑a

r=0 π
C
Y (a, r) = a!.

Now suppose (a, b) ∈ A C
Y is such that b < a (so also a ≥ 1). Proposition 3.7(iii) and Claim 2 give

πC
Y (a, b) =

a∑

r=0
r 6=b

πC
Y (a− 1, r) =

a∑

r=0

πC
Y (a− 1, r)− πC

Y (a− 1, b) = (a− 1)!− πC
Y (a− 1, b). (3.15)

If b < a− 1, we may apply (3.15) again to obtain

πC
Y (a, b) = (a− 1)!− πC

Y (a− 1, b) = (a− 1)!− (a− 2)! + πC
Y (a− 2, b).

Applying this repeatedly, until we reach a term involving πC
Y (b, b) = (b− 1)!, we obtain

πC
Y (a, b) = (a− 1)!− (a− 2)! + · · ·+ (−1)a−b(b− 1)! =

a−1∑

r=b−1

(−1)a−r+1r! =

a−b+1∑

r=1

(−1)r+1(a− r)!, (3.16)

an alternating sum of factorials. In light of Claim 1, we see that (3.16) is also valid when b = a ≥ 0, keeping
in mind the convention (−1)! = 1. Note that the sum in (3.16) gives 0 if (a, b) = (1, 0) or (2, 1).

At the time of writing, the numbers πC
Y (a, b) did not appear on [1]. However, the numbers

πC
Y (n+ 1, 0) = n!− (n− 1)! + (n− 2)!− · · ·+ (−1)n+11!
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appear on [1, A005165]. (Note that the terms ±0! and ∓(−1)! at the end of the sum for πC
Y (n+1, 0) in (3.16)

cancel out.) This last number sequence appears on the x-axis in Figure 24 (right).

1

1

1

2

2

2

6

6

6

6

24

24

24

24

24 120

120

120

120

120

120

1

1

1

2

2

2

6

6

6

6

24

24

24

24

24 120

120

120

120

120

120

1

1

0

1

0

1

2

1

2

1

6

4

5

4

5 19

20

19

20

18

24

1

1

0

1

0

1

2

1

2

1

6

4

5

4

5

Figure 24: The graphs �C
X (left) and �C

Y (right), where X = {1} ⇥ Z, Y = {1} ⇥ (Z \ {0}) and C =
{(a, b) 2 N2 : b  a}; cf. Example 3.14. All edges are directed to the right. In �C

Y , the two vertices from
A C

X \ A C
Y have been included in faint print for convenience.

We conclude this section with another infinite step set; it may be thought of as a “positive version” of
the step set X from Example 3.14.

Example 3.17 (cf. Example 2.6). Let X = {1} ⇥ N be the step set from Example 2.6, and let C =
{(a, b) 2 N2 : b  a}. Here we have A C

X = C , and the graph �C
X is pictured in Figure 25. Note that the

vertex labels ⇡C
X(A) are precisely the same as those from Example 3.3, and are even in the same locations;

cf. Figure 19. Indeed, we use the recurrence from Proposition 3.7 twice to see that for a � 1 and 0  b  a,

⇡C
X(a, b) =

bX

r=0

⇡C
X(a� 1, r) = ⇡C

X(a� 1, b) +
b�1X

r=0

⇡C
X(a� 1, r) = ⇡C

X(a� 1, b) + ⇡C
X(a, b� 1),

which is the same recurrence as that from Example 3.3. (The sum
Pb�1

r=0 ⇡
C
X(a � 1, r) is empty if b = 0, in

which case also ⇡C
X(a, b� 1) = 0.) Of course the numbers ⇡C

X(A) are the same as those from Example 3.11
as well, just in di↵erent locations of the plane; cf. Figure 21. In [11], Coker considers a di↵erent class of
(constrained) lattice path problems involving infinite step sets, also leading to natural finite enumeration.

3.3 Geometric conditions and finiteness properties for constrained walks

The proof of Lemma 2.9 works essentially unchanged to show that for any step set X, and for any sub-
monoid C of Z2,

(X, C ) has the IPP , ⇡C
X(O) =1 , ⇡C

X(O) � 2. (3.18)

We also have a constrained version of Theorem 2.44, relating the above finiteness conditions on (X, C )
to the geometric conditions on X introduced in Section 2.3. To make the following statement clearer, we
write P |= Q to mean “P satisfies Q”.

Theorem 3.19. (i) For an arbitrary step set X ✓ Z2
⇥, and for an arbitrary submonoid C of Z2, we have:

X |= CC X |= SLC X |= LC

(X, C ) |= FPP (X, C ) |= BPP (X, C ) 6|= IPP) )

) )

+ + +

(3.20)

41

Figure 24: The graphs ΓC
X (left) and ΓC

Y (right), where X = {1} × Z, Y = {1} × (Z \ {0}) and C =
{(a, b) ∈ N2 : b ≤ a}; cf. Example 3.14. All edges are directed to the right. In ΓC

Y , the two vertices from
A C
X \A C

Y have been included in faint print for convenience.

We conclude this section with another infinite step set; it may be thought of as a “positive version” of
the step set X from Example 3.14.

Example 3.17 (cf. Example 2.6). Let X = {1} × N be the step set from Example 2.6, and let C =
{(a, b) ∈ N2 : b ≤ a}. Here we have A C

X = C , and the graph ΓC
X is pictured in Figure 25. Note that the

vertex labels πC
X(A) are precisely the same as those from Example 3.3, and are even in the same locations;

cf. Figure 19. Indeed, we use the recurrence from Proposition 3.7 twice to see that for a ≥ 1 and 0 ≤ b ≤ a,

πC
X(a, b) =

b∑

r=0

πC
X(a− 1, r) = πC

X(a− 1, b) +
b−1∑

r=0

πC
X(a− 1, r) = πC

X(a− 1, b) + πC
X(a, b− 1),

which is the same recurrence as that from Example 3.3. (The sum
∑b−1

r=0 π
C
X(a − 1, r) is empty if b = 0, in

which case also πC
X(a, b− 1) = 0.) Of course the numbers πC

X(A) are the same as those from Example 3.11
as well, just in different locations of the plane; cf. Figure 21. In [11], Coker considers a different class of
(constrained) lattice path problems involving infinite step sets, also leading to natural finite enumeration.

3.3 Geometric conditions and finiteness properties for constrained walks

The proof of Lemma 2.9 works essentially unchanged to show that for any step set X, and for any sub-
monoid C of Z2,

(X,C ) has the IPP ⇔ πC
X(O) =∞ ⇔ πC

X(O) ≥ 2. (3.18)

We also have a constrained version of Theorem 2.44, relating the above finiteness conditions on (X,C )
to the geometric conditions on X introduced in Section 2.3. To make the following statement clearer, we
write P |= Q to mean “P satisfies Q”.

Theorem 3.19. (i) For an arbitrary step set X ⊆ Z2
×, and for an arbitrary submonoid C of Z2, we have:

X |= CC X |= SLC X |= LC

(X,C ) |= FPP (X,C ) |= BPP (X,C ) 6|= IPP⇒ ⇒

⇒ ⇒

⇓ ⇓ ⇓

(3.20)
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Figure 25: The graph �C
X , where X = {1} ⇥ N and C = {(a, b) 2 N2 : b  a}; cf. Example 3.17. All edges

are directed to the right.

(ii) For finite X, some but not all of the implications in (3.20) are reversible; these are indicated as follows:

X |= CC X |= SLC X |= LC

(X, C ) |= FPP (X, C ) |= BPP (X, C ) 6|= IPP

,

,

,

)
+ + +

(iii) In general, none of the implications in (3.20) are reversible.

Proof. (i). The top row of “horizontal” implications have already been proven in Lemma 2.12. The
“vertical” implications follow from Theorem 2.44(i) and the obvious facts that

X |= FPP ) (X, C ) |= FPP, X |= BPP ) (X, C ) |= BPP, X 6|= IPP ) (X, C ) 6|= IPP.

The bottom row of “horizontal” implications are proved in analogous fashion to Lemma 2.10.

(ii). Suppose X is finite. We begin with the non-reversible implications. The pair (X, C3) from Example 3.4
satisfies neither the IPP nor the BPP; this shows that the implication (X, C ) |= BPP ) (X, C ) 6|= IPP
is not reversible in general (even for finite X). The pair (X, C1) from the same example satisfies the FPP,
but X does not satisfy the LC; this takes care of all the “vertical” (non-)implications.

The two “horizontal” implications on the top row are reversible because of Lemma 2.12(iii). The only
remaining implication to demonstrate is (X, C ) |= BPP ) (X, C ) |= FPP. So suppose (X, C ) satisfies
the BPP. Let A 2 A C

X be arbitrary. Writing L = max
�
`(w) : w 2 ⇧C

X(A)
 
, we see that ⇧C

X(A) is contained
in the set {w 2 FX : `(w)  L}; since the latter is finite (as X is finite), so too is ⇧C

X(A).

(iii). The proof of Theorem 2.44(iii) remains valid here, upon taking C = Z2.

Remark 3.21. With di↵erent formatting, perhaps the implications in Theorem 3.19(ii) appear clearer as:

⇥
X |= CC , X |= SLC , X |= LC

⇤
)

⇥
(X, C ) |= FPP , (X, C ) |= BPP

⇤
) (X, C ) |= IPP,

for finite X.

There are also analogues of Theorems 2.36 and 2.51 for constrained walks, although these are somewhat
more subtle than the unconstrained versions. We begin with a lemma that motivates the discussion to
follow; it shows that the conditions O 2 Conv(X) and O 2 Rel-Int(Conv(X)) considered in Theorems 2.36
and 2.51 are equivalent to ostensibly weaker conditions.
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Figure 25: The graph ΓC
X , where X = {1} × N and C = {(a, b) ∈ N2 : b ≤ a}; cf. Example 3.17. All edges

are directed to the right.

