
A Note On Universal Point Sets for Planar Graphs

Manfred Scheucher∗ Hendrik Schrezenmaier∗ Raphael Steiner∗

Abstract

We investigate which planar point sets allow simultaneous straight-line embeddings of
all planar graphs on a fixed number of vertices. We first show that (1.293−o(1))n points are
required to find a straight-line drawing of each n-vertex planar graph (vertices are drawn as
the given points); this improves the previous best constant 1.235 by Kurowski (2004).

Our second main result is based on exhaustive computer search: We show that no set
of 11 points exists, on which all planar 11-vertex graphs can be simultaneously drawn plane
straight-line. This strengthens the result by Cardinal, Hoffmann, and Kusters (2015), that
all planar graphs on n ≤ 10 vertices can be simultaneously drawn on particular “universal”
sets of n points while there are no universal sets for n ≥ 15. Moreover, we provide a set of
23 planar 11-vertex graphs which cannot be simultaneously drawn on any set of 11 points.
This, in fact, is another step towards a (negative) answer of the question, whether every two
planar graphs can be drawn simultaneously – a question raised by Brass, Cenek, Duncan,
Efrat, Erten, Ismailescu, Kobourov, Lubiw, and Mitchell (2007).

1 Introduction

A point set S in the Euclidean plane is called n-universal for a family G of planar n-vertex
graphs if every graph G from G admits a plane straight-line embedding such that the vertices are
drawn as points from S. A point set, which is n-universal for the family of all planar graphs, is
simply called n-universal. We denote by fp(n) the size of a minimal n-universal set (for planar
graphs), and by fs(n) the size of a minimal n-universal set for stacked triangulations, where
stacked triangulations (a.k.a. planar 3-trees) are defined as follows:

Definition 1 (Stacked Triangulations). Starting from a triangle, one may obtain any stacked
triangulation by repeatedly inserting a new vertex inside a face (including the outer face) of the
actual triangulation and making it adjacent to all the three vertices contained in the face.

Figures 2 and 3 show examples of stacked triangulations on 11 vertices.

De Fraysseix, Pach, and Pollack [DFPP90] showed that every planar n-vertex graph admits
a straight-line embedding on an (2n − 4) × (n − 2) grid – even if the combinatorial embedding
(including the choice of the outer face) is prescribed. Moreover, the graphs are only embedded
on a triangular subset of the grid. Hence, fp(n) ≤ n2 −O(n). This bound was further improved

to the currently best known bound fp(n) ≤ n2

4 −O(n) [BCDE14] (see also [Sch90, Bra08]). Also
various subclasses of planar graphs have been studied intensively: Any stacked triangulation on
n vertices (with a fixed outer cell) can be drawn on a particular set of fs(n) ≤ O(n3/2 log n)
points [FT15]. For outerplanar graphs, it is known that any set of n points in general position is

∗Institut für Mathematik, Technische Universität Berlin, Germany,
{scheucher,schrezen,steiner}@math.tu-berlin.de

1

ar
X

iv
:1

81
1.

06
48

2v
1

 [
m

at
h.

C
O

]
 1

5
N

ov
 2

01
8

n-universal [PGMP91, CU96]. For 2-outerplanar graphs and for simply nested graphs an upper
bound of O(n log n) is known [ABDB+18].

Concerning the lower bound on fp(n) and fs(n), respectively, the relation n ≤ fs(n) ≤ fp(n)
obviously holds for any n ∈ N. The first non-trivial lower bound on the size of n-universal
sets was also given by de Fraysseix, Pach, and Pollack [DFPP90], who showed a lower bound
of fp(n) ≥ n + (1 − o(1))

√
n. Chrobak and Karloff [CK89] further improved the lower bound

to (1.098− o(1))n, and the multiplicative constant was later on improved to 1.235 by Kurowski
[Kur04]. In fact, Kurowski’s lower bound even applies to fs(n).

Cardinal, Hoffmann, and Kusters [CHK15] showed that n-universal sets of size n exist for
every n ≤ 10, whereas for n ≥ 15 no such set exists – not even for stacked triangulations:

fp(n) = fs(n) = n for n ≤ 10 and fp(n) ≥ fs(n) > n for n ≥ 15.

Moreover, they found a collection of 7,393 planar graphs on n = 35 vertices which cannot
be simultaneously drawn straight-line on a common set of n points. We call such a collection of
graphs a conflict collection. This was a first big step towards an answer to the question by Brass
and others [BCD+07], which can be reformulated as follows:

Question 1. Is there a conflict collection of size 2?

2 Outline

Our first result is the following theorem, which further improves the lower bound on fs(n). We
present its proof in Section 3.

Theorem 1. It holds that fs(n) ≥ (α − o(1))n, where α = 1.293 . . . is the unique real-valued
solution of the equation αα

(α−1)α−1 = 2.

In Section 4 we present our second result, which is another step towards a (negative) answer of
Question 1 and strengthens the results from [CHK15]. Its proof is based on exhaustive computer
search.

Theorem 2 (Computer-assisted). There is a conflict collection consisting of 23 stacked triangu-
lations on 11 vertices. Furthermore, there is no conflict collection consisting of 16 triangulations
on 11 vertices.

Corollary 3. There is no 11-universal set of size 11 – even for stacked triangulations. Hence,
fp(11) ≥ fs(11) ≥ 12.

Last but not least, since all known proofs for lower bounds make use of separating triangles,
we also started the investigation of 4-connected triangulations. In Section 5 we present some
n-universal sets of size n for 4-connected planar graphs for all n ≤ 17.

3 Proof of Theorem 1

To prove the theorem, we use a refined counting argument based on a construction of a set of
labeled stacked triangulations that was already introduced in [CHK15]. There it was used to
disprove the existence of n-universal sets of n ≥ 15 points for the family of stacked triangulations.

2

Definition 2 (Labeled Stacked Triangulations, cf. [CHK15, Section 3]). For every integer n ≥ 4,
we define the family Tn of labeled stacked triangulations on the set of vertices Vn := {v1, ..., vn}
inductively as follows:

• T4 consists only of the complete graph K4 with labels v1, . . . , v4.

• If T is a labeled graph in Tn−1 with n ≥ 5, and vivjvk defines a face of T , then the graph
obtained from T by stacking the new vertex vn to vivjvk (i.e., connecting it to vi, vj, and vk)
is a member of Tn.

It is important to notice that, when speaking of Tn, we distinguish between elements if they
are distinct as labeled graphs, even if their underlying graphs are isomorphic. The essential
ingredient we will need from [CHK15] is the following.

Lemma 4 (cf. [CHK15, Lemmas 1 and 2]).

(i) For any n ≥ 4, the family Tn contains exactly 2n−4(n− 3)! labeled stacked triangulations.

(ii) Let Pn = {p1, . . . , pn} be a set of n ≥ 4 labeled points in the plane. Then for any bijection
π : Vn → Pn, there is at most one T ∈ Tn such that the embedding of T , which maps each
vertex vi to point π(vi), defines a straight-line-embedding of T .

We need the following simple consequence of the above:

Corollary 5. Let P = {p1, . . . , pm} be a set of m ≥ n ≥ 4 labeled points in the plane. Then
for any injection π : Vn → P , there is at most one T ∈ Tn such that the embedding of T , which
maps each vertex vi to point π(vi), defines a straight-line-embedding of T .

Proof. Let T1, T2 ∈ Tn be two stacked triangulations such that π describes a plane straight-line
embedding of both. Since π is an injection, this means that π defines a straight-line embedding
of both T1, T2 on the sub-point set Q := π(Vn) of P of size n. Applying Lemma 4(ii) to the
bijection π : Vn → Q and T1, T2, we deduce T1 = T2. This proves the claim.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let n ≥ 4 be arbitrary and m := fs(n) ≥ n. There exists an n-universal
point set P = {p1, . . . , pm} for all stacked triangulations, hence for every T ∈ Tn there exists a
straight-line embedding of T on P , with (injective) vertex-mapping π : Vn → P . By Corollary 5,
we know that no two stacked triangulations from Tn (each of which has the same vertex set)
yield the same injection π. Consequently, by Lemma 4(i), we have

2n−4(n− 3)! = |Tn| ≤
m!

