# ARITHMETIC PROGRESSIONS REPRESENTED BY DIAGONAL TERNARY QUADRATIC FORMS 

HAI-LIANG WU AND ZHI-WEI SUN


#### Abstract

Let $d>r \geq 0$ be integers. For positive integers $a, b, c$, if any term of the arithmetic progression $\{r+d n: n=0,1,2, \ldots\}$ can be written as $a x^{2}+b y^{2}+c z^{2}$ with $x, y, z \in \mathbb{Z}$, then the form $a x^{2}+b y^{2}+c z^{2}$ is called ( $d, r$ )-universal. In this paper, via the theory of ternary quadratic forms we study the $(d, r)$-universality of some diagonal ternary quadratic forms conjectured by L. Pehlivan and K. S. Williams, and Z.-W. Sun. For example, we prove that $2 x^{2}+3 y^{2}+10 z^{2}$ is ( 8,5 )-universal, $x^{2}+$ $3 y^{2}+8 z^{2}$ and $x^{2}+2 y^{2}+12 z^{2}$ are ( 10,1 )-universal and ( 10,9 )-universal, and $3 x^{2}+5 y^{2}+15 z^{2}$ is ( 15,8 )-universal.


## 1. Introduction

Let $\mathbb{N}=\{0,1,2, \ldots\}$. The Gauss-Legendre theorem on sums of three squares states that $\left\{x^{2}+y^{2}+z^{2}: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} \backslash\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$. A classical topic in the study of number theory asks, given a quadratic polynomial $f$ and an integer $n$, how can we decide when $f$ represents $n$ over the integers? This topic has been extensively investigated. It is known that for any $a, b, c \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ the exceptional set

$$
E(a, b, c)=\mathbb{N} \backslash\left\{a x^{2}+b y^{2}+c z^{2}: x, y, z \in \mathbb{Z}\right\}
$$

is infinite, see, e.g., [4].
An integral quadratic form $f$ is called regular if it represents each integer represented by the genus of $f$. L. E. Dickson [3, pp. 112-113] listed all the 102 regular ternary quadratic forms $a x^{2}+b y^{2}+c z^{2}$ together with the explicit characterization of $E(a, b, c)$, where $1 \leqslant a \leqslant b \leqslant c \in \mathbb{Z}^{+}$and $\operatorname{gcd}(a, b, c)=1$. In this direction, W. C. Jagy, I. Kaplansky and A. Schiemann [7] proved that there are at most 913 regular positive definite integral ternary quadratic forms.

By the Gauss-Legendre theorem, for any $n \in \mathbb{N}$ we can write $4 n+1=$ $x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$. It is also known that for any $n \in \mathbb{N}$ we can

[^0]write $2 n+1$ as $x^{2}+y^{2}+2 z^{2}$ (or $x^{2}+2 y^{2}+3 z^{2}$, or $x^{2}+2 y^{2}+4 z^{2}$ ) with $x, y, z \in \mathbb{Z}$ (see, e.g., Kaplansky [10]). Thus, it is natural to introduce the following definition.

Definition 1.1. Let $d \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ and $r \in\{0, \ldots, d-1\}$. For $a, b, c \in \mathbb{Z}$, if any $d n+r$ with $n \in \mathbb{N}$ can be written as $a x^{2}+b y^{2}+c z^{2}$ with $x, y, z \in \mathbb{Z}$, then we say that the ternary quadratic form $a x^{2}+b y^{2}+c z^{2}$ is ( $d, r$ )-universal.

In 2008, A. Alaca, S. Alaca and K. S. Williams [1] proved that there is no binary positive definite quadratic form which can represent all nonnegative integers in a residue class. B.-K. Oh [13] showed that for some $U(x, y) \in \mathbb{Q}[x, y]$ the discriminant of any $(d, r)$-universal positive definite integral ternary quadratic form does not exceed $U(d, r)$.
Z.-W. Sun [17] proved that $x^{2}+3 y^{2}+24 z^{2}$ is $(6,1)$-universal. Moreover, in 2017 he [18, Remark 3.1] confirmed his conjecture that for any $n \in \mathbb{Z}^{+}$ and $\delta \in\{0,1\}$ we can write $6 n+1$ as $x^{2}+3 y^{2}+6 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x \equiv \delta(\bmod 2)$. This implies that $4 x^{2}+3 y^{2}+6 z^{2}$ and $x^{2}+12 y^{2}+6 z^{2}$ are $(6,1)$-universal. On August 2, 2017 Sun [19] published on OEIS his list (based on his computation) of all possible candidates of $(d, r)$-universal irregular ternary quadratic forms $a x^{2}+b y^{2}+c z^{2}$ with $1 \leqslant a \leqslant b \leqslant c$ and $3 \leqslant d \leqslant 30$. For example, he conjectured that

$$
x^{2}+3 y^{2}+7 z^{2}, x^{2}+3 y^{2}+42 z^{2}, x^{2}+3 y^{2}+54 z^{2}
$$

are all $(6,1)$-universal, $x^{2}+7 y^{2}+14 z^{2}$ is $(7,1)$-universal and $x^{2}+2 y^{2}+7 z^{2}$ is (7, $r$ )-universal for each $r=1,2,3$. In 2018 L. Pehlivan and K. S. Williams [14] also investigated such problems independently, actually they studied ( $d, r$ )-universal quadratic forms $a x^{2}+b y^{2}+c z^{2}$ with $1 \leqslant a \leqslant b \leqslant c$ and $3 \leqslant d \leqslant 11$.

Pehlivan and Williams [14] considered the ( 8,1 )-universality of $x^{2}+8 y^{2}+$ $24 z^{2}, x^{2}+2 y^{2}+64 z^{2}$ and $x^{2}+8 y^{2}+64 z^{2}$ open. However, B. W. Jones and G. Pall [9] proved in 1939 that for any $n \in \mathbb{N}$ we can write

$$
8 n+1=x^{2}+8 y^{2}+64 z^{2}=x^{2}+2(2 y)^{2}+64 z^{2}
$$

with $x, y, z \in \mathbb{Z}$, and hence $x^{2}+2 y^{2}+64 z^{2}$ and $x^{2}+8 y^{2}+64 z^{2}$ are indeed $(8,1)$-universal. As $8 x(x+1) / 2+1=(2 x+1)^{2}$, the $(8,1)$-universality of $x^{2}+8 y^{2}+24 z^{2}$ is obviously equivalent to $\left\{x(x+1) / 2+y^{2}+3 z^{2}: x, y, z \in\right.$ $\mathbb{Z}\}=\mathbb{N}$, which was conjectured by Sun [16] and confirmed in [5].

