LEAF-INDUCED SUBTREES OF LEAF-FIBONACCI TREES

AUDACE A. V. DOSSOU-OLORY

Abstract

In analogy to a concept of Fibonacci trees, we define the leaf-Fibonacci tree of size n and investigate its number of nonisomorphic leaf-induced subtrees. Denote by f_{0} the one vertex tree and f_{1} the tree that consists of a root with two leaves attached to it; the leaf-Fibonacci tree f_{n} of size $n \geq 2$ is the binary tree whose branches are f_{n-1} and f_{n-2}. We derive a nonlinear difference equation for the number $\mathrm{N}\left(f_{n}\right)$ of nonisomorphic leaf-induced subtrees (subtrees induced by leaves) of f_{n}, and also prove that $\mathrm{N}\left(f_{n}\right)$ is asymptotic to $1.00001887227319 \ldots(1.48369689570172 \ldots)^{\phi^{n}}(\phi=$ golden ratio $)$ as n grows to infinity.

1. Introduction

Fibonacci trees are an alternative approach to a binary search in computer science and information processing [10, p. 417]. The Fibonacci tree of order n is defined as the binary tree whose left branch is the Fibonacci tree of order $n-1$ and right branch is the Fibonacci tree of order $n-2$, while the Fibonacci tree of order 0 or 1 is the tree with only one vertex [10]. We show in Figure 1 the Fibonacci tree of order 5.

Figure 1. The Fibonacci tree of order 5.

Thus, the Fibonacci tree of order n has precisely F_{n+1} leaves (so $2 F_{n+1}-1$ vertices), where F_{n} denotes the n-th Fibonacci number:

$$
F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2} \text { for } n>1 .
$$

Fibonacci trees are also a special case of so-called AVL ("Adel'son-Vel'skii and Landis"named after the inventors) trees [1]; these trees have the defining property that for every

[^0]internal vertex v, the heights (i.e., the greatest distance of a leaf from the root) of the left and right branches of the subtree rooted at v (consisting of v and all its descendants) differ by at most one. According to [1], AVL trees are the first data structure to be invented. Figure 2 shows an AVL tree of height 3. For more information on Fibonacci trees and their uses, we refer to [13, 8, 9, 7].

Figure 2. An AVL tree of height 3.

In analogy to the concept of Fibonacci trees from [10], we define the leaf-Fibonacci tree of size (height) n as follows:

- Denote by f_{0} the tree with only one vertex and f_{1} the tree that consists of a root with two leaves attached to it;
- For $n \geq 2$, connect the roots of the trees f_{n-1} and f_{n-2} to a new common vertex to obtain the tree f_{n}.
In other words, the leaf-Fibonacci tree f_{n} of size $n \geq 2$ is the binary tree whose branches are the leaf-Fibonacci trees f_{n-1} and f_{n-2}. Hence, f_{n} has precisely F_{n+2} leaves, where F_{n} is the n-th Fibonacci number $\left(F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, F_{7}=13, \ldots\right)$. Figure 3 shows the leaf-Fibonacci tree of size 5 .

Figure 3. The leaf-Fibonacci tree of size 5.
In this note, we shall be interested in the number of nonisomorphic subtrees induced by leaves (henceforth, leaf-induced subtrees) of a leaf-Fibonacci tree of size n.

Let T be a rooted tree without vertices of outdegree 1 (also known as topological or series-reduced or homeomorphically irreducible trees [3, 2, 5, 12]). Every choice of k leaves
of T induces another topological tree, which is obtained by extracting the minimal subtree of T that contains all the k leaves and suppressing (if any) all vertices of outdegree 1 ; see Figure 4 for an illustration. Every subtree obtained through this operation is sometimes

Figure 4. A topological tree (on the left) and the subtree induced by the leaves $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ (on the right).
referred to as a leaf-induced subtree [4, 5]. We note the study of subtrees induced by leaves of binary trees finds a noteworthy relevance in phylogenetics - see Semple and Steel's book [11] which describes the mathematical foundations of phylogenetics.

Two rooted trees are said to be isomorphic if there is a graph isomorphism (preserving adjacency) between them that maps the root of one to the root of the other. It is important to note that the problem of enumerating leaf-induced subtrees becomes trivial if isomorphisms are not taken into account: in fact, it is clear that every topological tree with n leaves has exactly $2^{n}-1$ leaf-induced subtrees.
We mention that nonisomorphic leaf-induced subtrees of a topological tree have been studied only very recently: Wagner and the present author [6] obtained exact and asymptotic enumeration results on the number of nonisomorphic leaf-induced subtrees of two classes of d-ary trees, namely so-called d-ary caterpillars and even d-ary trees. In [6], they also derived extremal results for the number of root containing leaf-induced subtrees of a topological tree.