(m− n)!
,

which means
1

16n(n− 1)(n− 2)
2n ≤

(
m

n

)
=

(
fs(n)

n

)
.

Let β(n) := fs(n)
n . Using the fact that (Stirling-approximation)

(
fs(n)

n

)
∼

√
fs(n)

2πn(fs(n)− n)︸ ︷︷ ︸
≤1

fs(n)fs(n)

nn(fs(n)− n)fs(n)−n
≤
(

β(n)β(n)

(β(n)− 1)β(n)−1

)n
,

3

we deduce (taking logarithms) that:

(1− o(1))n ≤ log2

(
β(n)β(n)

(β(n)− 1)β(n)−1

)
n⇐⇒ 2− o(1) ≤ β(n)β(n)

(β(n)− 1)β(n)−1
.

Consequently, β(n) ≥ (1− o(1))α, where α is the unique solution to αα

(α−1)α−1 = 2. This proves

fs(n) = n · β(n) ≥ (1− o(1))αn, which is the claim.

4 Proof of Theorem 2 and Corollary 3

In the following, we outline the strategy which we have used to find a conflict collection of 23
stacked 11-vertex triangulations. A reader who is mainly interested in verifying our computa-
tional results might want to jump directly to Section 4.5.

One fundamental observation which we use throughout this section is the following: if an n-
universal point set has collinear points, then by perturbation one can obtain another n-universal
point set in general position, i.e., with no collinear points. Hence, in the following we only
consider point sets in general position. Also it is not hard too see that, if two point sets are
combinatorially equivalent, i.e., there is a bijection such that the corresponding triples of points
induce the same orientations, then both sets allow precisely the same straight-line drawings.
Hence, in the following we further restrict our considerations to (non-degenerated) order types,
i.e., the set of equivalence classes of point sets (in general position).

4.1 Enumeration of Order Types

The database of all order types of up to n = 11 points was developed by Aurenhammer, Aich-
holzer, and Krasser [AAK02, AK06] (see also Krasser’s dissertation [Kra03]). The file for all order
types of up to n = 10 points (each represented by a point set) is available online, while the file
for n = 11 requires almost 100GB of storage and is available on demand [Aic]. Their algorithm
starts with an abstract order type on k − 1 points (which only encodes the triple orientations
of a point set), computes its dual pseudoline arrangement, and inserts a k-th pseudoline in all
possible ways. Due to geometrical constraints, there are in fact abstract order types enumerated
which do not have a realization as a point set. However, since every order type is in fact also an
abstract order type, it is sufficient for our purposes to test all abstract order types – independent
from realizability.

For means of redundancy and to provide a fully checkable and autonomous proof, we have im-
plemented an alternative algorithm to enumerate all abstract order types based on the following
idea: Given a set of points s1, . . . , sn with si = (xi, yi) sorted left to right1, and let

χijk := sgn det

 1 1 1
xi xj xk
yi yj yk

 ∈ {−1, 0,+1}

denote the induced triple orientations, then the signotope axioms assert that, for every 4-tuple
si, sj , sk, sl with i < j < k < l, the sequence

χijk, χijl, χikl, χjkl

1 in the dual line arrangement the lines are sorted by increasing slope

4

(index-triples are in lexicographic order) changes its sign at most once. For more information on
the signotope axioms we refer to Felsner and Weil [FW01] (see also [BFK15]).

Given an abstract order type on k−1 points, we insert a k-th point in all possible ways, such
that the signotope axioms are preserved. With our C++ implementation, we managed to verify
the numbers of abstract order types from [AAK02, AK06, Kra03]. In fact, the enumeration of all
2,343,203,071 abstract order types of up to n = 11 points (cf. OEIS/A6247) can be done within
about 20 hours on a single CPU.

4.2 Enumeration of Planar Graphs

To enumerate all non-isomorphic maximal planar graphs on 11 vertices (i.e, triangulations), we
have used the plantri graph generator (version 4.5) [BM99]. It is worth to note that also the
nauty graph generator [MP14] can be used for the enumeration because the number of all (not
necessarily planar) graphs on 11 vertices is not too large and the database can be filtered for
planar graphs in reasonable time – negligible compared to the CPU time which we have used for
later computations. For various computations on graphs, such as filtering stacked triangulations
or to produce graphs for this paper, we have used SageMath [S+18a]2.

4.3 Deciding Universality using a SAT Solver

For a given point set S and a planar graph G = (V,E) we model a propositional formula in
conjunctive normal form (CNF) which has a solution if and only if G can be embedded on S –
in fact, the variables encode a straight-line drawing.

To model the CNF, we have used

• the variables Mvp to describe, whether vertex v is mapped to point p, and

• the variables Apq to describe, whether the straight-line segment pq between the two points
p and q is “active” in a drawing.

It is not hard to use a CNF to assert that such a vertex-to-point mapping is bijective. Also
it is easy to assert that, if two adjacent vertices u and v are mapped to points p and q, then
the straight-line segment pq is active. For each pair of crossing straight-line segments pq and rs
(dependent on the order type of the point set) at least one of the two segments is not allowed to
be active.

Implementation detail: We have implemented a C++ routine which, given a point set and
a graph as input, creates an instance of the above described model and then uses the solver
MiniSat 2.2.0 [ES03] to decide whether the graph admits a straight-line embedding.

4.4 Finding Conflict Collections – A Quantitive Approach

Before we actually tested whether a set of 11 points is 11-universal or not, we discovered a
few necessary criteria for the point set, which can be checked much more efficiently. These
considerations allowed a significant reduction of the total computation times.

2We recommend the Sage Reference Manual on Graph Theory [S+18b] and its collection of excellent examples.

5

http://oeis.org/A6247

Phase 1: First of all, an 11-universal point set – if one exists – trivially has a triangular convex
hull. Secondly, the planar graph depicted in Figure 1 asserts an 11-universal set S to have a
certain structure. If the embedding is as on the left of Figure 1, then one of the two degree 3
vertices is drawn as extremal point of S, i.e., lies on the boundary of the convex hull conv(S)
of S. After the removal of this particular point, the remaining 10 points have 4 convex layers
of sizes 3, 3, 3, and 1, respectively. If the embedding is as on the right of Figure 1, then either
one or two points of the blue triangle are drawn as extremal points of S (recall the triangular
convex hull of S). And again, the points inside the blue triangle and outside the blue triangle
have convex layers of sizes 3, 3, 1, and 3, 1, respectively. Altogether, only 293,114,696 of the
2,343,203,071 abstract order types on 11 points fulfill the two conditions.

Figure 1: The two embeddings of a graph, which forces the point set to have a certain structure. Each
of the vertices of the blue triangle connects to one of the vertices of the two copies of K4.

There exist stacked triangulations on 11 points in which every face is incident to a degree-3-
vertex; see for example G11 in Figure 2. Independent from the embedding of such a graph, there
is a degree-3-vertex on the outer face, and hence all inner points lie inside a triangle spanned by
an interior point and two extremal points.

Phase 2: For each of the 293,114,696 abstract order types on 11 points which fulfill the con-
ditions above, we have tested the embeddability of all maximal planar graphs on n vertices
separately using a SAT-solver based approach [ES04]. In fact, as soon as one graph was not
embeddable, the remaining graphs needed not to be checked. To speed up the computations we
have used a priority queue: a graph which does not admit an embedding gets increased priority
for other point sets to be tested first.

To keep the conflict collection as small as possible, we first filtered out all point sets which do
not allow a simultaneous embedding of all planar graphs on 11 vertices with maximum degree 10.
Only 278,530 of the 293,114,696 abstract order types remained (computation time about 100 CPU
days). It is worth to note that there are 82 maximal planar graphs on 11 vertices with maximum
degree 10 (cf. OEIS/A207), and that each of these graphs is a stacked triangulation.

