
ar
X

iv
:1

81
1.

07
67

9v
1 

 [
m

at
h.

C
O

] 
 1

9 
N

ov
 2

01
8

Distributions of mesh patterns of short lengths

Sergey Kitaev1 and Philip B. Zhang2

1Department of Computer and Information Sciences
University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK

2College of Mathematical Science
Tianjin Normal University, Tianjin 300387, P. R. China

Email: 1sergey.kitaev@cis.strath.ac.uk, 2zhang@tjnu.edu.cn

Abstract. A systematic study of avoidance of mesh patterns of length 2
was conducted in [6], where 25 out of 65 non-equivalent cases were solved.
In this paper, we give 27 distribution results for these patterns including 14
distributions for which avoidance was not known. Moreover, for the unsolved
cases, we prove 2 equidistribution results (out of 7 equidistribution results
we prove in total), and conjecture 7 more equidistributions. Finally, we
find seemingly unknown distribution of the well known permutation statistic
“strict fixed point”, which plays a key role in many of our enumerative results.

This paper is the first systematic study of distributions of mesh patterns.
Our techniques to obtain the results include, but are not limited to obtaining
functional relations for generating functions, and finding recurrence relations
and bijections.
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1 Introduction

Patterns in permutations and words have attracted much attention in the
literature (see [8] and references therein), and this area of research continues
to grow rapidly. The notion of a mesh pattern, generalizing several classes
of patterns, was introduced by Brändén and Claesson [4] to provide explicit
expansions for certain permutation statistics as, possibly infinite, linear com-
binations of (classical) permutation patterns. A pair (τ, R), where τ is a per-
mutation of length k and R is a subset of J0, kK× J0, kK, where J0, kK denotes
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the interval of the integers from 0 to k, is amesh pattern of length k. Let (i, j)
denote the box whose corners have coordinates (i, j), (i, j + 1), (i+ 1, j + 1),
and (i+ 1, j). Let the horizontal lines represent the values, and the vertical
lines denote the positions in the pattern. Mesh patterns can be drawn by
shading the boxes in R. The following picture represents

the mesh pattern with τ = 231 and R = {(1, 2), (2, 1)}. Many papers were
dedicated to the study of mesh patterns and their generalizations; e.g. see
[1, 3, 7, 9, 10, 11, 15, 16]. However, the first systematic study of mesh patterns
was not done until [6], where 25 out of 65 non-equivalent avoidance cases of
patterns of length 2 were solved. That is, in the 25 cases, the number of
permutations avoiding the respective mesh patterns was found.

In this paper, we initiate a systematic study of distributions of mesh
patterns by giving 27 distribution results for the patterns considered in [6],
including 14 distributions for which avoidance was not known. Moreover,
for the unsolved cases, we prove 2 equidistribution results (out of 7 equidis-
tribution results we prove in total), and conjecture 7 more equidistributions
(see Table 2). Techniques we use include generating functions, recurrence
relations, and bijections.

We note that from the distribution point of view, we cannot consider just
the 65 patterns presented in [6], since there are more patterns to consider.

For example, the pattern Nr. 39 = was considered there, while its Wilf-

equivalent pattern (by the Shading Lemma in [6]) was not considered.
However, these two patterns have different distributions. Two patterns, p1
and p2, are Wilf-equivalent if for any n ≥ 0, the number of permutations of
length n avoiding p1 is equal to that avoiding p2.

Table 1 overviews our enumerative results (27 patterns). In particular,

Nr. 3 = is a conjectured distribution, Nr. 1 = is the well known

distribution of non-inversions (same as the distribution of inversions) [14, p.
21] given over permutations of length n by

(1 + q)(1 + q + q2) · · · (1 + q + q2 + · · ·+ qn−1),

and Nr. 14 = is the known distribution of small descents [5, p. 179].
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Nr. Repr. p Distribution Nr. Repr. p Distribution

1 Non-inversions given

by (1); [14, p. 21]
20 Theorem 2.8

3 Conjecture 6.1 21 Theorem 2.9

5 Theorem 2.1 22 Theorem 2.10

8
Theorem 4.1

Unsigned Stirling
numbers of the first
kind, [13, A132393]

27 Theorem 3.3

9 28 Theorem 3.4

10 Theorem 2.2 30 Theorem 3.5

11 Theorem 2.3 33 Theorem 3.6

12 Theorem 2.4 34 Theorem 3.7

13 Theorem 2.5 36 Theorem 4.3

14
Theorem 4.2
small descents,
[13, A123513]

45 Theorem 4.4

15 55 Theorem 3.8

16 Theorem 3.1 56 Theorem 3.9

17 Theorem 3.2 63 Theorem 3.10

18 Theorem 2.6 64 Theorem 3.11

19 Theorem 2.7 65 Theorem 3.13

Table 1: Known or conjectured distributions of mesh patterns of length 2.
Pattern’s number comes from [6]. Absense of a horizontal line indicates
equidistributions.

We note that it was shown in [6] that the patterns Nr. 23 = and Nr.

24 = appearing in Table 2 are Wilf-equivalent, while in Theorem 5.1 we
prove that they are actually equidistributed.

Let Sn be the set of all permutations of length n, which we call n-
permutations. For example, S3 = {123, 132, 213, 231, 312, 321}. For a pattern
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Nr. Repr. p Ref. Nr. Repr. p Ref.

proved
23

Thm 5.1

48

Thm 5.3
equidistributions 24 49

48 57

conjectured

49 N/A 58 N/A

equidistributions
50

53 N/A 61 N/A

54 62

Table 2: Equidistributions (not mentioned in Table 1) for which enumeration
is unknown.

p and a permutation π, we let p(π) denote the number of occurrences of p in
π. Also, let Sn(p) denote the set of all permutations of length n avoiding p
and S(p) = ∪n≥0Sn(p). Finally, throughout this paper, we let “g.f.” stand
for “generating function” and

F (x) :=
∑

n≥0

n!xn.

Our main enumerative method is via deriving a functional equation for
the generating function in question, and solving it; we use recurrence relations
in the remaining cases. We illustrate our typical approach in detail on first
finding avoidance, and then distribution of the pattern , which is, of

course, equivalent to the pattern via applying the reverse operation.

Occurrences of the pattern are known as strong fixed points, and the
case of avoidance was already given in [2]; also, see [13, A052186]. However,
the distribution of strong fixed points seems to be a new result. The following
theorem is used frequently throughout this paper.

Theorem 1.1. Let

F (x, q) :=
∑

n≥0

xn
∑

π∈Sn

q (π) =
∑

n≥0

xn
∑

π∈Sn

q (π),
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and A(x) be the g.f. for S( ) = S( ). Then,

A(x) =
F (x)

1 + xF (x)
; F (x, q) =

F (x)

1 + x(1− q)F (x)
.

Proof. We first consider the pattern . We claim that

A(x) + xA(x)F (x) = F (x). (1)

Indeed, each permutation π (counted by the F (x) in the righthand side of
(1)) either avoids (and thus is counted by the A(x) in the lefthand side

of (1)), or it contains at least one occurrence of . Consider the leftmost

occurrence of , an element a, which corresponds to the x in xA(x)F (x).

To the left of a, we must have a -avoiding permutation π′ formed by
the smallest elements of π and counted by A(x). To the right of a, we can
have any permutation π′′ formed by the largest elements of π and counted
by F (x). Hence, we could the equation (1) due to the independence of the
choices of π′ and π′′. By solving (1), the desird formula for A(x) follows.

Similarly, we can derive

A(x) + xqA(x)F (x, q) = F (x, q), (2)

where the q in xqA(x)F (x, q) is used to indicate that the element a con-
tributes to occurrences of . Plugging in A(x) found above into (2), and
solving for F (x, q), we obtain the desired result.