The first part and Part (ii) with $i \in\{2,3\}$ of the following result were conjectured by Pehlivan and Williams [14], as well as Sun [19].

Theorem 1.1. (i) The form $2 x^{2}+3 y^{2}+10 z^{2}$ is $(8,5)$-universal.
(ii) Let $n \in \mathbb{Z}^{+}, \delta \in\{1,9\}$ and $i \in\{1,2,3\}$. Then $10 n+\delta=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}$ for some $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{3}$ with $2 \mid x_{i}$.

Kaplansky [10] showed that there are at most 23 positive definite integral ternary quadratic forms that can represent all positive odd integers (19 for sure and 4 plausible candidates, see also Jagy [6] for further progress). Using one of the 19 forms, we obtain the following result originally conjectured by Sun [19].

Theorem 1.2. The forms $x^{2}+3 y^{2}+14 z^{2}$ and $2 x^{2}+3 y^{2}+7 z^{2}$ are both $(14,7)$-universal.

Now we turn to study Sun's conjectural ( $15, r$ )-universality of some positive definite integral ternary quadratic forms.

Theorem 1.3. (i) For any $n \in \mathbb{N}$ and $i \in\{1,2,3\}$, there exists $\left(x_{1}, x_{2}, x_{3}\right) \in$ $\mathbb{Z}^{3}$ with $3 \mid x_{i}$ such that $15 n+5=2 x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}$.
(ii) The form $x^{2}+y^{2}+15 z^{2}$ is $(15,5 r)$-universal for $r=1,2$, and $3 x^{2}+$ $3 y^{2}+5 z^{2}$ is $(15,5)$-universal.
(iii) For any $r=1,2$, both $x^{2}+y^{2}+30 z^{2}$ and $2 x^{2}+3 y^{2}+5 z^{2}$ are $(15,5 r)$ universal. Also, the forms $x^{2}+6 y^{2}+15 z^{2}$ and $3 x^{2}+3 y^{2}+10 z^{2}$ are $(15,10)-$ universal.
(iv) The form $x^{2}+2 y^{2}+15 z^{2}$ is $(15,3 r)$-universal for each $r=1,2,3,4$, and the form $3 x^{2}+5 y^{2}+10 z^{2}$ is $(15,3 r)$-universal for $r=1,4$.

Theorem 1.4. (i) The form $x^{2}+3 y^{2}+5 z^{2}$ is ( $15,3 r$ )-universal for each $r=1,2,3,4$. Also, $x^{2}+5 y^{2}+15 z^{2}$ is $(15,3 r)$-universal for $r=2,3$.
(ii) The form $x^{2}+3 y^{2}+15 z^{2}$ is $(15, r)$-universal for each $r \in\{1,7,13\}$. Also, the form $x^{2}+15 y^{2}+30 z^{2}$ is $(15, r)$-universal for $r=1,4$, and the form $x^{2}+10 y^{2}+15 z^{2}$ is $(15, r)$-universal for all $r \in\{4,11,14\}$.
(iii) The form $3 x^{2}+5 y^{2}+6 z^{2}$ is $(15, r)$-universal for each $r \in\{8,11,14\}$. Also, $3 x^{2}+5 y^{2}+15 z^{2}$ and $3 x^{2}+5 y^{2}+30 z^{2}$ are both $(15,8)$-universal.

Remark 1.1. Our proof of Theorem 1.4 relies heavily on the genus theory of quadratic forms as well as the Siegel-Minkowski formula.

We will give a brief overview of the theory of ternary quadratic forms in the next section, and show Theorem 1.1-1.4 in Sections 3-5 respectively.

## 2. Some preparations

Let

$$
\begin{equation*}
f(x, y, z)=a x^{2}+b y^{2}+c z^{2}+r y z+s z x+t x y \tag{2.1}
\end{equation*}
$$

be a positive definite ternary quadratic form with integral coefficients. Its associated matrix is

$$
A=\left(\begin{array}{ccc}
2 a & t & s \\
t & 2 b & r \\
s & r & 2 c
\end{array}\right)
$$

The discriminant of $f$ is defined by $d(f):=\operatorname{det}(A) / 2$.
The following lemma is a fundamental result on integral representations of quadratic forms (cf. [2, pp.129]).

Lemma 2.1. Let $f$ be a nonsingular integral quadratic form and let $m$ be a nonzero integer represented by $f$ over the real field $\mathbb{R}$ and the ring $\mathbb{Z}_{p}$ of $p$-adic integers for each prime $p$. Then $m$ is represented by some form $f^{*}$ over $\mathbb{Z}$ with $f^{*}$ in the same genus of $f$.

Now, we introduce some standard notations in the theory of quadratic forms which can be found in $[2,11,15]$. For the positive definite ternary quadratic form $f$ given by (2.1), Aut $(f)$ denotes the group of integral isometries of $f$. For $n \in \mathbb{N}$, write

$$
r(n, f):=\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: f(x, y, z)=n\right\}\right|
$$

(where $|S|$ denotes the cardinality of a set $S$ ), and let

$$
r(n, \operatorname{gen}(f)):=\sum_{f^{*} \in \operatorname{gen}(f)} \frac{r\left(n, f^{*}\right)}{\left|\operatorname{Aut}\left(f^{*}\right)\right|}
$$

where the summation is over a set of representatives of the classes in the genus of $f$.

We [21] also need our earlier result obtained from the Siegel-Minkowski formula and the knowledge of local densities.

Lemma 2.2. ( [21, Lemma 4.1]) Let $f$ be a positive ternary quadratic form with discriminant $d(f)$. Suppose that $m \in \mathbb{Z}^{+}$is represented by gen $(f)$. Then for each prime $p \nmid 2 m d(f)$, we have

$$
\begin{equation*}
\frac{r\left(m p^{2}, \operatorname{gen}(f)\right)}{r(m, \operatorname{gen}(f))}=p+1-\left(\frac{-m d(f)}{p}\right), \tag{2.2}
\end{equation*}
$$

where $(\dot{\bar{p}})$ is the Legendre symbol.

## 3. Proof of Theorem 1.1

Lemma 3.1. For any $n \in \mathbb{Z}^{+}$and $\delta \in\{1,9\}$, we can write $10 n+\delta=$ $x^{2}+2 y^{2}+3 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $y^{2}+z^{2} \neq 0$.

Proof. By [3, pp.112-113] we can write $10 n+\delta=x^{2}+2 y^{2}+3 z^{2}$ with $x, y, z \in \mathbb{Z}$; if $10 n+\delta$ is not a square then $y^{2}+z^{2}$ is obviously nonzero.

Now suppose that $10 n+\delta=m^{2}$ for some $m \in \mathbb{N}$. As $n>0$, we have $m>1$.