At this point one can check with only a few CPU hours that the remaining 278,530 abstract
order types are not 11-universal. Moreover, since some stacked triangulations on 11 vertices (e.g.
G8 from Figure 2) contain the graph from Figure 1 as a subgraph, the statement even applies to
stacked triangulations. Consequently, the family of all 434 stacked triangulations on 11 vertices
(cf. OEIS/A27610) is a conflict collection, and Corollary 3 follows directly.

Phase 3: To find a smaller conflict collection, we tested for each of the 434 stacked trian-
gulations and each of the 278,530 remaining abstract order types, whether an embedding is
possible (additional 35 CPU days). We used this binary information to formulate an integer

6

http://oeis.org/A207
http://oeis.org/A27610

program searching for a minimal set of triangulations, without simultaneous embedding. Us-
ing the Gurobi solver (version 8.0.0) [Gur18], we managed to find a collection G of 11 stacked
triangulations which cannot be embedded simultaneously3; see Listing 1 and Figure 2.

In fact, the Gurobi IP solver showed optimality and thus no conflict collection of size less
than 11 can exist for n = 11. Since we asserted in Phases 1 and 2 that

(1) the graph in Figure 1,

(2) a triangulation where every face is incident to a vertex of degree 3, and

(3) all 82 triangulations with maximum degree 10

occur in the conflict collection, this yields a conflict collection of size 95 = 1 + 1 + 82 + 11. In
fact, since this subset of 11 stacked triangulations contains triangulations fulfilling properties (1)
and (2) (see e.g. graphs G8 and G11 in Figure 2), we indeed have a conflict collection of size 93.

Phase 4: Recall that a minimal conflict collection not necessarily needs to fulfill the properties
(1)–(3). Hence we again repeat the strategy from Phase 2, except that we test for the embed-
dability of the 11 stacked triangulations from the collection G obtained in Phase 3 instead of the
82 maximal planar graphs on 11 vertices with maximum degree 10.

After another 230 days of CPU time, our program had filtered out 17,533 of the 293,114,696
abstract order types (obtained in Phase 1) which allow a simultaneous embedding of the 11
stacked triangulations from G.

Phase 5: As the reader might already guess, we proceed as in Phase 3: we tested for each
of the 434 stacked triangulations and each of the 17,533 order types from Phase 4, whether
an embedding is possible (only 2 CPU days). Using the Gurobi solver, we managed to find a
collection H of 12 stacked triangulations, which cannot be simultaneously embedded on those
order types; see Listing 1 and Figure 2.

Together with the 11 stacked triangulations from G we obtain a conflict collection of size 23,
and the first part of Theorem 2 follows.

Phase 6: As the solution of the integer programming instance from Phase 5 found by Gurobi
was optimal, any conflict collection of stacked triangulations must have size at least 12. To
further improve this lower bound, we have repeated our computations for the union of the two
sets of point sets obtained in Phase 3 and Phase 5, respectively. Using Gurobi, we could optimally
solve the instance and hence any conflict collection consisting of 11-vertex stacked triangulations
has size at least 17.

Surprisingly, when replacing the 434 stacked triangulations by the collection of all 1,249
triangulations (cf. OEIS/A109), the Gurobi solver also showed that any conflict collection of
(arbitrary) 11-vertex triangulations has size at least 17. The computation took about 1 day
using 20 threads in parallel.

For means of redundancy, we have verified all lower bounds obtained by Gurobi also us-
ing CPLEX (version 12.8.0.0) [IBM18], which performed similar to Gurobi (with 20 threads in
parallel).

This completes the proof of the second part of Theorem 2.

3 Indeed it was a funny coincidence that this set has cardinality 11, which is also the number of vertices.

7

http://oeis.org/A109

0

1

2
3 4

5

6

7

8

9

10

G1

0

1

2
3

4

5
6

7

8

9

10

G2

0

1

2
3

4

5

6

7

8

9

10

G3

0

1

2

3

4

5

6

7
8

9

10

G4

0

1

2
3

4

5

6

7

8

9 10

G5

0

1

2
3

4

5

6

7 8
9

10

G6

0

1

2
3

45

6

7

8

9

10

G7

0

1

2
3

4

5

6

7

8

9

10

G8

0

1

2

3

4

5

6

7

8

9

10

G9

0

1

2
3

4

5
6

7

8
9

10

G10

0

1

2
3

4
5 6

7

8

910

G11

Figure 2: The 11 stacked triangulations from the conflict collection G obtained in Phase 3.

8

0

1

2

3

4

5

6

7

8

9

10

H1

0

1

2
3

4

5

6

7

8

9
10

H2

0

1

2

3

4

56
7

8

9

10

H3

0

1

2

3 4

5

6

7
8

9

10

H4

0

1

2

3

4 5

6
7

8

9

10

H5

0

1

2

3

4 5
6

7

8

910

H6

0

1

2

3

4
5

6

7
8

9

10

H7

0

1

2
3

4

5
6

7

8
9

10

H8

0

1

2

3

4
5

6

7

8
910

H9

0

1

2
3 4

5

6
7

8

9

10

H10

0

1

2
3

4
5

6
78

9

10

H11

0

1

2

3

4

5

6

7

8
9

10

H12

Figure 3: The 12 stacked triangulations from the conflict collection H obtained in Phase 5.

9

4.5 How to Verify our Results?

To verify the computational results which are essential for the proof of the first part of Theorem 2,
one can enumerate all order types on 11 points and test the conflict collection of 23 triangula-
tions (data/triangulations/n11_conflicting23.txt). Starting with the unique order type
on 3 points (data/order_types/n3_order_types.bin), it takes about 1 CPU day to enumerate
all order types on 11 points. By falsifying simultaneous embeddability of the 23 graphs (this
computation takes about 200 CPU days, but can be run parallelized), the first part of Theorem 2
is then verified.

For the second part of the Theorem 2, one can filter the order types, which allow a si-
multaneous embedding of the triangulations from Phase 2 and 4, and then – using CPLEX
or Gurobi – compute the minimum size of a conflicting collection among all 11-vertex trian-
gulations and 11-vertex stacked triangulations, respectively. To save some computation time,
we provide the filtered list in the files data/triangulations/n11_after_phase2.bin.zip and
n11_after_phase4.bin.zip. The list of all (stacked) triangulations is provided in the files
n11_all_triangulations.txt and n11_all_stacked_triangulations.txt.

A more detailed description is provided in Appendix A. The source codes of our programs
and relevant data are available on the companion website [Sch].

5 Universal Sets for 4-Connected Graphs

For n ≤ 10, examples of n-universal sets of n points for planar n-vertex graphs were already
given in [CHK15]. To provide n-universal sets for 4-connected planar graphs for n = 11, . . . , 17,
we slightly adopted our framework. Again, we enumerated 4-connected planar triangulations
using the plantri graph generator, and using our C++ implementation, tested for universality.
Our idea to find the proposed point sets for n = 11, . . . , 17 was to start with an (n− 1)-universal
set of n − 1 points and insert an n-th point in all possible ways (cf. Section 4.1). The abstract
order types obtained in this way – if they turned out to be universal – were then realized as
point sets using the framework pyotlib4. The obtained sets are given in Listing 3.

It is also worth to note that the numbers of 4-connected triangulations for n = 11, . . . , 20
are 25; 87; 313; 1,357; 6,244; 30,926; 158,428; 836,749; 4,504,607; 24,649,284 (cf. OEIS/A7021).
Hence, even if a universal point set is known, it is getting more and more time consuming to
verify n-universality as n gets larger (at least using our SAT solver approach).

6 Discussion

In Section 3, we provided an improved lower bound for fp(n) and fs(n). However, the best
known general upper bounds remain far from linear.

In Section 4, we have applied the ideas from Phases 2 and 3 twice (cf. Phases 4 and 5) to
reduce the size of a conflict collection. One could further proceed with this strategy to find even
smaller conflict collections (if such exist). Also one could simply test whether all elements from
the conflict collection are indeed necessary, or whether certain elements can be removed. Note
that, to compute a minimal conflict collection for n = 11, one could theoretically check which

4 The “python order type library” was initiated during the Bachelor’s studies of the first author [Sch14] and
provides many features to work with (abstract) order types such as local search techniques, realization or proving
non-realizability of abstract order types, coordinate minimization and “beautification” for nicer visualizations.
For more information, please consult the author.