(ii) For finite X, some but not all of the implications in (3.20) are reversible; these are indicated as follows:

X |= CC X |= SLC X |= LC

(X,C ) |= FPP (X,C ) |= BPP (X,C ) 6|= IPP

⇔

⇔

⇔

⇒
⇓ ⇓ ⇓

(iii) In general, none of the implications in (3.20) are reversible.

Proof. (i). The top row of “horizontal” implications have already been proven in Lemma 2.12. The
“vertical” implications follow from Theorem 2.44(i) and the obvious facts that

X |= FPP ⇒ (X,C ) |= FPP, X |= BPP ⇒ (X,C ) |= BPP, X 6|= IPP ⇒ (X,C ) 6|= IPP.

The bottom row of “horizontal” implications are proved in analogous fashion to Lemma 2.10.

(ii). Suppose X is finite. We begin with the non-reversible implications. The pair (X,C3) from Example 3.4
satisfies neither the IPP nor the BPP; this shows that the implication (X,C ) |= BPP ⇒ (X,C ) 6|= IPP
is not reversible in general (even for finite X). The pair (X,C1) from the same example satisfies the FPP,
but X does not satisfy the LC; this takes care of all the “vertical” (non-)implications.

The two “horizontal” implications on the top row are reversible because of Lemma 2.12(iii). The only
remaining implication to demonstrate is (X,C ) |= BPP ⇒ (X,C ) |= FPP. So suppose (X,C ) satisfies
the BPP. Let A ∈ A C

X be arbitrary. Writing L = max
{
`(w) : w ∈ ΠC

X(A)
}

, we see that ΠC
X(A) is contained

in the set {w ∈ FX : `(w) ≤ L}; since the latter is finite (as X is finite), so too is ΠC
X(A).

(iii). The proof of Theorem 2.44(iii) remains valid here, upon taking C = Z2.

Remark 3.21. With different formatting, perhaps the implications in Theorem 3.19(ii) appear clearer as:

[
X |= CC ⇔ X |= SLC ⇔ X |= LC

]
⇒

[
(X,C ) |= FPP ⇔ (X,C ) |= BPP

]
⇒ (X,C ) |= IPP,

for finite X.

There are also analogues of Theorems 2.36 and 2.51 for constrained walks, although these are somewhat
more subtle than the unconstrained versions. We begin with a lemma that motivates the discussion to
follow; it shows that the conditions O ∈ Conv(X) and O ∈ Rel-Int(Conv(X)) considered in Theorems 2.36
and 2.51 are equivalent to ostensibly weaker conditions.
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Lemma 3.22. Let X ⊆ Z2
× be an arbitrary step set. Then

(i) O ∈ Conv(X) ⇔ O ∈ Conv(AX \ {O}),

(ii) O ∈ Rel-Int(Conv(X)) ⇔ O ∈ Rel-Int(Conv(AX \ {O})).
Proof. Write Y = AX \ {O}, noting that AY = AX . For part (i) we have

O ∈ Conv(X) ⇔ AX has non-trivial units by Theorem 2.36

⇔ AY has non-trivial units as AX = AY

⇔ O ∈ Conv(Y ) by Theorem 2.36 again.

Part (ii) is treated in similar fashion, using Theorem 2.51 instead of Theorem 2.36.

In light of Theorem 2.36 and Lemma 3.22(i), we see that for any step set X ⊆ Z2
×,

X |= IPP ⇔ O ∈ Conv(X) ⇔ O ∈ Conv(AX \ {O}) ⇔ AX has non-trivial units.

The next result considers the analogous conditions for pairs (X,C ).

Proposition 3.23. Let X ⊆ Z2
× be an arbitrary step set, and let C be a submonoid of Z2. Consider the

following statements:

(i) (X,C ) has the IPP,

(ii) O ∈ Conv(X),

(iii) O ∈ Conv(A C
X \ {O}),

(iv) A C
X has non-trivial units.

Then the implications that hold among (i)–(iv) are precisely those inferrable from the following:

(iii) ⇔ (iv) ⇒ (i) ⇒ (ii).

Proof. We begin with the stated implications.

(iii) ⇒ (iv). Suppose O ∈ Conv(A C
X \ {O}). Then O is a convex combination of some elements A1, . . . , Ak

of A C
X \ {O}. We then follow the corresponding part of the proof of Theorem 2.36, and deduce that at least

one of the Ai is a (non-trivial) unit.

(iv) ⇒ (iii). If O = A+B for some A,B ∈ A C
X \ {O}, then O = 1

2A+ 1
2B ∈ Conv(A C

X \ {O}).
(iv) ⇒ (i). Suppose O = A + B, where A,B ∈ A C

X \ {O}. Then by definition, we have A = αX(u) and
B = αX(v) for some u, v ∈ FC

X \ {ε}. It quickly follows that uv ∈ ΠC
X(O) \ {ε}, and so πC

X(O) ≥ 2. But
then (X,C ) has the IPP by (3.18).

(i) ⇒ (ii). This is exactly the same as the corresponding part of Theorem 2.36.

We now treat the non-implications. It suffices to show that (ii) 6⇒ (i) and (i) 6⇒ (iv).

(ii) 6⇒ (i). The pair (X,C1) from Example 3.4 satisfies (ii) but not (i).

(i) 6⇒ (iv). The pair (X,C2) from Example 3.4 satisfies (i) but not (iv).

In light of Theorem 2.51 and Lemma 3.22(ii), for any step set X ⊆ Z2
×, the monoid AX is a non-trivial

group if and only if O ∈ Rel-Int(Conv(AX \{O})). The next result is a direct analogue of this last statement
for constrained walks, and in fact follows quickly from the unconstrained version.

Proposition 3.24. Let X ⊆ Z2
× be an arbitrary step set, and let C be a submonoid of Z2. Then A C

X is a
non-trivial group if and only if O ∈ Rel-Int(Conv(A C

X \ {O})).
Proof. Let Y = A C

X \ {O}, noting that AY = A C
X . Then by Theorem 2.51,

A C
X is a non-trivial group ⇔ AY is a non-trivial group ⇔ O ∈ Rel-Int(Conv(Y )).

Remark 3.25. The condition O ∈ Rel-Int(Conv(X)) neither implies nor is implied by A C
X being a (non-

trivial) group. For example:

• If X = {(1, 0), (−1, 0), (0, 1)} and C = Z× {0}, then A C
X = C is a group, yet O 6∈ Rel-Int(Conv(X)).

• If (X,C1) is as in Example 3.4, then O ∈ Rel-Int(Conv(X)), yet A C1
X is not a group.

But of course A C
X being a non-trivial group implies O ∈ Conv(X) because of Proposition 3.23.
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3.4 Admissible steps, and constraint sets containing lattice cones

Consider a pair (X,C ), where X ⊆ Z2
× is a step set, and C a submonoid of Z2. We say a step A ∈ X is

(X,C )-admissible if there exist words u, v ∈ FX such that uAv ∈ FC
X . So the (X,C )-admissible steps are

those that may actually be used in (X,C )-walks. Since any initial subword of an (X,C )-walk is clearly an
(X,C )-walk (i.e., since FC

X is prefix-closed), A ∈ X is (X,C )-admissible if and only if there exists a word
u ∈ FX such that uA ∈ FC

X , and then we also have u ∈ FC
X for any such u.

Note that if Y is the set of all (X,C )-admissible steps, then we have A C
X = A C

Y , ΓC
X = ΓC

Y , and so on.
In general, determining Y , given X and C , is not always easy; however, it is easy in at least one special
case we treat below. This section gives a number of strengthenings of results from previous sections based
on admissible steps.

Theorem 3.26. Let X ⊆ Z2
× be a step set, let C be a submonoid of Z2, and let Y ⊆ X be the set of

(X,C )-admissible steps. If Y is finite, then the following are equivalent:

(i) (X,C ) has the FPP, (ii) O 6∈ Conv(Y ), (iii) Y satisfies the LC.

Proof. (i) ⇒ (ii). We prove the contrapositive (and we note that for this implication we do not need to
assume Y is finite). Suppose O ∈ Conv(Y ). As in the proof of Theorem 2.36, we have O = xA+yB+zC for
some A,B,C ∈ Y and x, y, z ∈ N with x, y, z not all zero. (At this point it is worth noting that, in contrast
to the unconstrained case, we may not simply deduce that AxByCz belongs to ΠC

X(O).) Since A,B,C are
(X,C )-admissible, there exist u, v, w ∈ FX such that uA, vB,wC ∈ FC

X . As noted above, we also have
u, v, w ∈ FC

X . For convenience, we write U = αX(u), V = αX(v) and W = αX(w). For k ∈ N, define the
word

gk = uxvywz(AxByCz)k.

Let D = xU + yV + zW . The proof will be complete if we can show that gk ∈ ΠC
X(D) for all k ∈ N, as then

πC
X(D) =∞. With this in mind, fix some k ∈ N. Note that

αX(gk) = xU + yV + zW + k(xA+ yB + zC) = D + kO = D,

so that gk ∈ ΠX(D), so it remains to show that gk ∈ FC
X . To do so, we must show that αX(σi(gk)) ∈ C for

all 0 ≤ i ≤ `(gk), so consider some such i. Note that

`(gk) = λ+ kµ, where λ = x`(u) + y`(v) + z`(w) and µ = x+ y + z.

