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Rota—Baxter operators on a sum of fields
V. Gubarev

Abstract

We count the number of all Rota—Baxter operators on a finite direct sum
A = F ⊕ F ⊕ . . . ⊕ F of fields and count all of them up to conjugation with an
automorphism. We also study Rota—Baxter operators on A corresponding to a
decomposition of A into a direct vector space sum of two subalgebras. We show
that every algebra structure induced on A by a Rota—Baxter of nonzero weight is
isomorphic to A.

Keywords: Rota—Baxter operator, (un)labeled rooted tree, 2-coloring, subtree
acyclic digraph, transitive digraph.

1 Introduction

Given an algebra A and a scalar λ ∈ F , where F is a ground field, a linear operator
R : A→ A is called a Rota—Baxter operator (RB-operator, for short) on A of weight λ if
the following identity

R(x)R(y) = R(R(x)y + xR(y) + λxy) (1)

holds for any x, y ∈ A. The algebra A is called Rota—Baxter algebra (RB-algebra).
G. Baxter in 1960 introduced the notion of Rota—Baxter operator [3] as natural gen-

eralization of by parts integration formula. In 1960–1970s such operators were studied by
G.-C.Rota [19], P. Cartier [10], J. Miller [17], F. Atkinson [2] and others.

In 1980s, the deep connection between constant solutions of the classical Yang—Baxter
equation from mathematical physics and RB-operators on a semisimple finite-dimensional
Lie algebra was discovered by A. Belavin and V. Drinfel’d [4] and M. Semenov-Tyan-
Shanskii [20].

About different connections of Rota—Baxter operators with symmetric polynomials,
quantum field renormalization, Loday algebras, shuffle algebra see in the monograph [14]
written by L. Guo in 2012.

In the paper, we study Rota—Baxter operators on a finite direct sum A = F ⊕ F ⊕
. . .⊕ F of n copies of a field F . We continue investigations fulfilled by S. de Bragança in
1975 [6] and by H. An and C. Bai in 2008 [1]. Since all RB-operators on A of weight zero
are trivial [12], i.e., equal to 0, we study only RB-operators on A of nonzero weight λ.

In §2, we formulate some preliminaries about RB-operators, including splitting RB-
operators which are projections on a subalgebra A1 parallel to another one A2 provided
the direct vector space sum decomposition A = A1+̇A2.

In §3, we show that RB-operators on A of nonzero weight λ are in bijection with
2-colored transitive subtree acyclic digraphs (subtree acyclic digraphs were defined by
F. Harary et al. in 1992 [15]) or equivalently with labeled rooted trees on n + 1 vertices
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with 2-colored non-root vertices. For the last, we apply the result of R. Castelo and
A. Siebes [11]. Thus, the number of all RB-operators on A of nonzero weight λ equals
2n(n + 1)n−1. With the help of the bijection, we show that splitting RB-operators on A
of nonzero weight λ are in one-to-one correspondence with labeled rooted trees on n + 1
vertices with properly 2-colored non-root vertices. We also study the number of all RB-
operators and all splitting RB-operators on A up to conjugation with an automorphism
of A.

In 2012, D. Burde et al. initiated to study so called post-Lie algebra structures [7]. One
of the questions arisen in the area [7, 8, 9] is the following one: starting with a semisimple
Lie algebra endowed RB-operator of weight 1 what kind of Lie algebras we will get under
the new Lie bracket [R(x), y] + [x,R(y)] + [x, y]? Such problems could be stated not only
for Lie algebras but also for associative or commutative ones. In §4, we show that every
algebra structure induced on a finite direct sum A of fields by a Rota—Baxter operator
of nonzero weight is isomorphic to A itself.