2 “Trivial” distributions

By a “trivial” distribution we mean the situation when either the pattern
in question can occur at most once and its avoidance was given in [6], or
pattern’s occurrences can easily be understood from the shape of the pattern.
There are 10 such patterns:

Nr. 5 = ; Nr. 10 = ; Nr. 11 = ; Nr. 12 = ;

Nr. 13 = ; Nr. 18 = ; Nr. 19 = ; Nr. 20 = ;

Nr. 21 = ; Nr. 22 = .
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To be self-contained, and to allow proper references in Table 1, in this section
we state the distribution results for the 10 patterns as separate theorems.

The following theorem is easy to see, and we omit its proof.

Theorem 2.1. For permutations of length n ≥ 2 beginning with an element
k, 1 ≤ k ≤ n, there are (n− 1)! permutations containing n− k occurrences

of the pattern .

Theorem 2.2. For permutations of length n ≥ 2, there are n!/2 permuta-

tions avoiding the pattern , and n!/2 permutations containing it exactly
once.

Proof. Clearly, in exactly half of n-permutations the leftmost element is less
than the rightmost element, in which case the elements form the only possible
occurrence of the pattern.

The following theorem is trivial.

Theorem 2.3. The only permutation that contains the pattern (once)
is 12.

Theorem 2.4. For permutations of length n ≥ 2, there are (n−1)! permuta-

tions containing (n−1)! occurrences of the pattern p = , and n!−(n−1)!
permutations avoiding it.

Proof. Any occurrence of p must start with the element 1 placed in position
1, so there are n! − (n − 1)! permutations avoiding p. In the remaining
(n−1)! permutations, each element, together with the element 1, contributes
an occurrence of p.

Theorem 2.5. For permutations of length n ≥ 2, there are (n − 2)! per-

mutations containing exactly one occurrence of the pattern p = , and

n!− (n− 2)! permutations avoiding it.

Proof. The only possible occurrence of p can be formed by the element 1 in
the leftmost position, and the element n in the rightmost position, which
gives the desired result.

Theorem 2.6. For permutations of length n ≥ 2, there are

n!−
n−1
∑

i=1

(n− 1)!

i
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permutations avoiding the pattern p = , while the remaining permuta-
tions contain exactly one occurrence of the pattern p.

Proof. Clearly, any permutation can contain at most one occurrence of p
formed by the leftmost and the largest elements. The theorem now follows
from the avoidance result in [6, Prop. 24].

Theorem 2.7. For permutations of length n ≥ 2, there are

n!−
n−2
∑

i=0

i!(n− i− 1)!

permutations avoiding the pattern p = , while the remaining permuta-
tions contain exactly one occurrence of p.

Proof. Clearly, any permutation can contain at most one occurrence of p
formed by the element n and the largest element to the left of it. The theorem
now follows from the easy to see avoidance result in [6, Prop. 26].

Theorem 2.8. For permutations of length n ≥ 2, there are

n!−
n−1
∑

i=1

(i− 1)!(n− i− 1)!

permutations avoiding the pattern p = , while the remaining permuta-
tions contain exactly one occurrence of p.

Proof. Clearly, any permutation can contain at most one occurrence of p
formed by the leftmost element x and the element x+ 1. The theorem now
follows from the easy-to-see avoidance result in [6, Prop. 27].

Theorem 2.9. For permutations of length n ≥ 2, there are

n!−
n−1
∑

i=1

i
∑

ℓ=1

ℓ!(i− ℓ)!(n− i− ℓ)!

permutations avoiding the pattern p = , while the remaining permuta-
tions contain exactly one occurrence of p.

7



Proof. It is not difficult to see that any permutation can contain at most one
occurrence ab of p. Indeed, the bottom right shaded box in p guarantees that
p cannot occur to the left of a, while the presence of a and b guarantees that
no other occurrence of p can involve a, or any other elements to the right of
a. The theorem now follows from the avoidance result in [6, Prop. 28].

Theorem 2.10. For permutations of length n ≥ 2, there are

n!−
n−2
∑

i=0

i
∑

ℓ=0

ℓ!(i− ℓ)!(n− 2− i)!

permutations avoiding the pattern p = , while the remaining permuta-
tions contain exactly one occurrence of p.

Proof. By the same reasons as in the proof of Theorem 2.9 we conclude that
p cannot occur more than once. The theorem now follows from the avoidance
result in [6, Prop. 29].

3 The generating functions method

In this section, we use the approach similar to, but in several cases (much)
more involved than, the proof of Theorem 1.1 to find the distribution and,
whenever appropriate, avoidance for the following 12 patterns:

Nr. 16 = ; Nr. 17 = ; Nr. 27 = ; Nr. 28 = ;

Nr. 30 = ; Nr. 33 = ; Nr. 34 = ; Nr. 55 = ;

Nr. 56 = ; Nr. 63 = ; Nr. 64 = ; Nr. 65 = .

3.1 Distribution of the pattern Nr. 16

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 16 = .

Theorem 3.1. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
(1 + x)F (x)

1 + xF (x)
; F (x, q) =

∑

i≥0

q(
i

2)xi

i
∏

j=0

F (qjx)

1 + xqjF (qjx)
.

8



a

b

A

Figure 1: Related to the proof of Theorem 3.1

Proof. We claim that

A(x) + x
(

F (x)− 1
) F (x)

1 + xF (x)
= F (x). (3)

Indeed, each permutation π (counted by the righthand side in (3)) either
avoids p (which is counted by the A(x) term in (3)), or it contains at least
one occurrence of p. Among all such occurrences, pick an occurrence ab with
the leftmost possible a as shown in Fig. 1. Referring to this figure, we note
that the permutation A must be -avoiding, or else, a is not the leftmost

possible. This explains the term
F (x)

1 + xF (x)
in (3) enumerating such A’s and

given by Theorem 1.1. Further, since ab is an occurrence of p, to the right of
a in π we must have a non-empty permutation, which can be any, and such
permutations are counted by F (x)− 1. Finally, a contributes the factor of x
thus proving (3) and giving the formula for A(x).

For the distribution, we have the following functional equation:

A(x) + x
(

F (qx, q)− 1
) F (x)

1 + xF (x)
= F (x, q). (4)

The proof of (4) is essentially the same as in the avoidance case. The only
term warrant an explanation is F (qx, q), which is obtained by observing that
any element to the right of a, together with a, forms an occurrence of p,
so the x in F (x, q), counting permutations to the right of a with respect to
occurrences of p, must be substituted by xq. Plugging the formula for A(x)
found above into (4) gives

F (x, q) =
F (x)

1 + xF (x)

(

1 + xF (qx, q)
)

.

Iterating the above formula repeatedly, we obtain the desired result.
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3.2 Distribution of the pattern Nr. 17

The avoidance for the pattern Nr. 17 = is given by [6, Prop. 25]. Our

next theorem establishes the distribution of the pattern Nr. 17 = .

Theorem 3.2. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

F (x, q) =

(

1− x+
x

1 + x(1− q)F (x)

)

F (x).

Proof. Observe that any occurrence of p must start with the element 1 in
position 1, and the number of occurrences is then given by the number of
occurrences of the pattern to the right of 1. Thus, each permutation
either

• avoids p, so it does not start with 1, and such permutations are counted
by F (x)− xF (x), or

• it begins with 1 corresponding to x, and the distribution of p is given
by the distribution of the pattern in Theorem 1.1.

Hence, we obtain that

F (x, q) = F (x)− xF (x) +
xF (x)

1 + x(1− q)F (x)
,

which completes the proof.

3.3 Distribution of the pattern Nr. 27

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 27 = .

Theorem 3.3. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) = F (x)−
x2F (x)

1 + xF (x)
; F (x, q) = F (x)−

(1− q)x2F 3(x)

1 + x(1− q)F (x)
.
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a

b

A

B

C

Figure 2: Related to the proof of Theorem 3.3

Proof. We claim that

A(x) + x2 F (x)

1 + xF (x)
F 2(x) = F (x). (5)

Indeed, permutations avoiding p are counted by A(x) in (5). To complete the
proof of (5), we need to show that permutations containing occurrences of p

are counted by x2 F (x)

1 + xF (x)
F 2(x). Let ab be the occurrence of p in such a

permutation π with the property that both a and b are the leftmost possible;
see Fig. 2. The factor of x2 is given by ab.