If i ≤ λ, then σi(gk) = σi(u
xvywz), and since uxvywz ∈ FC

X (as u, v, w belong to the monoid FC
X ), it follows

that αX(σi(gk)) ∈ C . So now suppose i > λ. By the division algorithm, we may write i−λ = qµ+ r, where
q, r ∈ N and 0 ≤ r < µ. Then since xA+ yB + zC = O, we have

αX(σi(gk)) = (xU + yV + zW ) + q(xA+ yB + zC) + αX(σr(A
xByCz))

= (xU + yV + zW ) + αX(σr(A
xByCz))

=





(xU + yV + zW ) + rA if 0 ≤ r ≤ x
(xU + yV + zW ) + xA+ (r − x)B if x ≤ r ≤ x+ y

(xU + yV + zW ) + xA+ yB + (r − x− y)C if x+ y ≤ r < x+ y + z

=





r(U +A) + (x− r)U + yV + zW if 0 ≤ r ≤ x
x(U +A) + (r − x)(V +B) + (x+ y − r)V + zW if x ≤ r ≤ x+ y

x(U +A) + y(V +B) + (r − x− y)(W + C) + (x+ y + z − r)W if x+ y ≤ r < x+ y + z.

Since U, V,W and U + A, V + B,W + C all belong to the monoid C , so too does αX(σi(gk)) in all of the
above cases.

(ii) ⇒ (iii). Since Y is finite, Theorems 2.36 and 2.44(ii) give

O 6∈ Conv(Y ) ⇒ Y 6|= IPP ⇒ Y |= LC.

(iii) ⇒ (i). Here we have

Y |= LC ⇒ Y |= FPP ⇒ (Y,C ) |= FPP ⇒ (X,C ) |= FPP.

Indeed, the first implication follows from Theorem 2.44(ii), the second is obvious, and the third from the
fact that the (X,C )-walks are precisely the (Y,C )-walks.
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Remark 3.27. In light of the finiteness assumption on Y in Theorem 3.26, several more equivalent condi-
tions could be listed; cf. Theorems 2.36 and 2.44(ii).

Remark 3.28. In the notation of Theorem 3.26, we have (X,C ) |= FPP ⇔ O 6∈ Conv(Y ). While this
certainly entails that (X,C ) |= IPP ⇒ O ∈ Conv(Y ), the converse does not hold in general (even for
finite X), as shown by the pair (X,C3) from Example 3.4 (cf. Figure 20). Consequently, we could not have
listed “(X,C ) does not have the IPP” as one of the equivalent conditions in Theorem 3.26.

Many examples of constrained walks considered in the literature (and throughout the current paper)
involve a special kind of constraint set C that is suitably “thick”, in the sense that C contains C ∩ Z2

where C is some (open) cone with vertex O. It turns out that Theorem 3.26 may be strengthened in certain
such cases, as shown in Theorem 3.31 below. First we need the following lemma.

Lemma 3.29. Let X ⊆ Z2
× be an arbitrary step set, and let C be a submonoid of Z2. Suppose also that

there is an (open) cone C with vertex O such that C ∩Z2 ⊆ C and C ∩A C
X 6= ∅. Then every step from X is

(X,C )-admissible.

Proof. Let A ∈ X be arbitrary. By assumption, there exists some point B ∈ C ∩A C
X . We note also that B

is an interior point of C (as the latter is an open set). It follows that there exists n ∈ N such that the circle
of radius |OA| centred at nB (including the boundary and interior) is contained in C. But then we have
nB + A ∈ C ∩ Z2 ⊆ C . Thus, for any word w ∈ ΠC

X(B), we have wnA ∈ FC
X , showing that A is indeed

(X,C )-admissible. All of this is shown in Figure 26.

Remark 3.30. The assumption that C ∩A C
X 6= ∅ is crucial in proving Lemma 3.29. For example, consider

X = {(1, 0), (0,−1)} and C = N2, noting that A C
X = N×{0}. Then C contains C ∩Z2, where C is the cone

{(x, y) ∈ R2 : x3 < y < x
2}, yet (0,−1) is not (X,C )-admissible. In fact, every (open) cone C with vertex O

satisfying C ∩ Z2 ⊆ C is contained in the first quadrant, so for any such cone we have C ∩A C
X = ∅.

Theorem 3.31. Let X ⊆ Z2
× be an arbitrary finite step set, and let C be a submonoid of Z2. Suppose also

that there is an (open) cone C with vertex O such that C ∩Z2 ⊆ C and C ∩A C
X 6= ∅. Then the following are

equivalent:

(i) (X,C ) has the FPP, (ii) O 6∈ Conv(X), (iii) X satisfies the LC.

Proof. This follows immediately from Theorem 3.26 and Lemma 3.29.

C

O

A

B

nB +A

nB

Figure 26: Verification that nB +A ∈ C , from the proof of Theorem 3.31. Edges are coloured red (A) and
blue (B). Note that A ∈ X and B ∈ A C

X , so that a blue edge represents an (X,C )-walk from O to B; such
a walk might step outside of C (but not outside of C ).
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Remark 3.32. As in Remark 3.28, we could not include “(X,C ) does not have the IPP” among the listed
conditions in Theorem 3.31. On the other hand, any of the equivalent conditions from Theorem 2.44(ii)
could have been added. In particular, it seems noteworthy that (X,C ) |= FPP ⇔ X |= FPP for such
pairs (X,C ). The corresponding statement for the IPP is false, as shown by (X,C3) from Example 3.4.

Remark 3.33. While the (X,C )-admissible steps have been useful in this section for characterising the FPP
in certain situations (Theorems 3.26 and 3.31), we cannot use them to improve Propositions 3.23 or 3.24.
For example, with X ⊆ Z2

× a step set, C a submonoid of Z2, and Y the set of (X,C )-admissible steps, one
might hope to prove that

• (X,C ) has the IPP if and only if O ∈ Conv(Y ), or

• A C
X is a non-trivial group if and only if O ∈ Rel-Int(Conv(Y )).

But neither of these are true, as again evidenced by the pair (X,C3) from Example 3.4.

4 Algorithms

Although this paper is mostly theoretical, certain results proven in Sections 2 and 3 lead to practical
applications in terms of computing combinatorial data such as the elements of the sets AX and A C

X , the
numbers πX(A) and πC

X(A), and so on. This data can sometimes be calculated by hand, and sometimes
explicit formulae can be obtained, as in many of the examples considered in Sections 2 and 3, and across the
literature. However, this is often impossible or impractical, especially if X is large and/or “random”, but
sometimes even for seemingly-simple step sets (cf. Example 3.12), hence the need for computer algorithms.

The purpose of this section is to present such algorithms (in pseudocode); these algorithms are all
implemented in C++, and available at [26]. The discussion here concentrates on constrained walks, and we
give algorithms for calculating the elements of A C

X in Section 4.1 (Algorithm 1), checking the Line Condition
in Section 4.2 (Algorithm 2), and calculating the numbers πC

X(A) in Section 4.3 (Algorithm 3). All of these
algorithms apply to unconstrained walks by taking C = Z2, or by deleting any part of an algorithm that
involves checking whether a point belongs to C .

For the duration of Section 4, we fix a non-empty finite step set X ⊆ Z2
×, and an arbitrary subset C

of Z2 containing O. In order to avoid trivialities, we assume that X ∩ C 6= ∅ (cf. [27]). We also assume
it is possible to check computationally whether an arbitrary element of Z2 belongs to C . This is the case
for example when C is the set of all lattice points whose coordinates satisfy some collection of equations
or inequalities, such as C = N2 or C = {(a, b) ∈ N2 : b ≤ a}, as considered in a number of examples in
Section 3. In most of the examples we consider, C will be a monoid (which implies A C

X is a monoid, by
Lemma 3.2), but the algorithms do not assume C is a submonoid.

4.1 Computing the points

Certainly we cannot give an algorithm to compute all the elements of A C
X , since this set is infinite, but it is

relatively straightforward to generate more and more elements of A C
X in a way we make precise below. For

q ∈ N we define the set
A C
X (q) = {αX(w) : w ∈ FC

X , `(w) = q}
for the set of all elements of A C

X that are endpoints of (X,C )-walks of length q. Note that these sets might
not be pairwise disjoint, as there can be (X,C )-walks of unequal length with the same endpoint, but we do
of course have A C

X =
⋃
q∈N A C

X (q). We also write

A C
X (≤ q) = A C

X (0) ∪ · · · ∪A C
X (q) = {αX(w) : w ∈ FC

X , `(w) ≤ q}.

In the unconstrained case, in which C = Z2, we write AX(q) and AX(≤ q) instead of A Z2

X (q) and A Z2

X (≤ q).
Note that we have an ascending chain of subsets

{O} = A C
X (≤ 0) ⊆ A C

X (≤ 1) ⊆ A C
X (≤ 2) ⊆ · · · , (4.1)

whose union is all of A C
X . Thus, our aim is to compute the sets A C

X (≤ q) for arbitrary q.
As noted above, it is fairly straightforward to achieve this aim. We begin with A C

X (0) = {O}, and to
obtain A C

X (q) from A C
X (q − 1), we simply add each element of X to each element of A C

X (q − 1) and keep
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those that belong to C . This is essentially what Algorithm 1 below does. However, while doing this, it will
be convenient to construct a sequence of graphs ΛC

X(q) with vertex set A C
X (≤ q), and with vertex labels

that also play a role in calculating the numbers πC
X(A) later. For each q ∈ N, we define the graph ΛC

X(q) as
follows:

• As we have already mentioned, the vertex set of ΛC
X(q) is A C

X (≤ q).

• Each vertex A of ΛC
X(q) is labelled by the natural number λq(A) = max{p ∈ {1, . . . , q} : A ∈ A C

X (p)}.

• For each A ∈ A C
X (≤ q − 1) and each B ∈ X such that A+B ∈ C , ΛC

X(q) has the edge A
B−−→ A+B.

