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ARITHMETIC PROGRESSIONS REPRESENTED BY

DIAGONAL TERNARY QUADRATIC FORMS

HAI-LIANG WU AND ZHI-WEI SUN

Abstract. Let d > r ≥ 0 be integers. For positive integers a, b, c, if
any term of the arithmetic progression {r+ dn : n = 0, 1, 2, . . .} can be
written as ax2+by2+cz2 with x, y, z ∈ Z, then the form ax2+by2+cz2 is
called (d, r)-universal. In this paper, via the theory of ternary quadratic
forms we study the (d, r)-universality of some diagonal ternary quadratic
forms conjectured by L. Pehlivan and K. S. Williams, and Z.-W. Sun.
For example, we prove that 2x2 + 3y2 + 10z2 is (8, 5)-universal, x2 +
3y2+8z2 and x2 +2y2+12z2 are (10, 1)-universal and (10, 9)-universal,
and 3x2 + 5y2 + 15z2 is (15, 8)-universal.

1. Introduction

Let N = {0, 1, 2, . . .}. The Gauss-Legendre theorem on sums of three

squares states that {x2+y2+ z2 : x, y, z ∈ Z} = N\{4k(8l+7) : k, l ∈ N}.

A classical topic in the study of number theory asks, given a quadratic

polynomial f and an integer n, how can we decide when f represents n over

the integers? This topic has been extensively investigated. It is known that

for any a, b, c ∈ Z+ = {1, 2, 3, . . .} the exceptional set

E(a, b, c) = N \ {ax2 + by2 + cz2 : x, y, z ∈ Z}

is infinite, see, e.g., [4].

An integral quadratic form f is called regular if it represents each integer

represented by the genus of f . L. E. Dickson [3, pp. 112-113] listed all the

102 regular ternary quadratic forms ax2+by2+cz2 together with the explicit

characterization of E(a, b, c), where 1 6 a 6 b 6 c ∈ Z+ and gcd(a, b, c) = 1.

In this direction, W. C. Jagy, I. Kaplansky and A. Schiemann [7] proved

that there are at most 913 regular positive definite integral ternary quadratic

forms.

By the Gauss-Legendre theorem, for any n ∈ N we can write 4n + 1 =

x2 + y2 + z2 with x, y, z ∈ Z. It is also known that for any n ∈ N we can
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write 2n + 1 as x2 + y2 + 2z2 (or x2 + 2y2 + 3z2, or x2 + 2y2 + 4z2) with

x, y, z ∈ Z (see, e.g., Kaplansky [10]). Thus, it is natural to introduce the

following definition.

Definition 1.1. Let d ∈ Z+ = {1, 2, 3, . . .} and r ∈ {0, . . . , d − 1}. For

a, b, c ∈ Z, if any dn+ r with n ∈ N can be written as ax2 + by2 + cz2 with

x, y, z ∈ Z, then we say that the ternary quadratic form ax2 + by2 + cz2 is

(d, r)-universal.

In 2008, A. Alaca, S. Alaca and K. S. Williams [1] proved that there

is no binary positive definite quadratic form which can represent all non-

negative integers in a residue class. B.-K. Oh [13] showed that for some

U(x, y) ∈ Q[x, y] the discriminant of any (d, r)-universal positive definite

integral ternary quadratic form does not exceed U(d, r).

Z.-W. Sun [17] proved that x2 + 3y2 + 24z2 is (6, 1)-universal. Moreover,

in 2017 he [18, Remark 3.1] confirmed his conjecture that for any n ∈ Z+

and δ ∈ {0, 1} we can write 6n + 1 as x2 + 3y2 + 6z2 with x, y, z ∈ Z and

x ≡ δ (mod 2). This implies that 4x2 + 3y2 + 6z2 and x2 + 12y2 + 6z2

are (6, 1)-universal. On August 2, 2017 Sun [19] published on OEIS his

list (based on his computation) of all possible candidates of (d, r)-universal

irregular ternary quadratic forms ax2 + by2 + cz2 with 1 6 a 6 b 6 c and

3 6 d 6 30. For example, he conjectured that

x2 + 3y2 + 7z2, x2 + 3y2 + 42z2, x2 + 3y2 + 54z2

are all (6, 1)-universal, x2+7y2+14z2 is (7, 1)-universal and x2+2y2+7z2 is

(7, r)-universal for each r = 1, 2, 3. In 2018 L. Pehlivan and K. S. Williams

[14] also investigated such problems independently, actually they studied

(d, r)-universal quadratic forms ax2 + by2 + cz2 with 1 6 a 6 b 6 c and

3 6 d 6 11.

