arXiv:1811.05855v1 [math.NT] 14 Nov 2018

ARITHMETIC PROGRESSIONS REPRESENTED BY
DIAGONAL TERNARY QUADRATIC FORMS

HAI-LIANG WU AND ZHI-WEI SUN

ABSTRACT. Let d > r > 0 be integers. For positive integers a, b, ¢, if
any term of the arithmetic progression {r +dn: n=0,1,2,...} can be
written as ax?+by?+cz? with x,y, z € Z, then the form ax?+by?+cz? is
called (d, r)-universal. In this paper, via the theory of ternary quadratic
forms we study the (d, r)-universality of some diagonal ternary quadratic
forms conjectured by L. Pehlivan and K. S. Williams, and Z.-W. Sun.
For example, we prove that 222 + 3y? + 1022 is (8,5)-universal, x? +
3y? + 822 and 2% + 2y? + 1222 are (10, 1)-universal and (10, 9)-universal,
and 322 + 5y + 1522 is (15, 8)-universal.

1. INTRODUCTION

Let N = {0,1,2,...}. The Gauss-Legendre theorem on sums of three
squares states that {2® +y?+2%: z,y,2 € Z} = N\ {4*(81+7): k,l € N},
A classical topic in the study of number theory asks, given a quadratic
polynomial f and an integer n, how can we decide when f represents n over
the integers? This topic has been extensively investigated. It is known that
for any a,b,c € Z* ={1,2,3,...} the exceptional set

E(a,b,c) =N\ {ax® +by* + c2*: x,y,2 € Z}

is infinite, see, e.g., [4].

An integral quadratic form f is called regular if it represents each integer
represented by the genus of f. L. E. Dickson [3, pp. 112-113] listed all the
102 regular ternary quadratic forms az?+by?+cz? together with the explicit
characterization of F(a,b, c), where 1 < a < b < ¢ € Z" and ged(a, b, ¢) = 1.
In this direction, W. C. Jagy, I. Kaplansky and A. Schiemann [7] proved
that there are at most 913 regular positive definite integral ternary quadratic
forms.

By the Gauss-Legendre theorem, for any n € N we can write 4n + 1 =
2% 4+ y? + 2% with z,y,2 € Z. It is also known that for any n € N we can
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write 2n + 1 as 2% + y? + 222 (or 2% + 2y + 322, or 22 + 2y* + 42?) with
x,y,z € Z (see, e.g., Kaplansky [10]). Thus, it is natural to introduce the
following definition.

Definition 1.1. Let d € ZT = {1,2,3,...} and r € {0,...,d — 1}. For
a,b,c € Z, if any dn + r with n € N can be written as ax? + by? + c2? with
x,y, 2 € Z, then we say that the ternary quadratic form ax? + by? + cz? is
(d, r)-universal.

In 2008, A. Alaca, S. Alaca and K. S. Williams [1] proved that there
is no binary positive definite quadratic form which can represent all non-
negative integers in a residue class. B.-K. Oh [13] showed that for some
U(x,y) € Qlx,y] the discriminant of any (d,r)-universal positive definite
integral ternary quadratic form does not exceed U(d, ).

Z.-W. Sun [17] proved that x? + 3y? + 2422 is (6, 1)-universal. Moreover,
in 2017 he [18, Remark 3.1] confirmed his conjecture that for any n € Z*
and § € {0,1} we can write 6n + 1 as 22 + 3y* + 62? with z,y, 2 € Z and
x = ¢ (mod 2). This implies that 42? + 3y* + 622 and 2% + 12y + 622
are (6,1)-universal. On August 2, 2017 Sun [19] published on OEIS his
list (based on his computation) of all possible candidates of (d, r)-universal
irregular ternary quadratic forms az?® + by* + cz? with 1 < a < b < ¢ and
3 < d < 30. For example, he conjectured that

2%+ 3y° + 727, 2 + 3y + 4227, 2 + 3y* + 5427
are all (6, 1)-universal, 2%+ 7y? + 1422 is (7, 1)-universal and x? +2y*+72? is
(7,7)-universal for each r = 1,2,3. In 2018 L. Pehlivan and K. S. Williams
[14] also investigated such problems independently, actually they studied
(d,r)-universal quadratic forms az? + by? + cz? with 1 < a < b < ¢ and
3<d< 11,