As usual, when depicting such graphs, we generally draw the vertices at the appropriate points in the plane.
For A ∈ A C

X (≤ q), the meaning of the label λq(A) is slightly subtle. There is a path from O to A in ΛC
X(q)

of length λq(A); there may be longer paths from O to A in ΛC
X(q), but the length of any such path will be

greater than q (see Examples 4.3–4.5 below). Again, in the unconstrained case, we will write ΛX(q) instead
of ΛZ2

X (q).
We will explain the deeper significance of the graphs ΛC

X(q) in more detail in Section 4.3, but first we show
in Algorithm 1 how to construct them. Note that Algorithm 1 allows us to calculate the elements of A C

X (≤ q)
for any q ∈ N, as these are simply the vertices of ΛC

X(q). Note also that if the time complexity for checking
membership of C is assumed to be constant, then the time complexity of Algorithm 1 is clearly O(|X|q) in
general, but this seems unavoidable since any algorithm for generating the elements of A C

X generally has
to inspect words over X. In practice, the run-time of Algorithm 1 could be better; this depends on how
interrelated the steps from X are, which influences how small the sets A C

X (q) are, as compared to |X|q.

Algorithm 1 Calculate the graph ΛC
X(q).

Input: a finite step set X ⊆ Z2
×, a subset C of Z2 containing O, and a natural number q ∈ N

Output: the graph ΛC
X(q)

1: V := {O}, E := ∅, λ0(O) := 0, A C
X (0) := {O}

2: i := 1
3: while i ≤ q do
4: A C

X (i) := ∅
5: for A ∈ A C

X (i− 1) do
6: for B ∈ X do
7: if A+B ∈ C then
8: A C

X (i)← A C
X (i) ∪ {A+B}

9: V ← V ∪ {A+B}
10: E ← E ∪ {A B−−→ A+B}
11: for A ∈ A C

X (i) do
12: λi(A) := i

13: for A ∈ V \A C
X (i) do

14: λi(A) := λi−1(A)

15: i← i+ 1

16: return the graph ΛC
X(q) with vertex set V , vertex labelling function λq, and edge set E

Before moving on to additional algorithms, we first pause to give several examples of Algorithm 1 in
action, partly in order to display the subtlety of the labelling. The first uses the step set from Example 2.1.

Example 4.2. Consider the step set X = {N,E}, where N = (0, 1) and E = (1, 0). Algorithm 1 produces
the graphs ΛX(0), . . . ,ΛX(4), as shown in Figure 27. In fact, the implementation of Algorithm 1 at [26]
produced the LATEX/TikZ code for drawing the diagrams in Figure 27, and in many other figures in this
section. Note that for any i ≤ j, and any A ∈ AX(≤ i), we have λi(A) = λj(A); this is because all X-walks
to A have the same length (equal to the sum of the x- and y-coordinates of A); cf. Figure 2.

Figure 27 also shows the graphs ΛC
X(0), . . . ,ΛC

X(4), where C = {(a, b) ∈ N2 : b ≤ a}; again these were
produced by applying Algorithm 1. A similar comment may be made for the labels of these graphs.
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Figure 27: The graphs ⇤X(q), q = 0, . . . , 4 (top, left to right), and ⇤C
X(q), q = 0, . . . , 4 (bottom, left to

right), where X = {(1, 0), (0, 1)} and C = {(a, b) 2 N2 : b  a}; cf. Example 4.2.

Example 4.3. Consider the step set X = {N, E,U}, where N = (0, 1), E = (1, 0) and U = (1, 1).
Algorithm 1 produces the graphs ⇤X(0), . . . ,⇤X(4), as shown in Figure 28. In contrast to the situation in
Example 4.2, here we have (for example) �1(U) = 1 < 2 = �2(U); this happens because there are X-walks
of di↵ering lengths to U . We also have �2(2U) < �3(2U) < �4(2U). Figure 28 also shows the graphs
⇤C

X(0), . . . ,⇤C
X(4), where C = {(a, b) 2 N2 : b  a}.
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Figure 28: The graphs ⇤X(q), q = 0, . . . , 4 (top, left to right), and ⇤C
X(q), q = 0, . . . , 4 (bottom, left to

right), where X = {(1, 0), (0, 1), (1, 1)} and C = {(a, b) 2 N2 : b  a}; cf. Example 4.3.

Example 4.4. Consider the step set X = {E, 3E}, where E = (1, 0) and 3E = (3, 0). Algorithm 1 produces
the graphs ⇤X(0), . . . ,⇤X(4), as shown in Figure 29. This time, �1(3E) = �2(3E) < �3(3E).

Example 4.5. Consider the step set X = {N, E,A}, where N = (0, 1), E = (1, 0) and A = (1, 2), and let
C = {(a, b) 2 N2 : b  a}. Figure 30 shows the graphs ⇤X(q) and ⇤C

X(q) for q = 0, . . . , 4, produced using
Algorithm 1.

48

Figure 27: The graphs ΛX(q), q = 0, . . . , 4 (top, left to right), and ΛC
X(q), q = 0, . . . , 4 (bottom, left to

right), where X = {(1, 0), (0, 1)} and C = {(a, b) ∈ N2 : b ≤ a}; cf. Example 4.2.

Example 4.3. Consider the step set X = {N,E,U}, where N = (0, 1), E = (1, 0) and U = (1, 1).
Algorithm 1 produces the graphs ΛX(0), . . . ,ΛX(4), as shown in Figure 28. In contrast to the situation in
Example 4.2, here we have (for example) λ1(U) = 1 < 2 = λ2(U); this happens because there are X-walks
of differing lengths to U . We also have λ2(2U) < λ3(2U) < λ4(2U). Figure 28 also shows the graphs
ΛC
X(0), . . . ,ΛC

X(4), where C = {(a, b) ∈ N2 : b ≤ a}.
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right), where X = {(1, 0), (0, 1)} and C = {(a, b) 2 N2 : b  a}; cf. Example 4.2.

Example 4.3. Consider the step set X = {N, E,U}, where N = (0, 1), E = (1, 0) and U = (1, 1).
Algorithm 1 produces the graphs ⇤X(0), . . . ,⇤X(4), as shown in Figure 28. In contrast to the situation in
Example 4.2, here we have (for example) �1(U) = 1 < 2 = �2(U); this happens because there are X-walks
of di↵ering lengths to U . We also have �2(2U) < �3(2U) < �4(2U). Figure 28 also shows the graphs
⇤C

X(0), . . . ,⇤C
X(4), where C = {(a, b) 2 N2 : b  a}.
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Figure 28: The graphs ⇤X(q), q = 0, . . . , 4 (top, left to right), and ⇤C
X(q), q = 0, . . . , 4 (bottom, left to

right), where X = {(1, 0), (0, 1), (1, 1)} and C = {(a, b) 2 N2 : b  a}; cf. Example 4.3.

Example 4.4. Consider the step set X = {E, 3E}, where E = (1, 0) and 3E = (3, 0). Algorithm 1 produces
the graphs ⇤X(0), . . . ,⇤X(4), as shown in Figure 29. This time, �1(3E) = �2(3E) < �3(3E).

Example 4.5. Consider the step set X = {N, E,A}, where N = (0, 1), E = (1, 0) and A = (1, 2), and let
C = {(a, b) 2 N2 : b  a}. Figure 30 shows the graphs ⇤X(q) and ⇤C

X(q) for q = 0, . . . , 4, produced using
Algorithm 1.
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Figure 28: The graphs ΛX(q), q = 0, . . . , 4 (top, left to right), and ΛC
X(q), q = 0, . . . , 4 (bottom, left to

right), where X = {(1, 0), (0, 1), (1, 1)} and C = {(a, b) ∈ N2 : b ≤ a}; cf. Example 4.3.

Example 4.4. Consider the step set X = {E, 3E}, where E = (1, 0) and 3E = (3, 0). Algorithm 1 produces
the graphs ΛX(0), . . . ,ΛX(4), as shown in Figure 29. This time, λ1(3E) = λ2(3E) < λ3(3E).

Example 4.5. Consider the step set X = {N,E,A}, where N = (0, 1), E = (1, 0) and A = (1, 2), and let
C = {(a, b) ∈ N2 : b ≤ a}. Figure 30 shows the graphs ΛX(q) and ΛC

X(q) for q = 0, . . . , 4, produced using
Algorithm 1.
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Figure 29: The graphs ⇤X(q), q = 0, . . . , 4 (top to bottom), where X = {(1, 0), (3, 0)}; cf. Example 4.4.
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Figure 30: The graphs ⇤X(q), q = 0, . . . , 4 (top, left to right), and ⇤C
X(q), q = 0, . . . , 4 (bottom, left to

right), where X = {(1, 0), (0, 1), (1, 2)} and C = {(a, b) 2 N2 : b  a}; cf. Example 4.5.

Example 4.6. Consider the step set X = {N, E,A}, where N = (0, 1), E = (1, 0) and A = (2, 2), and let
C = {(a, b) 2 N2 : b  a}. Figure 31 shows the graphs ⇤X(q) and ⇤C

X(q) for q = 0, . . . , 3, produced using
Algorithm 1.

4.2 Checking the Line Condition

Now that we can calculate the elements of AX and A C
X (or at least of AX( q) and A C

X ( q) for suitably
large q 2 N), we would like to calculate the values of ⇡X(A) and ⇡C

X(A).

49

Figure 29: The graphs ΛX(q), q = 0, . . . , 4 (top to bottom), where X = {(1, 0), (3, 0)}; cf. Example 4.4.
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Figure 29: The graphs ⇤X(q), q = 0, . . . , 4 (top to bottom), where X = {(1, 0), (3, 0)}; cf. Example 4.4.
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Figure 30: The graphs ⇤X(q), q = 0, . . . , 4 (top, left to right), and ⇤C
X(q), q = 0, . . . , 4 (bottom, left to

right), where X = {(1, 0), (0, 1), (1, 2)} and C = {(a, b) 2 N2 : b  a}; cf. Example 4.5.