Referring to Fig. 2, we note that A can be any permutation because we
will never get a contradiction with ab being the leftmost occurrence of p in π.
Indeed, any occurrence a′b′ of p in A is not an occurrence of p in π because the
elements a and b will be in the shaded area North-East of b′. Also, because
of the presence of a, there is no occurrence a′b′ of p which start in A and
end in B or C (a would be in the shaded area between a′ and b′). Thus, A
contributes a factor of F (x). So does C since there are no restrictions for it.
Finally, the only restriction for B is that it must be -avoiding because b
is the leftmost possible. Theorem 1.1 can now be applied to justify the factor

of
F (x)

1 + xF (x)
contributed by C. Solving (5) for A(x) we obtain the desired

result.
The formula for F (x, q) follows from the following relation to be proved:

A(x) + qx2F (x)
F (x)

1 + xF (x)

∑

i≥0

(qx)i
(

F (x)

1 + xF (x)

)i+1

= F (x, q). (6)

We can proceed like in the case of avoidance using Fig. 2, so that, in partic-

ular, in qx2F (x)
F (x)

1 + xF (x)
, qx2 is the contribution of the occurrence ab of p,

F (x) is given by A, and the rest is given by B.

11



Next, we observe that an occurrence of p inside C, if any, is not an
occurrence of p in π because of the element b. However, each occurrence
of in C, together with a, gives an occurrence of p in π. Thus, the
structure in Fig. 2 can be refined to that in Fig. 3, where b1, b2, . . . may, or
may not exist. The index i in the sum in (6) is responsible for the number of
bj ’s. Each bj contributes qx, and each Bj, being -avoiding, contributes
F (x)/(1 + xF (x)) in (6); note that the number of Bj’s is i+ 1.

We observe that the second term in (6) is

xF 2(x)

1 + xF (x)

(

∑

i≥0

(

qxF (x)

1 + xF (x)

)i

− 1

)

=
qx2F 3(x)

(1 + xF (x))(1 + x(1 − q)F (x))
.

By plugging the formula for A(x) found above into (6) we get the desired
expression of F (x, q).

a

b

b1

b2

A

B

B0

B1

. . .

Figure 3: Related to the proof of Theorem 3.3

3.4 Distribution of the pattern Nr. 28

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 28 = .

Theorem 3.4. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
F (x)

1 + x2F 2(x)
; F (x, q) =

F (x)

1 + x2(1− q)F 2(x)
.

12



a

bA

B

C

Figure 4: Related to the proof of Theorem 3.4

Proof. We claim that

A(x) + x2A(x)F 2(x) = F (x). (7)

Indeed, each permutation π (counted by the righthand side in (7)) either
avoids p (which is counted by the A(x) term in (7)), or it contains at least
one occurrence of p. Among all such occurrences, pick an occurrence ab with
the leftmost possible a as shown in Fig. 4. Referring to this figure, we note
that the permutation A must be p-avoiding, or else, a is not the leftmost
possible. Further, B and C can be any permutations contributing the factor
of F 2(x) in (7). Finally, a and b contribute the factor of x2. Thus, we
complete the proof of (7) and hence give the formula for A(x).

For the distribution, we have the following functional equation:

A(x) + x2qA(x)F (x)F (x, q) = F (x, q). (8)

The proof of (8) is essentially the same as in the avoidance case. Because
of the elements a and b, no occurence of p can be created between a and
b and thus the block B contributues F (x). On the other hand, the block
C contributues F (x, q), since all occurences of p in C are preserved in the
whole permutation. Together with the factor x2q which corresponds to the
elements a and b, all the permutations containing occurrences of p are counted
by x2qA(x)F (x)F (x, q). This completes the proof of (8) and hence we get
the formula for A(x). Plugging the formula for A(x) found above into (8)
gives the desired formula for F (x, q).

3.5 Distribution of the pattern Nr. 30

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 30 = .
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Theorem 3.5. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
(1 + x)F (x)

1 + x+ x2F (x)
; F (x, q) =

(1 + x− qx)F (x)

1 + (1− q)x+ (1− q)x2F (x)
.

a

b

A

B

Figure 5: Related to the proof of Theorem 3.5

Proof. We claim that

A(x) + x2 A(x)

1 + x
F (x) = F (x). (9)

Indeed, each permutation π (counted by the righthand side in (9)) either
avoids p (which is counted by the A(x) term in (9)), or it contains at least
one occurrence of p. Among all such occurrences, pick an occurrence ab
with the leftmost possible a as shown in Fig. 5. Referring to this figure, the
permutation A must be both p-avoiding and -avoiding, or else, a is
not the leftmost possible. Note that the we must require both, because is is
possible to avoid but contain p, for examaple 1243. Let the g.f. for
permutations in A be C(x). Then the g.f. for permutations avoiding p but
containing is xC(x). Hence, we obain that C(x)+xC(x) = A(x), which

leads to C(x) = A(x)
1+x

. Further, since ab is an occurrence of p, to the right of
a in π we must have any permutation in B. Finally, a and b contribute the
factor of x2. Thus, we complete the proof of (9) and hence give the formula
for A(x).

We next consider the distribution. Let F1(x, q) be the g.f. for the distribu-
tion of p on permutations starting with 1. Then, the g.f. for the distribution
of p on permutations starting with 12 is qxF1(x, q), since 12 gives an extra
occurence of p and thus the g.f. for the distribution of p on permutations
starting with 1 but not 12 is x (F (x, q)− F1(x, q)). Therefore, we have that

F1(x, q) = qxF1(x, q) + x(F (x, q)− F1(x, q)),

14



and thus

F1(x, q) =
xF (x, q)

1− qx+ x
. (10)

On the other hand, we have the following functional equation for F (x, q):

A(x) + x2q
A(x)

1 + x
(qF1(x, q) + F (x, q)− F1(x, q)) = F (x, q). (11)

The proof of (11) is essentially the same as in the avoidance case. The block

A does not contribute occurences of p, explaining A(x)
1+x

. If the block B begins
with 1, then this 1, together with b, forms an occurence of p, contribuing
qF1(x, q). If B do not start with 1, then there are no extra occurences
involving b which contribute F (x, q)−F1(x, q). Together with the factor x2q
which corresponds to the elements a and b, all the permutations containing
occurrences of p are counted by x2qA(x)

1+x
(qF1(x, q) + F (x, q)− F1(x, q)). This

completes the proof of (11). Therefore, we get the formula for A(x). Plugging
(10) and the formula for A(x) found in the previous paragraph into (11), we
obtain the desired formula for F (x, q).

3.6 Distribution of the pattern Nr. 33

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 33 = .

Theorem 3.6. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
(1 + 2xF (x))F (x)

(1 + xF (x))2
; F (x, q) =

∞
∑

i=0

q(
i

2)xi

(

F (x)

1 + xF (x)

)i+1

.

Proof. For any permutation, consider its decomposition given by the oc-
curences of . Note that the occurrences of p are buit only from the
occurrecens. As shown in Picture 6, suppose that there are i “isolated”
points in the permutation, namely a1, a2, . . . , ai and i + 1 blocks, namely
A0, A1, . . . , Ai. Every pair of “isolated” points gives one occurrence of the

15



a1

a2

ai

A0

A1

. .
.

Ai

Figure 6: Related to the proof of Theorem 3.6

pattern p and each block should be -avoiding, whose g.f. is given by
Theorem 1.1. Therefore, the distribution is now given right away by

F (x, q) =
∞
∑

i=0

q(
i

2)xi

(

F (x)

1 + xF (x)

)i+1

.

In particular, p-avoiding permutations are given by the sum of the coefficients
of q0 and q1:

A(x) =
F (x)

1 + xF (x)
+ x

(

F (x)

1 + xF (x)

)2

=
(1 + 2xF (x))F (x)

(1 + xF (x))2
.