Pehlivan and Williams [14] considered the (8, 1)-universality of z2 + 8y? +
2422, 2% 4+ 29% + 6422 and 22 + 8y? + 6422 open. However, B. W. Jones and
G. Pall [9] proved in 1939 that for any n € N we can write

8n 4+ 1 =% + 8y + 6427 = 2% + 2(2y)* + 6427
with z,y, z € Z, and hence 22 + 2y? + 6422 and 2 + 8y? + 6422 are indeed
(8,1)-universal. As 8z(z + 1)/2+ 1 = (2z + 1)?, the (8, 1)-universality of
22 + 8y% + 2422 is obviously equivalent to {z(z +1)/2+y*>+32%: x,y,2z €
Z} = N, which was conjectured by Sun [16] and confirmed in [5].

The first part and Part (i) with ¢ € {2,3} of the following result were
conjectured by Pehlivan and Williams [14], as well as Sun [19].



Theorem 1.1. (i) The form 2% + 3y* + 1022 is (8, 5)-universal.
(ii) Letn € Z*, 6 € {1,9} and i € {1,2,3}. Then 10n+9 = 22 +223+ 3232
for some (w1, 32, x3) € Z* with 2 | x;.

Kaplansky [10] showed that there are at most 23 positive definite integral
ternary quadratic forms that can represent all positive odd integers (19 for
sure and 4 plausible candidates, see also Jagy [6] for further progress). Using
one of the 19 forms, we obtain the following result originally conjectured by
Sun [19].

Theorem 1.2. The forms x* + 3y* + 142% and 22* + 3y* + 72% are both
(14, 7)-universal.

Now we turn to study Sun’s conjectural (15, r)-universality of some pos-
itive definite integral ternary quadratic forms.

Theorem 1.3. (i) For anyn € N andi € {1,2,3}, there exists (x1, xa, x3) €
Z3 with 3 | z; such that 15n + 5 = 223 + 323 + ba3.

(i) The form x* + y* + 1522 is (15, 5r)-universal for r = 1,2, and 3x* +
3y? + 522 is (15,5)-universal.

(iii) For anyr = 1,2, both 2>+ y?+302% and 2z*+ 3y? + 52* are (15, 5r)-
universal. Also, the forms x*+6y*+ 1522 and 32 + 3y + 1022 are (15, 10)-
universal.

(iv) The form x* + 2y? + 1522 is (15, 3r)-universal for each r = 1,2, 3,4,
and the form 3z* + 5y* + 102* is (15, 3r)-universal for r = 1, 4.

Theorem 1.4. (i) The form z* + 3y? + 522 is (15, 3r)-universal for each
r=1,2,3,4. Also, x* + 5y + 152% is (15, 3r)-universal for r = 2, 3.

(i) The form x* + 3y? + 152% is (15, r)-universal for each r € {1,7,13}.
Also, the form z* + 15y* + 3022 is (15,r)-universal for r = 1,4, and the
form x® + 10y? + 152% is (15, 7)-universal for all v € {4,11,14}.

(iii) The form 3z*+5y*+ 622 is (15, r)-universal for each r € {8,11,14}.
Also, 3z% + 5y* + 1522 and 3x? + 5y? + 302% are both (15, 8)-universal.

Remark 1.1. Our proof of Theorem 1.4 relies heavily on the genus theory
of quadratic forms as well as the Siegel-Minkowski formula.

We will give a brief overview of the theory of ternary quadratic forms in
the next section, and show Theorem 1.1-1.4 in Sections 3-5 respectively.
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2. SOME PREPARATIONS
Let
f(z,y,2) = ax® + by* + c2* + ryz + szx + tay (2.1)

be a positive definite ternary quadratic form with integral coefficients. Its
associated matrix is

20 't s
A=1|t 2b r
s r 2

The discriminant of f is defined by d(f) := det(A)/2.
The following lemma is a fundamental result on integral representations
of quadratic forms (cf. [2, pp.129)]).

Lemma 2.1. Let f be a nonsingular integral quadratic form and let m be
a nonzero integer represented by f over the real field R and the ring Z, of
p-adic integers for each prime p. Then m is represented by some form f*
over Z with f* in the same genus of f.

