Rota—Baxter operators on a sum of fields V. Gubarev

Abstract

We count the number of all Rota—Baxter operators on a finite direct sum $A = F \oplus F \oplus \ldots \oplus F$ of fields and count all of them up to conjugation with an automorphism. We also study Rota—Baxter operators on A corresponding to a decomposition of A into a direct vector space sum of two subalgebras. We show that every algebra structure induced on A by a Rota—Baxter of nonzero weight is isomorphic to A.

Keywords: Rota—Baxter operator, (un)labeled rooted tree, 2-coloring, subtree acyclic digraph, transitive digraph.

1 Introduction

Given an algebra A and a scalar $\lambda \in F$, where F is a ground field, a linear operator $R: A \to A$ is called a Rota—Baxter operator (RB-operator, for short) on A of weight λ if the following identity

$$R(x)R(y) = R(R(x)y + xR(y) + \lambda xy)$$
(1)

holds for any $x, y \in A$. The algebra A is called Rota-Baxter algebra (RB-algebra).

G. Baxter in 1960 introduced the notion of Rota—Baxter operator [3] as natural generalization of by parts integration formula. In 1960–1970s such operators were studied by G.-C.Rota [19], P. Cartier [10], J. Miller [17], F. Atkinson [2] and others.

In 1980s, the deep connection between constant solutions of the classical Yang—Baxter equation from mathematical physics and RB-operators on a semisimple finite-dimensional Lie algebra was discovered by A. Belavin and V. Drinfel'd [4] and M. Semenov-Tyan-Shanskii [20].

About different connections of Rota—Baxter operators with symmetric polynomials, quantum field renormalization, Loday algebras, shuffle algebra see in the monograph [14] written by L. Guo in 2012.

In the paper, we study Rota—Baxter operators on a finite direct sum $A = F \oplus F \oplus ... \oplus F$ of *n* copies of a field *F*. We continue investigations fulfilled by S. de Bragança in 1975 [6] and by H. An and C. Bai in 2008 [1]. Since all RB-operators on *A* of weight zero are trivial [12], i.e., equal to 0, we study only RB-operators on *A* of nonzero weight λ .

In §2, we formulate some preliminaries about RB-operators, including splitting RB-operators which are projections on a subalgebra A_1 parallel to another one A_2 provided the direct vector space sum decomposition $A = A_1 + A_2$.

In §3, we show that RB-operators on A of nonzero weight λ are in bijection with 2-colored transitive subtree acyclic digraphs (subtree acyclic digraphs were defined by F. Harary et al. in 1992 [15]) or equivalently with labeled rooted trees on n + 1 vertices

with 2-colored non-root vertices. For the last, we apply the result of R. Castelo and A. Siebes [11]. Thus, the number of all RB-operators on A of nonzero weight λ equals $2^n(n+1)^{n-1}$. With the help of the bijection, we show that splitting RB-operators on A of nonzero weight λ are in one-to-one correspondence with labeled rooted trees on n+1 vertices with properly 2-colored non-root vertices. We also study the number of all RB-operators and all splitting RB-operators on A up to conjugation with an automorphism of A.

In 2012, D. Burde et al. initiated to study so called post-Lie algebra structures [7]. One of the questions arisen in the area [7, 8, 9] is the following one: starting with a semisimple Lie algebra endowed RB-operator of weight 1 what kind of Lie algebras we will get under the new Lie bracket [R(x), y] + [x, R(y)] + [x, y]? Such problems could be stated not only for Lie algebras but also for associative or commutative ones. In §4, we show that every algebra structure induced on a finite direct sum A of fields by a Rota—Baxter operator of nonzero weight is isomorphic to A itself.

2 Preliminaries

Trivial RB-operators of weight λ are zero operator and $-\lambda id$.

Statement 1 [14]. Given an RB-operator R of weight λ ,

a) the operator $-R - \lambda id$ is an RB-operator of weight λ ,

b) the operator $\lambda^{-1}R$ is an RB-operator of weight 1, provided $\lambda \neq 0$.

Given an algebra A, let us define a map ϕ on the set of all RB-operators on A as $\phi(R) = -R - \lambda(R)$ id. It is clear that ϕ^2 coincides with the identity map.