Case 1. $m$ has a prime factor $p>3$.
In this case, by Lemma 2.2 we have

$$
r\left(p^{2}, x^{2}+2 y^{2}+3 z^{2}\right)=2\left(p+1-\left(\frac{-6}{p}\right)\right)
$$

Hence, $r\left(m^{2}, x^{2}+2 y^{2}+3 z^{2}\right) \geqslant r\left(p^{2}, x^{2}+2 y^{2}+3 z^{2}\right)>2$. Thus, for some $(r, s, t) \in \mathbb{Z}^{3}$ with $s^{2}+t^{2} \neq 0$ we have $10 n+\delta=m^{2}=r^{2}+2 s^{2}+3 t^{2}$.

Case 2. $10 n+\delta=m^{2}=3^{2 k}$ with $k \in \mathbb{Z}^{+}$.
In this case,

$$
10 n+\delta=3^{2 k}=\left(2 \times 3^{k-1}\right)^{2}+2 \times\left(3^{k-1}\right)^{2}+3 \times\left(3^{k-1}\right)^{2}
$$

In view of the above, we have completed the proof.

Lemma 3.2. If $n=2 x^{2}+3 y^{2}>0$ with $x, y \in \mathbb{Z}$ and $5 \mid n$, then we can write $n=2 u^{2}+3 v^{2}$ with $u, v \in \mathbb{Z}$ and $5 \nmid u v$.

Proof. We use induction on $k=\operatorname{ord}_{5}(\operatorname{gcd}(x, y))$, the 5 -adic order of the greatest common divisor of $x$ and $y$.

When $k=0$, the desired result holds trivially.
Now let $k \geqslant 1$ and assume the desired result for smaller values of $k$. Write $x=5^{k} x_{0}$ and $y=5^{k} y_{0}$, where $x_{0}$ and $y_{0}$ are integers not all divisible by 5 . Then $x_{0}+6 y_{0}$ or $x_{0}-6 y_{0}$ is not divisible by 5 . Hence we may choose $\varepsilon \in\{ \pm 1\}$ such that $5 \nmid x_{0}+6 \varepsilon y_{0}$. Set $x_{1}=5^{k-1}\left(x_{0}+6 \varepsilon y_{0}\right)$ and $y_{1}=5^{k-1}\left(4 x_{0}-\varepsilon y_{0}\right)$. Then $\operatorname{ord}_{5}\left(\operatorname{gcd}\left(x_{1}, y_{1}\right)\right)=k-1$. Note that

$$
5^{2 k}\left(2 x_{0}^{2}+3 y_{0}^{2}\right)=5^{2 k-2}\left(2\left(x_{0}+6 \varepsilon y_{0}\right)^{2}+3\left(4 x_{0}-\varepsilon y_{0}\right)^{2}\right)=2 x_{1}^{2}+3 y_{1}^{2}
$$

So, applying the induction hypothesis we immediately obtain the desired result.

Proof of Theorem 1.1. (i) It is easy to see that $8 n+5$ can be represented by the genus of $f(x, y, z)=2 x^{2}+3 y^{2}+10 z^{2}$. There are two classes in the
genus of $f$, and the one not containing $f$ has the representative $g(x, y, z)=$ $3 x^{2}+5 y^{2}+5 z^{2}+2 y z-2 z x+2 x y$. It is easy to verify the following identity:

$$
\begin{equation*}
f\left(\frac{x}{2}+y-z, y+z, \frac{x}{2}\right)=g(x, y, z) . \tag{3.1}
\end{equation*}
$$

Suppose that $8 n+5=g(x, y, z)$ for some $x, y, z \in \mathbb{Z}$. Then

$$
1 \equiv 8 n+5=g(x, y, z) \equiv 3 x^{2}+(y+z)^{2}+2 x(y-z)(\bmod 4) .
$$

Hence $y \not \equiv z(\bmod 2)$ and $2 \mid x$. In light of the identity $(3.1), 8 n+5$ is represented by $f$ over $\mathbb{Z}$.

By Lemma 2.1 and the above, $8 n+5$ can be represented by $2 x^{2}+3 y^{2}+10 z^{2}$ over $\mathbb{Z}$.
(ii) Let $h(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$. By [3, pp.112-113], we can write $10 n+\delta=h(x, y, z)$ for some $x, y, z \in \mathbb{Z}$.

We claim that there are $u, v, w \in \mathbb{Z}$ with $u-2 v+4 w \equiv 0(\bmod 5)$ such that $10 n+\delta=h(u, v, w)$. Here we handle the case $\delta=1$. (The case $\delta=9$ can be handled similarly.)

Case 1. $x^{2} \equiv-1(\bmod 5)$.
It is easy to see that $y^{2} \equiv 0(\bmod 5)$ and $z^{2} \equiv-1(\bmod 5)$, or $y^{2} \equiv$ $1(\bmod 5)$ and $z^{2} \equiv 0(\bmod 5)$. When $y^{2} \equiv 0(\bmod 5)$ and $z^{2} \equiv-1(\bmod 5)$, without loss of generality we may assume that $z \equiv x(\bmod 5)$ (otherwise, we may replace $z$ by $-z)$. If $y^{2} \equiv 1(\bmod 5)$ and $z^{2} \equiv 0(\bmod 5)$, then we simply assume $y \equiv-2 x(\bmod 5)$ without loss of generality. Note that our choice of $y$ and $z$ meets the requirement $x-2 y+4 z \equiv 0(\bmod 5)$.

Case 2. $x^{2} \equiv 0(\bmod 5)$.
Clearly, we have $y^{2} \equiv-1(\bmod 5)$ and $z^{2} \equiv 1(\bmod 5)$. Without loss of generality, we may assume that $y \equiv 2 z(\bmod 5)$ and hence $x-2 y+4 z \equiv$ $0(\bmod 5)$.

Case 3. $x^{2} \equiv 1(\bmod 5)$.
Apparently, we have $y^{2} \equiv z^{2}(\bmod 5)$. By Lemmas 3.1 and 3.2, we may simply assume that $5 \nmid y z$. When $y^{2} \equiv z^{2} \equiv x^{2} \equiv 1(\bmod 5)$, without loss of generality we may assume that $x \equiv y \equiv-z(\bmod 5)$. If $y^{2} \equiv z^{2} \equiv$ $(2 x)^{2} \equiv-1(\bmod 5)$, then we may assume that $y \equiv z \equiv 2 x(\bmod 5)$ without any loss of generality. So, in this case our choice of $y$ and $z$ also meets the requirement $x-2 y+4 z \equiv 0(\bmod 5)$.