Now, we introduce some standard notations in the theory of quadratic
forms which can be found in [2, 11, 15]. For the positive definite ternary
quadratic form f given by (2.1), Aut(f) denotes the group of integral isome-
tries of f. For n € N, write

r(n, f) = {(z,y,2) € Z°: f(z,y,2) = n}|

(where |S| denotes the cardinality of a set ), and let

_ r(n, f*)
r(n,gen(f)) : f*egg(f) | Aut(F) |’
where the summation is over a set of representatives of the classes in the
genus of f.
We [21] also need our earlier result obtained from the Siegel-Minkowski
formula and the knowledge of local densities.

Lemma 2.2. ( [21, Lemma 4.1]) Let f be a positive ternary quadratic form
with discriminant d(f). Suppose that m € Z* is represented by gen(f).
Then for each prime p 1 2md(f), we have

r(mp?, gen(f)) _ B (-md(f))
rimeen(n) P\ )
where (=) is the Legendre symbol.

)

(2.2)



3. PROOF OF THEOREM 1.1

Lemma 3.1. For any n € Z* and 6 € {1,9}, we can write 10n 4+ 6 =
2%+ 2y% + 322 with x,y,2 € Z and y* + 2* # 0.

Proof. By [3, pp.112-113] we can write 10n + § = z? + 2y* + 32% with
x,y,z € Z; if 10n + § is not a square then y? + 22 is obviously nonzero.

Now suppose that 10n + 6 = m? for some m € N. As n > 0, we have
m > 1.

Case 1. m has a prime factor p > 3.

In this case, by Lemma 2.2 we have

—6
r(p?, 2% 4 2y? +32%) =2 <p+ 1— <?>) .
Hence, r(m?, 2% + 2y + 32%) > r(p?, 2* + 2y + 32%) > 2. Thus, for some
(r,s,t) € Z* with s* +t* # 0 we have 10n + § = m? = r? + 2s* + 3>
Case 2. 10n + § = m? = 3% with k € Z*.
In this case,

10n+6 = 3% = (2x 3"")? +2x (371 + 3 x (3",

In view of the above, we have completed the proof. O

Lemma 3.2. Ifn = 222 + 3y*> > 0 with x,y € Z and 5 | n, then we can
write n = 2u? + 3v* with u,v € Z and 5t uv.

Proof. We use induction on k& = ords(ged(z,y)), the 5-adic order of the
greatest common divisor of x and y.

When k = 0, the desired result holds trivially.

Now let £ > 1 and assume the desired result for smaller values of k.
Write # = 5*2¢ and y = 5¥yy, where zy and 7, are integers not all divisible
by 5. Then zy + 6y or g — 6y is not divisible by 5. Hence we may
choose € € {£1} such that 5 { xg + 6eyo. Set z; = 57 1(zo + 6eyp) and
Y1 = 571 (4w — o). Then ords(ged(zy1,y1)) = k — 1. Note that

5% (222 + 3y2) = 5% 72(2(wo + 6eyo)? + 3(4dao — £p)?) = 27 + 3yl
So, applying the induction hypothesis we immediately obtain the desired
result. U

Proof of Theorem 1.1. (i) It is easy to see that 8n + 5 can be represented
by the genus of f(z,y,2) = 2% + 3y* + 1022, There are two classes in the
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genus of f, and the one not containing f has the representative g(x,y, z) =
322+ 5y? + 522 + 2yz — 2z + 2xy. It is easy to verify the following identity:

fG+y—=y+z 3) =gy, (3.1)

Suppose that 8n + 5 = g(z,y, z) for some z,y, z € Z. Then
1=8n+5=yg(x,y,2) =32°+ (y+ 2)* + 22(y — z) (mod 4).

Hence y # 2z (mod 2) and 2 | z. In light of the identity (3.1), 8n + 5 is
represented by f over Z.

By Lemma 2.1 and the above, 8n+5 can be represented by 222 +3y%+1022
over Z.

(i) Let h(x,y,2) = 2° + 2y> + 322, By [3, pp.112-113], we can write
10n + 6 = h(x,y, 2) for some z,y, z € Z.

We claim that there are u, v, w € Z with v — 2v + 4w = 0 (mod 5) such
that 10n + d = h(u, v, w). Here we handle the case § = 1. (The case § =9
can be handled similarly.)

Case 1. 22 = —1 (mod 5).