This completes the proof.

3.7 Distribution of the pattern Nr. 34

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 34 = .

Theorem 3.7. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
F (x)

1 + x2F (x)
; F (x, q) =

F (x)

1 + (1− q)x2F (x)
.

Proof. We claim that

A(x) + x2A(x)F (x) = F (x). (12)
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a

bA

B

Figure 7: Related to the proof of Theorem 3.7

Indeed, each permutation π (counted by the righthand side in (12)) either
avoids p (which is counted by the A(x) term in (12)), or it contains at least
one occurrence of p. Among all such occurrences, pick an occurrence ab with
the leftmost possible a as shown in Fig. 7. Referring to this figure, we note
that the permutation A must be p-avoiding, or else, a is not the leftmost
possible. Further, B can be any permutation giving the factor of F (x) in
x2A(x)F (x) in (12). Finally, a and b contribute the factor of x2. Thus, we
complete the proof of (12) leading to the formula for A(x).

For the distribution, we have the following functional equation:

A(x) + x2qA(x)F (x, q) = F (x, q). (13)

The proof of (13) is essentially the same as in the avoidance case. The
block B contributues F (x, q), since all occurences of p in B are preserved in
the whole permutation. Together with the factor x2q which corresponds to
the elements a and b, all the permutations containing occurrences of p are
counted by x2qA(x)F (x, q). This completes the proof of (13) and hence we
get the formula for A(x). Plugging the formula for A(x) found above into
(13) gives the desired formula for F (x, q).

3.8 Distribution of the pattern Nr. 55

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 55 = .

Theorem 3.8. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
F (x)

1 + x(F (x)− 1)
; F (x, q) =

F (x)

1 + (1− q)x(F (x)− 1)
.
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a

bA B

C

Figure 8: Related to the proof of Theorem 3.8

Proof. We claim that

A(x) + x(F (x)− 1)A(x) = F (x). (14)

Indeed, each permutation π (counted by the righthand side in (14)) either
avoids p (which is counted by the A(x) term in (14)), or it contains at least
one occurrence of p. Among all such occurrences, pick an occurrence ab
where a is the highest possible such that C is p-avoiding as shown in Fig. 8.
Hence, the block C contributes the factor of A(x). Note that, in general,
C can contain occurences of p, but we can choose C which is p-avoiding of
largest possible size. Because of a, no occurence of p can start in C and end
at B. Referring to this figure, the blocks A and B together with b can be any
non-empty permutation and thus contribute the factor of F (x)− 1. Finally,
a contributes the factor of x. Thus, we complete the proof of (14) and hence
give the formula for A(x).

We proceed to consider the distribution. Let B(x, q) be the g.f. for
the distribution of p on permutations where the element 1 is immediately
followed by the element 2 (note that 12 is an occurrence of p). We shall
obtain an expression for B(x, q) by seeing what happens if we remove 1 from
each permutation disscussed here. Generally, removing the element 1 (in
fact any elment) is not on the safe side in the sense that we could introduce
one more ouccurence of p. However, in our case the element 2 is next to
the element 1, so they have the same properties with respect to the other
elements, and removing 1 is safe. If 2 is not immediately followed by 3,
we lose one recurrence of p recorded by q. Hence, we get the g.f. for the
distributuion on these permutatons are counted by qx

(

F (x, q)−1−B(x, q)
)

,
where x is given by the element 1. If 2 is immediately followed by 3, then
we lose one occurrence of p, namely 12, but we also gain one occurrence of p
given by 23 in the orinial permutation. Hence, the permutations in this case
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are counted by xB(x, q). Therefore, we have that

B(x, q) = qx
(

F (x, q)− 1− B(x, q)
)

+ xB(x, q),

and thus

B(x, q) =
qx
(

F (x, q)− 1
)

1− x+ qx
.

Finally, we have the following functional equation for F (x, q):

F (x, q) = A(x) +B(x, q)A(x), (15)

since the structure of A and B together with a and B is the same as that
of permutations appearing in B(x, q). Plugging the formulas of A(x) and
B(x, q) found above into (15) gives the desired formula for F (x, q).

3.9 Distribution of the pattern Nr. 56

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 56 = , which are the same as those of Nr. 55.

Theorem 3.9. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
F (x)

1− x+ xF (x)
; F (x, q) =

F (x)

1 + (1− q)x(F (x)− 1)
.

a

bA

B C

Figure 9: Related to the proof of Theorem 3.9

19



Proof. We claim that

A(x) + x(F (x)− 1)A(x) = F (x). (16)

Indeed, each permutation π (counted by the righthand side in (16)) either
avoids p (which is counted by the A(x) term in (16)), or it contains at least
one occurrence of p. Among all such occurrences, pick an occurrence ab with
the leftmost possible a as shown in Fig. 9. Referring to this figure, the permu-
tation A must be p-avoiding, or else, a is not the leftmost possible. Further,
the blocks B and C together with b can be any non-empty permutation and
thus contribute the factor of F (x)− 1. Finally, a contributes the factor of x.
Thus, we complete the proof of (16) and hence give the formula for A(x).

We proceed to consider the distribution. Let B(x, q) be the g.f. for the
distribution of p on permutations where the largest element is immediately
before the second largest element (note that they form an occurrence of p).
We next consider what happens if we remove the largest element from each
permutation in B(x, q). If the third largest element is not immediately before
the second largest element, we lose one recurrence of p recorded by q. Hence,
we get the g.f. for the distributuion on such permutatons are counted by
qx
(

F (x, q) − 1 − B(x, q)
)

, where x is given by the largest element. If the
third largest element is immediately before the second largest element, then
we gain one occurrence of p from these two elements, althoug one recurrence
fromed by the first two largest elements are lost. Hence, the permutations
discussed in this case are counted by xB(x, q). Therefore, we have that

B(x, q) = qx
(

F (x, q)− 1− B(x, q)
)

+ xB(x, q),

and thus,

B(x, q) =
qx
(

F (x, q)− 1
)

1− x+ qx
.

b

B C
−→

a b

B C
−→ a b

A

B C

Figure 10: Related to the proof of Theorem 3.9
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Finally, We have the following functional equation for F (x, q) by using
similar steps in deriving B(x, q):

F (x, q) = A(x) + xB(x, q)A(x) + xq
(

F (x, q)− 1−B(x, q)
)

, (17)

Indeed, all the permutations with at least one ouccurences of p can be gen-
erated as shown in Fig. 10. We shall consider what happens after inserting
a in front of B. If b is preceded immeidately by b − 1, then we lose one
occurence of p, which is (p− 1)p, but we gain ab, and hence this corrpesonds
to the second item on the right hand side, where x is given by a and A(x) is
given by the block A. If b is not preceded immediately by b− 1, we doe not
lose anything but gain ab as one occurence of p, and hence this corrpesonds
to the third item on the right hand side. Plugging the formulas of A(x) and
B(x, q) found above into (17) gives the desired formula for F (x, q).

3.10 Distribution of the pattern Nr. 63

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 63 = .

Theorem 3.10. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
2F (x)− 1

F (x)
; F (x, q) =

(2− q)F (x) + q − 1

(1− q)F (x) + q
.

a

bA B

C

D

Figure 11: Related to the proof of Theorem 3.10

Proof. We claim that

A(x) +
(

A(x)− 1
)(

F (x)− 1
)

= F (x). (18)
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Indeed, each permutation π (counted by the righthand side in (18)) either
avoids p (which is counted by the A(x) term in (18)), or it contains at least
one occurrence of p. Among all such occurrences, pick the occurrence ab with
the highest possible b as shown in Fig. 11. Referring to this figure, we note
that the permutation formed by A and B together with b must be nonempty
and p-avoiding. This explains the term A(x)− 1 in (18). Further, since ab is
an occurrence of p, in the part below b which is formed by C and D together
with a, we must have a non-empty permutation, which can be any, and such
permutations are counted by F (x)−1. This completes the proof of (18) and
gives the formula for A(x).