Pehlivan and Williams [14] considered the (8, 1)-universality of x2+8y2+

24z2, x2 +2y2 + 64z2 and x2 + 8y2 +64z2 open. However, B. W. Jones and

G. Pall [9] proved in 1939 that for any n ∈ N we can write

8n+ 1 = x2 + 8y2 + 64z2 = x2 + 2(2y)2 + 64z2

with x, y, z ∈ Z, and hence x2 + 2y2 + 64z2 and x2 + 8y2 + 64z2 are indeed

(8, 1)-universal. As 8x(x + 1)/2 + 1 = (2x + 1)2, the (8, 1)-universality of

x2 + 8y2 + 24z2 is obviously equivalent to {x(x+ 1)/2+ y2 + 3z2 : x, y, z ∈

Z} = N, which was conjectured by Sun [16] and confirmed in [5].

The first part and Part (ii) with i ∈ {2, 3} of the following result were

conjectured by Pehlivan and Williams [14], as well as Sun [19].
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Theorem 1.1. (i) The form 2x2 + 3y2 + 10z2 is (8, 5)-universal.

(ii) Let n ∈ Z+, δ ∈ {1, 9} and i ∈ {1, 2, 3}. Then 10n+δ = x2
1+2x2

2+3x2
3

for some (x1, x2, x3) ∈ Z3 with 2 | xi.

Kaplansky [10] showed that there are at most 23 positive definite integral

ternary quadratic forms that can represent all positive odd integers (19 for

sure and 4 plausible candidates, see also Jagy [6] for further progress). Using

one of the 19 forms, we obtain the following result originally conjectured by

Sun [19].

Theorem 1.2. The forms x2 + 3y2 + 14z2 and 2x2 + 3y2 + 7z2 are both

(14, 7)-universal.

Now we turn to study Sun’s conjectural (15, r)-universality of some pos-

itive definite integral ternary quadratic forms.

Theorem 1.3. (i) For any n ∈ N and i ∈ {1, 2, 3}, there exists (x1, x2, x3) ∈

Z3 with 3 | xi such that 15n+ 5 = 2x2
1 + 3x2

2 + 5x2
3.

(ii) The form x2 + y2 + 15z2 is (15, 5r)-universal for r = 1, 2, and 3x2 +

3y2 + 5z2 is (15, 5)-universal.

(iii) For any r = 1, 2, both x2+y2+30z2 and 2x2+3y2+5z2 are (15, 5r)-

universal. Also, the forms x2+6y2+15z2 and 3x2+3y2+10z2 are (15, 10)-

universal.

(iv) The form x2 + 2y2 + 15z2 is (15, 3r)-universal for each r = 1, 2, 3, 4,

and the form 3x2 + 5y2 + 10z2 is (15, 3r)-universal for r = 1, 4.

Theorem 1.4. (i) The form x2 + 3y2 + 5z2 is (15, 3r)-universal for each

r = 1, 2, 3, 4. Also, x2 + 5y2 + 15z2 is (15, 3r)-universal for r = 2, 3.

(ii) The form x2 + 3y2 + 15z2 is (15, r)-universal for each r ∈ {1, 7, 13}.

Also, the form x2 + 15y2 + 30z2 is (15, r)-universal for r = 1, 4, and the

form x2 + 10y2 + 15z2 is (15, r)-universal for all r ∈ {4, 11, 14}.

(iii) The form 3x2+5y2+6z2 is (15, r)-universal for each r ∈ {8, 11, 14}.

Also, 3x2 + 5y2 + 15z2 and 3x2 + 5y2 + 30z2 are both (15, 8)-universal.

Remark 1.1. Our proof of Theorem 1.4 relies heavily on the genus theory

of quadratic forms as well as the Siegel-Minkowski formula.

We will give a brief overview of the theory of ternary quadratic forms in

the next section, and show Theorem 1.1-1.4 in Sections 3-5 respectively.
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2. Some preparations

Let

f(x, y, z) = ax2 + by2 + cz2 + ryz + szx+ txy (2.1)

be a positive definite ternary quadratic form with integral coefficients. Its

associated matrix is

A =





2a t s
t 2b r
s r 2c



 .

The discriminant of f is defined by d(f) := det(A)/2.

The following lemma is a fundamental result on integral representations

of quadratic forms (cf. [2, pp.129]).

Lemma 2.1. Let f be a nonsingular integral quadratic form and let m be

a nonzero integer represented by f over the real field R and the ring Zp of

p-adic integers for each prime p. Then m is represented by some form f ∗

over Z with f ∗ in the same genus of f .

Now, we introduce some standard notations in the theory of quadratic

forms which can be found in [2, 11, 15]. For the positive definite ternary

quadratic form f given by (2.1), Aut(f) denotes the group of integral isome-

tries of f . For n ∈ N, write

r(n, f) := |{(x, y, z) ∈ Z3 : f(x, y, z) = n}|

(where |S| denotes the cardinality of a set S), and let

r(n, gen(f)) :=
∑

f∗∈gen(f)

r(n, f ∗)

| Aut(f ∗) |
,

where the summation is over a set of representatives of the classes in the

genus of f .