In view of the above analysis, we may simply assume $x-2 y+4 z \equiv$ $0(\bmod 5)$ without any loss of generality. Note that $h(x, y, z)=h\left(x^{*}, y^{*}, z^{*}\right)$,
where

$$
\begin{aligned}
& z^{*}=\frac{x-2 y+4 z}{5} \not \equiv z(\bmod 2), \\
& x^{*}=2 y-z+2 z^{*} \not \equiv x(\bmod 2), \\
& y^{*}=y-3 z+3 z^{*} \not \equiv y(\bmod 2) .
\end{aligned}
$$

So we have the desired result in part (ii) of Theorem 1.1.

## 4. Proofs of Theorems 1.2-1.3

Proof of Theorem 1.2. By [10], we can write $2 n+1=F(r, s, t)$ with $r, s, t \in$ $\mathbb{Z}$, where $F(x, y, z)=x^{2}+3 y^{2}+2 y z+5 z^{2}$. Since

$$
(2 r-3 t)^{2}+3(r+2 t)^{2}+14 s^{2}=7 F(r, s, t)
$$

and

$$
2(s+3 t)^{2}+3(2 s-t)^{2}+7 r^{2}=7 F(r, s, t)
$$

we see that $7(2 n+1)$ is represented by the form $x^{2}+3 y^{2}+14 z^{2}$ as well as the form $2 x^{2}+3 y^{2}+7 z^{2}$.

Proof of Theorem 1.3. (i) By [3, pp.112-113], we may write $3 n+1=$ $r^{2}+s^{2}+6 t^{2}$ with $r, s, t \in \mathbb{Z}$. One may easily verify the following identities:

$$
\begin{aligned}
5\left(r^{2}+s^{2}+6 t^{2}\right) & =2(r \pm 3 t)^{2}+3(r \mp 2 t)^{2}+5 s^{2} \\
& =2(s \pm 3 t)^{2}+3(s \mp 2 t)^{2}+5 r^{2}
\end{aligned}
$$

As exactly one of $r$ and $s$ is divisible by 3 , one of the the four numbers $r \pm 2 t$ and $s \pm 2 t$ is a multiple of 3 . This proves part (i) of Theorem 1.3.
(ii) Let $r \in\{1,2\}$. By [3, pp.112-113], for some $x, y, z \in \mathbb{Z}$ we have $3 n+r=x^{2}+y^{2}+3 z^{2}$. Hence

$$
15 n+5 r=5\left(x^{2}+y^{2}+3 z^{2}\right)=(x+2 y)^{2}+(2 x-y)^{2}+15 z^{2}
$$

By [3, pp.112-113], we may write $3 n+1=u^{2}+3 v^{2}+3 w^{2}$ with $u, v, w \in \mathbb{Z}$. Thus

$$
15 n+5=5\left(u^{2}+3 v^{2}+3 w^{2}\right)=3(v+2 w)^{2}+3(2 v-w)^{2}+5 u^{2}
$$

(iii) Let $r \in\{1,2\}$. By [3, pp.112-113], there are $u, v, w \in \mathbb{Z}$ such that $3 n+r=r^{2}+s^{2}+6 t^{2}$. There are two classes in the genus of the form $x^{2}+y^{2}+30 z^{2}$, and the one not containing $x^{2}+y^{2}+30 z^{2}$ has a representative
$2 x^{2}+3 y^{2}+5 z^{2}$. Since

$$
\begin{aligned}
15 n+5 r & =5\left(x^{2}+y^{2}+6 z^{2}\right) \\
& =(x+2 y)^{2}+(2 x-y)^{2}+30 z^{2} \\
& =2(x+3 z)^{2}+3(x-2 z)^{2}+5 y^{2},
\end{aligned}
$$

we see that $15 n+5 r$ is represented by $x^{2}+y^{2}+30 z^{2}$ as well as $2 x^{2}+3 y^{2}+5 z^{2}$.
By [3, pp.112-113], we can write $3 n+2=2 u^{2}+3 v^{2}+3 w^{2}$ with $u, v, w \in \mathbb{Z}$. There are two classes in the genus of $x^{2}+6 y^{2}+15 z^{2}$, and the one not containing $x^{2}+6 y^{2}+15 z^{2}$ has a representative $3 x^{2}+3 y^{2}+10 z^{2}$. As

$$
\begin{aligned}
15 n+10 & =5\left(2 u^{2}+3 v^{2}+3 w^{2}\right) \\
& =(2 u+3 v)^{2}+6(u-v)^{2}+15 w^{2} \\
& =3(u+2 v)^{2}+3(2 v-w)^{2}+10 u^{2},
\end{aligned}
$$

we see that $15 n+10$ is represented by $x^{2}+6 y^{2}+15 z^{2}$ as well as $3 x^{2}+3 y^{2}+$ $10 z^{2}$.
(iv) Let $r \in\{1,2,3,4\}$. By [3, pp.112-113], there are $x, y, z \in \mathbb{Z}$ such that $5 n+r=x^{2}+2 y^{2}+5 z^{2}$. Hence

$$
15 n+3 r=3\left(x^{2}+2 y^{2}+5 z^{2}\right)=(x-2 y)^{2}+2(x+y)^{2}+15 z^{2} .
$$

Now let $r \in\{1,4\}$. By [3, pp.112-113], there are $u, v, w \in \mathbb{Z}$ such that $5 n+r=u^{2}+5 v^{2}+10 w^{2}$. Thus,

$$
15 n+3 r=3\left(u^{2}+5 v^{2}+10 w^{2}\right)=3 u^{2}+5(v-2 w)^{2}+10(v+w)^{2} .
$$

In view of the above, we have completed the proof of Theorem 1.3.

## 5. Proof of Theorem 1.4

Proof of Theorem 1.4(i). Let $r \in\{1,2,3,4\}$. It is easy to see that $15 n+3 r$ can be represented by $f_{1}(x, y, z)=x^{2}+3 y^{2}+5 z^{2}$ locally. There are two classes in the genus of $f_{1}$, and the one not containing $f_{1}$ has a representative $f_{2}(x, y, z)=x^{2}+2 y^{2}+8 z^{2}-2 y z$. One may easily verify the following identities:

$$
\begin{align*}
& f_{1}\left(\frac{x-y-z}{3}-2 z, \frac{x-y-z}{3}+y, \frac{x-y-z}{3}+z\right)=f_{2}(x, y, z),  \tag{5.1}\\
& f_{1}\left(\frac{x+y+z}{3}+2 z, \frac{x+y+z}{3}-y, \frac{x+y+z}{3}-z\right)=f_{2}(x, y, z) . \tag{5.2}
\end{align*}
$$

Suppose that $15 n+3 r=f_{2}(x, y, z)$ with $x, y, z \in \mathbb{Z}$. Then

$$
x^{2}-(y+z)^{2} \equiv f_{2}(x, y, z) \equiv 0(\bmod 3),
$$

and hence $(x-y-z) / 3$ or $(x+y+z) / 3$ is an integer. Therefore, by (5.1), (5.2) and Lemma 2.1, we obtain that $x^{2}+3 y^{2}+5 z^{2}$ is $(15,3 r)$-universal.