Statement 2 [5]. Given an algebra A, an RB-operator R on A of weight λ , and $\psi \in \operatorname{Aut}(A)$, the operator $R^{(\psi)} = \psi^{-1} R \psi$ is an RB-operator on A of weight λ .

Statement 3 [14]. Let an algebra A to split as a vector space into the direct sum of two subalgebras A_1 and A_2 . An operator R defined as

$$R(a_1 + a_2) = -\lambda a_2, \quad a_1 \in A_1, \ a_2 \in A_2, \tag{2}$$

is RB-operator on A of weight λ .

Let us call an RB-operator from Statement 3 as *splitting* RB-operator with subalgebras A_1, A_2 . Note that the set of all splitting RB-operators on an algebra A is in bijection with all decompositions A into a direct sum of two subalgebras A_1, A_2 .

Remark 1. Given an algebra A, let R be a splitting RB-operator on A of weight λ with subalgebras A_1, A_2 . Hence, $\phi(R)$ is an RB-operator of weight λ and

$$\phi(R)(a_1 + a_2) = -\lambda a_1, \quad a_1 \in A_1, \ a_2 \in A_2.$$

So $\phi(R)$ is splitting RB-operator with the same subalgebras A_1, A_2 .

Lemma 1 [5]. Let A be a unital algebra, R be an RB-operator on A of nonzero weight λ . If $R(1) \in F$, then R is splitting.

We call an RB-operator R satisfying the conditions of Lemma 1 as *inner-splitting* one.

Lemma 2 [12]. Let $A = A_1 \oplus A_2$ be an algebra, R be an RB-operator on A of weight λ . Then the induced linear map $P: A_1 \to A_1$ defined by the formula $P(x_1 + x_2) = \Pr_{A_1}(R(x_1)), x_1 \in A_1, x_2 \in A_2$, is an RB-operator on A_1 of weight λ .

3 RB-operators on a sum of fields

Statement 4 [1, 6, 12]. Let $A = Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$ be a direct sum of copies of a field F. A linear operator $R(e_i) = \sum_{k=1}^n r_{ik}e_k$, $r_{ik} \in F$, is an RB-operator on A of weight 1 if and only if the following conditions are satisfied:

(SF1) $r_{ii} = 0$ and $r_{ik} \in \{0, 1\}$ or $r_{ii} = -1$ and $r_{ik} \in \{0, -1\}$ for all $k \neq i$;

(SF2) if $r_{ik} = r_{ki} = 0$ for $i \neq k$, then $r_{il}r_{kl} = 0$ for all $l \notin \{i, k\}$;

(SF3) if $r_{ik} \neq 0$ for $i \neq k$, then $r_{ki} = 0$ and $r_{kl} = 0$ or $r_{il} = r_{ik}$ for all $l \notin \{i, k\}$. Example [2, 17]. The following operator is an RB-operator on A of weight 1:

$$R(e_i) = \sum_{l=i+1}^{s} e_l, \ 1 \le i < s, \quad R(e_s) = 0, \quad R(e_i) = -\sum_{l=i}^{n} e_l, \ s+1 \le i \le n.$$

Remark 2. It follows from (SF3) that $r_{ik}r_{ki} = 0$ for all $i \neq k$. In [1], the statement of Statement 4 was formulated with this equality and (SF1) but without (SF2) and the general version of (SF3). That's why the formulation in [1] seems to be not complete.

Remark 3. The sum of fields in Statement 4 can be infinite.

In advance, we will identify an RB-operator on A with its matrix.

Let us calculate the number of different RB-operators of nonzero weight λ on $A = Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$. By Statement 1a, we may assume that $\lambda = 1$. For n = 1, we have only two RB-operators $\{0, -id\}$. For n = 2 we have 12 cases [1]:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}.$$

Here we identify an RB-operator with its matrix $R \in M_2(F)$ by the rule $R(e_i) = \sum_{k=1}^n r_{ik}e_k$. For n = 3, we have $8 \cdot 16 = 128$ variants [1]:

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 2c+1 & 2c+1 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 2c+1 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 0 \\ 0 & 2c+1 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 0 \\ 2b+1 & b & 0 \\ 2c+1 & 2c+1 & c \end{pmatrix}, \begin{pmatrix} a & 2a+1 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 2a+1 & 0 \\ 0 & b & 0 \\ 2c+1 & 2c+1 & c \end{pmatrix},$$

$$\begin{pmatrix} a & 2a+1 & 2a+1 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 2a+1 & 2a+1 \\ 0 & b & 0 \\ 0 & 2c+1 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 0 \\ 2b+1 & b & 2b+1 \\ 0 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 0 \\ 0 & b & 2b+1 \\ 0 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 2a+1 \\ 0 & b & 2b+1 \\ 0 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 2a+1 \\ 0 & b & 2b+1 \\ 0 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 2a+1 \\ 0 & b & 2b+1 \\ 0 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 2a+1 \\ 2b+1 & b & 2b+1 \\ 0 & 0 & c \end{pmatrix}, \begin{pmatrix} a & 0 & 2a+1 \\ 2b+1 & b & 2b+1 \\ 0 & 0 & c \end{pmatrix},$$

for $a = r_{11}, b = r_{22}, c = r_{33} \in \{0, -1\}.$

For n = 4, computer can help to state that there are exactly 2000 RB-operators of weight 1 on A. Thus, we get the first four terms from the sequence A097629 [18].

Theorem 1. Let $A = Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$ be a direct sum of copies of a field F. The number of different RB-operators on A of nonzero weight λ equals $2^n(n+1)^{n-1}$.

PROOF. Let R be an RB-operator on A of weight λ . We may assume that $\lambda = 1$. We follow the previous notations. We have 2^n variants to choose the values of the elements r_{ii} , $i = 1, \ldots, n$. The choice of any of them, say r_{ii} , influences only on the possible signs of all elements r_{ik} , $k \neq i$. So, we may put $r_{ii} = 0$ for all i and fix the factor 2^n for the answer.

Now, we want to construct a directed graph G on n vertices by any matrix $R = (r_{ij})_{i,j=1}^n$ with chosen $r_{ii} = 0$. We consider the matrix R as the adjacency matrix of a directed graph G. Let us interpretate conditions (SF2) and (SF3) in terms of digraphs. Firstly, we rewrite (SF3) as two conditions:

(SF3a) if $r_{ik} \neq 0$ for $i \neq k$, then $r_{ki} = 0$;

(SF3b) if $r_{ik} \neq 0$ for $i \neq k$, then $r_{kl} = 0$ or $r_{il} = r_{ik}$ for all $l \notin \{i, k\}$.

The condition (SF3a) says that if we have an edge between two vertices $i \neq k$, then the direction of such edge is well-defined, so, it is a correctness of getting a digraph by the matrix R. In graph theory, the condition (SF3b) is called *transitivity*, i.e., if have edges $(i, k) \in E$ and $(k, l) \in E$, then we have an edge $(i, l) \in E$.

Secondly, we read the condition (SF2) in terms of digraphs in such way: there are no in G induced subgraphs isomorphic to H with $V(H) = \{i, k, l\}$ and $E(H) = \{(i, l), (k, l)\}$ (see Pict. 1). In [11] the subgraph H was called *immorality*, thus, a digraph without immoralities is called *moral* digraph [16].

PICTURE 1. The forbidden induced subgraph H on three vertices $\{i, k, l\}$ due to (SF2)

We may reformulate our problem of counting the number N of different RB-operators on A of nonzero weight λ in such way: What is the number of all transitive moral transitive digraphs on n vertices? In terms of [11], the last is the same as the number of all moral TDAGs on n vertices, here TDAG is the abbreviation for Transitive Directed Acyclic Graph (we are interested on transitive digraphs which are surely acyclic). In the graph-theoretic context, moral DAGs are known as subtree acyclic digraphs [15]. Thus,

 $N/2^{n} = \#\{\text{moral TDAGs on } n \text{ vertices}\} \\ = \#\{\text{transitive subtree acyclic digraphs on } n \text{ vertices}\}.$ (3)

In [11], the authors constructed a bijection between the set of moral TDAGs on n vertices and the set of labeled rooted trees on n + 1 vertices as follows (see Pict. 2). Define the function f(i) for a vertex i by induction. For a source i (i.e., such a vertex i that there are no edges (j, i) in a digraph), we put f(i) = 0. For a not-source vertex j, we may find the unique source i such that there exists a directed path p from i to j. So, we define f(j) as the length of p. Now, we construct a labeled rooted tree T = (U, F) by a moral TDAG G = G(V, E):

 $U = V \cup \{0\}, \quad F = \{(0,i) \mid f(i) = 0\} \cup \{(i,j) \mid (i,j) \in E, \ f(i) = f(j) - 1\}.$

PICTURE 2. The corresponding graph G and tree T to the RB-operator $R(e_1) = e_2 + e_3 + e_4$, $R(e_2) = -e_2 - e_3 - e_4$, $R(e_3) = -e_3$, $R(e_4) = 0$, $R(e_5) = -e_5$.