We shall denote the number of nonisomorphic leaf-induced subtrees of the leaf-Fibonacci tree f_{n} by $\mathrm{N}\left(f_{n}\right)$. Our main results are a recurrence relation and an asymptotic formula for $\mathrm{N}\left(f_{n}\right)$. As it turns out, the plan to compute $\mathrm{N}\left(f_{n}\right)$ will be to consider the number of root containing leaf-induced subtrees of f_{n}.
In [14], Wagner alone studied the number of independent vertex subsets (set of vertices containing no pair of adjacent vertices) of a Fibonacci tree of order n with the notable difference that in his context, the Fibonacci tree of order 0 has no vertices. Wagner
derived a system of recurrence relations for the number of independent vertex subsets of a Fibonacci tree of an arbitrary order n, and also proved that there are positive constants $A, B>0$ such that the number of independent vertex subsets of a Fibonacci tree of order n is asymptotic to $A \cdot B^{F_{n}}$ as n grows to infinity. In the present study, we obtain a similar asymptotic formula for the number $\mathrm{N}\left(f_{n}\right)$ of nonisomorphic leaf-induced subtrees of the leaf-Fibonacci tree of size n : we demonstrate - not expectedly - that for some effectively computable constants $A_{1}, A_{2}>0$,

$$
\mathrm{N}\left(f_{n}\right) \sim A_{1} \cdot A_{2}^{F_{n}} \text { as } n \rightarrow \infty
$$

2. Main Results

We note from the recursive definition of the tree f_{n} that f_{m} is a leaf-induced subtree of f_{n} for every $m \leq n$. However, not every leaf-induced subtree of f_{n} is again a leaf-Fibonacci tree: in fact, by repeatedly removing leaves from f_{n}, one easily sees that f_{n} has leaf-induced subtrees of every number of leaves k between 1 and n.

As mentionned in the introduction, the plan to compute $\mathrm{N}\left(f_{n}\right)$ will be to consider the number of root containing leaf-induced subtrees of f_{n}.

Lemma 1. All nonisomorphic leaf-induced subtrees with two or more leaves of f_{n} can be identified as containing the root of f_{n}.

Proof. The tree f_{0} has only one vertex which is also its leaf and root, so the statement holds vacuously for $n=0$. The statement is trivial for $n=1$ (f_{1} is the only leaf-induced subtree in this case). Let $n>1$ and consider a subset of $k>1$ leaves of f_{n}. We argue by double induction on n and k :

- If all k leaves belong to f_{n-1} then by the induction hypothesis on n, the induced subtree with k leaves contains the root of f_{n-1}. Moreover, by the induction hypothesis on k, the tree f_{n-1} can be identified as containing the root of f_{n} (as f_{n-1} is clearly a leaf-induced subtree of f_{n}). Hence, the induced subtree with k leaves contains the root of f_{n}.
- If all k leaves belong to f_{n-2}, then we also deduce by the induction hypothesis that the induced subtree with k leaves is a root containing leaf-induced subtree of f_{n}.
- If k_{1} leaves belong to f_{n-1} and $k-k_{1}$ leaves belong to f_{n-2}, then by the induction hypothesis, the induced subtrees with k_{1} and $k-k_{1}$ leaves are root containing leaf-induced subtrees of f_{n-1} and f_{n-2}, respectively. Consequently, the root of the induced subtree with k leaves coincides with the root of f_{n}.
This completes the induction step as well as the proof of the lemma.
We then obtain the following proposition:
Proposition 2. The number $N\left(f_{n}\right)$ of nonisomorphic leaf-induced subtrees of the leafFibonacci tree f_{n} satisfies the following nonlinear recurrence relation:

$$
\begin{equation*}
N\left(f_{n}\right)=1+\frac{1}{2} N\left(f_{n-2}\right)-\frac{1}{2} N\left(f_{n-2}\right)^{2}+N\left(f_{n-2}\right) \cdot N\left(f_{n-1}\right) \tag{1}
\end{equation*}
$$

with initial values $N\left(f_{0}\right)=1, N\left(f_{1}\right)=2$.
Proof. It is obvious that $\mathrm{N}\left(f_{0}\right)=1$ and $\mathrm{N}\left(f_{1}\right)=2$. Let $n>1$. By Lemma $1, \mathrm{~N}\left(f_{n}\right)$ is precisely one more the number of nonisomorphic root containing leaf-induced subtrees of f_{n} (the subtree with only one vertex has been included). Since all leaf-induced subtrees of the leaf-Fibonacci tree f_{n-2} are again leaf-induced subtrees of f_{n-1}, the nonisomorphic root containing leaf-induced subtrees of f_{n} can be categorised by two types of enumeration:

- Both branches of the induced subtree are leaf-induced subtrees of f_{n-2}. The total number of these possibilities is $\binom{1+\mathrm{N}\left(f_{n-2}\right)}{2}$ as the induced subtrees have to be nonisomorphic.
- One of the branches of the induced subtree is a leaf-induced subtree of f_{n-2} while the other branch is a leaf-induced subtree of f_{n-1} but does not belong to the set of leaf-induced subtrees of f_{n-2}. The total number of these possibilities is $\mathrm{N}\left(f_{n-2}\right)\left(\mathrm{N}\left(f_{n-1}\right)-\mathrm{N}\left(f_{n-2}\right)\right)$.
Therefore, we obtain

$$
\begin{aligned}
\mathrm{N}\left(f_{n}\right) & =1+\binom{1+\mathrm{N}\left(f_{n-2}\right)}{2}+\mathrm{N}\left(f_{n-2}\right)\left(\mathrm{N}\left(f_{n-1}\right)-\mathrm{N}\left(f_{n-2}\right)\right) \\
& =1+\frac{1}{2} \mathrm{~N}\left(f_{n-2}\right)-\frac{1}{2} \mathrm{~N}\left(f_{n-2}\right)^{2}+\mathrm{N}\left(f_{n-2}\right) \cdot \mathrm{N}\left(f_{n-1}\right)
\end{aligned}
$$

which completes the proof of the proposition.
The sequence $\left(\mathrm{N}\left(f_{n}\right)\right)_{n \geq 0}$ starts as
$\mathrm{N}\left(f_{0}\right)=1, \mathrm{~N}\left(f_{1}\right)=2, \mathrm{~N}\left(f_{2}\right)=3, \mathrm{~N}\left(f_{3}\right)=6, \mathrm{~N}\left(f_{4}\right)=16, \mathrm{~N}\left(f_{5}\right)=82, \mathrm{~N}\left(f_{6}\right)=1193$,
$\mathrm{N}\left(f_{7}\right)=94506, \mathrm{~N}\left(f_{8}\right)=112034631, \ldots$
We remark that recursion (1) cannot be solved explicitly. Therefore, finding an asymptotic formula should be in order. In the following theorem, we show-not expectedly - that $\mathrm{N}\left(f_{n}\right)$ grows doubly exponentially in n.

Theorem 3. There are two positive constants $K_{1}, K_{2}>0$ (both solely depending on the first terms of $\left.\left(N\left(f_{n}\right)\right)_{n \geq 0}\right)$ such that

$$
N\left(f_{n}\right)=(1+o(1)) K_{1} \cdot K_{2}^{\left(\frac{1+\sqrt{5}}{2}\right)^{n}}
$$

as $n \rightarrow \infty$.
Proof. For ease of notation, set $A_{n}:=\mathrm{N}\left(f_{n}\right)$. Then we have

$$
A_{n}=1+\frac{1}{2} A_{n-2}-\frac{1}{2} A_{n-2}^{2}+A_{n-2} \cdot A_{n-1}
$$

with initial values $A_{0}=1, A_{1}=2$. Since the sequence $\left(A_{n}\right)_{n \geq 0}$ increases with n, it is not difficult to note that

$$
A_{n} \geq \frac{1}{2} A_{n-1} \cdot A_{n-2}
$$

for all $n \geq 2$. Also, since $A_{n} \geq A_{2}=3$ for all $n \geq 2$ and $1+A_{1} / 2-A_{1}^{2} / 2=0$, it is not difficult to see that

$$
A_{n} \leq A_{n-1} \cdot A_{n-2}
$$

for all $n \geq 3$. Thus, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{A_{n-1}}{A_{n}}=0 \tag{2}
\end{equation*}
$$

which also implies that the sequence $\left(A_{n-1} / A_{n}\right)_{n \geq 1}$ is bounded for every $n \geq 1$. Let us use Q_{n} as a shorthand for $\log \left(A_{n}\right)$ and E_{n} as a shorthand for

$$
\begin{equation*}
\log \left(1+\frac{1}{2 A_{n-1}}-\frac{A_{n-2}}{2 A_{n-1}}+\frac{1}{A_{n-1} \cdot A_{n-2}}\right) . \tag{3}
\end{equation*}
$$