Now let $r \in\{2,3\}$. One can easily verify that $15 n+3 r$ is represented by the genus of $g_{1}(x, y, z)=x^{2}+5 y^{2}+15 z^{2}$. There are two classes in the genus of $g_{1}$, and the one not containing $g_{1}$ has a representative $g_{2}(x, y, z)=$ $4 x^{2}+4 y^{2}+5 z^{2}+2 x y$. It is easy to verify the identity

$$
\begin{equation*}
g_{1}\left(y+\frac{x+y \mp 5 z}{3}, x-\frac{x+y \pm z}{3}, \frac{x+y \pm z}{3}\right)=g_{2}(x, y, z) . \tag{5.3}
\end{equation*}
$$

If $15 n+3 r=g_{2}(x, y, z)$ with $x, y, z \in \mathbb{Z}$, then

$$
(x+y)^{2}-z^{2} \equiv g_{2}(x, y, z) \equiv 0(\bmod 3)
$$

Thus, with the help of (5.3) and Lemma 2.1, we obtain the desired result.

Lemma 5.1. (Oh [12]) Let $V$ be a positive definite ternary quadratic space over $\mathbb{Q}$. For any isometry $T \in O(V)$ of infinite order,

$$
V_{T}=\left\{x \in V: \text { there is a positive integer } k \text { such that } T^{k}(x)=x\right\}
$$

is a subspace of $V$ of dimension one, and $T(x)=\operatorname{det}(T) x$ for any $x \in V_{T}$.
Remark 5.1. Unexplained notations of quadratic space can be found in $[2$, 11, 15].

Lemma 5.2. Let $n \in \mathbb{N}$ and $r \in\{1,7,13\}$. If we can write $15 n+r=$ $f_{2}(x, y, z)=3 x^{2}+4 y^{2}+4 z^{2}+2 y z$ with $x, y, z \in \mathbb{Z}$, then there are $u, v, w \in \mathbb{Z}$ with $u+2 v-2 w \not \equiv 0(\bmod 3)$ such that $15 n+r=f_{2}(u, v, w)$.

Proof. Suppose that every integral solution of the equation $f_{2}(x, y, z)=$ $15 n+r$ satisfies $x+2 y-2 z \equiv 0(\bmod 3)$. We want to deduce a contradiction.

Let

$$
T=\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & -2 / 3 \\
-2 / 3 & 2 / 3 & 1 / 3 \\
2 / 3 & 1 / 3 & 2 / 3
\end{array}\right)
$$

and let $V$ be the quadratic space corresponding to $f_{2}$. Since
$f_{2}\left(\frac{x+2 y-2 z}{3},-x+z+\frac{x+2 y-2 z}{3}, x+y-\frac{x+2 y-2 z}{3}\right)=f_{2}(x, y, z)$,
we have $T \in O(V)$. One may easily verify that the order of $T$ is infinite and the space $V_{T}$ defined in Lemma 5.1 coincides with $\{(0, t, t): t \in \mathbb{Q}\}$. As $15 n+r \neq f_{2}(0, t, t)$ for any $t \in \mathbb{Z}$, we have $15 n+r=f_{2}\left(x_{0}, y_{0}, z_{0}\right)$ for some
$\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{Z}^{3} \backslash V_{T}$. Clearly, the set $\left\{T^{k}\left(x_{0}, y_{0}, z_{0}\right): k \geqslant 0\right\}$ is infinite and its elements are solutions to the equation $f_{2}(x, y, z)=15 n+r$. This leads a contradiction since the number of integral representations of any integer by a positive quadratic forms is finite.

Lemma 5.3. (Jagy [8]) If $n=2 x^{2}+2 x y+3 y^{2}(x, y \in \mathbb{Z})$ is a positive integer divisible by 3 , then there are $u, v \in \mathbb{Z}$ with $3 \nmid u v$ such that $n=$ $2 u^{2}+2 u v+3 v^{2}$.

The following lemma is a known result, see, e.g., $[8,9,12,18]$.
Lemma 5.4. If $n=x^{2}+y^{2}(x, y \in \mathbb{Z})$ is a positive integer divisible by 5 , then $n=u^{2}+v^{2}$ for some $u, v \in \mathbb{Z}$ with $5 \nmid u v$.

Proof of Theorem 1.4(ii). (a) For each $r \in\{1,7,13\}$, it is easy to see that $15 n+r$ can be represented by the genus of $f_{1}(x, y, z)=x^{2}+3 y^{2}+15 z^{2}$. There are two classes in the genus of $f_{1}(x, y, z)$, and the one not containing $f_{1}$ has a representative $f_{2}(x, y, z)=3 x^{2}+4 y^{2}+4 z^{2}+2 y z$. One may easily verify the following identities:

$$
\begin{align*}
& f_{1}\left(x-y+z, \frac{x-2 y}{3}-z, \frac{x+y}{3}\right)=f_{2}(x, y, z)  \tag{5.5}\\
& f_{1}\left(x+y-z, \frac{x-2 z}{3}-y, \frac{x+z}{3}\right)=f_{2}(x, y, z) \tag{5.6}
\end{align*}
$$

Suppose that $15 n+r=f_{2}(x, y, z)$ for some $x, y, z \in \mathbb{Z}$. As $3 \nmid y$ or $3 \nmid z$, when $3 \nmid x$ we may assume that $(x+y)(x+z) \equiv 0(\bmod 3)$ (otherwise we may replace $x$ by $-x$ ) without loss of generality. If $3 \mid x$ and $y \not \equiv z(\bmod 3)$, then $3 \mid y z$ and hence $(x+y)(x+z) \equiv 0(\bmod 3)$. In the remaining case $3 \mid x$ and $y \equiv z(\bmod 3)$, we have $x+2 y-2 z \equiv 0(\bmod 3)$; however, we may apply Lemma 5.2 to choose integers $u, v, w \in \mathbb{Z}$ so that $15 n+r=f_{2}(u, v, w)$ and $u+2 v-2 w \not \equiv 0(\bmod 3)$.