2 Preliminaries

Trivial RB-operators of weight λ are zero operator and −λid.
Statement 1 [14]. Given an RB-operator R of weight λ,
a) the operator −R − λid is an RB-operator of weight λ,
b) the operator λ−1R is an RB-operator of weight 1, provided λ 6= 0.
Given an algebra A, let us define a map φ on the set of all RB-operators on A as

φ(R) = −R − λ(R)id. It is clear that φ2 coincides with the identity map.
Statement 2 [5]. Given an algebra A, an RB-operator R on A of weight λ, and

ψ ∈ Aut(A), the operator R(ψ) = ψ−1Rψ is an RB-operator on A of weight λ.
Statement 3 [14]. Let an algebra A to split as a vector space into the direct sum of

two subalgebras A1 and A2. An operator R defined as

R(a1 + a2) = −λa2, a1 ∈ A1, a2 ∈ A2, (2)

is RB-operator on A of weight λ.
Let us call an RB-operator from Statement 3 as splitting RB-operator with subalgebras

A1, A2. Note that the set of all splitting RB-operators on an algebra A is in bijection with
all decompositions A into a direct sum of two subalgebras A1, A2.

Remark 1. Given an algebra A, let R be a splitting RB-operator on A of weight λ
with subalgebras A1, A2. Hence, φ(R) is an RB-operator of weight λ and

φ(R)(a1 + a2) = −λa1, a1 ∈ A1, a2 ∈ A2.

So φ(R) is splitting RB-operator with the same subalgebras A1, A2.
Lemma 1 [5]. Let A be a unital algebra, R be an RB-operator on A of nonzero

weight λ. If R(1) ∈ F , then R is splitting.
We call an RB-operator R satisfying the conditions of Lemma 1 as inner-splitting one.
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Lemma 2 [12]. Let A = A1 ⊕ A2 be an algebra, R be an RB-operator on A of
weight λ. Then the induced linear map P : A1 → A1 defined by the formula P (x1+x2) =
PrA1

(R(x1)), x1 ∈ A1, x2 ∈ A2, is an RB-operator on A1 of weight λ.

3 RB-operators on a sum of fields

Statement 4 [1, 6, 12]. Let A = Fe1 ⊕ Fe2 ⊕ . . .⊕ Fen be a direct sum of copies of

a field F . A linear operator R(ei) =
n
∑

k=1

rikek, rik ∈ F , is an RB-operator on A of weight 1

if and only if the following conditions are satisfied:
(SF1) rii = 0 and rik ∈ {0, 1} or rii = −1 and rik ∈ {0,−1} for all k 6= i;
(SF2) if rik = rki = 0 for i 6= k, then rilrkl = 0 for all l 6∈ {i, k};
(SF3) if rik 6= 0 for i 6= k, then rki = 0 and rkl = 0 or ril = rik for all l 6∈ {i, k}.
Example [2, 17]. The following operator is an RB-operator on A of weight 1:

R(ei) =

s
∑

l=i+1

el, 1 ≤ i < s, R(es) = 0, R(ei) = −

n
∑

l=i

el, s+ 1 ≤ i ≤ n.

Remark 2. It follows from (SF3) that rikrki = 0 for all i 6= k. In [1], the statement
of Statement 4 was formulated with this equality and (SF1) but without (SF2) and the
general version of (SF3). That’s why the formulation in [1] seems to be not complete.

Remark 3. The sum of fields in Statement 4 can be infinite.
In advance, we will identify an RB-operator on A with its matrix.
Let us calculate the number of different RB-operators of nonzero weight λ on A =

Fe1⊕Fe2 ⊕ . . .⊕Fen. By Statement 1a, we may assume that λ = 1. For n = 1, we have
only two RB-operators {0,−id}. For n = 2 we have 12 cases [1]:

(

0 0
0 0

)

,

(

−1 0
0 −1

)

,

(

0 0
1 0

)

,

(

−1 0
−1 −1

)

,

(

−1 0
0 0

)

,

(

0 0
0 −1

)

,

(

0 0
−1 −1

)

,

(

−1 0
1 0

)

,

(

−1 −1
0 0

)

,

(

0 1
0 −1

)

,

(

0 1
0 0

)

,

(

−1 −1
0 −1

)

.