We [21] also need our earlier result obtained from the Siegel-Minkowski

formula and the knowledge of local densities.

Lemma 2.2. ( [21, Lemma 4.1]) Let f be a positive ternary quadratic form

with discriminant d(f). Suppose that m ∈ Z+ is represented by gen(f).

Then for each prime p ∤ 2md(f), we have

r(mp2, gen(f))

r(m, gen(f))
= p+ 1−

(

−md(f)

p

)

, (2.2)

where ( ·

p
) is the Legendre symbol.
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3. Proof of Theorem 1.1

Lemma 3.1. For any n ∈ Z+ and δ ∈ {1, 9}, we can write 10n + δ =

x2 + 2y2 + 3z2 with x, y, z ∈ Z and y2 + z2 6= 0.

Proof. By [3, pp.112–113] we can write 10n + δ = x2 + 2y2 + 3z2 with

x, y, z ∈ Z; if 10n+ δ is not a square then y2 + z2 is obviously nonzero.

Now suppose that 10n + δ = m2 for some m ∈ N. As n > 0, we have

m > 1.

Case 1. m has a prime factor p > 3.

In this case, by Lemma 2.2 we have

r(p2, x2 + 2y2 + 3z2) = 2

(

p+ 1−

(

−6

p

))

.

Hence, r(m2, x2 + 2y2 + 3z2) > r(p2, x2 + 2y2 + 3z2) > 2. Thus, for some

(r, s, t) ∈ Z3 with s2 + t2 6= 0 we have 10n+ δ = m2 = r2 + 2s2 + 3t2.

Case 2. 10n+ δ = m2 = 32k with k ∈ Z+.

In this case,

10n+ δ = 32k = (2× 3k−1)2 + 2× (3k−1)2 + 3× (3k−1)2.

In view of the above, we have completed the proof. �

Lemma 3.2. If n = 2x2 + 3y2 > 0 with x, y ∈ Z and 5 | n, then we can

write n = 2u2 + 3v2 with u, v ∈ Z and 5 ∤ uv.

Proof. We use induction on k = ord5(gcd(x, y)), the 5-adic order of the

greatest common divisor of x and y.

When k = 0, the desired result holds trivially.

Now let k > 1 and assume the desired result for smaller values of k.

Write x = 5kx0 and y = 5ky0, where x0 and y0 are integers not all divisible

by 5. Then x0 + 6y0 or x0 − 6y0 is not divisible by 5. Hence we may

choose ε ∈ {±1} such that 5 ∤ x0 + 6εy0. Set x1 = 5k−1(x0 + 6εy0) and

y1 = 5k−1(4x0 − εy0). Then ord5(gcd(x1, y1)) = k − 1. Note that

52k(2x2
0 + 3y20) = 52k−2(2(x0 + 6εy0)

2 + 3(4x0 − εy0)
2) = 2x2

1 + 3y21.

So, applying the induction hypothesis we immediately obtain the desired

result. �

Proof of Theorem 1.1. (i) It is easy to see that 8n + 5 can be represented

by the genus of f(x, y, z) = 2x2 + 3y2 + 10z2. There are two classes in the
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genus of f , and the one not containing f has the representative g(x, y, z) =

3x2+5y2+5z2+2yz−2zx+2xy. It is easy to verify the following identity:

f(
x

2
+ y − z, y + z,

x

2
) = g(x, y, z). (3.1)

Suppose that 8n+ 5 = g(x, y, z) for some x, y, z ∈ Z. Then

1 ≡ 8n+ 5 = g(x, y, z) ≡ 3x2 + (y + z)2 + 2x(y − z) (mod 4).

Hence y 6≡ z (mod 2) and 2 | x. In light of the identity (3.1), 8n + 5 is

represented by f over Z.

By Lemma 2.1 and the above, 8n+5 can be represented by 2x2+3y2+10z2

over Z.

(ii) Let h(x, y, z) = x2 + 2y2 + 3z2. By [3, pp.112–113], we can write

10n+ δ = h(x, y, z) for some x, y, z ∈ Z.

We claim that there are u, v, w ∈ Z with u− 2v + 4w ≡ 0 (mod 5) such

that 10n+ δ = h(u, v, w). Here we handle the case δ = 1. (The case δ = 9

can be handled similarly.)

Case 1. x2 ≡ −1 (mod 5).