It is easy to see that y*> = 0 (mod 5) and 2> = —1 (mod 5), or y? =
1 (mod 5) and 2z? = 0 (mod 5). When 3? = 0 (mod 5) and 22 = —1 (mod 5),
without loss of generality we may assume that z = = (mod 5) (otherwise,
we may replace z by —z). If y> =1 (mod 5) and 2% = 0 (mod 5), then we
simply assume y = —2z (mod 5) without loss of generality. Note that our
choice of y and z meets the requirement x — 2y + 4z = 0 (mod 5).

Case 2. 2 =0 (mod 5).

Clearly, we have y? = —1 (mod 5) and 2? = 1 (mod 5). Without loss of
generality, we may assume that y = 2z (mod 5) and hence = — 2y + 4z =
0 (mod 5).

Case 3. 22 =1 (mod 5).

Apparently, we have y?> = 2? (mod 5). By Lemmas 3.1 and 3.2, we may
simply assume that 5 1 yz. When y? = 2?2 = 2?2 = 1 (mod 5), without
loss of generality we may assume that x = y = —2z (mod 5). If 3? = 2% =
(22)* = —1 (mod 5), then we may assume that y = z = 2z (mod 5) without
any loss of generality. So, in this case our choice of y and z also meets the
requirement x — 2y + 4z = 0 (mod 5).

In view of the above analysis, we may simply assume x — 2y + 4z =
0 (mod 5) without any loss of generality. Note that h(z,y, z) = h(z*, y*, 2*),



where
P TR 2?5 e # z (mod 2),
¥ =2y — z+ 22" Z x (mod 2),
y* =y — 32+ 32" Zy (mod 2).
So we have the desired result in part (i) of Theorem 1.1. O

4. PROOFS OF THEOREMS 1.2-1.3
Proof of Theorem 1.2. By [10], we can write 2n+1 = F(r, s,t) with r, s,t €
Z, where F(x,y,z) = 2% + 3y* + 2yz + 52°. Since
(2r — 3t)? + 3(r + 2t)* + 14s*> = TF(r, 5, )
and
2(s +3t) +3(25 — t)> + Tr* = TF(r, s,1),

we see that 7(2n + 1) is represented by the form z? + 3y* + 1422 as well as
the form 2x2 + 3y* + 722 O

Proof of Theorem 1.3. (i) By [3, pp.112-113], we may write 3n + 1 =
r? + 52 + 6t? with r, s, € Z. One may easily verify the following identities:

5(r* + 5% + 6t%) = 2(r & 3t)* + 3(r F 2t)* + 55
= 2(s £ 3t)* + 3(s F 2t)* + 5r’.
As exactly one of r and s is divisible by 3, one of the the four numbers r+2¢

and s + 2t is a multiple of 3. This proves part (i) of Theorem 1.3.

(ii) Let » € {1,2}. By [3, pp.112-113], for some z,y,z € Z we have
3n +r = a? +y? + 322 Hence

15n + 5r = 5(2% + y> 4+ 322) = (z + 2y)° + (22 — y)* + 152%

By [3, pp.112-113], we may write 3n+1 = u?+3v*+3w? with u,v,w € Z.
Thus

151 + 5 = 5(u? + 3v* 4 3w?) = 3(v + 2w)* + 3(2v — w)* + 5u’.

(iii) Let r € {1,2}. By [3, pp.112-113], there are u,v,w € Z such that
3n +1r = r? + s? + 6t2. There are two classes in the genus of the form
22 +1y%+3022, and the one not containing 22 + 1%+ 3022 has a representative
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222 + 3y? + 522 Since
150 + 5r =5(2? + y* + 62%)
=(x + 2y)* + (2z — y)* + 302
=2(x 4 32)* + 3(x — 22)* + 5y,
we see that 15n+5r is represented by 224y +3022 as well as 22 +3y>+ 522
By [3, pp.112-113], we can write 3n+2 = 2u?+3v?+3w? with u, v, w € Z.