Example 4.6. Consider the step set X = {N, E, A}, where N = (0, 1), E = (1, 0) and A = (2, 2), and let
C = {(a, b) 2 N2 : b  a}. Figure 31 shows the graphs ⇤X(q) and ⇤C

X(q) for q = 0, . . . , 3, produced using
Algorithm 1.
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Figure 30: The graphs ΛX(q), q = 0, . . . , 4 (top, left to right), and ΛC
X(q), q = 0, . . . , 4 (bottom, left to

right), where X = {(1, 0), (0, 1), (1, 2)} and C = {(a, b) ∈ N2 : b ≤ a}; cf. Example 4.5.

Example 4.6. Consider the step set X = {N,E,A}, where N = (0, 1), E = (1, 0) and A = (2, 2), and let
C = {(a, b) ∈ N2 : b ≤ a}. Figure 31 shows the graphs ΛX(q) and ΛC

X(q) for q = 0, . . . , 3, produced using
Algorithm 1.

4.2 Checking the Line Condition

Now that we can calculate the elements of AX and A C
X (or at least of AX(≤ q) and A C

X (≤ q) for suitably
large q ∈ N), we would like to calculate the values of πX(A) and πC

X(A).
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Figure 31: The graphs ⇤X(q), q = 0, . . . , 3 (top, left to right), and ⇤C
X(q), q = 0, . . . , 3 (bottom, left to

right), where X = {(1, 0), (0, 1), (2, 2)} and C = {(a, b) 2 N2 : b  a}; cf. Example 4.6.

Since X is finite, it has either the IPP or the FPP (cf. Corollary 2.46). Thus, to compute the num-
bers ⇡X(A), we should first determine which of these two cases we are in. There are at least two natural
ways to go about this, as

X |= FPP , O 62 Conv(X) , X |= LC,

by Theorems 2.36 and 2.44(ii).
For constrained walks, the situation is more complicated. Indeed, even though X is finite, there is

no FPP/IPP dichotomy (cf. Example 3.4 and Figure 20). Nevertheless, if we write Y for the set of all
(X, C )-admissible steps (cf. Section 3.4), then we have

(X, C ) |= FPP , O 62 Conv(Y ) , Y |= LC,

by Theorem 3.26. Moreover, if X satisfies the assumptions of Theorem 3.31, then by that theorem, we have

(X, C ) |= FPP , O 62 Conv(X) , X |= LC.

Thus, whether we are dealing with unconstrained or constrained walks, it is clearly important to be able
to test whether or not a finite subset of Z2 has O in its convex hull, or satisfies the LC.

The time complexity of computing (the vertices of) the convex hull of a set of n points in the plane is
well known [9,21] to be O(n log n). Thus, if |X| = n, we can determine whether O 2 Conv(X) in O(n log n)
time by determining whether Conv(X) = Conv(X [ {O}). However, it will transpire that checking X for
the LC instead of checking O 2 Conv(X) will be more convenient for our purposes.

A simple method for checking whether X = {A1, . . . , An} satisfies the LC is as follows. For each
i 2 {1, . . . , n}, let ↵i be the polar angle of Ai: i.e., the angle from the positive x-axis to OAi, measured anti-
clockwise. We first order the points of X as Aj1 , . . . , Ajn , where ↵j1  · · ·  ↵jn . If ↵j1 = · · · = ↵jn , then X
clearly satisfies the LC. Otherwise, we continue by calculating the angles �i = \AjiOAji+1 = ↵ji+1 � ↵ji

(interpreting jn+1 = j1 and �n = 2⇡ + ↵j1 � ↵jn). Then X satisfies the LC if and only if one of these
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Figure 31: The graphs ΛX(q), q = 0, . . . , 3 (top, left to right), and ΛC
X(q), q = 0, . . . , 3 (bottom, left to

right), where X = {(1, 0), (0, 1), (2, 2)} and C = {(a, b) ∈ N2 : b ≤ a}; cf. Example 4.6.

Since X is finite, it has either the IPP or the FPP (cf. Corollary 2.46). Thus, to compute the num-
bers πX(A), we should first determine which of these two cases we are in. There are at least two natural
ways to go about this, as

X |= FPP ⇔ O 6∈ Conv(X) ⇔ X |= LC,

by Theorems 2.36 and 2.44(ii).
For constrained walks, the situation is more complicated. Indeed, even though X is finite, there is

no FPP/IPP dichotomy (cf. Example 3.4 and Figure 20). Nevertheless, if we write Y for the set of all
(X,C )-admissible steps (cf. Section 3.4), then we have

(X,C ) |= FPP ⇔ O 6∈ Conv(Y ) ⇔ Y |= LC,

by Theorem 3.26. Moreover, if X satisfies the assumptions of Theorem 3.31, then by that theorem, we have

(X,C ) |= FPP ⇔ O 6∈ Conv(X) ⇔ X |= LC.

Thus, whether we are dealing with unconstrained or constrained walks, it is clearly important to be able
to test whether or not a finite subset of Z2 has O in its convex hull, or satisfies the LC.

The time complexity of computing (the vertices of) the convex hull of a set of n points in the plane is
well known [9,21] to be O(n log n). Thus, if |X| = n, we can determine whether O ∈ Conv(X) in O(n log n)
time by determining whether Conv(X) = Conv(X ∪ {O}). However, it will transpire that checking X for
the LC instead of checking O ∈ Conv(X) will be more convenient for our purposes.

A simple method for checking whether X = {A1, . . . , An} satisfies the LC is as follows. For each
i ∈ {1, . . . , n}, let αi be the polar angle of Ai: i.e., the angle from the positive x-axis to OAi, measured anti-
clockwise. We first order the points of X as Aj1 , . . . , Ajn , where αj1 ≤ · · · ≤ αjn . If αj1 = · · · = αjn , then X
clearly satisfies the LC. Otherwise, we continue by calculating the angles βi = ∠AjiOAji+1 = αji+1 − αji
(interpreting jn+1 = j1 and βn = 2π + αj1 − αjn). Then X satisfies the LC if and only if one of these
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angles βi is bigger than π. See Figure 32 for two examples. Algorithm 2 implements the above procedure
(and more), albeit in a slightly modified way; we explain the modification, and the reasons for its necessity
in the next paragraph. Additionally, as it will be important for later use, in the case that X satisfies the LC,
Algorithm 2 finds a vector u such that the line L through O and perpendicular to u witnesses the LC,
with u pointing into the half-plane containing X. Since sorting lists of length n also has O(n log n) time
complexity, this algorithm has essentially the same complexity as one based on testing O ∈ Conv(X).

O

Aj1

Aj2

Aj3

Aj4

Aj5

β1

β2

β3

β4
β5

O

Aj1

Aj2

Aj3

Aj4

β1

β2

β3

β4

Figure 32: The points Aj1 , . . . , Ajn and angles β1, . . . , βn from Algorithm 2. Left: the LC holds since β4 > π.
Right: the LC does not hold since βi ≤ π for all i.

Note that calculating the angles αi, βi has the potential to run into rounding errors, as these angles are
generally irrational, hence the need to slightly modify the details of the above procedure. Now, one could
obtain the required ordering Aj1 , . . . , Ajn on the elements of X by considering only the coordinates of the
points Ai = (xi, yi), and in particular the ratio tanαi = yi

xi
(which we interpret to be −∞ if xi = 0); to

determine whether αi ≤ αj , we first consider the quadrants containing Ai and Aj , and if these quadrants are
the same we have αi ≤ αj ⇔ yi

xi
≤ yj

xj
(we consider points on the y-axis to belong to the second or fourth

quadrants). Once the ordering Aj1 , . . . , Ajn is established, we have βi > π if and only if the vector cross

product
−→
OAji ×

−→
OAji+1 points towards the negative z-axis (in a right-handed coordinate system), which

occurs if and only if xjiyji+1 − xji+1yji < 0. These considerations are all implemented in the code available
at [26], although the pseudocode in Algorithm 2 is written in terms of the angles αi, βi, as we believe this
is conceptually simpler. It is also worth noting that we could shorten the While Loop in Lines 12–17 of
Algorithm 2 by keeping track of β1+· · ·+βi; if this sum ever reaches or exceeds π (with all of β1, . . . , βi ≤ π),
then βi+1, . . . , βn will all be at most π; at this point, we can leave the loop and immediately declare that
the LC is not satisfied. Note again that we can check if β1 + · · · + βi ≥ π by checking the cross product−→
OAj1 ×

−→
OAji .

We now explain how to find the line L and vector u discussed above, in the case that X satisfies
the LC. Here (with the above notation) we will find that βi > π for some i. For simplicity in what follows,

we write A = Aji = (u, v) and B = Aji+1 = (x, y), and also a =
−→
OA = 〈u, v〉 and b =

−−→
OB = 〈x, y〉. It

is easy to see that the line L through O in the direction of b − a witnesses the LC; see Figure 33. Now,
b− a = 〈x− u, y − v〉, so (up to scaling) the desired vector u is either 〈v − y, x− u〉 or the negative of this
vector. To see which of these to take as u, first note that since ∠AOB > π, the vector cross product a× b
points in the direction of the negative z-axis; since a×b = 〈0, 0, uy−vx〉, it follows that vx−uy > 0. Thus,
if we take u = 〈v− y, x− u〉, then we have a ·u = b ·u = vx− uy > 0, meaning that this choice of u points
towards the desired half-plane. This is all shown in Figure 33, and implemented in Algorithm 2.

4.3 Computing the numbers

We now turn to the task of computing the values πC
X(A), A ∈ A C

X . First note that if we knew (X,C )
had the IPP, then we could simply calculate as many points A ∈ A C

X as we wish (cf. Algorithm 1) and
declare πC

X(A) =∞ for all such A. In the case of unconstrained walks (when C = Z2), this happens if and
only if X does not satisfy the LC, and the only other option is that X has the FPP; cf. Theorem 2.44(ii),
Corollary 2.46 and Algorithm 2.
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Figure 33: The points A = Aji and B = Aji+1 , and the vector u from Algorithm 2.