Here we identify an RB-operator with its matrix R ∈M2(F ) by the rule R(ei) =
n
∑

k=1

rikek.

For n = 3, we have 8 · 16 = 128 variants [1]:





a 0 0
0 b 0
0 0 c



 ,





a 0 0
0 b 0

2c+ 1 2c+ 1 c



 ,





a 0 0
0 b 0

2c+ 1 0 c



 ,





a 0 0
0 b 0
0 2c+ 1 c



 ,





a 0 0
2b+ 1 b 0

0 0 c



 ,





a 0 0
2b+ 1 b 0
2c+ 1 2c+ 1 c



 ,





a 2a+ 1 0
0 b 0
0 0 c



 ,





a 2a+ 1 0
0 b 0

2c+ 1 2c+ 1 c



 ,
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a 2a+ 1 2a+ 1
0 b 0
0 0 c



,





a 2a+ 1 2a+ 1
0 b 0
0 2c+ 1 c



,





a 0 0
2b+ 1 b 2b+ 1

0 0 c



,





a 0 0
0 b 2b+ 1
0 0 c



,





a 0 0
2b+ 1 b 2b+ 1
2c+ 1 0 c



 ,





a 2a+ 1 2a+ 1
0 b 2b+ 1
0 0 c



 ,





a 0 2a+ 1
0 b 0
0 0 c



 ,





a 0 2a+ 1
2b+ 1 b 2b+ 1

0 0 c





for a = r11, b = r22, c = r33 ∈ {0,−1}.
For n = 4, computer can help to state that there are exactly 2000 RB-operators of

weight 1 on A. Thus, we get the first four terms from the sequence A097629 [18].
Theorem 1. Let A = Fe1 ⊕ Fe2 ⊕ . . .⊕ Fen be a direct sum of copies of a field F .

The number of different RB-operators on A of nonzero weight λ equals 2n(n + 1)n−1.
Proof. Let R be an RB-operator on A of weight λ. We may assume that λ = 1. We

follow the previous notations. We have 2n variants to choose the values of the elements
rii, i = 1, . . . , n. The choice of any of them, say rii, influences only on the possible signs
of all elements rik, k 6= i. So, we may put rii = 0 for all i and fix the factor 2n for the
answer.

Now, we want to construct a directed graph G on n vertices by any matrix R =
(rij)

n
i,j=1 with chosen rii = 0. We consider the matrix R as the adjacency matrix of

a directed graph G. Let us interpretate conditions (SF2) and (SF3) in terms of digraphs.
Firstly, we rewrite (SF3) as two conditions:

(SF3a) if rik 6= 0 for i 6= k, then rki = 0;
(SF3b) if rik 6= 0 for i 6= k, then rkl = 0 or ril = rik for all l 6∈ {i, k}.
The condition (SF3a) says that if we have an edge between two vertices i 6= k, then

the direction of such edge is well-defined, so, it is a correctness of getting a digraph by the
matrix R. In graph theory, the condition (SF3b) is called transitivity, i.e., if have edges
(i, k) ∈ E and (k, l) ∈ E, then we have an edge (i, l) ∈ E.