In view of the above analysis, there always exist $u, v, w \in \mathbb{Z}$ with $(u+$ $v)(u+w) \equiv 0(\bmod 3)$ such that $15 n+r=f_{2}(u, v, w)$. With the help of (5.5), (5.6), and Lemma 2.1, we obtain the $(15, r)$-universality of $x^{2}+3 y^{2}+15 z^{2}$.
(b) Let $r \in\{1,4\}$. One can easily verify that $15 n+r$ can be represented by $g_{1}(x, y, z)=x^{2}+15 y^{2}+30 z^{2}$ locally. There are two classes in the genus of $g_{1}$, and the one not containing $g_{1}$ has a representative $g_{2}(x, y, z)=$ $6 x^{2}+9 y^{2}+10 z^{2}-6 x y$.

Suppose that $15 n+r=g_{2}(x, y, z)$ with $x, y, z \in \mathbb{Z}$. Clearly $3 \nmid z$. Since $15 n+r \neq 10 z^{2}$, by Lemma 5.3 we may assume that $x$ and $y$ are not all divisible by 3. Thus we just need to consider the following two cases.

Case b1. $3 \nmid x$.
When this occurs, without loss of generality, we may assume that $x \equiv$ $-z(\bmod 3)$ (otherwise we may replace $z$ be $-z$ ). In view of the identity

$$
\begin{equation*}
g_{1}\left(x-3 y, \frac{x-2 z}{3}, \frac{x+z}{3}\right)=g_{2}(x, y, z), \tag{5.7}
\end{equation*}
$$

there are $x^{*}, y^{*}, z^{*} \in \mathbb{Z}$ such that $15 n+\delta=g_{1}\left(x^{*}, y^{*}, z^{*}\right)$.
Case b2. 3| $x$ and $3 \nmid y$
In this case, with the help of the identity

$$
g_{2}(x-y,-y, z)=g_{2}(x, y, z)
$$

we return to Case b1 since $x-y \not \equiv 0(\bmod 3)$.
Now applying Lemma Lem2.1 we immediately obtain the (15,r)-universality of $x^{2}+5 y^{2}+30 z^{2}$.
(c) For any $r \in\{4,11,14\}$, it is easy to verify that $15 n+r$ can be represented by $h_{1}(x, y, z)=x^{2}+10 y^{2}+15 z^{2}$ locally. There are two classes in the genus of $h_{1}$, and the one not containing $h_{1}$ has a representative $h_{2}(x, y, z)=5 x^{2}+5 y^{2}+6 z^{2}$.

Suppose that $15 n+r=h_{2}(x, y, z)$ with $x, y, z \in \mathbb{Z}$. Since $15 n+r \neq 6 z^{2}$, by Lemma 5.4 and the symmetry of $x$ and $y$, we simply assume $5 \nmid y$ without loss of generality. We claim that we may adjust the signs of $x, y, z$ to satisfy the congruence $(2 x+y+2 z)(x-2 y-2 z) \equiv 0(\bmod 5)$.

Case c1. $x^{2} \equiv y^{2}(\bmod 5)$.
Without loss of generality, we may assume $x \equiv y \equiv z(\bmod 5)$ if $x^{2} \equiv$ $y^{2} \equiv z^{2}(\bmod 5)$, and $x \equiv-y \equiv-2 z(\bmod 5)$ if $x^{2} \equiv y^{2} \equiv-z^{2}(\bmod 5)$. So our claim holds in this case.

Case c2. $x^{2} \equiv-y^{2}(\bmod 5)$.
If $x^{2} \equiv-y^{2} \equiv z^{2}(\bmod 5)$, without loss of generality, we may assume that $x \equiv-2 y \equiv z(\bmod 5)$. If $x^{2} \equiv-y^{2} \equiv-z^{2}(\bmod 5)$, we may assume that $x \equiv-2 y \equiv 2 z(\bmod 5)$ without loss of any generality. Thus $x, y, z$ satisfy the desired congruence in our claim.

Case c3. $x^{2} \equiv 0(\bmod 5)$.
If $y^{2} \equiv z^{2}(\bmod 5)$, we may assume that $y \equiv-z(\bmod 5)$. If $y^{2} \equiv$ $-z^{2}(\bmod 5)$, without loss of generality, we may assume that $y \equiv-2 z(\bmod 5)$. Clearly, our claim also holds in this case.

In view of the above analysis, there are $x, y, z \in \mathbb{Z}$ with $2 x+y+2 z \equiv$ $0(\bmod 5)$ or $x-2 y-2 z \equiv 0(\bmod 5)$ such that $15 n+r=h_{2}(x, y, z)$. One may easily verify the following identities

$$
\begin{align*}
& h_{1}\left(x-2 y, \frac{2 x+y+2 z}{5}-z, \frac{2 x+y+2 z}{5}\right)=h_{2}(x, y, z),  \tag{5.8}\\
& h_{1}\left(x+2 y, \frac{x-2 y-2 z}{5}+z, \frac{x-2 y-2 z}{5}\right)=h_{2}(x, y, z) . \tag{5.9}
\end{align*}
$$

With the help of (5.8), (5.9) and Lemma 2.1, the (15,r)-universality of $x^{2}+10 y^{2}+15 z^{2}$ is valid.

Lemma 5.5. Let $n \in \mathbb{N}$ and $g_{2}(x, y, z)=2 x^{2}+8 y^{2}+15 z^{2}-2 x y$. Assume that $15 n+8=g_{2}(x, y, z)$ for some $x, y, z \in \mathbb{Z}$ with $y^{2}+z^{2} \neq 0$. Then $15 n+8=g_{2}(u, v, w)$ for some $u, v, w \in \mathbb{Z}$ with $3 \nmid v+w$.

Proof. Suppose that every integral solution of the equation $g_{2}(x, y, z)=$ $15 n+8$ satisfies $y+z \equiv 0(\bmod 3)$. We want to deduce a contradiction.

Let

$$
T=\left(\begin{array}{ccc}
1 & -2 / 3 & -2 / 3 \\
0 & -1 / 3 & -4 / 3 \\
0 & 2 / 3 & -1 / 3
\end{array}\right)
$$

and let $V$ be the quadratic space corresponding to $g_{2}$. Since

$$
g_{2}\left(x+\frac{-2 y-2 z}{3}, \frac{-y-4 z}{3}, \frac{2 y-z}{3}\right)=g_{2}(x, y, z) .
$$

We have $T \in O(V)$. One may easily verify that the order of $T$ is infinite and the space $V_{T}$ defined in Lemma 5.1 coincides with $\{(t, 0,0): t \in \mathbb{Q}\}$. By the assumption in the lemma, we have $15 n+8=g_{2}\left(x_{0}, y_{0}, z_{0}\right)$ for some $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{Z}^{3} \backslash V_{T}$. Note that the set $\left\{T^{k}\left(x_{0}, y_{0}, z_{0}\right): k \geqslant 0\right\}$ is infinite and all elements of this set are solutions to the equation $g_{2}(x, y, z)=15 n+8$. This leads to a contradiction since the number of integral representations of any integer by a positive quadratic forms is finite.