10

http://oeis.org/A7021

graphs admit an embedding on which point set and then find a minimal set cover as described
in Phase 3 (Section 4). In practice, however, formulating such a minimal set cover instance (as
integer program) is not reasonable because testing the embeddability of every graph in every
point set would be an extremely time consuming task. (Recall that we used a priority queue to
speed up our computation, so only a few pairs were actually tested. Also recall that, to generate
the set cover instances, we only looked at a comparably small number of order types.) And
even if such an instance was formulated, due to its size, the IP/set cover might not be solvable
optimally in reasonable time.

Besides the computations for n = 11 points, we also adopted our program to find all n-
universal order types on n points for every n ≤ 10, and hence could verify the results from
[CHK15, Table 1]. To be precise, we found 5,956 9-universal abstract order types on n = 9
points, whereas only 5,955 are realizable as point sets. It is worth to note that there is exactly
one non-realizable abstract order type on 9 points in the projective plane, which is dual to
the simple non-Pappus arrangement, and that all abstract order types on n ≤ 8 points are
realizable. Besides the already known 2,072 realizable order types on 10 points, no further non-
realizable 10-universal abstract order types were found. For more details on realizability see for
example [Kra03] or [FG18].

Unfortunately, we do not have an argument for subsets/supersets of n-universal point sets,
and thus the question for n = 12, 13, 14 remains open. However, based on computational evidence
(see also [CHK15, Table 1]), we strongly conjecture that no n-universal set of n points exists for
n ≥ 11.

As mentioned in the introduction of this paper, various graph classes have been studied for
this problem. Even though our contribution on 4-connected planar graphs in Section 5 is rather
small, it gives some evidence that comparably less points are needed to embed 4-connected planar
graphs. In fact, we would not be surprised if n-universal sets of n points exist for 4-connected
planar graphs.

Acknowledgements

Manfred Scheucher was supported by DFG Grant FE 340/12-1. Hendrik Schrezenmaier was
supported by DFG Grant FE-340/11-1. Raphael Steiner was supported by DFG-GRK 2434.

References

[AAK02] O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating Order Types for
Small Point Sets with Applications. Order, 19(3):265–281, 2002.

[ABDB+18] P. Angelini, T. Bruckdorfer, G. Di Battista, M. Kaufmann, T. Mchedlidze,
V. Roselli, and C. Squarcella. Small universal point sets for k-outerplanar graphs.
Discrete & Computational Geometry, pages 1–41, 2018.

[Aic] O. Aichholzer. Enumerating Order Types for Small Point Sets with Applications.
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/

ordertypes/.

[AK06] O. Aichholzer and H. Krasser. Abstract Order Type Extension and New Results
on the Rectilinear Crossing Number. Computational Geometry: Theory and Appli-
cations, 36(1):2–15, 2006.

11

http://doi.org/10.1023/A:1021231927255
http://doi.org/10.1023/A:1021231927255
http://doi.org/10.1007/s00454-018-0009-x
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
http://doi.org/10.1016/j.comgeo.2005.07.005
http://doi.org/10.1016/j.comgeo.2005.07.005

[BCD+07] P. Brass, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. P. Ismailescu, S. G.
Kobourov, A. Lubiw, and J. S. Mitchell. On simultaneous planar graph embeddings.
Computational Geometry, 36(2):117–130, 2007.

[BCDE14] M. J. Bannister, Z. Cheng, W. E. Devanny, and D. Eppstein. Superpatterns and
Universal Point Sets. Journal of Graph Algorithms and Applications, 18(2):177–209,
2014.

[BFK15] M. Balko, R. Fulek, and J. Kynčl. Crossing Numbers and Combinatorial Char-
acterization of Monotone Drawings of Kn. Discrete & Computational Geometry,
53(1):107–143, 2015.

[BM99] G. Brinkmann and B. D. McKay. Fast generation of some classes of planar graphs.
Electronic Notes in Discrete Mathematics, 3:28–31, 1999.

[Bra08] F. J. Brandenburg. Drawing planar graphs on 8
9n

2 area. Electronic Notes in Discrete
Mathematics, 31:37–40, 2008.

[CHK15] J. Cardinal, M. Hoffmann, and V. Kusters. On Universal Point Sets for Planar
Graphs. Journal of Graph Algorithms and Applications, 19(1):529–547, 2015.

[CK89] M. Chrobak and H. J. Karloff. A Lower Bound on the Size of Universal Sets for
Planar Graphs. ACM SIGACT News, 20(4):83–86, 1989.

[CU96] N. Castañeda and J. Urrutia. Straight Line Embeddings of Planar Graphs on Point
Sets. In Proceedings of the 8th Canadian Conference on Computational Geometry
(CCCG’96), pages 312–318, 1996.
http://www.cccg.ca/proceedings/1996/cccg1996_0052.pdf.

[DFPP90] H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, 1990.

[ES03] N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of Theory and
Applications of Satisfiability Testing - SAT 2003, pages 502–518, 2003.

[ES04] N. Eén and N. Sörensson. An Extensible SAT-solver. In E. Giunchiglia and A. Tac-
chella, editors, Theory and Applications of Satisfiability Testing: 6th International
Conference, SAT 2003, pages 502–518. Springer, 2004.

[FG18] S. Felsner and J. E. Goodman. Pseudoline Arrangements. In Toth, O’Rourke, and
Goodman, editors, Handbook of Discrete and Computational Geometry. CRC Press,
3 edition, 2018.

[FT15] R. Fulek and C. D. Tóth. Universal point sets for planar three-trees. Journal of
Discrete Algorithms, 30:101–112, 2015.

[FW01] S. Felsner and H. Weil. Sweeps, Arrangements and Signotopes. Discrete Applied
Mathematics, 109(1):67–94, 2001.

[GP83] J. E. Goodman and R. Pollack. Multidimensional Sorting. SIAM Journal on Com-
puting, 12(3):484–507, 1983.

[Gur18] Gurobi Optimization, LLC. Gurobi Optimizer, 2018.
http://www.gurobi.com.

12

http://doi.org/10.1016/j.comgeo.2006.05.006
http://doi.org/10.7155/jgaa.00318
http://doi.org/10.7155/jgaa.00318
http://doi.org/10.1007/s00454-014-9644-z
http://doi.org/10.1007/s00454-014-9644-z
http://doi.org/10.1016/S1571-0653(05)80016-2
http://doi.org/10.1016/j.endm.2008.06.005
http://doi.org/10.7155/jgaa.00374
http://doi.org/10.7155/jgaa.00374
http://doi.org/10.1145/74074.74088
http://doi.org/10.1145/74074.74088
http://www.cccg.ca/proceedings/1996/cccg1996_0052.pdf
http://doi.org/10.1007/BF02122694
http://doi.org/10.1007/978-3-540-24605-3_37
http://doi.org/10.1007/978-3-540-24605-3_37
http://doi.org/10.1201/9781315119601
http://doi.org/10.1016/j.jda.2014.12.005
http://doi.org/10.1016/S0166-218X(00)00232-8
http://doi.org/doi:10.1137/0212032
http://www.gurobi.com

[IBM18] IBM ILOG CPLEX Optimization Studio, 2018.
http://www.ibm.com/products/ilog-cplex-optimization-studio/.

[Kra03] H. Krasser. Order Types of Point Sets in the Plane. PhD thesis, Institute for
Theoretical Computer Science, Graz University of Technology, Austria, 2003.

[Kur04] M. Kurowski. A 1.235n lower bound on the number of points needed to draw all
n-vertex planar graphs. Information Processing Letters, 92(2):95–98, 2004.

[MP14] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal of Symbolic
Computation, 60:94–112, 2014.

[PGMP91] J. Pach, P. Gritzmann, B. Mohar, and R. Pollack. Embedding a planar triangulation
with vertices at specified points. American Mathematical Monthly, 98:165–166, 1991.

[S+18a] W. A. Stein et al. Sage Mathematics Software (Version 8.1). The Sage Development
Team, 2018. http://www.sagemath.org.