For the distribution, we have the following functional equation:

A(x) + q
(

A(x)− 1
)(

F (x, q)− 1
)

= F (x, q). (19)

The proof of (19) is essentially the same as in the avoidance case. The term
q is given by ab and the non-empty part below b gives F (x, q) − 1 since
no occurrence of p can start there and end at x > b (or else bx would be
an occurrence of p contradicting b being the highest possible). Solving for
F (x, q) and substituting A(x), we obtain the desired formula for F (x, q).

3.11 Distribution of the pattern Nr. 64

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 64 = . Note that the occurences of the pattern Nr. 64 are related
to the well known statistic “the number of components”, which in turn is re-
lated to the notion of an “irreducilbe permutation”, or an “indecomposable
permutation”. More precisely, the number of occurrences of the pattern Nr.
64 equals the number of components minus 1, which is the number of places
in which a permutation can be cut so that every element to the left of a cut is
less than any element to the right of the cut. This distribution is known (see
the sequence A059438 in [13]). However, we rederive it in the next theorem
in a different form, which will allow us to establish, in a bijective way, the
equidistribution with the pattern Nr. 63, and the pattern Nr. 65 considered
in Theorem 3.13.

Theorem 3.11. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
2F (x)− 1

F (x)
; F (x, q) =

(2− q)F (x) + q − 1

(1− q)F (x) + q
.
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a

b C

D

A B

Figure 12: Related to the proof of Theorem 3.11

Proof. We claim that

A(x) +
(

A(x)− 1
)(

F (x)− 1
)

= F (x). (20)

Indeed, each permutation π (counted by the righthand side in (20)) either
avoids p (which is counted by the A(x) term in (20)), or it contains at least
one occurrence of p. Among all such occurrences, pick the occurrence ab with
the leftmost possible a, which determines uniquely b, as shown in Fig. 12.
Referring to this figure, we note that the permutation formed by a, A and
B must be non-empty p-avoidable. This explains the term A(x)− 1 in (20).
On the other hand, the non-empty permutation formed by b, C and D can
be any, which explains the term F (x)− 1 completing our proof of (20) and
giving the formula for A(x).

For the distribution, we have the following functional equation:

A(x) + q
(

A(x)− 1
)(

F (x, q)− 1
)

= F (x, q). (21)

The proof of (21) is essentially the same as in the avoidance case. The term q
is given by ab and the non-empty part to the right of B contributes F (x, q)−1
because no occurrence of p can start to the left of b and end to the right of
b. Solving for F (x, q) and substituting A(x), we obtain the desired formula
for F (x, q).

Remark 3.12. Comparing the structures in Fig. 11 and 12, we can explain
the equidistribution of the patterns p1 =Nr. 63 and p2 =Nr. 64 bijectively,
where using (37) given below and the discussion around it, we can map p2-
avoiding permutations to p1-avoiding permutations, say, lexicographically,
thus having the basis of the recursion. Skipping the details, the idea of the
bijective map is to start with a permutation of the form in Fig. 12 with k
occurrences of p2, then
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a. map recursively the permutation formed by b, C,D with (k − 1) oc-
currences of p2 to the permutation formed by a, C,D in Fig. 11 with
(k − 1) occurrences of p1;

b. map the p2-avoiding permutation formed by a, A and B in Fig. 12 to
a p1-avoiding permutation formed by b, A and B in Fig. 11;

c. combine the permutations obtained in a. and b. to obtain the structure
in Fig. 11 giving the desired permutation with k occurrences of p2.

3.12 Distribution of the pattern Nr. 65

Our next theorem establishes the avoidance and the distribution of the pat-

tern Nr. 65 =

Theorem 3.13. Let p = , F (x, q) :=
∑

n≥0 x
n
∑

π∈Sn
qp(π), and A(x) be

the g.f. for S(p). Then,

A(x) =
2F (x)− 1

F (x)
; F (x, q) =

(2− q)F (x) + q − 1

(1− q)F (x) + q
.

a

bA B

C

D

Figure 13: Related to the proof of Theorem 3.13

Proof. We claim that

A(x) +
(

A(x)− 1
)(

F (x)− 1
)

= F (x). (22)

Indeed, each permutation π (counted by the righthand side in (22)) either
avoids p (which is counted by the A(x) term in (22)), or it contains at least
one occurrence of p. Among all such occurrences, pick an occurrence ab with
the highest possible b as shown in Fig. 13.
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In order for b to be the highest possible, the non-empty permutation
formed by a, A and B must be p-avoiding, which explains the term A(x)− 1
in (22). On the other hand, the non-empty permutation formed by a, C and
D can be any, which explains the term F (x)−1 in (22) (the presence of b leads
to no problem since we have used a twice). We are done with proving (22),
because we can construct π, in a bijective way, from a p-avoiding non-empty
permutation π′ and from another non-empty permutation π′′ as is sketched
in Fig. 14. Indeed, the minimal element a′ in π′ and the leftmost element
a′′ in π′′ will give the value and position of the element a in π as shown in
Fig. 14; then a′ and a′′ can be removed and the element b can be inserted in
the uniquely defined position; this procedure is reversible.

a a′′

a′
b

A B

C

D

Figure 14: Related to the proof of Theorem 3.13

For the distribution, we have the following functional equation:

A(x) + q
(

A(x)− 1
)(

F (x, q)− 1
)

= F (x, q). (23)

The proof of (4) is essentially the same as in the avoidance case. The term
q is given by ab; the term A(x) − 1 is given by the non-empty permutation
formed by a′, A and B, and the term F (x, q)− 1 is given by the non-empty
permutation formed by a′′, C and D, since no occurrence of p can begin at b,
or above it. Solving for F (x, q) and substituting A(x), we obtain the desired
formula for F (x, q).

Remark 3.14. Comparing the structures in Fig. 12 and 13, we can explain
the equidistribution of the patterns p1 =Nr. 64 and p2 =Nr. 65 bijectively,
where using (37) given below and the discussion around it, we can map
p1-avoiding permutations to p2-avoiding permutations, say, lexicographically
thus having the basis of the recursion. Skipping the details, the idea of the
bijective map is to start with a permutation of the form in Fig. 12 with k
occurrences of p1, then
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a. map recursively the permutation formed by b, C,D with (k − 1) oc-
currences of p1 to the permutation formed by a, C,D in Fig. 13 with
(k − 1) occurrences of p2 (this map will give us the value of a);

b. map the p1-avoiding permutation formed by a, A and B in Fig. 12 to
a p2-avoiding permutation formed by the same letters in Fig. 13 (this
map will give us the position of a);

c. glue the elements a obtained in a. and b. and insert b in the unique
position in east-south of B and west-north of C in Fig. 13 to obtain
the desired permutation with k occurrences of p2.

4 Distributions via recurrence relations

In this section, we consider six patterns for which our generating functions
approach does not work. Instead, we derive recurrence relations for the
distribution of the respective patterns. The patterns are:

Nr. 8 = ; Nr. 9 = ; Nr. 14 = ;

Nr. 15 = ; Nr. 36 = ; Nr. 45 = .

In this section, Tn,k denotes the number of n-permutations with k occurrences
of the pattern in question. Also, Tn(x) :=

∑n−1
k=0 Tn,kx

k.

4.1 Distributions of the patterns Nr. 8 and Nr. 9

In this section we show that the distributions for the patterns Nr. 8 =

and Nr. 9 = are given by the unsigned Stirling numbers of the first kind

(see the sequence A132393 in [13]). In the proof of the next theorem we
think of generating all n-permutations from all (n− 1)-permutations first by
inserting, in all possible places, the largest element, and then by inserting
the smallest element.