It is easy to see that y2 ≡ 0 (mod 5) and z2 ≡ −1 (mod 5), or y2 ≡

1 (mod 5) and z2 ≡ 0 (mod 5). When y2 ≡ 0 (mod 5) and z2 ≡ −1 (mod 5),

without loss of generality we may assume that z ≡ x (mod 5) (otherwise,

we may replace z by −z). If y2 ≡ 1 (mod 5) and z2 ≡ 0 (mod 5), then we

simply assume y ≡ −2x (mod 5) without loss of generality. Note that our

choice of y and z meets the requirement x− 2y + 4z ≡ 0 (mod 5).

Case 2. x2 ≡ 0 (mod 5).

Clearly, we have y2 ≡ −1 (mod 5) and z2 ≡ 1 (mod 5). Without loss of

generality, we may assume that y ≡ 2z (mod 5) and hence x − 2y + 4z ≡

0 (mod 5).

Case 3. x2 ≡ 1 (mod 5).

Apparently, we have y2 ≡ z2 (mod 5). By Lemmas 3.1 and 3.2, we may

simply assume that 5 ∤ yz. When y2 ≡ z2 ≡ x2 ≡ 1 (mod 5), without

loss of generality we may assume that x ≡ y ≡ −z (mod 5). If y2 ≡ z2 ≡

(2x)2 ≡ −1 (mod 5), then we may assume that y ≡ z ≡ 2x (mod 5) without

any loss of generality. So, in this case our choice of y and z also meets the

requirement x− 2y + 4z ≡ 0 (mod 5).

In view of the above analysis, we may simply assume x − 2y + 4z ≡

0 (mod 5) without any loss of generality. Note that h(x, y, z) = h(x∗, y∗, z∗),
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where

z∗ =
x− 2y + 4z

5
6≡ z (mod 2),

x∗ =2y − z + 2z∗ 6≡ x (mod 2),

y∗ =y − 3z + 3z∗ 6≡ y (mod 2).

So we have the desired result in part (ii) of Theorem 1.1. �

4. Proofs of Theorems 1.2-1.3

Proof of Theorem 1.2. By [10], we can write 2n+1 = F (r, s, t) with r, s, t ∈

Z, where F (x, y, z) = x2 + 3y2 + 2yz + 5z2. Since

(2r − 3t)2 + 3(r + 2t)2 + 14s2 = 7F (r, s, t)

and

2(s+ 3t)2 + 3(2s− t)2 + 7r2 = 7F (r, s, t),

we see that 7(2n+ 1) is represented by the form x2 + 3y2 + 14z2 as well as

the form 2x2 + 3y2 + 7z2. �

Proof of Theorem 1.3. (i) By [3, pp.112–113], we may write 3n + 1 =

r2 + s2 + 6t2 with r, s, t ∈ Z. One may easily verify the following identities:

5(r2 + s2 + 6t2) = 2(r ± 3t)2 + 3(r ∓ 2t)2 + 5s2

= 2(s± 3t)2 + 3(s∓ 2t)2 + 5r2.

As exactly one of r and s is divisible by 3, one of the the four numbers r±2t

and s± 2t is a multiple of 3. This proves part (i) of Theorem 1.3.

(ii) Let r ∈ {1, 2}. By [3, pp.112–113], for some x, y, z ∈ Z we have

3n + r = x2 + y2 + 3z2. Hence

15n+ 5r = 5(x2 + y2 + 3z2) = (x+ 2y)2 + (2x− y)2 + 15z2.

By [3, pp.112–113], we may write 3n+1 = u2+3v2+3w2 with u, v, w ∈ Z.

Thus

15n+ 5 = 5(u2 + 3v2 + 3w2) = 3(v + 2w)2 + 3(2v − w)2 + 5u2.

(iii) Let r ∈ {1, 2}. By [3, pp.112–113], there are u, v, w ∈ Z such that

3n + r = r2 + s2 + 6t2. There are two classes in the genus of the form

x2+y2+30z2, and the one not containing x2+y2+30z2 has a representative
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2x2 + 3y2 + 5z2. Since

15n+ 5r =5(x2 + y2 + 6z2)

=(x+ 2y)2 + (2x− y)2 + 30z2

=2(x+ 3z)2 + 3(x− 2z)2 + 5y2,

we see that 15n+5r is represented by x2+y2+30z2 as well as 2x2+3y2+5z2.

By [3, pp.112–113], we can write 3n+2 = 2u2+3v2+3w2 with u, v, w ∈ Z.

There are two classes in the genus of x2 + 6y2 + 15z2, and the one not

containing x2 + 6y2 + 15z2 has a representative 3x2 + 3y2 + 10z2. As

15n+ 10 =5(2u2 + 3v2 + 3w2)

=(2u+ 3v)2 + 6(u− v)2 + 15w2

=3(u+ 2v)2 + 3(2v − w)2 + 10u2,

we see that 15n+10 is represented by x2+6y2+15z2 as well as 3x2+3y2+

10z2.