[S+18b] W. A. Stein et al. Sage Reference Manual: Graph Theory (Release 8.1), 2018.
http://doc.sagemath.org/pdf/en/reference/number_fields/number_

fields.pdf.

[Sch] M. Scheucher. Webpage: Source Codes and Data for Universal Point Sets.
http://page.math.tu-berlin.de/~scheuch/supplemental/universal_sets.

[Sch90] W. Schnyder. Embedding Planar Graphs on the Grid. In Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 138–148. Society for
Industrial and Applied Mathematics, 1990.

[Sch14] M. Scheucher. On Order Types, Projective Classes, and Realizations. Bachelor’s
thesis, Graz University of Technology, Austria, 2014.
http://www.math.tu-berlin.de/~scheuch/publ/bachelors_thesis_tm_2014.

pdf.

13

http://www.ibm.com/products/ilog-cplex-optimization-studio/
http://doi.org/10.1016/j.ipl.2004.06.009
http://doi.org/10.1016/j.ipl.2004.06.009
http://doi.org/10.1016/j.jsc.2013.09.003
http://doi.org/10.2307/2323956
http://doi.org/10.2307/2323956
http://www.sagemath.org
http://doc.sagemath.org/pdf/en/reference/number_fields/number_fields.pdf
http://doc.sagemath.org/pdf/en/reference/number_fields/number_fields.pdf
http://page.math.tu-berlin.de/~scheuch/supplemental/universal_sets
http://www.math.tu-berlin.de/~scheuch/publ/bachelors_thesis_tm_2014.pdf
http://www.math.tu-berlin.de/~scheuch/publ/bachelors_thesis_tm_2014.pdf

G 1 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (1 , 2) , (1 , 3) , (1 , 4) , (1 , 5) , (1 , 6) ,
(1 , 8) , (2 , 3) , (3 , 4) , (3 , 5) , (3 , 6) , (3 , 7) , (3 , 9) , (3 , 1 0) , (4 , 5) ,
(4 , 8) , (4 , 9) , (4 , 1 0) , (5 , 6) , (5 , 7) , (5 , 8) , (5 , 9) , (6 , 7) , (9 , 1 0)]

G 2 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 7) , (0 , 8) , (1 , 2) , (1 , 3) , (1 , 4) ,
(1 , 5) , (1 , 6) , (2 , 3) , (3 , 4) , (3 , 5) , (3 , 7) , (3 , 8) , (3 , 9) , (4 , 5) ,
(4 , 6) , (4 , 7) , (4 , 9) , (4 , 1 0) , (5 , 6) , (5 , 9) , (5 , 1 0) , (7 , 8) , (9 , 1 0)]

G 3 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 6) , (0 , 7) , (0 , 8) , (1 , 2) ,
(1 , 3) , (1 , 4) , (1 , 5) , (1 , 9) , (2 , 3) , (3 , 4) , (3 , 9) , (4 , 5) , (4 , 6) ,
(4 , 7) , (4 , 9) , (4 , 1 0) , (5 , 6) , (6 , 7) , (6 , 8) , (6 , 1 0) , (7 , 8) , (7 , 1 0)]

G 4 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 9) , (0 , 1 0) , (1 , 2) , (1 , 3) ,
(1 , 4) , (2 , 3) , (2 , 9) , (2 , 1 0) , (3 , 4) , (3 , 5) , (3 , 6) , (3 , 7) , (3 , 9) ,
(4 , 5) , (4 , 6) , (5 , 6) , (5 , 7) , (5 , 8) , (6 , 7) , (6 , 8) , (7 , 8) , (9 , 1 0)]

G 5 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 9) , (0 , 1 0) , (1 , 2) , (1 , 3) ,
(1 , 4) , (1 , 5) , (1 , 6) , (1 , 7) , (1 , 8) , (2 , 3) , (3 , 4) , (4 , 5) , (4 , 6) ,
(4 , 9) , (5 , 6) , (5 , 7) , (5 , 8) , (5 , 9) , (5 , 1 0) , (6 , 7) , (7 , 8) , (9 , 1 0)]

G 6 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 6) , (0 , 8) , (1 , 2) , (1 , 3) ,
(1 , 4) , (2 , 3) , (3 , 4) , (3 , 5) , (3 , 7) , (3 , 9) , (4 , 5) , (4 , 6) , (4 , 7) ,
(4 , 9) , (4 , 1 0) , (5 , 6) , (5 , 7) , (5 , 8) , (6 , 8) , (7 , 9) , (7 , 1 0) , (9 , 1 0)]

G 7 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 9) , (0 , 1 0) , (1 , 2) , (1 , 3) , (1 , 4) ,
(1 , 5) , (1 , 6) , (1 , 8) , (1 , 9) , (2 , 3) , (3 , 4) , (3 , 5) , (3 , 1 0) , (4 , 5) ,
(4 , 6) , (4 , 7) , (4 , 9) , (4 , 1 0) , (5 , 6) , (5 , 7) , (5 , 8) , (6 , 7) , (6 , 8)]

G 8 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 6) , (0 , 7) , (1 , 2) , (1 , 3) ,
(1 , 4) , (1 , 5) , (1 , 8) , (2 , 3) , (2 , 8) , (3 , 4) , (3 , 8) , (4 , 5) , (4 , 6) ,
(4 , 7) , (4 , 9) , (5 , 6) , (6 , 7) , (6 , 9) , (6 , 1 0) , (7 , 9) , (7 , 1 0) , (9 , 1 0)]

G 9 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 6) , (0 , 8) , (1 , 2) , (1 , 3) ,
(1 , 4) , (2 , 3) , (2 , 8) , (3 , 4) , (3 , 5) , (3 , 8) , (4 , 5) , (4 , 6) , (4 , 7) ,
(5 , 6) , (5 , 7) , (5 , 9) , (5 , 1 0) , (6 , 7) , (6 , 9) , (6 , 1 0) , (7 , 9) , (9 , 1 0)]

G 10 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 9) , (1 , 2) , (1 , 3) , (1 , 4) ,
(2 , 3) , (3 , 4) , (3 , 5) , (3 , 6) , (3 , 1 0) , (4 , 5) , (4 , 6) , (4 , 7) , (4 , 9) ,
(4 , 1 0) , (5 , 6) , (5 , 7) , (5 , 8) , (5 , 9) , (6 , 7) , (6 , 8) , (6 , 1 0) , (7 , 8)]

G 11 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 6) , (0 , 7) , (0 , 8) , (0 , 9) , (1 , 2) ,
(1 , 3) , (1 , 4) , (1 , 5) , (1 , 6) , (2 , 3) , (3 , 4) , (3 , 5) , (3 , 7) , (3 , 8) ,
(3 , 1 0) , (4 , 5) , (4 , 6) , (4 , 7) , (4 , 9) , (4 , 1 0) , (7 , 8) , (7 , 9) , (7 , 1 0)]

Listing 1: Edge-lists of the 11 stacked triangulations from collection G obtained in Phase 3.