As noted near the beginning of Section 4.2, the situation for constrained walks is more complicated since
there is no FPP/IPP dichotomy in general. Here, however, if C is a submonoid of Z2, and if we write Y for
the set of all (X,C )-admissible steps (cf. Section 3.4), then we have

A C
X = A C

Y and πC
X(A) = πC

Y (A) for all A ∈ Z2, (4.7)

and moreover, (X,C ) has the FPP if and only if Y satisfies the LC (cf. Theorem 3.26); of course if we
know the set Y , then we can check whether it satisfies the LC using Algorithm 2. The authors are currently
unaware of an algorithm for determining the (X,C )-admissible steps; we leave it as an open problem to
devise such an algorithm. On the other hand, if C satisfies the assumptions of Theorem 3.31, then (X,C )
has the FPP if and only if X itself satisfies the LC. In any case, for any pair (X,C ) with the FPP, and
with C being a monoid, (4.7) holds for some Y ⊆ X satisfying the LC.

The situation in which C is not a monoid can be even more complicated still. Indeed, it is easy to
construct examples of pairs (X,C ) with the FPP, where C is not a monoid, where every step from X is
(X,C )-admissible, but where X does not satisfy the LC. For example, consider

X =
{

(1, 0), (0, 1), (−2, 0)
}

and C =
{

(0, 0), (1, 0), (1, 1), (−1, 1)
}
.

Thus, in order to give a uniform treatment, we will assume for the duration of this section that X itself
satisfies the LC; we continue to assume also that C is a subset of Z2 containing O (but we do not assume C
is a monoid). Because of the LC, Theorem 2.44(ii) tells us that X has the FPP (and BPP); so too therefore
does the pair (X,C ).

The key idea that will allow us to calculate the numbers πC
X(A) is to define a sequence of graphs ΓC

X [q],
q ∈ N, such that the vertex sets of these graphs form an ascending chain whose union is all of A C

X , and such
that each vertex A of ΓC

X [q] is labelled by πC
X(A).

As indicated by the proofs of Propositions 2.15 and 3.7, a crucial role in calculating the numbers πC
X(A)

is played by the values
L(A) = max{`(w) : w ∈ ΠC

X(A)} for A ∈ A C
X .

Devising a method to calculate these values forms the bulk of this section. Note that L(A) is the maximum
length of a path from O to A in the graph ΓC

X . It is also easy to see that L(A) = max{q ∈ N : A ∈ A C
X (q)}

in the notation of Section 4.1. For q ∈ N we define the sets

A C
X [q] = {A ∈ A C

X : L(A) = q} and A C
X [≤ q] = A C

X [0] ∪ · · · ∪A C
X [q] = {A ∈ A C

X : L(A) ≤ q}.

Again, we have an ascending chain of subsets

{O} = A C
X [≤ 0] ⊆ A C

X [≤ 1] ⊆ A C
X [≤ 2] ⊆ · · · ,

though this is generally different to that given in (4.1).
For q ∈ N, we define ΓC

X [q] to be the induced subgraph of ΓC
X on the vertex set A C

X [≤ q]. In other words,
the graph ΓC

X [q] is defined as follows:
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Algorithm 2 Check the Line Condition.

Input: a finite step set X = {A1, . . . , An} ⊆ Z2
×, with each Ai = (xi, yi)

Output: “Yes” if X satisfies the LC, or “No” otherwise; in the former case, also give a vector u such that
the line through O and perpendicular to u witnesses the LC, with u pointing towards the half-plane
containing X

1: for i ∈ {1, . . . , n} do
2: Calculate the polar angle αi of Ai

3: Sort the αi in non-decreasing order: say, αj1 ≤ · · · ≤ αjn
4: if αj1 = · · · = αjn then
5: return “Yes”
6: return the vector u = 〈x1, y1〉
7: else
8: βn := 2π + αj1 − αjn
9: for i ∈ {1, . . . , n− 1} do

10: βi := αji+1 − αji
11: i := 1
12: while i ≤ n do
13: if βi > π then
14: return “Yes”
15: return the vector u = 〈yji − yji+1 , xji+1 − xji〉
16: else
17: i← i+ 1

18: return “No”

• The vertex set of ΓC
X [q] is A C

X [≤ q].

• Each vertex A of ΓC
X [q] is labelled by πC

X(A).

• For each A ∈ A C
X [≤ q − 1] and each B ∈ X such that A + B ∈ A C

X [≤ q], ΓC
X [q] has the edge

A
B−−→ A+B.

(On the last point, note that it is possible to have A ∈ A C
X [≤ q − 1] and B ∈ X such that A+ B ∈ C but

L(A+B) > q, meaning that A+B 6∈ A C
X [≤ q].)

To construct the graphs ΓC
X [q], we must clearly be able to construct the sets A C

X [q]. In fact, the
graphs ΛC

X(q) defined in Section 4.1 were designed specifically to allow us to do this; this is all made precise
in Lemma 4.11 below.

In what follows, it will also be convenient to define

`(A) = min{`(w) : w ∈ ΠC
X(A)} for A ∈ A C

X .

So `(A) is the minimum length of a path from O to A in the graph ΓC
X . Note that we have the alternative

characterisation A C
X (≤ q) = {A ∈ A C

X : `(A) ≤ q} for any q ∈ N.

Lemma 4.8. For any q ∈ N,

(i) A C
X [≤ q] is contained in the vertex set of ΛC

X(q); i.e., we have A C
X [≤ q] ⊆ A C

X (≤ q),

(ii) λq(A) = L(A) for any A ∈ A C
X [≤ q].

Proof. Fix some A ∈ A C
X [≤ q]. First note that `(A) ≤ L(A) ≤ q, so that A belongs to A C

X (≤ q); this gives
part (i). Part (ii) follows from three obvious facts:

• any path from O to A in ΓC
X has length at most L(A) ≤ q,

• ΛC
X(q) contains all paths in ΓC

X beginning at O and of length at most q, and

• ΓC
X has a path from O to A of length L(A).
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Thus, the graph ΛC
X(q) contains each A ∈ A C

X [≤ q] as a vertex, and each such vertex is labelled L(A)
in ΛC

X(q). However, any other vertex of ΛC
X(q), say B ∈ A C

X (≤ q) \ A C
X [≤ q], satisfies L(B) > q ≥ λq(B).

Moreover, we cannot simply look at ΛC
X(q) and tell which vertices belong to A C

X [≤ q] and which belong to
A C
X (≤ q) \A C

X [≤ q]. The next lemma will help us overcome this problem.
For the statement, and for extensive later use, we first introduce some additional parameters. First,

since X satisfies the LC, we let u be a vector such that the line through O and perpendicular to u witnesses
the LC, with u pointing to the half-plane containing X. Such a vector u can be found using Algorithm 2.
We also set

µ1 = min{u · −→OA : A ∈ X} and µ2 = max{u · −→OA : A ∈ X}. (4.9)

Lemma 4.10. For any A ∈ A C
X , we have L(A) ≤

⌊
µ2
µ1
· `(A)

⌋
, where µ1 and µ2 are as in (4.9).

Proof. Consider an (X,C )-walk A1 · · ·Ak ∈ ΠC
X(A), where A1, . . . , Ak ∈ X. From A = A1 + · · · + Ak, it

quickly follows that µ1 · k ≤ u · −→OA ≤ µ2 · k. Since such walks exist for k = `(A) and for k = L(A), we have

µ1 · L(A) ≤ u · −→OA ≤ µ2 · `(A), and so L(A) ≤ µ2
µ1
· `(A); the result follows since L(A) is an integer.

Lemmas 4.8 and 4.10 allow us to prove the next result, which provides the basis for calculating the
sets A C

X [0], . . . ,A C
X [q].

Lemma 4.11. Let q ∈ N, and put Q =
⌊
µ2
µ1
· q
⌋

, where µ1 and µ2 are as in (4.9). Then for any 0 ≤ i ≤ q,

we have A C
X [i] = {A ∈ A C

X (≤ q) : λQ(A) = i}.

Proof. Since A C
X [i] ⊆ A C

X [≤ q] ⊆ A C
X (≤ q), by Lemma 4.8(i), we have A C

X [i] = {A ∈ A C
X (≤ q) : L(A) = i}.

Thus, we can prove the lemma by showing that λQ(A) = L(A) for all A ∈ A C
X (≤ q). But for any

such A, Lemma 4.10 gives L(A) ≤
⌊
µ2
µ1
· `(A)

⌋
≤
⌊
µ2
µ1
· q
⌋

= Q, and so A ∈ A C
X [≤ Q]; it then follows

from Lemma 4.8(ii) that λQ(A) = L(A).

Thus, by Lemma 4.11, we may compute the sets A C
X [0], . . . ,A C

X [q] by calculating the graphs ΛC
X(q)

and ΛC
X(Q); for 0 ≤ i ≤ q, the set A C

X [i] is precisely the set of vertices of ΛC
X(q) whose label in ΛC

X(Q) is i.
Once we have computed the sets A C

X [0], . . . ,A C
X [q], it is easy to calculate the values πC

X(A), A ∈ A C
X [≤ q].

Indeed, as in the proofs of Propositions 2.15 and 3.7, if A ∈ A C
X [i] for some 1 ≤ i ≤ q, then we have

πC
X(A) =

∑
B∈X π

C
X(A−B). The key point here is that for any B ∈ X, either A−B ∈ A C

X [≤ i− 1] or else
A−B 6∈ A C

X . Algorithm 3 implements all of the above.

Example 4.12 (cf. Example 4.3). Figure 34 shows the graphs ΓX [7] and ΓC
X [9] for the step set X =

{(1, 0), (0, 1), (1, 1)} and the submonoid C = {(a, b) ∈ N2 : b ≤ a}; these graphs were computed (and drawn)
using Algorithm 3. The numbers πX(A) are the so-called Delannoy numbers [1, Sequence A008288]; the
diagonal entries πX(n, n) are [1, Sequence A001850]. The numbers πC

X(A) are [1, Sequences A033877 and
A080247]; the diagonal entries are the large Schröder numbers [1, Sequence A006318].