Proof of Theorem 1.4(iii). (a) Let $r \in\{8,11,14\}$. It is easy to see that $15 n+r$ can be represented by $f_{1}(x, y, z)=3 x^{2}+5 y^{2}+6 z^{2}$ locally. There are two classes in the genus of $f_{1}$, and the one not containing $f_{1}$ has a representative $f_{2}(x, y, z)=2 x^{2}+6 y^{2}+9 z^{2}+6 y z$.

Suppose that $15 n+r=f_{2}(x, y, z)$ for some $x, y, z \in \mathbb{Z}$. Then $3 \nmid x$.
Case 1. $3 \nmid y$.

In this case, without loss of generality we may assume that $x \equiv-y(\bmod 3)$ (otherwise we may replace $x$ by $-x$ ). In view of the identity

$$
\begin{equation*}
f_{1}\left(\frac{2 x-y}{3}-z,-y, \frac{x+y}{3}+z\right)=f_{2}(x, y, z) \tag{5.10}
\end{equation*}
$$

there are $x^{*}, y^{*}, z^{*} \in \mathbb{Z}$ such that $15 n+\delta=f_{1}\left(x^{*}, y^{*}, z^{*}\right)$.
Case 2. $y^{2}+z^{2} \neq 0$ and $3 \mid y$.
When this occurs, by Lemma 5.3 we may simply assume that $3 \nmid z$. With the help of the identity

$$
f_{2}(x, y+z,-z)=f_{2}(x, y, z),
$$

we return to Case 1.
Case 3. $15 n+r=2 m^{2}$ for some $m \in \mathbb{N}$.
When $15 n+r=2 m^{2}=2 \times 2^{2 k}$ with $k \geqslant 1$, we have

$$
15 n+r=2 \times 2^{2 k}=3 \times\left(2^{k-1}\right)^{2}+5 \times\left(2^{k-1}\right)^{2}+6 \times 0^{2} .
$$

Now suppose that $m$ has a prime factor $p>5$. By Lemma 2.2 we have

$$
\begin{equation*}
r\left(2 p^{2}, f_{1}\right)+r\left(2 p^{2}, f_{2}\right)=2\left(p+1-\left(\frac{-5}{p}\right)\right)>10 \tag{5.11}
\end{equation*}
$$

Clearly $r\left(2 p^{2}, f_{1}\right)>5$ or $r\left(2 p^{2}, f_{2}\right)>5$. When $r\left(2 p^{2}, f_{1}\right)>5$, the number $2 m^{2}$ can be represented by $f_{1}$ over $\mathbb{Z}$ since $r\left(2 m^{2}, f_{1}\right) \geqslant r\left(2 p^{2}, f_{1}\right)$. When $r\left(2 p^{2}, f_{2}\right)>5$, there are $u, v, w \in \mathbb{Z}$ with $v^{2}+w^{2} \neq 0$ such that $f_{2}(u, v, w)=$ $15 n+r$. By Lemma 5.3, we return to Case 1 or Case 2.

In view of the above, by applying Lemma 2.1 we get the ( $15, r$ )-universality of $3 x^{2}+5 y^{2}+6 z^{2}$.
(b) It is easy to see that $15 n+8$ can be represented by the genus of $g_{1}(x, y, z)=3 x^{2}+5 y^{2}+15 z^{2}$. There are two classes in the genus of $g_{1}$, and the one not containing $g_{1}$ has a representative $g_{2}(x, y, z)=2 x^{2}+8 y^{2}+$ $15 z^{2}-2 x y$.

Suppose that the equation $15 n+8=g_{2}(x, y, z)$ is solvable over $\mathbb{Z}$. We claim that there are $u, v, w \in \mathbb{Z}$ with $(u+w)(u-v-w) \equiv 0(\bmod 3)$ such that $15 n+8=g_{2}(u, v, w)$.

Case 1. $3 \mid x$.
Clearly, $3 \nmid y$. If $3 \nmid z$, without loss of generality we may assume that $z \equiv-y(\bmod 3)$ (otherwise we replace $z$ by $-z)$. Then $(u, v, w)=(x, y, z)$ meets our purpose.

Case 2. $3 \nmid x$ and $y^{2}+z^{2} \neq 0$.

In this case, by Lemma 5.5 there are $x^{\prime}, y^{\prime}, z^{\prime} \in \mathbb{Z}$ with $3 \nmid y^{\prime}+z^{\prime}$ such that $15 n+8=g_{2}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. If $x^{\prime} \equiv y^{\prime}(\bmod 3)$, then by using the identity

$$
g_{2}(x-y,-y, z)=g_{2}(x, y, z),
$$

we return to Case 1. If $x^{\prime} \not \equiv y^{\prime}(\bmod 3)$, then $3 \mid y^{\prime}$ and $3 \nmid z^{\prime}$ since $\left(x^{\prime}+y^{\prime}\right)^{2} \equiv 1(\bmod 3)$ and $3 \nmid x^{\prime}$. Without loss of generality, we may assume that $x^{\prime} \equiv-z^{\prime}(\bmod 3)$. So $(u, v, w)=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ meets our purpose.

Case 3. $15 n+8=2 m^{2}$ with $m \in \mathbb{N}$.
If $m=2^{k}$ for some $k \in \mathbb{Z}^{+}$, then

$$
2 m^{2}=3 \times\left(2^{k-1}\right)^{2}+5 \times\left(2^{k-1}\right)^{2}+15 \times 0^{2} .
$$

Now suppose that $m$ has a prime factor $p>5$. By Lemma 2.2, we have

$$
\begin{equation*}
r\left(2 p^{2}, g_{1}\right)+r\left(2 p^{2}, g_{2}\right)=2\left(p+1-\left(\frac{-2}{p}\right)\right)>10 \tag{5.12}
\end{equation*}
$$

Clearly, $r\left(2 p^{2}, g_{1}\right)>5$ or $r\left(2 p^{2}, g_{2}\right)>5$. When $r\left(2 p^{2}, g_{1}\right)>5$, we have $r\left(2 m^{2}, g_{1}\right) \geq r\left(2 p^{2}, g_{1}\right)>5$. If $r\left(2 p^{2}, g_{2}\right)>5$, then there exist $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$ with $y_{0}^{2}+z_{0}^{2} \neq 0$ such that $15 n+8=g_{2}\left(x_{0}, y_{0}, z_{0}\right)$. So we are reduced to previous cases.