Secondly, we read the condition (SF2) in terms of digraphs in such way: there are no
in G induced subgraphs isomorphic to H with V (H) = {i, k, l} and E(H) = {(i, l), (k, l)}
(see Pict. 1). In [11] the subgraph H was called immorality, thus, a digraph without
immoralities is called moral digraph [16].

i

l

k

Picture 1. The forbidden induced subgraph H on three vertices {i, k, l} due to (SF2)

We may reformulate our problem of counting the number N of different RB-operators
on A of nonzero weight λ in such way: What is the number of all transitive moral
transitive digraphs on n vertices? In terms of [11], the last is the same as the number of
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all moral TDAGs on n vertices, here TDAG is the abbreviation for Transitive Directed
Acyclic Graph (we are interested on transitive digraphs which are surely acyclic). In the
graph-theoretic context, moral DAGs are known as subtree acyclic digraphs [15]. Thus,

N/2n = #{moral TDAGs on n vertices}

= #{transitive subtree acyclic digraphs on n vertices}. (3)

In [11], the authors constructed a bijection between the set of moral TDAGs on n ver-
tices and the set of labeled rooted trees on n + 1 vertices as follows (see Pict. 2). Define
the function f(i) for a vertex i by induction. For a source i (i.e., such a vertex i that
there are no edges (j, i) in a digraph), we put f(i) = 0. For a not-source vertex j, we may
find the unique source i such that there exists a directed path p from i to j. So, we define
f(j) as the length of p. Now, we construct a labeled rooted tree T = (U, F ) by a moral
TDAG G = G(V,E):

U = V ∪ {0}, F = {(0, i) | f(i) = 0} ∪ {(i, j) | (i, j) ∈ E, f(i) = f(j)− 1}.

1
2

3

4

5
1

2

3 4

5

Picture 2. The corresponding graph G and tree T to the RB-operator
R(e1) = e2 + e3 + e4, R(e2) = −e2 − e3 − e4, R(e3) = −e3, R(e4) = 0, R(e5) = −e5.

Applying the above constructed correspondence, the number of moral TDAGs on
n vertices equals (n + 1)n−1 by the Cayley theorem, and so N = 2n(n + 1)n−1. Theorem
is proved.

Below we will apply the easy fact that Aut(A) ∼= Sn. It could be derived, e.g., from
the Molin—Wedderburn—Artin theory, in particular from the uniqueness up to a rear-
rangement of summands of decomposition of a semisimple finite-dimensional associative
algebra into a finite direct sum of simple ones.

Corollary 1 [6]. Let A = Fe1⊕Fe2⊕ . . .⊕Fen be a direct sum of copies of a field F
and R be an RB-operator on A of nonzero weight 1. There exists an automorphism ψ of A
such that the matrix of the operator R(ψ) in the basis e1, . . . , en is an upper-triangular
matrix with entries rij ∈ {0,±1} and rii ∈ {0,−1}.
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Proof. As we did in the proof of Theorem 1, we define by R a labeled rooted tree T .
Define t = max{f(i) | i ∈ V (T )} and kj = #{i | f(i) = j}. We may reorder indexes
1, 2, . . . , n by action of a permutation from Sn ∼= Aut(A) in a way such that

f(1) = . . . = f(k0) = 0,

f(k0 + 1) = . . . = f(k0 + k1) = 1,

. . .

f(n− kt + 1) = . . . = f(n) = t.

Due to the definition of T , we get the upper-triangular matrix. The restrictions on the
values of elements immediately follow from Statement 4.

Corollary 2. There is a bijection between the set of RB-operators of nonzero weight λ
on Fe1 ⊕ Fe2 ⊕ . . .⊕ Fen and

a) the set of 2-colored subtree acyclic digraphs on n vertices;
b) the set of labeled rooted trees on n+ 1 vertices with 2-colored non-root vertices.
Now, we want to compute the number rn of RB-operators of nonzero weight λ on

A = Fe1 ⊕ . . .⊕ Fen which lie in different orbits under the action of the automorphism
group Aut(A) ∼= Sn. The group Aut(A) acts on the set of RB-operators of weight λ in
the way described in Statement 2, ψ : R→ R(ψ) = ψ−1Rψ.