There are two classes in the genus of 2 + 6y? + 1522, and the one not
containing % + 6y? + 1522 has a representative 322 + 3y? + 1022, As

151 + 10 =5(2u* 4 3v* + 3w?)
=(2u + 3v)* + 6(u — v)* + 15w?
=3(u + 2v)* + 3(2v — w)* + 10u?,
we see that 15n + 10 is represented by 22 + 6y? + 1522 as well as 322 + 3y +
1022.
(iv) Let r € {1,2,3,4}. By [3, pp.112-113], there are z,y,z € Z such
that 5n +r = 22 + 2y% + 52%. Hence
15n + 3r = 3(2% + 2y* + 52%) = (v — 2y)* + 2(x + y)? + 1522
Now let r € {1,4}. By [3, pp.112-113], there are u,v,w € Z such that
5n 4+ r = u? + 50 + 10w?. Thus,
15n + 3r = 3(u® + 5v* + 10w?) = 3u® + 5(v — 2w)? + 10(v + w)>.

In view of the above, we have completed the proof of Theorem 1.3. [

5. PROOF OF THEOREM 1.4

Proof of Theorem 1.4(i). Let r € {1,2,3,4}. It is easy to see that 15n + 3r
can be represented by fi(z,y,2) = 2% + 3y? + 522 locally. There are two
classes in the genus of f;, and the one not containing f; has a representative
folx,y,2) = 2% + 2y? + 822 — 2yz. One may easily verify the following

identities:
rT—y—2z A T rT—y—2z
3 3 3
rT+y—+=z T+y—+z T+y—+z
fl (+ +22a + -, + _Z) :f2($,y,z)- (52)

Suppose that 15n + 3r = fy(z,y, z) with z,y, 2 € Z. Then
2? = (y+2)° = fo(x,y,2) =0 (mod 3),
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and hence (x —y — z)/3 or (r +y + z)/3 is an integer. Therefore, by (5.1),
(5.2) and Lemma 2.1, we obtain that z* + 3y* + 52% is (15, 3r)-universal.

Now let » € {2,3}. One can easily verify that 15n + 3r is represented
by the genus of g(x,y,2) = 2 + 5y* + 152%. There are two classes in the
genus of g, and the one not containing g; has a representative gs(x,y, z) =
4x% + 4y? + 52 + 2xy. Tt is easy to verify the identity

gl<y+x++:|:5z’x_$+?;i2’ x+giz>:g2(:ﬂ,y,z). (5.3)

If 15n + 3r = gs(x,y, 2) with z,y, z € Z, then

(x+1)* - 2* = go(2,9,2) =0 (mod 3)

Thus, with the help of (5.3) and Lemma 2.1, we obtain the desired result.
O

Lemma 5.1. (Oh [12]) Let V' be a positive definite ternary quadratic space
over Q. For any isometry T € O(V) of infinite order,

Vi = {x € V : there is a positive integer k such that T"(x) = '}

is a subspace of V' of dimension one, and T'(x) = det(T)x for any x € Vr.

Remark 5.1. Unexplained notations of quadratic space can be found in [2,
11, 15].

Lemma 5.2. Let n € N and r € {1,7,13}. If we can write 15n +r =
folz,y, 2) = 322 +4y* +42% +2yz with x,y, z € Z, then there are u,v,w € Z
with u + 2v — 2w # 0 (mod 3) such that 15n +r = fo(u, v, w).

Proof. Suppose that every integral solution of the equation fy(z,y,2) =
15n+r satisfies 42y —22z = 0 (mod 3). We want to deduce a contradiction.
Let

1/3 2/3 —-2/3
T=1-2/3 2/3 1/3 |,
2/3 1/3 2/3
and let V' be the quadratic space corresponding to fs. Since
x4+ 2y — 2z r+ 2y —2z r+ 2y —2z

(5.4)
we have T" € O(V). One may easily verify that the order of 7" is infinite
and the space Vr defined in Lemma 5.1 coincides with {(0,¢,¢) : t € Q}. As
15n + 1 # f5(0,t,t) for any ¢t € Z, we have 15n +r = fo(x0, Yo, 20) for some
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(20,90, 20) € 73\ V. Clearly, the set {T%(zq, o, 20) : k = 0} is infinite and
its elements are solutions to the equation fo(z,y,2) = 15n + r. This leads
a contradiction since the number of integral representations of any integer
by a positive quadratic forms is finite. O

Lemma 5.3. (Jagy [8]) If n = 222 + 2zy + 3y* (z,y € Z) is a positive
integer divisible by 3, then there are u,v € Z with 3 { uv such that n =
2u? + 2uv + 3v2.