Theorem 4.1. Both patterns p1 = and p2 = satisfy

Tn,k =Tn−1,k−1 + (n− 1)Tn−1,k (24)
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with the initial conditions Tn,0 = (n−1)! for n ≥ 1 and T0,0 = 1, which shows
that Tn,k = C(n, k + 1), the unsigned Stirling number of the first kind. The
row generating function for Tn,k is given by

n−1
∑

k=0

Tn,kx
k =

n−1
∏

i=1

(x+ i). (25)

Proof. Let us consider p1. We note that avoidance for p1 is given in [6,
Prop. 18], but it is easy to see directly that Tn,0 = (n − 1)Tn−1,0 for n ≥ 2
and T1,0 = 1, so that Tn,0 = (n − 1)! for n ≥ 1. Indeed, inserting the
largest element n in an (n − 1)-permutation never decreases the number of
occurrences of p1. Furthermore, inserting n in position 2 introduces an extra
occurrence of p1, and inserting n in any other position preserves the number
of occurrences of p1. These observations do not only prove the avoidance
case (the initial condition), but also (24).

For the pattern p2, the arguments are very similar, except that we insert
the smallest element x instead of the largest element, and the only place when
inserting x increases the number of occurrences of p2 by 1 is immediately
before the minimal element 1. The base case (avoidance) is given by [6,
Prop. 19].

Finally, (25) follows from the well known properties of the unsigned Stir-
ling numbers of the first kind [13, A132393]; also, see [14].

4.2 Distributions of the patterns Nr. 14 and Nr. 15

An occurrence of the pattern Nr. 14 = is known as a small ascent, and
its reverse as a small descent. The distribution of this pattern is given by
the sequence A123513 in [13] with a reference to En,1(x) in Table 1 on page
291 in [12]. The next theorem derives a recurrence relation for the pattern
and shows that the same recurrence relation works for the pattern Nr. 15 =

thus establishing equidistribution of these patterns.

Theorem 4.2. Both patterns p1 = and p2 = satisfy the recurrence
relation

Tn,k =Tn−1,k−1 + (k + 1)Tn−1,k+1 + (n− k − 1)Tn−1,k (26)

with the initial conditions T1,0 = 1, T2,0 = 1, T2,1 = 1. Evquivalently,

Tn(x) = (x+ n− 1)Tn−1(x) + (1− x)T ′
n−1(x) (27)
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with the initial conditions T1(x) = 1 and T2(x) = 1 + x.

Proof. The initial conditions are easy to see for both p1 and p2. Next, we
explain (26) for p1 and p2 thinking of generating all n-permutations counted
by Tn,k by inserting the new smallest element x in an (n− 1)-permutation.

For p1, Tn−1,k−1 is the number of possibilities to insert x right in front of
the element 1, which increases the number of occurrences of p1 by 1. Further,
(k+1)Tn−1,k+1 counts the possibilities to pick one of the (k+1) occurrences
of p1, say ab (which is formed by consecutive elements) and remove it by
inserting x between a and b. Finally, (n − k − 1)Tn−1,k counts the number
of possibilities to insert x and not to change the number of occurrences of
p1, where in (n− k − 1), n is the number of possibilities to insert x, k is the
number of possibilities to decrease the number of occurrences of p1, and 1 is
the number of possibilities to increase the number of occurrences of p1.

For p2, explanation for all the terms in (26) is the same except Tn−1,k−1,
which corresponds to inserting x in the leftmost position, which increases the
number of occurrences of p2 by 1.

We now obtain (27) from (26) as follows:

Tn(x) =
n−1
∑

k=0

Tn−1,k−1x
k +

n−1
∑

k=0

(k + 1)Tn−1,k+1x
k +

n−1
∑

k=0

(n− k − 1)Tn−1,kx
k

=xTn−1(x) + T ′
n−1(x) + (n− 1)Tn−1(x)− xT ′

n−1(x)

= (x+ n− 1)Tn−1(x) + (1− x)T ′
n−1(x).

This completes the proof.

4.3 Distribution of the pattern Nr. 36

In this section, we find the recurrence relation for the distribution of the

pattern Nr. 36 = . Note that an occurrence of the pattern is a small

ascent (see Section 4.2) in which the left element is a left-to-right minimum,
that is, an element having no smaller elements to the left of it.

Theorem 4.3. The pattern p = satisfies the recurrence relation

Tn,k =(k + 1)Tn−1,k+1 + (n− k)Tn−1,k − Tn−2,k + Tn−2,k−1 (28)
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with the initial conditions T1,0 = 1, T2,0 = 1, T2,1 = 1. Equivalently,

Tn(x) = nTn−1(x) + (1− x)T ′
n−1(x) + (x− 1)Tn−2(x) (29)

with the initial conditions T1(x) = 1 and T2(x) = 1 + x.

Proof. To explain (28), we think of generating all n-permutations from (n−
1)-permutations by inserting the new largest element n. We have:

• Tn−2,k−1 corresponds to inserting n right after the leftmost element x
when x = n−1. In this case, (n−1)n is an extra occurrence of p, while
before inserting, n− 1 is not involved in an occurrence of p.

• (k + 1)Tn−1,k+1 counts the possibilities to pick one of the (k + 1) oc-
currences of p, say ab (which is formed by consecutive elements) and
remove it by inserting x between a and b.

• (n − k)Tn−1,k counts the number of possibilities to insert x and not
to change the number of occurrences of p, where in (n − k), n is the
number of possibilities to insert x, and k is the number of possibilities
to decrease the number of occurrences of p.

• −Tn−2,k corresponds to the fact that there is over-counting in the term
(n−k)Tn−1,k. Indeed, if an (n−1)-permutation begins with (n−1) then
the position immediately to the right of (n− 1) is counted by (n− k).
However, inserting n in this position actually increases the number of
occurrences of p.

We now obtain (29) from (28) as follows:

Tn(x) =
n−1
∑

k=0

(k + 1)Tn−1,k+1x
k +

n−1
∑

k=0

(n− k)Tn−1,kx
k

−
n−1
∑

k=0

Tn−2,kx
k +

n−1
∑

k=0

Tn−2,k−1x
k

=T ′
n−1(x) + nTn−1(x)− xT ′

n−1(x)− Tn−2(x) + xTn−2(x)

=nTn−1(x) + (1− x)T ′
n−1(x) + (x− 1)Tn−2(x).

This completes the proof.
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4.4 Distribution of the pattern Nr. 45

In this section, we find the recurrence relation for the distribution of the

pattern Nr. 45 = , which is the most difficult case in Section 4.

Theorem 4.4. The pattern p = satisfies the recurrence relation

Tn,k = (k + 1)Tn−1,k+1 + (n− k − 1)Tn−1,k + Tn−1,k−1

+ (k + 1)Tn−2,k+1 + (n− 2k − 2)Tn−2,k − (n− k − 1)Tn−2,k−1 (30)

with the initial conditions T1,0 = 1, T2,0 = 1, T2,1 = 1. Equivalently,

Tn(x) =(x+ n− 1)Tn−1(x) + (1− x)T ′
n−1(x)

+ (n− 2)(1− x)Tn−2(x) + (1− x)2T ′
n−2(x), (31)

with the initial conditions T1(x) = 1 and T2(x) = 1 + x.

Proof. The initial conditions are easy to check.
Let Bn,k be the number of n-permutations beginning with the smallest

element 1 and having k occurrences of p. We claim that

Bn,k = Bn−1,k−1 + Tn−1,k − Bn−1,k. (32)

Indeed, it is not difficult to see that Bn−1,k−1 is the number of n-permutations
that begin with 12, because 12 is an occurrence of p. Further, Tn−1,k−Bn−1,k

counts those n-permutations counted by Bn,k that do not begin with 12,
which is easy to see by removing 1 and decreasing by 1 any other element in
each such permutation.

Next, we claim that

Tn,k = Bn−1,k−1 + (k + 1)Tn−1,k+1 + (n− k)Tn−1,k − Bn−1,k. (33)

Indeed, we can think of creating all n-permutations from all (n−1)-permutations
by inserting the new smallest element x in all possible places. The terms in
(33) are then explained as follows.