In view of the proved claim, the $(15,8)$-universality of $g_{1}$ follows from Lemma 2.1 and the identities

$$
\begin{aligned}
g_{1}\left(\frac{x-5 z}{3}-y,-y+z,-\frac{x+z}{3}\right) & =g_{2}(x, y, z), \\
g_{1}\left(\frac{x-y-z}{3}+y+2 z, y-z, \frac{x-y-z}{3}\right) & =g_{2}(x, y, z) .
\end{aligned}
$$

(c) One may easily verify that $15 n+8$ can be represented by $h_{1}(x, y, z)=$ $3 x^{2}+5 y^{2}+30 z^{2}$ locally. There are two classes in the genus of $h_{1}$, and the one not containing $h_{1}$ has a representative $h_{2}(x, y, z)=2 x^{2}+15 y^{2}+15 z^{2}$.

Suppose that the equation $15 n+8=h_{2}(x, y, z)$ for some $x, y, z \in \mathbb{Z}$. In light of Lemma 5.4, we may assume $5 \nmid y$ if $y^{2}+z^{2}>0$. We claim that there are $u, v, w \in \mathbb{Z}$ with $(u-v+2 w)(u-2 v+w) \equiv 0(\bmod 5)$ such that $15 n+8=h_{2}(u, v, w)$.

Case 1. $y^{2} \equiv \varepsilon z^{2}(\bmod 5)$ and $y^{2}+z^{2} \neq 0$, where $\varepsilon \in\{ \pm 1\}$.
If $y^{2} \equiv z^{2} \equiv x^{2}(\bmod 5)$, then we may assume that $x \equiv y \equiv z(\bmod 5)$. If $y^{2} \equiv z^{2} \equiv-x^{2}(\bmod 5)$, without loss of generality we may assume that $x \equiv-2 y \equiv 2 z(\bmod 5)$. So, $(u, v, w)=(x, y, z)$ meets our requirement in the case $\varepsilon=1$. The case $\varepsilon=-1$ can be handled similarly.

Case 3. $15 n+8$ is twice a square, say $2 m^{2}$ with $m \in \mathbb{Z}^{+}$.

When $m=2^{k}$ with $k \in \mathbb{Z}^{+}$, we have

$$
15 n+8=2 \times 2^{2 k}=3 \times\left(2^{k-1}\right)^{2}+5 \times\left(2^{k-1}\right)^{2}+30 \times 0^{2}
$$

Now assume that $m$ has a prime factor $p>5$. By Lemma 2.2, we have

$$
\begin{equation*}
2 r\left(2 p^{2}, h_{1}\right)+r\left(2 p^{2}, h_{2}\right)=2\left(p+1-\left(\frac{-1}{p}\right)\right)>10 . \tag{5.13}
\end{equation*}
$$

Clearly $r\left(2 p^{2}, h_{1}\right) \geq 4$ or $r\left(2 p^{2}, h_{2}\right) \geq 4$. If $r\left(2 p^{2}, h_{1}\right) \geq 4$, then $r\left(2 m^{2}, h_{1}\right) \geq$ $r\left(2 p^{2}, h_{1}\right) \geq 4$. When $r\left(2 p^{2}, h_{2}\right) \geq 4$, there exist $u, v, w \in \mathbb{Z}$ with $v^{2}+w^{2} \neq 0$ such that $g_{2}(u, v, w)=2 m^{2}$. Thus we are reduced to Case 1 .

In view of the proved claim and the identities

$$
\begin{aligned}
h_{2}(x, y, z) & =h_{1}\left(2 y+z, \frac{2 x+3 y-z}{5}-z, \frac{x-y+2 z}{5}\right) \\
& =h_{1}\left(y+2 z, \frac{2 x+y-3 z}{5}+y, \frac{x-2 y+z}{5}\right),
\end{aligned}
$$

by applying Lemma 2.1 we obtain the $(15,8)$-universality of $3 x^{2}+5 y^{2}+$ $30 z^{2}$.

## References

[1] A. Alaca, S. Alaca and K. S. Williams, Arithmetic progressions and binary quadratic forms, Amer. Math. Monthly 115(2008), 252-254.
[2] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, London, 1978.
[3] L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, Chicago, 1939.
[4] G. Doyle and K. S. Williams, A positive-definite ternary quadratic form does not represent all positive integers, Integers 17 (2017), \#A41, 19pp (eletronic).
[5] S. Guo, H. Pan and Z.-W. Sun, Mixed sums of squares and triangular numbers (II), Integers 7 (2007), \#A56, 5pp (electronic)
[6] W. C. Jagy, Five regular or nearly-regular ternary quadratic forms, Acta Arith, 77 (1996), 361-367.
[7] W. C.Jagy, I. Kaplansky and A. Schiemann, There are 913 regular ternary forms, Mathematika, 44(1997), 332-341.
[8] W. C. Jagy, Integral Positive Ternary Quadratic Forms, Lecture Notes, 2014.
[9] B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70(1939), 165-191.
[10] I. Kaplansky, Ternary positive quadratic forms that represent all odd positive integers, Acta Arith. 70(1995), 209-214.
[11] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Math., Vol. 106, 1993.
[12] B.-K. Oh, Ternary universal sums of generalized pentagonal numbers, J. Korean Math. Soc, 48 (2011) 837-847.
[13] B.-K. Oh, Representations of arithmetic progressions by positive definite quadratic forms, Int. J. Number Theory, 7 (2011), 1603-1614.
[14] L. Pehlivan and K. S. Williams, ( $k, l$ )-universality of ternary quadratic forms $a x^{2}+$ $b y^{2}+c z^{2}$, Integers, 18 (2018), \#A20, 44pp (eletronic).
[15] O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1963.
[16] Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith, 127 (2007), 103-113.
[17] Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math, 58 (2015), 1367-1396.
[18] Z.-W. Sun, On $x(a x+1)+y(b y+1)+z(c z+1)$ and $x(a x+b)+y(a y+c)+z(a z+d)$, J. Number Theory 171 (2017), 275-283.
[19] Z.-W. Sun, Sequence A286885 on OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org/A286885, August 2, 2018.
[20] Z.-W. Sun, Universal sums of three quadratic polynomials, Sci. China Math., to appear, Doi:10.1007/s11425-017-9354-4. (See also arXiv:1502.03056.)
[21] H.-L. Wu and Z.-W. Sun, Some universal quadratic sums over the integers, preprint, arXiv:1707.06223v4, 2017.
(Hai-Liang Wu) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: whl.math@smail.nju.edu.cn
(Zhi-Wei Sun) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn


[^0]:    2010 Mathematics Subject Classification. Primary 11E25; Secondary 11B25, 11E20.
    Keywords. Arithmetic progressions, representations of integers, ternary quadratic forms.

    Supported by the National Natural Science Foundation of China (Grant No. 11571162).