Example 4.13 (cf. Example 4.5). Figure 35 shows the graphs ΓX [7] and ΓC
X [9] for the step set X =

{(1, 0), (0, 1), (1, 2)} and the submonoid C = {(a, b) ∈ N2 : b ≤ a}. The numbers πX(A) and πC
X(A) are [1,

Sequences A257365 and A071943], respectively. The diagonal entries πX(n, n) and πC
X(n, n) are [1, Sequences

A006139 and A052709], respectively.

Example 4.14 (cf. Example 4.6). Figure 36 shows the graphs ΓX [7] and ΓC
X [9] for the step set X =

{(1, 0), (0, 1), (2, 2)} and the submonoid C = {(a, b) ∈ N2 : b ≤ a}. At the time of writing, the numbers
πX(A), πC

X(A), πX(n, n) did not appear on the OEIS [1]. The sequence πC
X(n, n), n ∈ N, which begins

1, 1, 3, 8, 25, 83, 289, 1041, . . . , appears to match [1, Sequence A143330].

Example 4.15 (cf. Example 4.4). Figure 37 shows the graph ΓX [15] for the step set X = {(1, 0), (3, 0)}.
The numbers πX(A) are the so-called Narayana’s cows sequence [1, Sequence A000930]; cf. Remark 2.33.

We conclude this section with a short discussion of one other computational issue. In Algorithm 3, to
calculate the sets A C

X [i], i = 0, . . . , q, and hence the numbers πC
X(A), A ∈ A C

X [≤ q], we had to calculate the

graphs ΛC
X(q) and ΛC

X(Q), where Q =
⌊
µ2
µ1
· q
⌋

with µ1, µ2 as in (4.9). In general, Q could be rather bigger
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Algorithm 3 Calculate the graph ΓC
X [q].

Input: a finite step set X ⊆ Z2
× satisfying the Line Condition, a subset C of Z2 containing O, and a natural

number q ∈ N
Output: the graph ΓC

X [q]
1: Calculate the vector u using Algorithm 2
2: Calculate the values µ1 and µ2 as in (4.9)

3: Q :=
⌊
µ2
µ1
· q
⌋

4: Calculate the set A C
X (≤ q), and the graph ΛC

X(Q), using Algorithm 1
5: for i ∈ {0, . . . , q} do
6: A C

X [i] := {A ∈ A C
X (≤ q) : λQ(A) = i}

7: V := A C
X [0] ∪ · · · ∪A C

X [q], E := ∅
8: πC

X(O) := 1
9: i := 1

10: while i ≤ q do
11: for A ∈ A C

X [i] do
12: πC

X(A) := 0
13: for B ∈ X do
14: if A−B ∈ A C

X [0] ∪ · · · ∪A C
X [i− 1] then

15: πC
X(A)← πC

X(A) + πC
X(A−B)

16: E ← E ∪ {A−B B−−→ A}
17: return the graph ΓC

X [q] with vertex set V , vertex labelling function πX , and edge set E

Algorithm 3 Calculate the graph �C
X [q].

Input: a finite step set X ✓ Z2
⇥ satisfying the Line Condition, a subset C of Z2 containing O, and a natural

number q 2 N
Output: the graph �C

X [q]
1: Calculate the vector u using Algorithm 2
2: Calculate the values µ1 and µ2 as in (4.9)

3: Q :=
j

µ2

µ1
· q
k

4: Calculate the set A C
X ( q), and the graph ⇤C

X(Q), using Algorithm 1
5: for i 2 {0, . . . , q} do
6: A C

X [i] := {A 2 A C
X ( q) : �Q(A) = i}

7: V := A C
X [0] [ · · · [A C

X [q], E := ?
8: ⇡C

X(O) := 1
9: i := 1

10: while i  q do
11: for A 2 A C

X [i] do
12: ⇡C

X(A) := 0
13: for B 2 X do
14: if A�B 2 A C

X [0] [ · · · [A C
X [i� 1] then

15: ⇡C
X(A) ⇡C

X(A) + ⇡C
X(A�B)

16: E  E [ {A�B
B��! A}

17: return the graph �C
X [q] with vertex set V , vertex labelling function ⇡X , and edge set E
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Figure 34: The graph �X [7] (left) and �C
X [9] (right), where X = {(1, 0), (0, 1), (1, 1)} and C =

{(a, b) 2 N2 : b  a}; cf. Example 4.12.

than q, and this obviously depends on the ratio µ2/µ1. Since the parameters µi (i = 1, 2) were defined in
terms of the vector u, we write them as µi(u); since u is not uniquely determined by X, it may be possible
to increase the e�ciency of Algorithm 3 by varying u to find a lower value of µ2(u)/µ1(u), and hence of Q
itself.

For convenience in what follows, we assume that:

• X = {A1, . . . , An} ✓ Z2
⇥ has the FPP, with n � 2,

• starting from A1 and moving anti-clockwise, we see the points in the order A1, . . . , An (but possibly
with some points having the same polar angles, which are thus “seen” at the same time),

• the angle \A1OA2 (measured anti-clockwise) is greater than ⇡.
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Figure 34: The graph ΓX [7] (left) and ΓC
X [9] (right), where X = {(1, 0), (0, 1), (1, 1)} and C =

{(a, b) ∈ N2 : b ≤ a}; cf. Example 4.12.

than q, and this obviously depends on the ratio µ2/µ1. Since the parameters µi (i = 1, 2) were defined in
terms of the vector u, we write them as µi(u); since u is not uniquely determined by X, it may be possible
to increase the efficiency of Algorithm 3 by varying u to find a lower value of µ2(u)/µ1(u), and hence of Q
itself.

For convenience in what follows, we assume that:

• X = {A1, . . . , An} ⊆ Z2
× has the FPP, with n ≥ 2,

• starting from A1 and moving anti-clockwise, we see the points in the order A1, . . . , An (but possibly
with some points having the same polar angles, which are thus “seen” at the same time),

• the angle ∠A1OA2 (measured anti-clockwise) is greater than π.
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Figure 35: The graph �X [7] (left) and �C
X [9] (right), where X = {(1, 0), (0, 1), (1, 2)} and C =

{(a, b) 2 N2 : b  a}; cf. Example 4.13.
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Figure 36: The graph �X [7] (left) and �C
X [9] (right), where X = {(1, 0), (0, 1), (2, 2)} and C =

{(a, b) 2 N2 : b  a}; cf. Example 4.13.
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Figure 37: The graph �X [15], where X = {(1, 0), (3, 0)}; cf. Example 4.15.

This (and additional data yet to be defined) is all pictured in Figure 38. For each i 2 {1, . . . , n} we

write Ai = (xi, yi), and also ai =
�!
OAi = hxi, yii. If a1, . . . ,an all point in the same direction, then by

considering similar triangles, one may see that µ2(u)/µ1(u) does not depend on u. Thus, in what follows,
we assume the ai do not all point in the same direction.

For i = 1, 2, let Li be the line through O and Ai, and let vi be a vector perpendicular to Li pointing
into the half-plane containing X \ Li. With similar reasoning to above (considering that \A1OA2 > ⇡), we
will take v1 = hy1,�x1i and v2 = h�y2, x2i. Then u can be any vector pointing strictly between v1 and v2.
Up to scaling, any such vector has the form ut = tv1 + (1 � t)v2 for some 0 < t < 1; cf. Figure 38. We
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Figure 35: The graph ΓX [7] (left) and ΓC
X [9] (right), where X = {(1, 0), (0, 1), (1, 2)} and C =

{(a, b) ∈ N2 : b ≤ a}; cf. Example 4.13.
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Figure 35: The graph �X [7] (left) and �C
X [9] (right), where X = {(1, 0), (0, 1), (1, 2)} and C =

{(a, b) 2 N2 : b  a}; cf. Example 4.13.
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Figure 36: The graph �X [7] (left) and �C
X [9] (right), where X = {(1, 0), (0, 1), (2, 2)} and C =

{(a, b) 2 N2 : b  a}; cf. Example 4.13.
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Figure 37: The graph �X [15], where X = {(1, 0), (3, 0)}; cf. Example 4.15.

This (and additional data yet to be defined) is all pictured in Figure 38. For each i 2 {1, . . . , n} we

write Ai = (xi, yi), and also ai =
�!
OAi = hxi, yii. If a1, . . . ,an all point in the same direction, then by

considering similar triangles, one may see that µ2(u)/µ1(u) does not depend on u. Thus, in what follows,
we assume the ai do not all point in the same direction.

For i = 1, 2, let Li be the line through O and Ai, and let vi be a vector perpendicular to Li pointing
into the half-plane containing X \ Li. With similar reasoning to above (considering that \A1OA2 > ⇡), we
will take v1 = hy1,�x1i and v2 = h�y2, x2i. Then u can be any vector pointing strictly between v1 and v2.
Up to scaling, any such vector has the form ut = tv1 + (1 � t)v2 for some 0 < t < 1; cf. Figure 38. We
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Figure 36: The graph ΓX [7] (left) and ΓC
X [9] (right), where X = {(1, 0), (0, 1), (2, 2)} and C =

{(a, b) ∈ N2 : b ≤ a}; cf. Example 4.13.
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{(a, b) 2 N2 : b  a}; cf. Example 4.13.
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Figure 36: The graph �X [7] (left) and �C
X [9] (right), where X = {(1, 0), (0, 1), (2, 2)} and C =

{(a, b) 2 N2 : b  a}; cf. Example 4.13.
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Figure 37: The graph �X [15], where X = {(1, 0), (3, 0)}; cf. Example 4.15.