Applying the above constructed correspondence, the number of moral TDAGs on n vertices equals $(n+1)^{n-1}$ by the Cayley theorem, and so $N = 2^n (n+1)^{n-1}$. Theorem is proved.

Below we will apply the easy fact that $\operatorname{Aut}(A) \cong S_n$. It could be derived, e.g., from the Molin—Wedderburn—Artin theory, in particular from the uniqueness up to a rearrangement of summands of decomposition of a semisimple finite-dimensional associative algebra into a finite direct sum of simple ones.

Corollary 1 [6]. Let $A = Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$ be a direct sum of copies of a field F and R be an RB-operator on A of nonzero weight 1. There exists an automorphism ψ of A such that the matrix of the operator $R^{(\psi)}$ in the basis e_1, \ldots, e_n is an upper-triangular matrix with entries $r_{ij} \in \{0, \pm 1\}$ and $r_{ii} \in \{0, -1\}$.

PROOF. As we did in the proof of Theorem 1, we define by R a labeled rooted tree T. Define $t = \max\{f(i) \mid i \in V(T)\}$ and $k_j = \#\{i \mid f(i) = j\}$. We may reorder indexes $1, 2, \ldots, n$ by action of a permutation from $S_n \cong \operatorname{Aut}(A)$ in a way such that

$$f(1) = \dots = f(k_0) = 0,$$

$$f(k_0 + 1) = \dots = f(k_0 + k_1) = 1$$

$$\dots$$

$$f(n - k_t + 1) = \dots = f(n) = t.$$

Due to the definition of T, we get the upper-triangular matrix. The restrictions on the values of elements immediately follow from Statement 4.

Corollary 2. There is a bijection between the set of RB-operators of nonzero weight λ on $Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$ and

a) the set of 2-colored subtree acyclic digraphs on n vertices;

b) the set of labeled rooted trees on n + 1 vertices with 2-colored non-root vertices.

Now, we want to compute the number r_n of RB-operators of nonzero weight λ on $A = Fe_1 \oplus \ldots \oplus Fe_n$ which lie in different orbits under the action of the automorphism group $\operatorname{Aut}(A) \cong S_n$. The group $\operatorname{Aut}(A)$ acts on the set of RB-operators of weight λ in the way described in Statement 2, $\psi \colon R \to R^{(\psi)} = \psi^{-1}R\psi$.

In a light of Corollary 2b, we may interpretate the number r_n as the number of **unlabeled** rooted trees on n + 1 vertices with 2-colored non-root vertices. It is exactly the sequence A000151 [18], the first eight values are 2, 7, 26, 107, 458, 2058, 9498, 44947 etc. Let us fix that in advance we will use two colors: white and black, white color corresponds to the case $r_{ii} = 0$ and black color corresponds to $r_{ii} = -\lambda$. Considering the rooted tree T with n + 1 vertices, we may assume that the root is colored in the third color, say grey.

Note that the map ϕ acts on a labeled (or unlabeled) rooted tree T on n + 1 vertices with 2-colored non-root vertices as follows. The ϕ interchanges a color in every non-root vertex.

Let us describe splitting RB-operators of nonzero weight λ on A.

Theorem 2. An RB-operator R of nonzero weight λ on $A = Fe_1 \oplus \ldots \oplus Fe_n$ is splitting if and only if the corresponding (labeled) rooted tree T = T(R) on n+1 vertices is properly colored.

PROOF. Wuthout loss of generality, we put $\lambda = 1$. For simplicity, let us consider the graph $T' = T \setminus \{\text{root}\}$, which is a forest in general case.

Let us prove the statement by induction on n. For n = 1, we have either R = 0 (the only non-root vertex is white) or $R = -\lambda id$ (the only non-root vertex is black), both RB-operators are splitting with subalgebras F and (0).