The following lemma is a known result, see, e.g., [8, 9, 12, 18|.

Lemma 5.4. If n = 2% + y? (z,y € Z) is a positive integer divisible by 5,
then n = u? + v for some u,v € Z with 5 { uv.

Proof of Theorem 1.4(ii). (a) For each r € {1,7,13}, it is easy to see that
15n + r can be represented by the genus of fi(x,vy,2) = 2% + 3y* + 1522
There are two classes in the genus of fi(z,y, z), and the one not containing
f1 has a representative fo(x,y, z) = 32% + 4y* + 42 + 2yz. One may easily
verify the following identities:

T — 2 T+

fl (l’ _y+za 3 Y —Z, 3 y) :fQ(IayaZ)> (55)
Tr— 2z T+ z

O e o) VS

Suppose that 15n + r = fy(x,y, z) for some x,y,z € Z. As 3ty or 31 z,
when 3 { x we may assume that (z +y)(z + 2) = 0 (mod 3) (otherwise we
may replace x by —x) without loss of generality. If 3 | x and y #Z z (mod 3),
then 3 | yz and hence (x + y)(x + 2) = 0 (mod 3). In the remaining case
3| z and y = z (mod 3), we have x+2y —2z = 0 (mod 3); however, we may
apply Lemma 5.2 to choose integers u, v, w € Z so that 15n+r = fo(u, v, w)
and u + 2v — 2w # 0 (mod 3).

In view of the above analysis, there always exist u,v,w € Z with (u +
v)(u+w) = 0 (mod 3) such that 15n+r = fo(u,v,w). With the help of (5.5),
(5.6), and Lemma 2.1, we obtain the (15, r)-universality of 2 + 3y* + 1522.

(b) Let r € {1,4}. One can easily verify that 15n + r can be represented
by gi(z,y,2) = x* + 15y? + 3022 locally. There are two classes in the
genus of g, and the one not containing g; has a representative gs(x,y, z) =
622 + 9y* + 1022 — Gzy.
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Suppose that 15n + r = gs(x,y, z) with z,y,z € Z. Clearly 3 {1 z. Since
15n +r # 1022, by Lemma 5.3 we may assume that x and y are not all
divisible by 3. Thus we just need to consider the following two cases.

Case bl. 31 .

When this occurs, without loss of generality, we may assume that = =
—2z (mod 3) (otherwise we may replace z be —z). In view of the identity

rT—22 T4z

L ) o) 57)

there are z*, y*, z* € Z such that 15n + ¢ = g1(z*, y*, 2*).
Case b2. 3|z and 31y
In this case, with the help of the identity

g1 <:r — 3y,

92(3: - Y, =Y, Z) = 92($ayaz)>

we return to Case bl since x — y #Z 0 (mod 3).

Now applying Lemma Lem2.1 we immediately obtain the (15, r)-universality
of 22 + 5y? + 3022

(c¢) For any r € {4,11,14}, it is easy to verify that 15n + r can be
represented by hy(z,y, 2) = 22 + 10y? + 1522 locally. There are two classes
in the genus of h;, and the one not containing h; has a representative
ho(z,y, 2) = 52 + 5y? + 622

Suppose that 15n + r = hy(z,y, 2) with z,y, z € Z. Since 15n +r # 622,
by Lemma 5.4 and the symmetry of 2 and y, we simply assume 5 t y without
loss of generality. We claim that we may adjust the signs of z, y, z to satisfy
the congruence (2z +y + 2z)(x — 2y — 22) = 0 (mod 5).

Case cl. > = y? (mod 5).

Without loss of generality, we may assume z = y = 2z (mod 5) if 2% =
y? = 2? (mod 5), and . = —y = —22 (mod 5) if 2? = y? = —2? (mod 5).
So our claim holds in this case.

Case c2. 22 = —y? (mod 5).

If 22 = —y? = 2% (mod 5), without loss of generality, we may assume that
r= -2y =2z (mod5). If 22 = —y?> = —2? (mod 5), we may assume that
r = —2y = 2z (mod 5) without loss of any generality. Thus z,y, z satisfy
the desired congruence in our claim.

Case c3. 2 =0 (mod 5).