In a light of Corollary 2b, we may interpretate the number rn as the number of
unlabeled rooted trees on n + 1 vertices with 2-colored non-root vertices. It is exactly
the sequence A000151 [18], the first eight values are 2, 7, 26, 107, 458, 2058, 9498, 44947
etc. Let us fix that in advance we will use two colors: white and black, white color
corresponds to the case rii = 0 and black color corresponds to rii = −λ. Considering the
rooted tree T with n + 1 vertices, we may assume that the root is colored in the third
color, say grey.

Note that the map φ acts on a labeled (or unlabeled) rooted tree T on n+ 1 vertices
with 2-colored non-root vertices as follows. The φ interchanges a color in every non-root
vertex.

Let us describe splitting RB-operators of nonzero weight λ on A.
Theorem 2. An RB-operator R of nonzero weight λ on A = Fe1 ⊕ . . . ⊕ Fen is

splitting if and only if the corresponding (labeled) rooted tree T = T (R) on n+1 vertices
is properly colored.

Proof. Wuthout loss of generality, we put λ = 1. For simplicity, let us consider the
graph T ′ = T \ {root}, which is a forest in general case.

Let us prove the statement by induction on n. For n = 1, we have either R = 0 (the
only non-root vertex is white) or R = −λid (the only non-root vertex is black), both
RB-operators are splitting with subalgebras F and (0).

Suppose that we have proved Theorem 2 for all natural numbers less than n. Let
a graph T ′ with n vertices be disconnected, denote by T1, . . . , Tk the connected components
of T ′. So, A = A1 ⊕ . . . Ak for As = Span{ej | j ∈ V (Ts)}. Define Rs as the induced
RB-operator R|As

(see Lemma 2). By the definition, R is splitting if and only if A =
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ker(R)+̇ ker(R + id) or equivalently As = ker(Rs)+̇ ker(Rs + id), s = 1, . . . , k. By the
induction hypothesis, we have such decomposition for every s if and only if the coloring
of Ts is proper.

Now consider the case when T ′ is connected. We may assume that e1 corresponds to
the vertex 1, the only source in G, and {2, . . . , k} is the set of all vertices of G with the
value of f(x) equal to 1. We also define Ts for s = 2, . . . , k as the connected component
of T ′ \ {1} which contains the vertex s. Note that R induces the RB-operator of weight λ
on the subalgebra As = Span{ej | j ∈ V (Ts)} for all s by Lemma 2.

The condition of R to be splitting is equivalent to the condition

rank (R) + rank (R + id) = n. (4)

Analysing the e1-coordinate, we have

n = rank (R) + rank (R + id) ≥ 1 + rank (R′) + rank (R′ + id)

for R′, the induced RB-operator on the subalgebra Span{ej | j ≥ 2}. Thus, rank (R′) +
rank (R′ + id) = n − 1, i.e. R′ is splitting or equivalently R|As

is spplitting for every
s = 2, . . . , k. By the induction hypothesis, the graph T ′ \ {1} is properly 2-colored. It
remains to prove that the vertices 2, . . . , k are colored in the same color and the vertex 1
is colored in another one.

Up to the action of φ, which preserves the splitting structure of an RB-operator (see
Remark 1), we may assume that the vertex 1 is colored in white. Since we know that
rank (R+ id) = rank (R′+ id)+1, we have to state the equality rank (R) = rank (R′). So,
the condition (4) is fulfilled if and only if the first row (0, 1, 1, . . . , 1) of the matrix R is
linearly expressed via other rows. By the definition of the matrix R, the vertices 2, . . . , k
have to be colored in black. Theorem is proved.

Corollary 3. An RB-operator R of nonzero weight λ on A = Fe1 ⊕ . . . ⊕ Fen is
inner-splitting if and only if in T = T (R) all vertices with even value of f are colored in
one color and all vertices with odd value of f are colored in another color.

Proof. Up to φ, we may assume that R(1) = 0. Thus, any vertex with the value of
f(x) equal to 0 has to be colored in white. By Theorem 2, T ′ = T \ {root} is properly
2-colored, so, all vertices with the value of f(x) equal to 1 are colored in black, all vertices
with the value of f(x) equal to 2 are colored in white and so on.