(iv) Let r ∈ {1, 2, 3, 4}. By [3, pp.112–113], there are x, y, z ∈ Z such

that 5n+ r = x2 + 2y2 + 5z2. Hence

15n+ 3r = 3(x2 + 2y2 + 5z2) = (x− 2y)2 + 2(x+ y)2 + 15z2.

Now let r ∈ {1, 4}. By [3, pp.112–113], there are u, v, w ∈ Z such that

5n + r = u2 + 5v2 + 10w2. Thus,

15n+ 3r = 3(u2 + 5v2 + 10w2) = 3u2 + 5(v − 2w)2 + 10(v + w)2.

In view of the above, we have completed the proof of Theorem 1.3. �

5. Proof of Theorem 1.4

Proof of Theorem 1.4(i). Let r ∈ {1, 2, 3, 4}. It is easy to see that 15n+ 3r

can be represented by f1(x, y, z) = x2 + 3y2 + 5z2 locally. There are two

classes in the genus of f1, and the one not containing f1 has a representative

f2(x, y, z) = x2 + 2y2 + 8z2 − 2yz. One may easily verify the following

identities:

f1

(

x− y − z

3
− 2z,

x− y − z

3
+ y,

x− y − z

3
+ z

)

=f2(x, y, z), (5.1)

f1

(

x+ y + z

3
+ 2z,

x+ y + z

3
− y,

x+ y + z

3
− z

)

=f2(x, y, z). (5.2)

Suppose that 15n+ 3r = f2(x, y, z) with x, y, z ∈ Z. Then

x2 − (y + z)2 ≡ f2(x, y, z) ≡ 0 (mod 3),
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and hence (x− y − z)/3 or (x+ y + z)/3 is an integer. Therefore, by (5.1),

(5.2) and Lemma 2.1, we obtain that x2 + 3y2 + 5z2 is (15, 3r)-universal.

Now let r ∈ {2, 3}. One can easily verify that 15n + 3r is represented

by the genus of g1(x, y, z) = x2 + 5y2 + 15z2. There are two classes in the

genus of g1, and the one not containing g1 has a representative g2(x, y, z) =

4x2 + 4y2 + 5z2 + 2xy. It is easy to verify the identity

g1

(

y +
x+ y ∓ 5z

3
, x−

x+ y ± z

3
,
x+ y ± z

3

)

= g2(x, y, z). (5.3)

If 15n+ 3r = g2(x, y, z) with x, y, z ∈ Z, then

(x+ y)2 − z2 ≡ g2(x, y, z) ≡ 0 (mod 3)

Thus, with the help of (5.3) and Lemma 2.1, we obtain the desired result.

�

Lemma 5.1. (Oh [12]) Let V be a positive definite ternary quadratic space

over Q. For any isometry T ∈ O(V ) of infinite order,

VT = {x ∈ V : there is a positive integer k such that T k(x) = x}

is a subspace of V of dimension one, and T (x) = det(T )x for any x ∈ VT .

Remark 5.1. Unexplained notations of quadratic space can be found in [2,

11, 15].

Lemma 5.2. Let n ∈ N and r ∈ {1, 7, 13}. If we can write 15n + r =

f2(x, y, z) = 3x2+4y2+4z2+2yz with x, y, z ∈ Z, then there are u, v, w ∈ Z

with u+ 2v − 2w 6≡ 0 (mod 3) such that 15n+ r = f2(u, v, w).

Proof. Suppose that every integral solution of the equation f2(x, y, z) =

15n+r satisfies x+2y−2z ≡ 0 (mod 3). We want to deduce a contradiction.

Let

T =





1/3 2/3 −2/3
−2/3 2/3 1/3
2/3 1/3 2/3



 ,

and let V be the quadratic space corresponding to f2. Since

f2

(

x+ 2y − 2z

3
,−x+ z +

x+ 2y − 2z

3
, x+ y −

x+ 2y − 2z

3

)

= f2(x, y, z),

(5.4)

we have T ∈ O(V ). One may easily verify that the order of T is infinite

and the space VT defined in Lemma 5.1 coincides with {(0, t, t) : t ∈ Q}. As

15n+ r 6= f2(0, t, t) for any t ∈ Z, we have 15n+ r = f2(x0, y0, z0) for some
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(x0, y0, z0) ∈ Z3 \ VT . Clearly, the set {T k(x0, y0, z0) : k > 0} is infinite and

its elements are solutions to the equation f2(x, y, z) = 15n + r. This leads

a contradiction since the number of integral representations of any integer

by a positive quadratic forms is finite. �

Lemma 5.3. (Jagy [8]) If n = 2x2 + 2xy + 3y2 (x, y ∈ Z) is a positive

integer divisible by 3, then there are u, v ∈ Z with 3 ∤ uv such that n =

2u2 + 2uv + 3v2.