If 4> = 2% (mod 5), we may assume that y = —z (mod 5). If y*> =
—2? (mod 5), without loss of generality, we may assume that y = —2z (mod 5).
Clearly, our claim also holds in this case.
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In view of the above analysis, there are x,y, 2z € Z with 20 4+ y + 2z =
0 (mod 5) or x — 2y — 2z = 0 (mod 5) such that 15n 4+ r = he(z,y, z). One
may easily verify the following identities

2 2 2 2

hy (I — 9y, W _ 2 W) —ho(z, Y, 2), (5.8)
— 2y — 2 — 2y — 2

hy (1’ + 2y, % + z, %) =hy(z,y, 2). (5.9)

With the help of (5.8), (5.9) and Lemma 2.1, the (15, r)-universality of
2?2 + 10y? + 1522 is valid. O

Lemma 5.5. Let n € N and go(z,y, 2) = 22* + 8y* + 152% — 2xy. Assume
that 15n + 8 = go(x,y, 2) for some x,y,z € Z with y*> + 2> # 0. Then
15n + 8 = go(u, v, w) for some u,v,w € Z with 31 v + w.

Proof. Suppose that every integral solution of the equation go(z,y,z) =
15n + 8 satisfies y + 2 = 0 (mod 3). We want to deduce a contradiction.
Let

1 —2/3 —2/3
T=1|0 —1/3 —4/3
0 2/3 -1/3

and let V' be the quadratic space corresponding to g,. Since

—2y—2z —y—4z 2y—=z\
g2 <LE+ 3 ) 3 ) 3 - 92(x7y72)'

We have T' € O(V). One may easily verify that the order of 7" is infinite
and the space Vr defined in Lemma 5.1 coincides with {(,0,0) : t € Q}.
By the assumption in the lemma, we have 15n + 8 = go(z0, Yo, 20) for some
(20, %0, 20) € Z3\Vy. Note that the set {T*(z0, yo, 20) : k > 0} is infinite and
all elements of this set are solutions to the equation go(z,y,2) = 15n + 8.
This leads to a contradiction since the number of integral representations
of any integer by a positive quadratic forms is finite. O

Proof of Theorem 1.4(iii). (a) Let r € {8,11,14}. It is easy to see that
15n + 7 can be represented by fi(z,y,z) = 322 + 5y + 622 locally. There
are two classes in the genus of f;, and the one not containing f; has a
representative fo(x,y,2) = 22% + 6y + 92 + 6yz.

Suppose that 15n +r = fy(x,y, z) for some z,y,z € Z. Then 3 1 z.

Case 1. 31y.
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In this case, without loss of generality we may assume that + = —y (mod 3)

(otherwise we may replace x by —z). In view of the identity

2r — T+
fl < 3 Y -z 7Y, 3 Y —|—Z) = fQ(LU,y,Z), (510)

there are z*, y*, 2* € Z such that 15n + 0 = fi(z*, y*, 2%).

Case 2. y*+ 2z #0 and 3 | y.

When this occurs, by Lemma 5.3 we may simply assume that 3 1 z. With
the help of the identity

fg(!li’, Y+ z, _Z) = f2(I,y,Z),

we return to Case 1.
Case 3. 15n + r = 2m? for some m € N.
When 15n + r = 2m? = 2 x 22¢ with k£ > 1, we have

15n 47 =2x 2% =3 x (2"1)* 45 x (271)? + 6 x 0%.

Now suppose that m has a prime factor p > 5. By Lemma 2.2 we have
-5
r(2p%, 1) + (207, f2) = 2 (p +1-— <?)) > 10. (5.11)

Clearly r(2p?, f1) > 5 or r(2p?%, f2) > 5. When r(2p?, f1) > 5, the number
2m? can be represented by fi over Z since r(2m?, fi) = r(2p%, f1). When
r(2p%, fo) > 5, there are u, v, w € Z with v*>+w? # 0 such that fo(u, v, w) =
15n 4+ r. By Lemma 5.3, we return to Case 1 or Case 2.

In view of the above, by applying Lemma 2.1 we get the (15, r)-universality
of 322 + 5y? + 622

(b) Tt is easy to see that 15n + 8 can be represented by the genus of
g1(z,y,2) = 32? + 5y* + 1522, There are two classes in the genus of g,
and the one not containing g, has a representative gs(z,y, 2) = 222 + 8y +
152% — 2xy.