Now, we collect all our knowledges about all RB-operators (in Table 1) and all
nonisomorphic RB-operators (in Table 2) of nonzero weight on a sum of fields A =
Fe1 ⊕ Fe2 ⊕ . . .⊕ Fen.

We have noticed that the first values of number of splitting RB-operators coin-
cides with the sequence A007830 [18] (in labeled case) and coincides with the sequence
A000106 [18] (in unlabeled case). Actually it should be proven for all n.

Remark 4. Counting rooted trees on n+1 vertices with properly 2-colored non-root
vertices is not the same as counting properly 2-colored forests on n vertices.
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Table 1. Number of RB-operators of nonzero weight on a sum of n fields

Class of Description formula and first
RB-operators OEIS [18] 5 values

all labeled rooted trees on n+ 1 vertices 2n(n+ 1)n−1 2, 12, 128,
with 2-colored non-root vertices A097629 2000, 41472

splitting labeled rooted trees on n+ 1 vertices 2(n+ 2)n−1 ?! 2, 8, 50,
with properly 2-colored non-root vertices A007830 ?! 432, 4802

inner-splitting labeled rooted trees on n+ 1 vertices 2(n+ 1)n−1 2, 6, 32,
(twice) 2·A000272 250, 2592

non-splitting labeled rooted trees on n+ 1 vertices with — 0, 4, 78,
improperly 2-colored non-root vertices 1568, 36670

Table 2. Number of RB-operators of nonzero weight on a sum of n fields
(up to conjugation with an automorphism)

Class of Description OEIS [18] first 5 values
RB-operators

all rooted trees on n+ 1 vertices A000151 2, 7, 26, 107, 458
with 2-colored non-root vertices

splitting rooted trees on n+ 1 vertices with A000106 ?! 2, 5, 12, 30, 74
properly 2-colored non-root vertices

inner-splitting rooted trees on n + 1 vertices (twice) 2·A000081 2, 4, 8, 18, 40
non-splitting rooted trees on n+ 1 vertices with — 0, 2, 14, 77, 384

improperly 2-colored non-root vertices

Let us write down all non-splitting pairwise nonisomorphic RB-operators for n = 2, 3.
Statement 5. Up to φ, we have the following non-splitting pairwise nonisomorphic

RB-operators
a) for n = 2: R(e1) = e2, R(e2) = 0;
b) for n = 3:
(RB1) R(e1) = e2 + e3, R(e2) = e3, R(e3) = 0,
(RB2) R(e1) = e2 + e3, R(e2) = e3, R(e3) = −e3,
(RB3) R(e1) = e2 + e3, R(e2) = −e2 − e3, R(e3) = −e3,
(RB4) R(e1) = e2 + e3, R(e2) = R(e3) = 0,
(RB5) R(e1) = e2 + e3, R(e2) = −e2, R(e3) = 0,
(RB6) R(e1) = e2, R(e2) = R(e3) = 0,
(RB7) R(e1) = e2, R(e2) = 0, R(e3) = −e3.
Proof. a) Non-splitting case appears only when the graph T ′ is non-empty and

improperly 2-colored. Up to φ, we may assume that two vertices are colored in white.
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b) Cases (RB1)–(RB3) correspond to improperly 2-colorings of the graph T ′ with
V (T ′) = {1, 2, 3} and E(T ′) = {(1, 2), (2, 3)}. Cases (RB4), (RB5) correspond to improp-
erly 2-colorings of the graph T ′ with E(T ′) = {(1, 2), (1, 3)}. Finally, cases (RB6), (RB7)
correspond to improperly 2-colorings of the graph T ′ with E(T ′) = {(1, 2)}.