• Bn−1,k−1 describes the situation when an (n − 1)-permutation begins
with the smallest element 1, and x is inserted at the very beginning
(immediately to the left of 1).
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• (k + 1)Tn−1,k+1 describes the situation when an occurrence ab of p is
replaced by axb thus eliminating one occurrence of p.

• (n−k)Tn−1,k−Bn−1,k describes the situation when inserting x does not
change the number of occurrences of p. For any (n − 1)-permutation
with k occurrences of p there are (n−k) places to insert x except when
the (n−1)-permutation begins with 1, because inserting x immediately
before 1 actually increases the number of occurrences of p.

From (33) and (32) we have

Tn,k = Bn,k + (k + 1)Tn−1,k+1 + (n− k − 1)Tn−1,k. (34)

Let Bn(x) :=
∑n−1

k=0 Bn,kx
k. From (34), we have

Tn(x) =Bn(x) + T ′
n−1(x) + (n− 1)Tn−1(x)− xT ′

n−1(x)

=Bn(x) + (n− 1)Tn−1(x) + (1− x)T ′
n−1(x).

Hence,

Tn(x)− (x− 1)Tn−1(x) =Bn(x) + (1− x)Bn−1(x)

+ (n− 1)Tn−1(x) + (1− x)T ′
n−1(x)

+ (n− 2)(1− x)Tn−2(x) + (1− x)2T ′
n−2(x). (35)

On the other hand, from (32), we have

Bn(x) = xBn−1(x) + Tn−1(x)−Bn−1(x)

= Tn−1(x) + (x− 1)Bn−1(x). (36)

By (36), we can replace Bn(x) + (1 − x)Bn−1(x) in (35) by Tn−1(x), which
completes the proof of (31). The equation (30) is obtained from (31) by
taking the coefficients of both sides.

5 Equidistribution results

For a sequence s of distinct numbers, the reduced form of s, red(s), is the
permutation obtained from s by replacing the i-th smallest number by i,
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1 ≤ i ≤ |s|. The notion of reduced form red(A) for a block A in a schematic
diagram representing a permutation is defined in the same way since any
block represents a sequence of distinct numbers.

Even though we are not able to find the distributions of the patterns

Nr. 23 = , Nr. 24 = , Nr. 48 = , Nr. 49 = , Nr. 50 = ,

in this section we will show in a bijective way that the pattern Nr. 23 is
equidistributed with the pattern Nr. 24 (Theorem 5.1), and also that the
pattern Nr. 48 is equidistributed with the pattern Nr. 49 (Theorem 5.3).
Additionally, note that in Table 2 we conjecture that all three patterns Nr.
48, Nr. 49 and Nr. 50 have the same distribution.

Theorem 5.1. The patterns p1 = and p2 = are equidistributed.

Proof. We refer to Example 5.2 illustrating our bijective proof. It is known [6]
that p1 and p2 are Wilf-equivalent, that is, |Sn(p1)| = |Sn(p2)| for all n ≥ 0.
Thus, each permutation in Sn(p1) can be mapped, in a bijective way, to a
permutation in Sn(p2). For example, we can order Sn(p1) and Sn(p2) lexico-
graphically and map the i-th permutation in one set to the i-th permutation
in the other one; call this map f .

x1

y1

x2

y2

x3

y3

A

B3

B2

B1

C1

C2

C3

C4

C5

D1

D2

D3

D4

D5

D6

D7

Figure 15: Related to the proof of Theorem 5.1; a permutation π with three
occurrences of the pattern p1

We now consider permutations containing at least one occurrence of p1 or
p2, and we will describe a map g that will send bijectively a permutation with
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k occurrences of p1 to a permutation with k occurrences of p2 thus proving
the desired equidistribution.

It is straightforward to see that any element of a permutation can be
involved in at most one occurrence of the pattern p1. The same is true for the
pattern p2. Looking more closely at the occurrences of p1 and p2, we see that
they must appear like in Fig. 15 and 16, respectively, where we demonstrate
the structure on three occurrences, but any other number of occurrences will
clearly follow the same patten. In Fig. 15, the three occurrences of p1 are
given by xiyi, so the possibly empty blocks A, B = ∪1≤i≤3Bi, C = ∪1≤i≤5Ci

and D = ∪1≤i≤7Di must be p1-avoiding, and they are independent of the
rest of the permutation in the sense that no occurrence of p1 can start/end
outside of any of the four blocks and end/start inside. A similar situation is
in Fig. 16, where the three occurrences of p2 are given by x′y′, and the only
condition on the blocks A′, B′ = ∪1≤i≤3B

′
i, C

′ = ∪1≤i≤5C
′
i andD′ = ∪1≤i≤7D

′
i

is that they must be p2-avoiding. Note that the way we place an X ′
i in Fig. 16

for X ∈ {B,C,D} corresponds to the placement of Xi in Fig. 15: we want
Xi and X ′

i to be of the same size.

x′
1

y′1

x′
2

y′2

x′
3

y′3

A′ B′
2

B′
1

B′
3

C ′
3

C ′
2

C ′
4

C ′
1

C ′
5

D′
4

D′
3

D′
5

D′
2

D′
6

D′
1

D′
7

Figure 16: Related to the proof of Theorem 5.1; a permutation σ with three
occurrences of the pattern p2

Given a permutation π ∈ Sn with three occurrences of p1 that is shown
schematically in Fig. 15, we explain how to find the permutation σ = g(π) ∈
Sn with three occurrences of p2 that is shown schematically in Fig. 16. Again,
our description will be clearly extendable to a larger, or fewer, number of
occurrences of p1 and p2, and the fact that g is bijective will be not difficult
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to see, so we omit its proof.

• Let f(red(A)) (resp., f(red(B)), f(red(C))) be the reduced form of A′

(resp., B′, C ′).

• Let the highest |B2| elements of B′ form the block B′
2, and the lowest

|B3| elements of B′ form the block B′
3; the block B′

1 will then have |B1|
elements, and will be well defined.

• Let the highest |C3| elements of C ′ form the block C ′
3, next highest |C2|

elements of C ′ form the block C ′
2, the lowest |C5| elements of C ′ form

the block C ′
5, next lowest |C1| elements of C ′ form the block C ′

1; the
block C ′

4 will then have |C4| elements, and will be well defined.

• In a similar way, we define D′
1–D

′
7; see Fig. 16.

• We require that the relative positions of the elements in the following
sets of blocks to be the same, which is a valid requirement taking into
account that the sizes of the respective blocks are the same:

– {A,B2, C3, D4} and {A′, B′
2, C

′
3, D

′
4};

– {B1, C2, D3} and {B′
1, C

′
2, D

′
3};

– {B3, C4, D5} and {B′
3, C

′
4, D

′
5};

– {C1, D2} and {C ′
1, D

′
2};

– {C5, D6} and {C ′
5, D

′
6}.

• Note that the positions and values of x′
i and y′i, i = 1, 2, 3, in σ are

uniquely determined once A′ and X ′
is for X ∈ {B,C,D}, are defined.

Example 5.2 (To support the proof of Theorem 5.1). By mapping lexico-
graphically, we have f(1) = 1; f(21) = 21; f(312) = 213 and f(321) =
321. We now demonstrate the application of g to the permutation π =
9684(10)(11)73(12)512 having two occurrences of p1.

We have x1 = 4, y1 = (10), x2 = 3, y2 = (12); 6, 8, 9 ∈ A, (11) ∈ B1,
7 ∈ B2, B3 = C1 = C2 = C4 = ∅, 5 ∈ C3, 1, 2 ∈ C5; red(A)= red(C)=312
and red(B)=21. Following the description of g, we find that σ = g(π) =
(11)9(12)57(10)634218, where x′

1 = 5, y′1 = 7, x′
2 = 3, y′2 = 4; 9, (11), (12) ∈

A′, (10) ∈ B′
2, 6 ∈ B′

1, B
′
3 = C ′

1 = C ′
2 = C ′

4 = ∅, 8 ∈ C ′
3, 1, 2 ∈ C ′

5; red(A
′)=

red(C ′)=312 and red(B′)=21. As expected, σ contains two occurrences of p2.
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The next theorem establishes the equidistribution of patterns

Nr. 48 = and Nr. 49 = .