The following lemma is a known result, see, e.g., [8, 9, 12, 18].

Lemma 5.4. If n = x2 + y2 (x, y ∈ Z) is a positive integer divisible by 5,

then n = u2 + v2 for some u, v ∈ Z with 5 ∤ uv.

Proof of Theorem 1.4(ii). (a) For each r ∈ {1, 7, 13}, it is easy to see that

15n + r can be represented by the genus of f1(x, y, z) = x2 + 3y2 + 15z2.

There are two classes in the genus of f1(x, y, z), and the one not containing

f1 has a representative f2(x, y, z) = 3x2 + 4y2 + 4z2 + 2yz. One may easily

verify the following identities:

f1

(

x− y + z,
x− 2y

3
− z,

x+ y

3

)

=f2(x, y, z), (5.5)

f1

(

x+ y − z,
x− 2z

3
− y,

x+ z

3

)

=f2(x, y, z). (5.6)

Suppose that 15n + r = f2(x, y, z) for some x, y, z ∈ Z. As 3 ∤ y or 3 ∤ z,

when 3 ∤ x we may assume that (x + y)(x+ z) ≡ 0 (mod 3) (otherwise we

may replace x by −x) without loss of generality. If 3 | x and y 6≡ z (mod 3),

then 3 | yz and hence (x + y)(x + z) ≡ 0 (mod 3). In the remaining case

3 | x and y ≡ z (mod 3), we have x+2y−2z ≡ 0 (mod 3); however, we may

apply Lemma 5.2 to choose integers u, v, w ∈ Z so that 15n+r = f2(u, v, w)

and u+ 2v − 2w 6≡ 0 (mod 3).

In view of the above analysis, there always exist u, v, w ∈ Z with (u +

v)(u+w) ≡ 0 (mod 3) such that 15n+r = f2(u, v, w). With the help of (5.5),

(5.6), and Lemma 2.1, we obtain the (15, r)-universality of x2 +3y2 + 15z2.

(b) Let r ∈ {1, 4}. One can easily verify that 15n+ r can be represented

by g1(x, y, z) = x2 + 15y2 + 30z2 locally. There are two classes in the

genus of g1, and the one not containing g1 has a representative g2(x, y, z) =

6x2 + 9y2 + 10z2 − 6xy.
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Suppose that 15n + r = g2(x, y, z) with x, y, z ∈ Z. Clearly 3 ∤ z. Since

15n + r 6= 10z2, by Lemma 5.3 we may assume that x and y are not all

divisible by 3. Thus we just need to consider the following two cases.

Case b1. 3 ∤ x.

When this occurs, without loss of generality, we may assume that x ≡

−z (mod 3) (otherwise we may replace z be −z). In view of the identity

g1

(

x− 3y,
x− 2z

3
,
x+ z

3

)

= g2(x, y, z), (5.7)

there are x∗, y∗, z∗ ∈ Z such that 15n+ δ = g1(x
∗, y∗, z∗).

Case b2. 3 | x and 3 ∤ y

In this case, with the help of the identity

g2(x− y, −y, z) = g2(x, y, z),

we return to Case b1 since x− y 6≡ 0 (mod 3).

Now applying Lemma Lem2.1 we immediately obtain the (15, r)-universality

of x2 + 5y2 + 30z2.

(c) For any r ∈ {4, 11, 14}, it is easy to verify that 15n + r can be

represented by h1(x, y, z) = x2 + 10y2 + 15z2 locally. There are two classes

in the genus of h1, and the one not containing h1 has a representative

h2(x, y, z) = 5x2 + 5y2 + 6z2.

Suppose that 15n+ r = h2(x, y, z) with x, y, z ∈ Z. Since 15n+ r 6= 6z2,

by Lemma 5.4 and the symmetry of x and y, we simply assume 5 ∤ y without

loss of generality. We claim that we may adjust the signs of x, y, z to satisfy

the congruence (2x+ y + 2z)(x− 2y − 2z) ≡ 0 (mod 5).

Case c1. x2 ≡ y2 (mod 5).

Without loss of generality, we may assume x ≡ y ≡ z (mod 5) if x2 ≡

y2 ≡ z2 (mod 5), and x ≡ −y ≡ −2z (mod 5) if x2 ≡ y2 ≡ −z2 (mod 5).

So our claim holds in this case.

Case c2. x2 ≡ −y2 (mod 5).

If x2 ≡ −y2 ≡ z2 (mod 5), without loss of generality, we may assume that

x ≡ −2y ≡ z (mod 5). If x2 ≡ −y2 ≡ −z2 (mod 5), we may assume that

x ≡ −2y ≡ 2z (mod 5) without loss of any generality. Thus x, y, z satisfy

the desired congruence in our claim.