Statement 6. Up to φ, we have the following splitting but not inner-splitting pairwise
nonisomorphic RB-operators:

a) for n = 2: R(e1) = −e1, R(e2) = 0;
b) for n = 3:
(RB1′) R(e1) = e2, R(e2) = 0, R(e3) = −e3,
(RB2′) R(e1) = −e1, R(e2) = R(e3) = 0.

4 RB-induced algebra structures on a sum of fields

Let C be an associative algebra and R be an RB-operator on C of weight λ. Then the
space C under the product

x ◦R y = R(x)y + xR(y) + λxy (5)

is an associative algebra [14, 13]. Let us denote the obtained algebra as CR. It is easy to
see that Cφ(R) ∼= CR.

Let us denote by Abn the n-dimensional algebra with zero (trivial) product.
Theorem 3. Given an algebra A = Fe1⊕ . . .⊕Fen and an RB-operator R of weight λ

on A, we have AR ∼=

{

Abn, λ = 0,

A, λ 6= 0.

Proof. If λ = 0, then R = 0 [12] and x ◦R y = 0. For λ 6= 0, we may assume that
λ = 1, since rescalling of the product does not exchange the algebraic structure.

Let us prove the statement by induction on n. For n = 1, we have either R = 0 or
R = −id. Due to (5) we get either x ◦ y = xy or x ◦ y = −xy, in both cases AR ∼= A.

Suppose that we have proved Theorem 3 for all numbers less n. Let a graph T ′ = T ′(R)
with n vertices be disconnected, denote by T1, . . . , Tk the connected components of T ′.
As earlier, we define A = A1 ⊕ . . . Ak for As = Span{ej | j ∈ V (Ts)} and define Rs as
the induced RB-operator R|As

. By the induction hypothesis, ARs
∼= As for every s and so

A = A1 ⊕ . . .⊕Ak ∼= AR1 ⊕ . . .⊕ ARk = AR.
Now consider the case when T ′ is connected. We may assume that e1 corresponds to

the vertex 1, the only source in G. Note the space I1 = Span{ej | j ≥ 2} is an ideal in
AR which is isomorphic to Fe2⊕ . . .⊕Fen by the induction hypothesis. Up to φ, we may
assume that the vertex 1 in T ′ is colored in white and 2, . . . , t is a list of all neighbours
of 1 in T ′. Let us consider the one-dimensional space I2 in AR generated by the vector
a = e1 − c(2)e2 − . . .− c(t)et, where

c(i) =

{

1, i is colored in white,

−1, i is colored in black.
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In terms of the matrix entries, c(i) = 1 + 2rii. We may assume that c(2) = c(3) = . . . =
c(s) = 1 and c(s+ 1) = . . . = c(t) = −1 for some s ∈ {2, . . . , t}.

By (5) we compute the product of a with ek for k > t:

a ◦ ek = (e1 + e2 + . . .+ es − es+1 − . . .− et) ◦ ek

= R(e1 + e2 + . . .+ es − es+1 − . . .− et)ek.

Since k is connected with only one vertex from 2, . . . , t (due to (SF2)), say j, we have

a ◦ ek = R(e1 − c(j)ej)ek = ek − c(j)(1 + 2rjj)ek = (1− (c(j))2)ek = 0.

Analogously we can check that a ◦ ek = 0 for all k > 1. Thus, I2 is an ideal in AR.
Now, we calculate

a ◦ a = e1 ◦ (e1 + e2 + . . .+ es − es+1 − . . .− et)

= R(e1)(e1 + e2 + . . .+ es − es+1 − . . .− et) + e1

= (e2 + . . .+ es + es+1 + . . .+ et)(e1 + e2 + . . .+ es − es+1 − . . .− et) + e1

= e1 + e2 + . . .+ es − es+1 − . . .− et = a

and so I2 is isomorphic to F .
Summarising, we have AR = I1⊕I2 ∼= (Fe2⊕ . . .⊕Fen)⊕F ∼= A. Theorem is proved.
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