14

H 1 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (1 , 2) , (1 , 3) , (2 , 3) , (2 , 4) ,
(2 , 7) , (2 , 9) , (2 , 1 0) , (3 , 4) , (3 , 5) , (3 , 6) , (3 , 7) , (3 , 8) , (3 , 9) ,
(3 , 1 0) , (4 , 5) , (4 , 6) , (4 , 7) , (4 , 8) , (5 , 6) , (7 , 8) , (7 , 9) , (9 , 1 0)]

H 2 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 6) , (0 , 9) , (0 , 1 0) , (1 , 2) ,
(1 , 3) , (1 , 4) , (1 , 5) , (1 , 6) , (1 , 7) , (1 , 8) , (2 , 3) , (3 , 4) , (4 , 5) ,
(4 , 9) , (5 , 6) , (5 , 7) , (5 , 8) , (5 , 9) , (5 , 1 0) , (6 , 7) , (7 , 8) , (9 , 1 0)]

H 3 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (1 , 2) , (1 , 3) , (1 , 4) , (2 , 3) ,
(2 , 5) , (2 , 6) , (3 , 4) , (3 , 5) , (3 , 6) , (3 , 7) , (3 , 8) , (3 , 9) , (3 , 1 0) ,
(5 , 6) , (5 , 7) , (6 , 7) , (6 , 8) , (7 , 8) , (7 , 9) , (8 , 9) , (8 , 1 0) , (9 , 1 0)]

H 4 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 7) , (0 , 1 0) , (1 , 2) , (1 , 3) , (1 , 4) ,
(1 , 5) , (2 , 3) , (2 , 7) , (2 , 8) , (3 , 4) , (3 , 5) , (3 , 6) , (3 , 7) , (3 , 8) ,
(3 , 9) , (3 , 1 0) , (4 , 5) , (4 , 6) , (4 , 1 0) , (5 , 6) , (5 , 9) , (6 , 9) , (7 , 8)]

H 5 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (1 , 2) , (1 , 3) , (2 , 3) , (2 , 4) ,
(3 , 4) , (3 , 5) , (3 , 6) , (3 , 7) , (3 , 9) , (3 , 1 0) , (4 , 5) , (4 , 6) , (4 , 8) ,
(5 , 6) , (5 , 7) , (5 , 8) , (6 , 7) , (6 , 8) , (6 , 9) , (7 , 9) , (7 , 1 0) , (9 , 1 0)]

H 6 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (1 , 2) , (1 , 3) , (2 , 3) , (2 , 4) ,
(2 , 8) , (3 , 4) , (3 , 5) , (3 , 6) , (3 , 7) , (3 , 8) , (3 , 9) , (3 , 1 0) , (4 , 5) ,
(4 , 6) , (4 , 8) , (5 , 6) , (5 , 7) , (5 , 9) , (6 , 7) , (6 , 1 0) , (7 , 9) , (7 , 1 0)]

H 7 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 7) , (0 , 9) , (0 , 1 0) , (1 , 2) , (1 , 3) ,
(1 , 4) , (1 , 5) , (1 , 6) , (2 , 3) , (2 , 7) , (2 , 8) , (3 , 4) , (3 , 5) , (3 , 6) ,
(3 , 7) , (3 , 8) , (3 , 9) , (3 , 1 0) , (4 , 5) , (4 , 9) , (5 , 6) , (7 , 8) , (9 , 1 0)]

H 8 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 8) , (0 , 9) , (0 , 1 0) , (1 , 2) ,
(1 , 3) , (1 , 4) , (1 , 5) , (1 , 6) , (1 , 7) , (1 , 1 0) , (2 , 3) , (3 , 4) , (4 , 5) ,
(4 , 6) , (4 , 8) , (5 , 6) , (5 , 7) , (5 , 8) , (5 , 9) , (5 , 1 0) , (6 , 7) , (8 , 9)]

H 9 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 6) , (1 , 2) , (1 , 3) , (2 , 3) ,
(2 , 4) , (2 , 8) , (3 , 4) , (3 , 5) , (3 , 6) , (3 , 7) , (3 , 8) , (3 , 9) , (3 , 1 0) ,
(4 , 5) , (4 , 7) , (4 , 8) , (4 , 1 0) , (5 , 6) , (5 , 7) , (5 , 9) , (7 , 9) , (7 , 1 0)]

H 10 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (1 , 2) , (1 , 3) , (1 , 4) , (1 , 5) , (1 , 7) ,
(1 , 8) , (2 , 3) , (3 , 4) , (3 , 5) , (3 , 6) , (3 , 9) , (4 , 5) , (4 , 6) , (4 , 7) ,
(4 , 9) , (4 , 1 0) , (5 , 6) , (5 , 7) , (5 , 8) , (5 , 1 0) , (6 , 9) , (6 , 1 0) , (7 , 8)]

H 11 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 6) , (0 , 7) , (0 , 9) , (0 , 1 0) ,
(1 , 2) , (1 , 3) , (1 , 4) , (1 , 5) , (1 , 6) , (1 , 7) , (1 , 8) , (1 , 9) , (2 , 3) ,
(2 , 8) , (3 , 4) , (3 , 8) , (4 , 5) , (5 , 6) , (6 , 7) , (7 , 9) , (7 , 1 0) , (9 , 1 0)]

H 12 = [(0 , 1) , (0 , 2) , (0 , 3) , (0 , 4) , (0 , 5) , (0 , 6) , (0 , 7) , (0 , 8) , (0 , 9) ,
(0 , 1 0) , (1 , 2) , (1 , 3) , (1 , 4) , (2 , 3) , (2 , 8) , (3 , 4) , (3 , 5) , (3 , 6) ,
(3 , 7) , (3 , 8) , (3 , 9) , (3 , 1 0) , (4 , 5) , (5 , 6) , (6 , 7) , (8 , 9) , (9 , 1 0)]

Listing 2: Edge-lists of the 12 stacked triangulations from collection H obtained in Phase 5.

15

P 11 = [(0 , 2 2) , (2 4 , 2 5) , (2 4 , 2 4) , (1 3 , 2 1) , (1 6 , 1 6) ,
(1 3 , 1 7) , (5 , 1 9) , (3 , 2 0) , (2 2 , 7) , (2 3 , 6) , (2 5 , 0)]

P 12 = [(3 6 , 5 0) , (4 9 , 0) , (4 8 , 1) , (3 9 , 1 1) , (3 8 , 1 6) , (3 7 , 2 8) ,
(3 7 , 2 7) , (3 6 , 3 0) , (3 3 , 3 8) , (3 2 , 4 1) , (3 0 , 4 9) , (0 , 4 5)]

P 13 = [(9 9 , 1 0 2) , (9 2 , 0) , (8 9 , 4) , (5 8 , 4 6) , (5 6 , 5 6) , (5 9 , 6 5) , (6 0 , 6 6) ,
(5 5 , 7 5) , (4 8 , 9 2) , (4 6 , 9 7) , (7 6 , 1 0 1) , (4 5 , 1 0 1) , (0 , 1 0 2)]

P 14 = [(3 0 6 , 3 5 8) , (3 5 8 , 0) , (3 5 4 , 2) , (3 1 3 , 3 0 6) , (3 0 4 , 3 0 2) ,
(251 , 280) , (243 , 270) , (232 , 256) , (174 , 177) , (170 , 177) ,
(1 5 9 , 1 6 3) , (1 3 1 , 1 3 5) , (1 2 2 , 1 2 5) , (0 , 1 7 6)]

P 15 = [(0 , 0) , (6 9 3 , 5 9 1) , (6 9 2 , 4 8 1) , (3 , 2) , (2 6 1 , 1 6 1) , (3 0 4 , 1 5 5) ,
(451 , 123) , (492 , 132) , (532 , 141) , (650 , 172) , (650 , 168) ,
(6 7 2 , 1 7 3) , (6 8 4 , 1 7 4) , (6 8 9 , 1 7 5) , (6 9 3 , 2 0)]

P 16 = [(4 3 8 , 4 4 7) , (4 4 7 , 0) , (4 4 6 , 1) , (3 4 3 , 1 2 2) , (3 4 4 , 1 2 6) , (3 7 9 , 2 5 9) ,
(378 , 266) , (376 , 277) , (360 , 360) , (355 , 360) , (356 , 381) ,
(4 3 6 , 4 4 6) , (3 5 8 , 4 2 4) , (3 5 7 , 4 3 3) , (4 2 , 3 8 9) , (0 , 3 8 3)]

P 17 = [(9 8 0 , 0) , (0 , 7 3 5) , (4 , 7 3 6) , (3 0 1 , 8 1 0) , (3 0 6 , 8 0 5) , (5 9 6 , 6 9 5) ,
(38 4 , 7 1 6) , (4 1 5 , 7 09) , (4 24 , 7 07) , (9 74 , 1 0) , (6 1 2 , 6 6 6) , (9 7 5 , 6) ,
(7 5 4 , 6 3 5) , (83 4 , 6 0 9) , (8 8 4 , 5 9 7) , (8 9 0 , 9 6 2) , (8 90 , 9 7 7)]

Listing 3: Universal set of n points for 4-connected planar graphs for n = 11, . . . , 17.