Suppose that we have proved Theorem 2 for all natural numbers less than n. Let a graph T' with n vertices be disconnected, denote by T_1, \ldots, T_k the connected components of T'. So, $A = A_1 \oplus \ldots A_k$ for $A_s = \text{Span}\{e_j \mid j \in V(T_s)\}$. Define R_s as the induced RB-operator $R|_{A_s}$ (see Lemma 2). By the definition, R is splitting if and only if A = $\ker(R) + \ker(R + \mathrm{id})$ or equivalently $A_s = \ker(R_s) + \ker(R_s + \mathrm{id})$, $s = 1, \ldots, k$. By the induction hypothesis, we have such decomposition for every s if and only if the coloring of T_s is proper.

Now consider the case when T' is connected. We may assume that e_1 corresponds to the vertex 1, the only source in G, and $\{2, \ldots, k\}$ is the set of all vertices of G with the value of f(x) equal to 1. We also define T_s for $s = 2, \ldots, k$ as the connected component of $T' \setminus \{1\}$ which contains the vertex s. Note that R induces the RB-operator of weight λ on the subalgebra $A_s = \text{Span}\{e_j \mid j \in V(T_s)\}$ for all s by Lemma 2.

The condition of R to be splitting is equivalent to the condition

$$\operatorname{rank}(R) + \operatorname{rank}(R + \operatorname{id}) = n.$$
(4)

Analysing the e_1 -coordinate, we have

$$n = \operatorname{rank}(R) + \operatorname{rank}(R + \operatorname{id}) \ge 1 + \operatorname{rank}(R') + \operatorname{rank}(R' + \operatorname{id})$$

for R', the induced RB-operator on the subalgebra $\text{Span}\{e_j \mid j \geq 2\}$. Thus, $\operatorname{rank}(R') + \operatorname{rank}(R' + \operatorname{id}) = n - 1$, i.e. R' is splitting or equivalently $R|_{A_s}$ is splitting for every $s = 2, \ldots, k$. By the induction hypothesis, the graph $T' \setminus \{1\}$ is properly 2-colored. It remains to prove that the vertices $2, \ldots, k$ are colored in the same color and the vertex 1 is colored in another one.

Up to the action of ϕ , which preserves the splitting structure of an RB-operator (see Remark 1), we may assume that the vertex 1 is colored in white. Since we know that rank $(R + id) = \operatorname{rank} (R' + id) + 1$, we have to state the equality rank $(R) = \operatorname{rank} (R')$. So, the condition (4) is fulfilled if and only if the first row $(0, 1, 1, \ldots, 1)$ of the matrix R is linearly expressed via other rows. By the definition of the matrix R, the vertices $2, \ldots, k$ have to be colored in black. Theorem is proved.

Corollary 3. An RB-operator R of nonzero weight λ on $A = Fe_1 \oplus \ldots \oplus Fe_n$ is inner-splitting if and only if in T = T(R) all vertices with even value of f are colored in one color and all vertices with odd value of f are colored in another color.

PROOF. Up to ϕ , we may assume that R(1) = 0. Thus, any vertex with the value of f(x) equal to 0 has to be colored in white. By Theorem 2, $T' = T \setminus \{\text{root}\}$ is properly 2-colored, so, all vertices with the value of f(x) equal to 1 are colored in black, all vertices with the value of f(x) equal to 2 are colored in white and so on.

Now, we collect all our knowledges about all RB-operators (in Table 1) and all nonisomorphic RB-operators (in Table 2) of nonzero weight on a sum of fields $A = Fe_1 \oplus Fe_2 \oplus \ldots \oplus Fe_n$.

We have noticed that the first values of number of splitting RB-operators coincides with the sequence A007830 [18] (in labeled case) and coincides with the sequence A000106 [18] (in unlabeled case). Actually it should be proven for all n.

Remark 4. Counting rooted trees on n + 1 vertices with properly 2-colored non-root vertices is not the same as counting properly 2-colored forests on n vertices.