This (and additional data yet to be defined) is all pictured in Figure 38. For each i 2 {1, . . . , n} we

write Ai = (xi, yi), and also ai =
�!
OAi = hxi, yii. If a1, . . . ,an all point in the same direction, then by

considering similar triangles, one may see that µ2(u)/µ1(u) does not depend on u. Thus, in what follows,
we assume the ai do not all point in the same direction.

For i = 1, 2, let Li be the line through O and Ai, and let vi be a vector perpendicular to Li pointing
into the half-plane containing X \ Li. With similar reasoning to above (considering that \A1OA2 > ⇡), we
will take v1 = hy1,�x1i and v2 = h�y2, x2i. Then u can be any vector pointing strictly between v1 and v2.
Up to scaling, any such vector has the form ut = tv1 + (1 � t)v2 for some 0 < t < 1; cf. Figure 38. We
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Figure 37: The graph ΓX [15], where X = {(1, 0), (3, 0)}; cf. Example 4.15.

This (and additional data yet to be defined) is all pictured in Figure 38. For each i ∈ {1, . . . , n} we

write Ai = (xi, yi), and also ai =
−→
OAi = 〈xi, yi〉. If a1, . . . ,an all point in the same direction, then by

considering similar triangles, one may see that µ2(u)/µ1(u) does not depend on u. Thus, in what follows,
we assume the ai do not all point in the same direction.

For i = 1, 2, let Li be the line through O and Ai, and let vi be a vector perpendicular to Li pointing
into the half-plane containing X \Li. With similar reasoning to above (considering that ∠A1OA2 > π), we
will take v1 = 〈y1,−x1〉 and v2 = 〈−y2, x2〉. Then u can be any vector pointing strictly between v1 and v2.
Up to scaling, any such vector has the form ut = tv1 + (1 − t)v2 for some 0 < t < 1; cf. Figure 38. We
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therefore wish to find the value of 0 < t < 1 minimising the ratio

f(t) =
µ2(ut)

µ1(ut)
=

maxi ut · ai
mini ut · ai

= max
i,j

ut · ai
ut · aj

.

Note that ut · ai = tv1 · ai + (1− t)v2 · ai = xi(ty1 + ty2 − y2) + yi(x2 − tx1 − tx2). Some numerical method
could now be employed to minimise f(t); we could even simply calculate f(t) for several values of 0 < t < 1,
and use the vector ut corresponding to the minimal calculated value of f(t).

O

L1

v1L2

v2

ut

A3

A4

A5A1

A2

Figure 38: The lines L1,L2 and vectors v1,v2,ut constructed while discussing the minimisation of µ2/µ1.

Example 4.16. The case in which |X| = 2 is particularly simple. Indeed, consider the step set X =
{A1, A2}, and for simplicity write A1 = (a, b) and A2 = (c, d), with ∠A1OA2 > π (measured anti-clockwise).
Then one calculates

v1 = 〈b,−a〉, v2 = 〈−d, c〉, v1 · a1 = v2 · a2 = 0, v1 · a2 = v2 · a1 = bc− ad,

from which it quickly follows that

f(t) =
max(ut · a1,ut · a2)

min(ut · a1,ut · a2)
=

max
(
(1− t)(bc− ad), t(bc− ad)

)

min
(
(1− t)(bc− ad), t(bc− ad)

) =
max((1− t), t)
min((1− t), t) =

{
1−t
t if 0 < t ≤ 1

2
t

1−t if 1
2 ≤ t < 1.

This function is maximised when t = 1
2 , in which case u1/2 = 1

2(v1 + v2) = 1
2〈b − d, c − a〉. Note that

Algorithm 2 returns the vector u = 〈b− d, c− a〉, which points in the same direction as u1/2.

When |X| ≥ 3, the situation is already a little more complicated, as the next two special cases show.

Example 4.17. Consider the step set X = {N,E,A}, where N = (0, 1), E = (1, 0) and A = (a, b)
with a, b ∈ P (we consider the case that one of a, b = 0 in the next example). Algorithm 2 returns the
vector u = 〈1, 1〉. In the notation of the above discussion, we have A1 = N , A2 = E and A3 = A. Further,
v1 = 〈1, 0〉 and v2 = 〈0, 1〉, and so ut = 〈t, 1− t〉 for all 0 < t < 1. We also calculate ut ·a1 = 1− t, ut ·a2 = t
and ut · a3 = ta+ (1− t)b. Since a, b ≥ 1, we have ut · a3 ≥ 1 ≥ t, 1− t, and so

f(t) =
ta+ (1− t)b
min(t, 1− t) =

{
ta+(1−t)b

t = a− b+ b
t if 0 < t ≤ 1

2
ta+(1−t)b

1−t = b− a+ a
1−t if 1

2 ≤ t < 1.

Now, a − b + b
t is decreasing for t > 0, and b − a + a

1−t is increasing for t < 1. It follows that f(t) has

its minimum for 0 < t < 1 at t = 1
2 . Here we have u1/2 = 〈12 , 1

2〉, which points in the same direction as

u = 〈1, 1〉 from above, and the minimum value of the ratio µ2/µ1 is f(1
2) = a+ b.
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Example 4.18. Consider the step set X = {N,E, aE}, where N = (0, 1), E = (1, 0) and aE = (a, 0), for
some integer a ≥ 2 (the case with aE replaced by aN = (0, a) is symmetrical). Algorithm 2 will order the
points of X as either E, aE,N or aE,E,N . In these cases, the vector u will be given as 〈1, 1〉 or 〈1, a〉,
respectively, but both of these vectors yield a ratio of µ2/µ1 = a, and again this turns out to be the best
possible ratio. Indeed, u can be any vector pointing into the first quadrant (not including the axes); scaling,
we may assume that u = 〈1, v〉 where v > 0. Then

µ2(u)

µ1(u)
=

max(1, a, v)

min(1, a, v)
=

max(a, v)

min(1, v)
=





a
v > a if v < 1
a
1 = a if 1 ≤ v ≤ a
v
1 > a if a < v.

Thus, µ2/µ1 = µ2(u)/µ1(u) is minimised when u = 〈1, v〉 for arbitrary 1 ≤ v ≤ a, and the minimum value
is µ2/µ1 = a; this includes as extreme cases the vectors 〈1, 1〉 and 〈1, a〉 above.

It is interesting to note that in Example 4.17 there is a unique direction for u minimising µ2/µ1, but
that in Example 4.18 there is a whole interval of such directions. In both cases, Algorithm 2 produces a
vector minimising µ2/µ1.

4.4 Further examples

Figures 39–45 show the graphs ΓX [q] and ΓC
X [q] for various step sets X ⊆ Z2

×, submonoids C of Z2, and
values of q (all defined in the relevant captions); again, these were all produced using Algorithm 3, as
implemented at [26]. Figures 42–44 feature the family of step sets {(k, 0), (0, k), (1, 1)}, for k = 2, 3, 4; the
case of k = 1 was already treated in Figure 34; when k = 2 (Figure 42), we obtain a rotation of the Motzkin
triangle (cf. Figures 10 and 21); so we may think of the resulting family of numbers as being generalisations
of the Motzkin triangles. The bottom example in Figure 45 features a constraint set C4 that is not a monoid.

The reader may notice further patterns/relationships. For example, if we define X = {A,B,C} and
Y = {D,E, F}, where

A = (1, 2), B = (2, 1), C = (1, 1) and D = (3, 0), E = (0, 3), F = (1, 1),

then we have graph isomorphisms ΓX ∼= ΓY and ΓC
X
∼= ΓC

Y , where C =
{

(a, b) ∈ N2 : b ≤ a
}

; cf. Figures 39
and 43. Indeed, this is easy to understand; the subsets {A,B} ⊆ X and {D,E} ⊆ Y generate monoids
isomorphic to N2 (cf. Proposition 2.32 and Remark 2.33), and we also have A+B = 3C and D + E = 3F .

In order to avoid clutter, the directions on edges are mostly suppressed.
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Figure 41: The graph �X [8], where X = {(1, 1), (1, 2), (�2, 2)}.
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Figure 40: The graphs ΓX [6] (left) and ΓC
X [6] (right), where X = {(1, 2), (2, 1), (2, 2)} and C =

{(a, b) ∈ N2 : b ≤ a}.
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Figure 40: The graphs �X [6] (left) and �C
X [6] (right), where X = {(1, 2), (2, 1), (2, 2)} and C =

{(a, b) 2 N2 : b  a}.
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Figure 41: The graph �X [8], where X = {(1, 1), (1, 2), (�2, 2)}.
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Figure 41: The graph ΓX [8], where X = {(1, 1), (1, 2), (−2, 2)}.
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Figure 42: The graphs �X [8] (left) and �C
X [8] (right), where X = {(2, 0), (0, 2), (1, 1)} and C =�
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Figure 43: The graphs �X [7] (left) and �C
X [7], where X = {(3, 0), (0, 3), (1, 1)} and C =
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Figure 45: The graphs �X [10] (top), �C1
X [12] (second row), �C2

X [12] (third row, left), �C3
X [12] (third row,

right) and �C4
X [10] (bottom), where X = {(1, 0), (1, 1), (0, 1), (�1, 1)}, C1 = N2, C2 = {(a, b) 2 N2 : a  b},

C3 = {(a, b) 2 N2 : b  a} and C4 = {(a, b) 2 Z2 : b  3}.
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Figure 45: The graphs ΓX [10] (top), ΓC1
X [12] (second row), ΓC2

X [12] (third row, left), ΓC3
X [12] (third row,

right) and ΓC4
X [10] (bottom), where X = {(1, 0), (1, 1), (0, 1), (−1, 1)}, C1 = N2, C2 = {(a, b) ∈ N2 : a ≤ b},

C3 = {(a, b) ∈ N2 : b ≤ a} and C4 = {(a, b) ∈ Z2 : b ≤ 3}.
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