With these notations, we have

$$
Q_{n}=Q_{n-1}+Q_{n-2}+E_{n} .
$$

By setting $R_{n-1}:=Q_{n-2}$, we obtain the following system (written in matrix form) of two linear difference equations:

$$
\binom{Q_{n}}{R_{n}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{Q_{n-1}}{R_{n-1}}+\binom{E_{n}}{0} .
$$

By iteration on n, one gets

$$
\binom{Q_{n}}{R_{n}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n-1}\binom{Q_{1}}{Q_{0}}+\sum_{i=2}^{n}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n-i}\binom{E_{i}}{0}
$$

for all $n \geq 2$, as $R_{1}=Q_{0}$. The eigenvalue decomposition gives us

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)=\frac{1}{\lambda_{1}-\lambda_{2}}\left(\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right)
$$

with

$$
\lambda_{1}=\frac{1-\sqrt{5}}{2} \quad \text { and } \quad \lambda_{2}=\frac{1+\sqrt{5}}{2}
$$

It follows that

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{m} & =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1}^{m} & 0 \\
0 & \lambda_{2}^{m}
\end{array}\right)\left(\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right) \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\begin{array}{cc}
\lambda_{1}^{m+1}-\lambda_{2}^{m+1} & \lambda_{1} \cdot \lambda_{2}^{m+1}-\lambda_{1}^{m+1} \cdot \lambda_{2} \\
\lambda_{1}^{m}-\lambda_{2}^{m} & \lambda_{1} \cdot \lambda_{2}^{m}-\lambda_{1}^{m} \cdot \lambda_{2}
\end{array}\right)
\end{aligned}
$$

for all integer values of m. Consequently, we have

$$
\binom{Q_{n}}{R_{n}}=\frac{\log (2)}{\lambda_{1}-\lambda_{2}}\binom{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}^{n-1}-\lambda_{2}^{n-1}}+\sum_{i=2}^{n} \frac{E_{i}}{\lambda_{1}-\lambda_{2}}\binom{\lambda_{1}^{n-i+1}-\lambda_{2}^{n-i+1}}{\lambda_{1}^{n-i}-\lambda_{2}^{n-i}}
$$

for all $n \geq 2$ as $Q_{0}=0$ and $Q_{1}=\log (2)$. Therefore, we obtain

$$
Q_{n}=\frac{\log (2)}{\lambda_{2}-\lambda_{1}}\left(\lambda_{2}^{n}-\lambda_{1}^{n}\right)+\frac{1}{\lambda_{2}-\lambda_{1}} \sum_{i=2}^{n} E_{i}\left(\lambda_{2}^{n-i+1}-\lambda_{1}^{n-i+1}\right)
$$

for all $n \geq 2$. Since the sequence $\left(E_{n}\right)_{n \geq 2}$ is bounded for every $n \geq 2$ (as $\lim _{n \rightarrow \infty} E_{n}=0$ by virtue of (3) and (2)), we derive that

$$
\sum_{i=2}^{n}\left|E_{i}\right| \cdot\left|\lambda_{1}\right|^{n-i+1} \leq \frac{\left|\lambda_{1}\right|^{n}-\left|\lambda_{1}\right|}{\left|\lambda_{1}\right|-1} \cdot \sup _{2 \leq m \leq n}\left|E_{m}\right|
$$

for all $n \geq 2$. This implies that the quantity

$$
\frac{1}{\lambda_{2}-\lambda_{1}} \sum_{i=2}^{n} E_{i} \cdot \lambda_{1}^{n-i+1}
$$

converges to a definite limit as $n \rightarrow \infty$ (note that $\left|\lambda_{1}\right|<1$ and $\sup _{2 \leq m \leq n}\left|E_{m}\right|$ is finite for every $n \geq 2$). On the other hand, we have

$$
0 \leq\left|\sum_{i=n+1}^{\infty} E_{i} \cdot \lambda_{2}^{n-i+1}\right| \leq \frac{\lambda_{2}}{\lambda_{2}-1} \cdot \sup _{m \geq n+1}\left|E_{m}\right|
$$