16

A Detailed Description of Tools

In following we give a detailed description of the tools which are required to verify the proof of
Theorem 2. Moreover, we exemplify how the tools can be used. Even though our C++ code
is platform-independent, we assume that the reader uses a Unix/Linux operating system and
only give usage examples for this particular setup. (We ran our experiments in Fedora 27 and
openSUSE 15.)

A.1 Enumerating Abstract Order Types

extend order type We provide a C++ program extend_order_type which reads all abstract
order types on a fixed number of points n from the input file, extends it in all possible ways,
and writes all so-obtained abstract order types on n + 1 points to an output file (without du-
plicates). The program (see the folder cprogram/scripts/extend_order_type/) can be built
using qmake5 and make. The following bash command builds the program:

$ qmake && make

The File Format Concerning the file format, we have to explain a little more theory: An
abstract order type can be encoded by its triple orientations

Λi,j,k ∈ {−1, 0,+1} for each 1 ≤ i, j, k ≤ n.

Since encoding this “big lambda matrix” uses a cubic amount of bits, it is more efficient to
encode the “small lambda matrix”, which has the following entries:

λi,j := |{k ∈ {1, . . . , n} \ {i, j} : Λi,j,k > 0}| for each 1 ≤ i, j, k ≤ n.

Diagonal elements λi,i are omitted (or can be set to zero). This data structure was first introduced
by Goodman and Pollack [GP83].

Small lambda matrices of (non-degenerated) abstract order types fulfill λi,j + λj,i = n − 2
(i.e., for each two fixed points i, j, any other point either lies on the left or on the right side of
the directed line through i and j), hence only entries λi,j with 1 ≤ i < j ≤ n need to be stored.
Moreover, the first point can be assumed to lie on the boundary of the convex hull, and other
points can be assumed to be sorted around the first point. Such a labeling of points is called
“natural labeling” and yields Λ1,i,j = + for 1 < i < j ≤ n and λ1,j = j − 1 for all 1 < j ≤ n.
Consequently, elements from the first row of the small lambda matrix need not to be stored.

Note that the lexicographically minimal small lambda matrix (over all labelings) – which we
compute to distinguish different order types – is also naturally labeled.

Altogether, we encoded the entries λi,j for 1 < i < j ≤ n as 8-bit (1-byte) integers in
lexicographic order, i.e,

λ2,3, λ2,4, . . . , λ2,n, λ3,4, λ3,5, . . . , λn−1,n.

For more information we again refer to the articles by Aurenhammer, Aichholzer, and Krasser
[AAK02, AK06], and the dissertation of Krasser [Kra03].

5In face, no Qt-specific features are used. Alternatively to qmake one could also use cmake or just use a
stand-alone Makefile

17

Usage of the Program The program extend_order_type can be used as follows:

./extend_order_type [n] [order types file] [parts] [from part] [to part]

The following describes the parameters.

• “n” is the number of points in the abstract order types from the input file,

• “order types file” is the path to the input file,

• “parts” is the number of threads in total,

• “from part” is the id of the first thread to be run, and

• “to part” is the id of the first thread not to be run.

The difference “to part”-“from part” is precisely the number of threads to be started on the local
machine. As an example, to start a computation on 4 machines with 4 threads each (16 threads
in total), one can simply run one of the following commands on each of the machines:

./extend_order_type [n] [order types file] 16 0 4

./extend_order_type [n] [order types file] 16 4 8

./extend_order_type [n] [order types file] 16 8 12

./extend_order_type [n] [order types file] 16 12 16

We also provide our python script create_jobs.py, which we used to automatically create job
files for the parallel computations on the cluster.

Complete Enumeration To generate all abstract order types, we start with a binary file
n3_order_types.bin with content “0x00” (one byte) – this encodes the unique order type on 3
points, which is described by the small lambda matrix

- 0 1

1 - 0*

0 1 -

The entry λ23 = 0, which is marked with a star (*), is the one entry which is actually encoded
as “0x00” in the file. This file is also available in the folder data/order_types/.

The following command now enumerates all abstract order types on 4 points:

$ xxd n3_order_types.bin

00000000: 00 .

$./extend_order_type 3 n3_order_types.bin 1 0 1

n: 3

starting threads: 1

[0/1] started

[0/1] n 3 ct 0 extensions 0

[0/1] finished

all threads done.

total solutions: 2/1

$ xxd n3_order_types.bin.ext0_1.bin

00000000: 0001 0001 0001

18

Note that the command xxd displays a hex dump of the given file. The generated output file
n3_order_types.bin.ext0_1.bin contains 6 bytes in total, encoding the two order types on 4
points (with 3 bytes each). The first three bytes encode the order type of 4 points in convex
position, which has the following small lambda matrix:

- 0 1 2

2 - 0* 1*

1 2 - 0*

0 1 2 -

The remaining three bytes encode the other order type of 4 points, which has a triangular convex
hull and one interior point. Its small lambda matrix is the following:

- 0 1 2

2 - 1* 0*

1 1 - 1*

0 2 1 -

When renaming the file n3_order_types.bin.ext0_1.bin to n4_order_types.bin, one can
now analogously enumerate all order types of 5, 6, . . . points with

./extend_order_type 4 n4_order_types.bin 1 0 1

./extend_order_type 5 n4_order_types.bin 1 0 1

...

A.2 Enumerating Triangulations

Plantri Having the graph generator plantri installed (available from https://users.cecs.

anu.edu.au/~bdm/plantri/), it can be run with parameters “[number of points] -g”, to enu-
merate all triangulations on the specified number of points in graph6 format. With the additional
parameter “-c4”, only 4-connected triangulations are enumerated. As an example, following com-
mand enumerates all 4-connected triangulations on 8 vertices:

$./plantri 8 -g -c4

./plantri 8 -g -c4

G|tJH{

G|thXs

2 triangulations written to stdout; cpu=0.00 sec

To store graphs in files, one can simply pipe the standard output to the desired file:

$./plantri 8 -g -c4 > n8c4.g6

./plantri 8 -g -c4

2 triangulations written to stdout; cpu=0.00 sec

For more information on plantri, we refer to https://users.cecs.anu.edu.au/~bdm/plantri/

plantri-guide.txt, and for more information on the graph6 format, we refer to https://

users.cecs.anu.edu.au/~bdm/data/formats.html.

19

https://users.cecs.anu.edu.au/~bdm/plantri/
https://users.cecs.anu.edu.au/~bdm/plantri/
https://users.cecs.anu.edu.au/~bdm/plantri/plantri-guide.txt
https://users.cecs.anu.edu.au/~bdm/plantri/plantri-guide.txt
https://users.cecs.anu.edu.au/~bdm/data/formats.html
https://users.cecs.anu.edu.au/~bdm/data/formats.html

Filter Triangulations Having mathematics software system SageMath installed (available
from http://www.sagemath.org/download.html, see also http://doc.sagemath.org/pdf/en/
installation/installation.pdf), we used the SageMath scripts filter_3tree.sage and
filter_maxdeg.sage to filter stacked triangulations and triangulations with maximum degree
|V | − 1, respectively.

The script filter_3tree_relabel.sage is a slight modification of filter_3tree.sage,
which relabels the vertices of the given graph in a way, such that the vertices 0, 1, and 2
span the initial triangle, and the k-th vertex is stacked into a triangular face of the subgraph
induced by the vertices 0, 1, . . . , k − 1.

Note that the triangulations enumerated by plantri do not necessarily fulfill this property.
The triangulations shown in Figures 2 and 3 (see also Listings 1 and 2) were relabed using
filter_3tree_relabel.sage. The respective files are available in data/triangulations/.

Edge-List Encoding We have chosen a different plain text format, which is easier to load in
C++: We encode a graph by its edge list. For each graph, we write the start and end vertices
of the edges {u1, v1}, . . . , {um, vm} simply as “u1 v1 u2 v2 . . .um vm” in a line, followed by a
line-break. The following example gives an illustration (continues with the 4-connected 8-vertex
triangulations from before):

$ sage encode.sage n8c4.g6

0 1 0 2 0 3 0 4 1 2 1 4 1 5 1 6 2 3 2 6 2 7 3 4 3 7 4 5 4 7 5 6 5 7 6 7

0 1 0 2 0 3 0 4 1 2 1 4 1 5 2 3 2 5 2 6 2 7 3 4 3 7 4 5 4 6 4 7 5 6 6 7

This encoding can be performed using the Sage-script encode.sage.