Theorem 5.3. The patterns p1 = and p2 = are equidistributed.

Proof. We refer to Example 5.4 illustrating our bijective proof. The proof is
rather similar to that of Theorem 5.1. However, a key difference is that it
is not a known fact that the patterns p1 and p2 are Wilf-equivalent, so this
is something we will prove by induction once the structure of permutations
having k occurrences of p1 (resp., p2) is described.

We begin with considering permutations with at least one occurrence of
p1 or p2, and we will describe a map g that sends bijectively a permutation
with k occurrences of p1 to a permutation with k occurrences of p2.

It is straightforward to see that any element of a permutation can be
involved in at most one occurrence of the pattern p1. The same is true for the
pattern p2. Looking more closely at the occurrences of p1 and p2, we see that
they must appear like in Fig. 17 and 18, respectively, where we demonstrate
the structure on three occurrences, but any other number of occurrences will
clearly follow the same patten. In Fig. 17, the three occurrences of p1, from
left to right, are given by xiyi, and it is easy to see that X1 and X3 can be
any permutations, and X2 and A must be p1-avoiding for X ∈ {B,C,D}.
Similarly, in Fig. 18, the three occurrences of p2, from bottom to upward, are
given by x′

iy
′
i, and it is easy to see that X ′

1 and X ′
3 can be any permutations,

and X ′
2 and A′ must be p2-avoiding for X ∈ {B,C,D}.

Given a permutation π ∈ Sn with three occurrences of p1 that is shown
schematically in Fig. 17, we explain how to find the permutation σ = g(π) ∈
Sn with three occurrences of p2 that is shown schematically in Fig. 18. Our
description will be easily extendable to a larger, or fewer, number of occur-
rences of p1 and p2, and the fact that g is bijective will be not difficult to see,
so we omit its proof. Finally, the description uses the fact, to be justified
at the end of the proof, that |Sn(p1)| = |Sn(p2)|, so the bijective function f
from Sn(p1) to Sn(p2), sending lexicographically smallest elements to lexico-
graphically smallest elements, is well defined.

• Let f(red(A)) be A′.

• The sub-permutation of σ formed by {X ′
1, X

′
2, X

′
3}, for X ∈ {B,C,D},

is obtained from {X1, X2, X3} by the composition of rotation 180
◦

and
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C1 C2

C3

D1 D2

D3

Figure 17: Related to the proof of Theorem 5.3; a permutation π with three
occurrences of the pattern p1

then replacing X2 by f(red(X2)) while keeping the same relative order
with the elements in X ′

1 (see Example 5.4 below). Observe that this
step is easily reversible.

• Note that the positions and values of x′
i and y′i, i = 1, 2, 3, in σ are

uniquely determined once A′ and X ′
is for X ∈ {B,C,D}, are defined.
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y′3
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2

y′2

x′
1

y′1

A′

B′
1B′

2

B′
3

C ′
1C ′

2

C ′
3

D′
1D′

2

D′
3

Figure 18: Related to the proof of Theorem 5.3; a permutation π with three
occurrences of the pattern p2
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We conclude the proof by showing that p1 and p2 are Wilf-equivalent.
Let a1,n (resp., a2,n) be the number of n-permutations avoiding p1 (resp., p2),
and b1,n (resp., b2,n) be the number of n-permutations containing at least one
occurrence of p1 (resp., p2). Clearly,

ai,n + bi,n = n! for i = 1, 2. (37)

We proceed by the strong version of induction on n. Note that a1,1 =
a2,1 = 1 and we can assume that for all m < n, a1,m = a2,m. We want to
prove that b1,n = b2,n, which will imply that a1,n = a2,n by (37). However, this
is an immediate corollary of the structures presented in Fig. 17 and 18 and
the description of g, taking into account that we have assumed |Sm(p1)| =
|Sm(p2)| for m < n.

Example 5.4 (To support the proof of Theorem 5.3). By mapping lexico-
graphically, we have f(1) = 1; f(21) = 21; f(132) = 231 and f(321) =
321. We now demonstrate the application of g to the permutation π =
(15)(17)(16)9(10)6(12)8(13)(11)(14)745321 having two occurrences of p1.

We have f(red(A)) = f(132) = 231 = A′; 6, 8 ∈ B1, 7 ∈ B2, and
(10), (11), (12), (13) ∈ B3; (10), (12) ∈ B′

1, (11) ∈ B′
2, and 5, 6, 7, 8 ∈ B′

3;
C1 = C3 = C ′

1 = C ′
3 = ∅; 1, 2, 3 ∈ C2 and (15), (16), (17) ∈ C ′

2; x1 = 9,
x2 = 4, y1 = 14, y2 = 5, x′

1 = 4, x′
2 = (13), y′1 = 9, y′2 = (14). Thus, the

desired permutation with two occurrences of p2 is

σ = g(π) = (17)(16)(15)(13)(11)4231975(10)6(12)8(14).

6 Concluding remarks

We refer to Table 2 for our conjectured equidistributions. Note that the

structure of permutations with k occurrences of the pattern Nr. 50 =
is as given in Fig. 19 for k = 3, where X1 and X3 can be any permutations,

and X2 and A must be - avoiding for X ∈ {B,C,D}. Even though the
structure in Fig. 19 is very similar to those in Fig. 17 and 18 corresponding
to the patterns Nr. 48 and Nr. 49, respectively, we were not able to find a
bijective proof showing the conjectured equidistribution of the three patterns.

Indeed, there is a problem with - avoiding blocks X2 in Fig. 19, for X ∈

{B,C,D}, having relations with both X1 and X3, horizontally and vertically,
while in Fig. 17 and 18 the respective blocks X2 have only horizontal relations
with X1, and X1 and X3 have vertical relations.
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Figure 19: Related to Pattern Nr. 50

Additionally, we state the following conjecture.

Conjecture 6.1. The distribution of the pattern Nr. 3 = is given by

[13, A200545], which is the triangle, read by rows, given by

(1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, . . .) DELTA (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . .)

where DELTA is the operator defined in A084938 in [13] in terms of continued
fraction: the triangle [r0, r1, . . .] DELTA [s0, s1, . . .] has generating function

1

1− r0x+s0xy

1−
r1x+s1xy

1−
r2x+s2xy

1−...

.

Note that the operator DELTA was already linked to patterns in permu-
tations, and also to so-called Riordan arrays, in [13, A200545].

As a direction for further research, we suggest studying joint distribution
of patterns considered in this paper and other permutation statistics. As an
illustration of this idea, we derive the following generating function

F (x, q, t) =
∑

n≥0

xn
∑

π∈Sn

q (π)tdes(π)

generalizing Theorem 1.1. Let

F (x, t) :=
∑

n≥0

xn
∑

π∈Sn

tdes(π) =
∑

n≥0

An(t)x
n,
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where An(t)’s are the well known Eulerian polynomials. Also, let

F (x, t) :=
∑

n≥0

xn
∑

π∈Sn( )

tdes(π),

where recall that Sn( ) denotes the set of -avoiding permutations. Now,
following the same steps as in the proof of Theorem 1.1, we obtain:

G(x, t) + xG(x, t)F (x, t) = F (x, t) ⇒ G(x, t) =
F (x, t)

1 + xF (x, t)
;

G(x, t) + xqG(x, t)F (x, q, t) = F (x, q, t) ⇒ F (x, q, t) =
F (x, t)

1 + x(1− q)F (x, t)
.

As a final remark, we note that it would be interesting to classify com-
pletely mesh patterns of length 2 with respect to their distribution. As noted
in the introduction, the number of equivalence classes here is larger than that
of Wilf-equivalence classes (given by equivalence with respect to avoidance)
discussed in [6].
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