for all $n \geq 2$ (note that $\lambda_{2}>1$), which implies that

$$
\frac{1}{\lambda_{2}-\lambda_{1}} \sum_{i=n+1}^{\infty} E_{i} \cdot \lambda_{2}^{n-i+1}=\mathcal{O}\left(\sup _{m \geq n+1}\left|E_{m}\right|\right)=o(1)
$$

as $n \rightarrow \infty$. Putting everything together, we arrive at

$$
\begin{aligned}
Q_{n} & =\frac{\lambda_{2}^{n}}{\lambda_{2}-\lambda_{1}}\left(\log (2)+\sum_{i=2}^{\infty} E_{i} \cdot \lambda_{2}^{-i+1}\right)-\frac{1}{\lambda_{2}-\lambda_{1}} \sum_{i=2}^{n} E_{i} \cdot \lambda_{1}^{n-i+1} \\
& +\mathcal{O}\left(\sup _{m \geq n+1}\left|E_{m}\right|\right)+\mathcal{O}\left(\lambda_{1}^{n}\right) \\
& =\frac{\lambda_{2}^{n}}{\lambda_{2}-\lambda_{1}}\left(\log (2)+\sum_{i=2}^{\infty} E_{i} \cdot \lambda_{2}^{-i+1}\right)-\frac{1}{\lambda_{2}-\lambda_{1}} \sum_{i=2}^{n} E_{i} \cdot \lambda_{1}^{n-i+1}+o(1)
\end{aligned}
$$

as $n \rightarrow \infty$. We deduce that

$$
\begin{aligned}
A_{n}= & \left(1+\mathcal{O}\left(\lambda_{1}^{n}+\sup _{m \geq n+1}\left|E_{m}\right|\right)\right) \\
& \cdot \exp \left(\frac{\lambda_{2}^{n}}{\lambda_{2}-\lambda_{1}}\left(\log (2)+\sum_{i=2}^{\infty} E_{i} \cdot \lambda_{2}^{-i+1}\right)-\frac{1}{\lambda_{2}-\lambda_{1}} \sum_{i=2}^{n} E_{i} \cdot \lambda_{1}^{n-i+1}\right) \\
= & (1+o(1)) \cdot \exp \left(\frac{\lambda_{2}^{n}}{\lambda_{2}-\lambda_{1}}\left(\log (2)+\sum_{i=2}^{\infty} E_{i} \cdot \lambda_{2}^{-i+1}\right)-\frac{1}{\lambda_{2}-\lambda_{1}} \sum_{i=2}^{n} E_{i} \cdot \lambda_{1}^{n-i+1}\right)
\end{aligned}
$$

as $n \rightarrow \infty$. Call K_{2} the quantity

$$
\exp \left(\frac{1}{\lambda_{2}-\lambda_{1}}\left(\log (2)+\sum_{i=2}^{\infty} E_{i} \cdot \lambda_{2}^{-i+1}\right)\right)
$$

and K_{1} the quantity

$$
\exp \left(-\frac{1}{\lambda_{2}-\lambda_{1}} \cdot \lim _{n \rightarrow \infty}\left(\sum_{i=2}^{n} E_{i} \cdot \lambda_{1}^{n-i+1}\right)\right) .
$$

Thus,

$$
A_{n}=\mathrm{N}\left(f_{n}\right)=(1+o(1)) K_{1} \cdot K_{2}^{\lambda_{2}^{n}}=(1+o(1)) K_{1} \cdot K_{2}^{\left(\frac{1+\sqrt{5}}{2}\right)^{n}}
$$

as $n \rightarrow \infty$, where K_{1} and K_{2} can now be written as

$$
\begin{aligned}
K_{2}=\exp (& \frac{1}{\sqrt{5}}\left(\log (2)+\sum_{i=2}^{\infty}\left(\frac{1+\sqrt{5}}{2}\right)^{-i+1}\right. \\
& \left.\left.\cdot \log \left(1+\frac{1}{2 \mathrm{~N}\left(f_{i-1}\right)}-\frac{\mathrm{N}\left(f_{i-2}\right)}{2 \mathrm{~N}\left(f_{i-1}\right)}+\frac{1}{\mathrm{~N}\left(f_{i-1}\right) \cdot \mathrm{N}\left(f_{i-2}\right)}\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
K_{1}=\exp (- & \frac{1}{\sqrt{5}} \cdot \lim _{n \rightarrow \infty}\left(\sum_{i=2}^{n}\left(\frac{1-\sqrt{5}}{2}\right)^{n-i+1}\right. \\
& \left.\left.\cdot \log \left(1+\frac{1}{2 \mathrm{~N}\left(f_{i-1}\right)}-\frac{\mathrm{N}\left(f_{i-2}\right)}{2 \mathrm{~N}\left(f_{i-1}\right)}+\frac{1}{\mathrm{~N}\left(f_{i-1}\right) \cdot \mathrm{N}\left(f_{i-2}\right)}\right)\right)\right)
\end{aligned}
$$