Drawing Graphs Last but not least, we provide the script draw.sage which we used to
automatically generate drawings for stacked triangulations; see Figures 2 and 3. The idea is
to start with a Tutte embedding and then use global optimization heuristics (see https://

docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html) to op-
timize a certain quality function, which simultaneously maximizes edge lengths and vertex-edge
distances.

A.3 Testing n-Universality

test universal sets We provide a C++ program test_universal_sets to find n-universal
point sets. The program (see the folder cprogram/scripts/test_universal_sets/) can be
built analogously to extend_order_type (using qmake and make), except that Minisat is re-
quired to be build as a library first.

Building the Minisat Library As described in the README file delivered with Minisat
(cf. cprogram/minisat-2.2.0, can also be downloaded from http://minisat.se/MiniSat.

html), one needs to set the MROOT variable. This can be done for example with the following
command:

$ export MROOT=$PWD

In the simp folder from Minisat, one then can run

$ make lib_release.a

20

http://www.sagemath.org/download.html
http://doc.sagemath.org/pdf/en/installation/installation.pdf
http://doc.sagemath.org/pdf/en/installation/installation.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
http://minisat.se/MiniSat.html
http://minisat.se/MiniSat.html

to build the library. Having the lib_release.a built, we are now ready to build our pro-
gram test_universal_sets. Note that, if minisat-2.2.0 is not placed inside the basis di-
rectory (where the otlib.pro is located), one might need to slightly adopt the project file
test_universal_sets.pro so that the minisat headers and library are found. In particular, the
following two lines might need to be adopted:

INCLUDEPATH += $$OTLIBDIR/minisat-2.2.0

LIBS += $$OTLIBDIR/minisat-2.2.0/simp/lib_release.a

Usage of the Program

./test_universal_sets [n] [order types file] [graphs file] [phase]

[parts] [from part] [to part]

The parameters can be described as follows:

• “n” is the number of points in the abstract order types from the input file,

• “order types file” is the path to the input file for abstract order types,

• “graphs file” is the path to the input file for graphs,

• “phase” specifies the actions which should be performed (see below),

• “parts” is the number of threads in total,

• “from part” is the id of the first thread to be run, and

• “to part” is the id of the first thread not to be run.

Abstract order types are again encoded by their small lambda matrix as described above. For the
graph file we have chosen the plain-text edge-list format described above. The phase parameter
describes, what the program should test:

• If the program is ran with parameter “phase=1”, then point sets are filtered out which do
not fulfill the necessary conditions described in Phase 1 of Section 4.

• If the program is ran with parameter “phase=2”, then for each point set all graphs from
the list are tested for simultaneous embeddability. As described in Phase 2 of Section 4,
we stop as soon as one graph is not embeddable, and we use a priority queue to speedup
the computations.

The parameter “phase=2” is also used to test Phase 4 of Section 4.

• If the program is ran with parameter “phase=3”, then all pairs of order types and graphs
are tested for embeddability. Unlike for the computations of Phase 2, we do not change the
order of the list of graphs. For each given order type from the input file, a line of zeros and
ones is written to a plain-text output file, where the j-th zero/one in the i-th line encodes
whether the j-th graph can be embedded on the i-th point set. In the following we refer
to this file as “stat”-file.

The parameter “phase=3” is also used to test Phase 5 of Section 4.

Note that for Phase 6 of Section 4 one can simply concatenate the stat-files obtained in
Phases 3 and 5, and run CPLEX/Gurobi – no additional computations with our C++ program
are necessary.

21

How To Load Realizations from the Order Type Database To load files from the order
type database [Aic], which provide point set realizations of all order types, one simply needs to
change the line

// #define REALIZATIONS

to

#define REALIZATIONS

in the source file test_universal_sets.cpp. Note that in the binary files otypes04.b08, . . . ,
otypes08.b08 (available at [Aic]) each order type of n = 4, . . . , 8 points is encoded by one of its
realizing point sets: the points (x1, y1), . . . , (xn, yn) are encoded as “x1y1 . . . xnyn” using 1 byte
per coordinate (values inbetween 0 and 255). For n = 9, n = 10, and n = 11, each coordinate is
encoded using 2 bytes (values inbetween 0 and 65536).

A.4 Integer Programming

Gurobi Having Gurobi/Gurobipy installed (see Section 12 “Python Interface” from http:

//www.gurobi.com/documentation/8.1/quickstart_linux.pdf), we have used the Python
script test_min_cover.py to create a (Mixed) Integer Linear Programming instance from a
stat-file (created from our C++ program). The script parses the input file, writes the instance
to an “lp” file, and then starts the Gurobi solver to find an (optimal) solution. An instance,
which is stored in an lp-file, can also be read and solved on a different machine for example via
the following command:

$ gurobi

...

gurobi> m=read("n11_phase5_statistic_stacked.txt.instance.lp")

gurobi> m.optimize()

Optimize a model with 17533 rows, 423 columns and 1031205 nonzeros

...

Explored 295 nodes (25169 simplex iterations) in 69.54 seconds

Thread count was 6 (of 6 available processors)

Solution count 5: 12 13 14 ... 50

Optimal solution found (tolerance 1.00e-04)

Best objective 1.200000000000e+01, best bound 1.200000000000e+01, gap 0.0000%

It is worth to note that, when solving an instance using Gurobi (also with CPLEX), the
current upper and lower bound on the optimal value is printed to the console every few seconds.
Moreover, when aborting the solving process (CTRL+C), the currently best solution is printed.

For more information on free academic Gurobi versions, checkout http://www.gurobi.com/
academia/academia-center.

CPLEX An instance, which is stored in an lp-file, can be read and solved via the CPLEX
Interactive Optimizer as exemplified in the following:

$ cplex

...

CPLEX> read n11_phase5_statistic_stacked.txt.instance.lp

22

http://www.gurobi.com/documentation/8.1/quickstart_linux.pdf
http://www.gurobi.com/documentation/8.1/quickstart_linux.pdf
http://www.gurobi.com/academia/academia-center
http://www.gurobi.com/academia/academia-center

Problem ’n11_phase5_statistic_stacked.txt.instance.lp’ read.

Read time = 0.17 sec. (14.61 ticks)

CPLEX> optimize

...

Root node processing (before b&c):

Real time = 8.02 sec. (3713.90 ticks)

Parallel b&c, 6 threads:

Real time = 28.38 sec. (4730.46 ticks)

Sync time (average) = 3.49 sec.

Wait time (average) = 0.01 sec.

Total (root+branch&cut) = 36.40 sec. (8444.36 ticks)

Solution pool: 4 solutions saved.

MIP - Integer optimal solution: Objective = 1.2000000000e+01

Solution time = 36.40 sec. Iterations = 35476 Nodes = 358

Deterministic time = 8444.36 ticks (232.00 ticks/sec)

For more information on free academic CPLEX versions, checkout http://www.ibm.com/

developerworks/community/blogs/jfp/entry/CPLEX_Is_Free_For_Students

23

http://www.ibm.com/developerworks/community/blogs/jfp/entry/CPLEX_Is_Free_For_Students
http://www.ibm.com/developerworks/community/blogs/jfp/entry/CPLEX_Is_Free_For_Students

	1 Introduction
	2 Outline
	3 Proof of Theorem ??
	4 Proof of Theorem ?? and Corollary ??
	4.1 Enumeration of Order Types
	4.2 Enumeration of Planar Graphs
	4.3 Deciding Universality using a SAT Solver
	4.4 Finding Conflict Collections – A Quantitive Approach
	4.5 How to Verify our Results?

	5 Universal Sets for 4-Connected Graphs
	6 Discussion
	A Detailed Description of Tools
	A.1 Enumerating Abstract Order Types
	A.2 Enumerating Triangulations
	A.3 Testing n-Universality
	A.4 Integer Programming