Case c3. x2 ≡ 0 (mod 5).

If y2 ≡ z2 (mod 5), we may assume that y ≡ −z (mod 5). If y2 ≡

−z2 (mod 5), without loss of generality, we may assume that y ≡ −2z (mod 5).

Clearly, our claim also holds in this case.
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In view of the above analysis, there are x, y, z ∈ Z with 2x + y + 2z ≡

0 (mod 5) or x− 2y − 2z ≡ 0 (mod 5) such that 15n+ r = h2(x, y, z). One

may easily verify the following identities

h1

(

x− 2y,
2x+ y + 2z

5
− z,

2x+ y + 2z

5

)

=h2(x, y, z), (5.8)

h1

(

x+ 2y,
x− 2y − 2z

5
+ z,

x− 2y − 2z

5

)

=h2(x, y, z). (5.9)

With the help of (5.8), (5.9) and Lemma 2.1, the (15, r)-universality of

x2 + 10y2 + 15z2 is valid. �

Lemma 5.5. Let n ∈ N and g2(x, y, z) = 2x2 + 8y2 + 15z2 − 2xy. Assume

that 15n + 8 = g2(x, y, z) for some x, y, z ∈ Z with y2 + z2 6= 0. Then

15n+ 8 = g2(u, v, w) for some u, v, w ∈ Z with 3 ∤ v + w.

Proof. Suppose that every integral solution of the equation g2(x, y, z) =

15n+ 8 satisfies y + z ≡ 0 (mod 3). We want to deduce a contradiction.

Let

T =





1 −2/3 −2/3
0 −1/3 −4/3
0 2/3 −1/3





and let V be the quadratic space corresponding to g2. Since

g2

(

x+
−2y − 2z

3
,
−y − 4z

3
,
2y − z

3

)

= g2(x, y, z).

We have T ∈ O(V ). One may easily verify that the order of T is infinite

and the space VT defined in Lemma 5.1 coincides with {(t, 0, 0) : t ∈ Q}.

By the assumption in the lemma, we have 15n+ 8 = g2(x0, y0, z0) for some

(x0, y0, z0) ∈ Z3\VT . Note that the set {T
k(x0, y0, z0) : k > 0} is infinite and

all elements of this set are solutions to the equation g2(x, y, z) = 15n + 8.

This leads to a contradiction since the number of integral representations

of any integer by a positive quadratic forms is finite. �

Proof of Theorem 1.4(iii). (a) Let r ∈ {8, 11, 14}. It is easy to see that

15n + r can be represented by f1(x, y, z) = 3x2 + 5y2 + 6z2 locally. There

are two classes in the genus of f1, and the one not containing f1 has a

representative f2(x, y, z) = 2x2 + 6y2 + 9z2 + 6yz.

Suppose that 15n+ r = f2(x, y, z) for some x, y, z ∈ Z. Then 3 ∤ x.

Case 1. 3 ∤ y.
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In this case, without loss of generality we may assume that x ≡ −y (mod 3)

(otherwise we may replace x by −x). In view of the identity

f1

(

2x− y

3
− z, −y,

x+ y

3
+ z

)

= f2(x, y, z), (5.10)

there are x∗, y∗, z∗ ∈ Z such that 15n+ δ = f1(x
∗, y∗, z∗).

Case 2. y2 + z2 6= 0 and 3 | y.

When this occurs, by Lemma 5.3 we may simply assume that 3 ∤ z. With

the help of the identity

f2(x, y + z, −z) = f2(x, y, z),

we return to Case 1.

Case 3. 15n+ r = 2m2 for some m ∈ N.

When 15n+ r = 2m2 = 2× 22k with k > 1, we have

15n+ r = 2× 22k = 3× (2k−1)2 + 5× (2k−1)2 + 6× 02.

Now suppose that m has a prime factor p > 5. By Lemma 2.2 we have

r(2p2, f1) + r(2p2, f2) = 2

(

p+ 1−

(

−5

p

))

> 10. (5.11)

Clearly r(2p2, f1) > 5 or r(2p2, f2) > 5. When r(2p2, f1) > 5, the number

2m2 can be represented by f1 over Z since r(2m2, f1) > r(2p2, f1). When

r(2p2, f2) > 5, there are u, v, w ∈ Z with v2+w2 6= 0 such that f2(u, v, w) =

15n+ r. By Lemma 5.3, we return to Case 1 or Case 2.

In view of the above, by applying Lemma 2.1 we get the (15, r)-universality

of 3x2 + 5y2 + 6z2.

(b) It is easy to see that 15n + 8 can be represented by the genus of

g1(x, y, z) = 3x2 + 5y2 + 15z2. There are two classes in the genus of g1,

and the one not containing g1 has a representative g2(x, y, z) = 2x2 +8y2+

15z2 − 2xy.