By (numerically) evaluating K_{1} and K_{2}, we obtain that the number of nonisomorphic leaf-induced subtrees of the leaf-Fibonacci tree f_{n} is asymptotically

$$
1.00001887227319 \cdots(1.48369689570172 \ldots)^{\left(\frac{1+\sqrt{5}}{2}\right)^{n}}
$$

as $n \rightarrow \infty$. This completes the proof of the theorem.
This asymptotic formula can also be written in terms of the Fibonacci number F_{n} : the number of leaves of f_{n} is given by

$$
\left|f_{n}\right|=F_{n+2}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{2+n}-\left(\frac{1-\sqrt{5}}{2}\right)^{2+n}\right)
$$

for every n; so we deduce that

$$
\frac{10}{5+3 \sqrt{5}} \cdot\left|f_{n}\right| \sim\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

as $n \rightarrow \infty$. This implies that

$$
\begin{aligned}
\mathrm{N}\left(f_{n}\right) & \sim K_{1} \cdot K_{2}^{\frac{10}{5+3 \sqrt{5}} \cdot\left|f_{n}\right|} \\
& =1.00001887227319 \cdots(1.48369689570172 \ldots)^{\frac{-5+3 \sqrt{5}}{2} \cdot\left|f_{n}\right|}
\end{aligned}
$$

as $n \rightarrow \infty$.

Acknowledgments

The author thanks Stephan Wagner for a suggestion in the proof of the asymptotic formula.

References

[1] Georgii M. Adel'son-Vel'skii and Evgenii M. Landis. An algorithm for the organization of information. Doklady Akademii Nauk SSSR, 146(2):263-266, 1962.
[2] Elizabeth S. Allman and John A. Rhodes. Mathematical models in biology: an introduction. Cambridge University Press, Cambridge, 2004.
[3] François Bergeron, Gilbert Labelle, and Pierre Leroux. Combinatorial species and tree-like structures. Cambridge University Press, Cambridge, 1998.
[4] Éva Czabarka, Audace A.V. Dossou-Olory, László A. Székely and Stephan Wagner. Inducibility of d-ary trees. Preprint, https://arxiv.org/abs/1802.03817, 2018.
[5] Audace A. V. Dossou-Olory and Stephan Wagner. Inducibility of topological trees. Accepted for publication in Quaestiones Mathematicae, 2018. https://www.tandfonline.com/doi/abs/10.2989/16073606. 2018.1497725
[6] Audace A. V. Dossou-Olory and Stephan Wagner. On the number of leaf-induced subtrees of a topological tree. To be submitted, 2018.
[7] Ralph P. Grimaldi. Properties of Fibonacci trees. Congressus Numerantium, 84:21-32, 1991.
[8] Yasuichi Horibe. An entropy view of Fibonacci trees. The Fibonacci Quarterly, 20(2):168-178, 1982.
[9] Yasuichi Horibe. Notes on Fibonacci trees and their optimality. The Fibonacci Quarterly, 21(2):118128, 1983.
[10] Donald E. Knuth. The art of computer programming (Volume 3): sorting and searching (second edition). Addison-Wesley Series in Computer Science and Information Processing, 791 pp., 1998.
[11] Charles Semple and Mike Steel. Phylogenetics. Oxford University Press, Oxford, 2003.
[12] Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Published electronically at https: //oeis.org, 2018.
[13] Peter S. Stevens. Patterns in nature. Little, Brown and Company, United States of America, 240 pp ., 1974.
[14] Stephan Wagner. The Fibonacci number of Fibonacci trees and a related family of polynomial recurrence systems. The Fibonacci Quarterly, 45(3):247-253, 2007.

Audace A. V. Dossou-Olory, Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

E-mail address: audace@aims.ac.za

[^0]: 2010 Mathematics Subject Classification. Primary 05C05; secondary 05C30.
 Key words and phrases. leaf-induced subtrees, nonisomorphic subtrees, leaf-Fibonacci trees.
 The author was supported by Stellenbosch University in association with African Institute for Mathematical Science (AIMS) South Africa.