Suppose that the equation 15n + 8 = go(z,y, 2) is solvable over Z. We
claim that there are u,v,w € Z with (u+ w)(u —v —w) = 0 (mod 3) such
that 15n + 8 = go(u, v, w).

Case 1. 3 | x.

Clearly, 3 1 y. If 3 1 z, without loss of generality we may assume that
z = —y (mod 3) (otherwise we replace z by —z). Then (u,v,w) = (z,y, 2)
meets our purpose.

Case 2. 31z and y? + 22 # 0.
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In this case, by Lemma 5.5 there are 2/,y/, 2’ € Z with 3 1 ¢/ + 2’ such
that 15n 4+ 8 = go(2/, ¢/, 2’). If 2/ = ¢ (mod 3), then by using the identity

Gz —y, —y, 2) = g2(x,y, 2),

we return to Case 1. If 2/ # ¢’ (mod 3), then 3 | 3/ and 3 1 2’ since
(' +¢)> = 1 (mod 3) and 3 1 2/. Without loss of generality, we may
assume that 2’ = —2' (mod 3). So (u,v,w) = (2, y’, z’) meets our purpose.
Case 3. 15n + 8 = 2m? with m € N.
If m = 2* for some k € ZT, then

2m? =3 x (2" 12 45 x (2712 + 15 x 02,

Now suppose that m has a prime factor p > 5. By Lemma 2.2, we have

r(2p%, 1) + r(2p°, g2) = 2 (p +1-— (%2)) > 10. (5.12)

Clearly, r(2p? g1) > 5 or r(2p%,¢2) > 5. When r(2p? g1) > 5, we have
r(2m?,g1) > r(2p?, g1) > 5. If r(2p?, g2) > 5, then there exist xq, yo, 20 € Z
with y2 + 23 # 0 such that 15n + 8 = ga(z0, yo, 20). So we are reduced to
previous cases.

In view of the proved claim, the (15,8)-universality of g; follows from
Lemma 2.1 and the identities

xr — bz T+ z
g1 -y, —Y+z, — = go(,y, 2),

3 3
rT—yY—=z

X — —Z
gl(LﬂLer?z,y—z, 5

3 ) = go(2,y, 2).

(c) One may easily verify that 15n+8 can be represented by hi(x,y, 2) =
322 + 5y? + 3022 locally. There are two classes in the genus of h;, and the
one not containing h; has a representative hy(z,y, z) = 22? + 15y + 1522

Suppose that the equation 15n + 8 = hy(x,y, z) for some x,y,z € Z. In
light of Lemma 5.4, we may assume 5 { y if 4> + 22 > 0. We claim that
there are u, v, w € Z with (u — v 4+ 2w)(u — 2v + w) = 0 (mod 5) such that
15n 4 8 = ha(u, v, w).

Case 1. y?> = £2% (mod 5) and y* + 2% # 0, where € € {£1}.

If y? = 2 = 2? (mod 5), then we may assume that z = y = z (mod 5).

If y> = 22 = —2? (mod 5), without loss of generality we may assume that
r = —2y = 2z (mod 5). So, (u,v,w) = (x,y,z) meets our requirement in
the case ¢ = 1. The case ¢ = —1 can be handled similarly.

Case 3. 15n + 8 is twice a square, say 2m? with m € Z*.



15
When m = 2F with k € Z*, we have
15m+8=2x2% =3 x (2" 12 + 5 x (2"1)? + 30 x 0%

Now assume that m has a prime factor p > 5. By Lemma 2.2, we have
-1
2r(2p%, hy) 4+ 7(2p%, ho) = 2 (p +1-— <—)) > 10. (5.13)
p

Clearly r(2p?, hy) > 4 or r(2p?, hy) > 4. If r(2p?, hy) > 4, then r(2m?, hy) >
r(2p%, hy) > 4. When r(2p?, hy) > 4, there exist u, v, w € Z with v2+w? # 0
such that go(u, v, w) = 2m?. Thus we are reduced to Case 1.

In view of the proved claim and the identities

2 3y — — 2
5 5
2 -3 -2
—hy [y + 22, Mij, S ’
5 )
by applying Lemma 2.1 we obtain the (15,8)-universality of 3z% + 5y +
3022 L]
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