Suppose that the equation 15n + 8 = g2(x, y, z) is solvable over Z. We

claim that there are u, v, w ∈ Z with (u+ w)(u− v − w) ≡ 0 (mod 3) such

that 15n+ 8 = g2(u, v, w).

Case 1. 3 | x.

Clearly, 3 ∤ y. If 3 ∤ z, without loss of generality we may assume that

z ≡ −y (mod 3) (otherwise we replace z by −z). Then (u, v, w) = (x, y, z)

meets our purpose.

Case 2. 3 ∤ x and y2 + z2 6= 0.
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In this case, by Lemma 5.5 there are x′, y′, z′ ∈ Z with 3 ∤ y′ + z′ such

that 15n+ 8 = g2(x
′, y′, z′). If x′ ≡ y′ (mod 3), then by using the identity

g2(x− y, −y, z) = g2(x, y, z),

we return to Case 1. If x′ 6≡ y′ (mod 3), then 3 | y′ and 3 ∤ z′ since

(x′ + y′)2 ≡ 1 (mod 3) and 3 ∤ x′. Without loss of generality, we may

assume that x′ ≡ −z′ (mod 3). So (u, v, w) = (x′, y′, z′) meets our purpose.

Case 3. 15n+ 8 = 2m2 with m ∈ N.

If m = 2k for some k ∈ Z+, then

2m2 = 3× (2k−1)2 + 5× (2k−1)2 + 15× 02.

Now suppose that m has a prime factor p > 5. By Lemma 2.2, we have

r(2p2, g1) + r(2p2, g2) = 2

(

p+ 1−

(

−2

p

))

> 10. (5.12)

Clearly, r(2p2, g1) > 5 or r(2p2, g2) > 5. When r(2p2, g1) > 5, we have

r(2m2, g1) ≥ r(2p2, g1) > 5. If r(2p2, g2) > 5, then there exist x0, y0, z0 ∈ Z

with y20 + z20 6= 0 such that 15n + 8 = g2(x0, y0, z0). So we are reduced to

previous cases.

In view of the proved claim, the (15, 8)-universality of g1 follows from

Lemma 2.1 and the identities

g1

(

x− 5z

3
− y, −y + z, −

x+ z

3

)

= g2(x, y, z),

g1

(

x− y − z

3
+ y + 2z, y − z,

x− y − z

3

)

= g2(x, y, z).

(c) One may easily verify that 15n+8 can be represented by h1(x, y, z) =

3x2 + 5y2 + 30z2 locally. There are two classes in the genus of h1, and the

one not containing h1 has a representative h2(x, y, z) = 2x2 + 15y2 + 15z2.

Suppose that the equation 15n + 8 = h2(x, y, z) for some x, y, z ∈ Z. In

light of Lemma 5.4, we may assume 5 ∤ y if y2 + z2 > 0. We claim that

there are u, v, w ∈ Z with (u− v + 2w)(u− 2v + w) ≡ 0 (mod 5) such that

15n+ 8 = h2(u, v, w).

Case 1. y2 ≡ εz2 (mod 5) and y2 + z2 6= 0, where ε ∈ {±1}.

If y2 ≡ z2 ≡ x2 (mod 5), then we may assume that x ≡ y ≡ z (mod 5).

If y2 ≡ z2 ≡ −x2 (mod 5), without loss of generality we may assume that

x ≡ −2y ≡ 2z (mod 5). So, (u, v, w) = (x, y, z) meets our requirement in

the case ε = 1. The case ε = −1 can be handled similarly.

Case 3. 15n+ 8 is twice a square, say 2m2 with m ∈ Z+.
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When m = 2k with k ∈ Z+, we have

15n+ 8 = 2× 22k = 3× (2k−1)2 + 5× (2k−1)2 + 30× 02.

Now assume that m has a prime factor p > 5. By Lemma 2.2, we have

2r(2p2, h1) + r(2p2, h2) = 2

(

p+ 1−

(

−1

p

))

> 10. (5.13)

Clearly r(2p2, h1) ≥ 4 or r(2p2, h2) ≥ 4. If r(2p2, h1) ≥ 4, then r(2m2, h1) ≥

r(2p2, h1) ≥ 4. When r(2p2, h2) ≥ 4, there exist u, v, w ∈ Z with v2+w2 6= 0

such that g2(u, v, w) = 2m2. Thus we are reduced to Case 1.

In view of the proved claim and the identities

h2(x, y, z) =h1

(

2y + z,
2x+ 3y − z

5
− z,

x− y + 2z

5

)

=h1

(

y + 2z,
2x+ y − 3z

5
+ y,

x− 2y + z

5

)

,

by applying Lemma 2.1 we obtain the (15, 8)-universality of 3x2 + 5y2 +

30z2. �
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