Class of	Description	formula and	first
RB -operators		OEIS [18]	5 values
all	labeled rooted trees on $n+1$ vertices	$2^n(n+1)^{n-1}$	2, 12, 128,
	with 2-colored non-root vertices	A097629	2000, 41472
splitting	labeled rooted trees on $n+1$ vertices	$2(n+2)^{n-1}$?!	2, 8, 50,
	with properly 2-colored non-root vertices	A007830?!	432,4802
inner-splitting	labeled rooted trees on $n+1$ vertices	$2(n+1)^{n-1}$	2, 6, 32,
	(twice)	$2 \cdot A000272$	250, 2592
non-splitting	labeled rooted trees on $n + 1$ vertices with	_	0, 4, 78,
	improperly 2-colored non-root vertices		1568, 36670

TABLE 1. Number of RB-operators of nonzero weight on a sum of n fields

TABLE 2. Number of RB-operators of nonzero weight on a sum of n fields (up to conjugation with an automorphism)

Class of	Description	OEIS [18]	first 5 values
RB-operators			
all	rooted trees on $n+1$ vertices	A000151	2, 7, 26, 107, 458
	with 2-colored non-root vertices		
splitting	rooted trees on $n+1$ vertices with	A000106?!	2, 5, 12, 30, 74
	properly 2-colored non-root vertices		
inner-splitting	rooted trees on $n + 1$ vertices (twice)	$2 \cdot A000081$	2, 4, 8, 18, 40
non-splitting	rooted trees on $n+1$ vertices with	_	0, 2, 14, 77, 384
	improperly 2-colored non-root vertices		

Let us write down all non-splitting pairwise nonisomorphic RB-operators for n = 2, 3. Statement 5. Up to ϕ , we have the following non-splitting pairwise nonisomorphic RB-operators

a) for n = 2: $R(e_1) = e_2$, $R(e_2) = 0$; b) for n = 3: (RB1) $R(e_1) = e_2 + e_3$, $R(e_2) = e_3$, $R(e_3) = 0$, (RB2) $R(e_1) = e_2 + e_3$, $R(e_2) = e_3$, $R(e_3) = -e_3$, (RB3) $R(e_1) = e_2 + e_3$, $R(e_2) = -e_2 - e_3$, $R(e_3) = -e_3$, (RB4) $R(e_1) = e_2 + e_3$, $R(e_2) = R(e_3) = 0$, (RB5) $R(e_1) = e_2 + e_3$, $R(e_2) = -e_2$, $R(e_3) = 0$, (RB6) $R(e_1) = e_2$, $R(e_2) = R(e_3) = 0$, (RB7) $R(e_1) = e_2$, $R(e_2) = 0$, $R(e_3) = -e_3$. PROOF a) Non-splitting case appears only when the

PROOF. a) Non-splitting case appears only when the graph T' is non-empty and improperly 2-colored. Up to ϕ , we may assume that two vertices are colored in white.

b) Cases (RB1)–(RB3) correspond to improperly 2-colorings of the graph T' with $V(T') = \{1, 2, 3\}$ and $E(T') = \{(1, 2), (2, 3)\}$. Cases (RB4), (RB5) correspond to improperly 2-colorings of the graph T' with $E(T') = \{(1, 2), (1, 3)\}$. Finally, cases (RB6), (RB7) correspond to improperly 2-colorings of the graph T' with $E(T') = \{(1, 2), (1, 3)\}$.

Statement 6. Up to ϕ , we have the following splitting but not inner-splitting pairwise nonisomorphic RB-operators:

a) for n = 2: $R(e_1) = -e_1$, $R(e_2) = 0$; b) for n = 3: (RB1') $R(e_1) = e_2$, $R(e_2) = 0$, $R(e_3) = -e_3$, (RB2') $R(e_1) = -e_1$, $R(e_2) = R(e_3) = 0$.

4 RB-induced algebra structures on a sum of fields

Let C be an associative algebra and R be an RB-operator on C of weight λ . Then the space C under the product

$$x \circ_R y = R(x)y + xR(y) + \lambda xy \tag{5}$$

is an associative algebra [14, 13]. Let us denote the obtained algebra as C^R . It is easy to see that $C^{\phi(R)} \cong C^R$.

Let us denote by Ab_n the *n*-dimensional algebra with zero (trivial) product.

Theorem 3. Given an algebra $A = Fe_1 \oplus \ldots \oplus Fe_n$ and an RB-operator R of weight λ on A, we have $A^R \cong \begin{cases} Ab_n, & \lambda = 0, \\ A, & \lambda \neq 0. \end{cases}$

PROOF. If $\lambda = 0$, then R = 0 [12] and $x \circ_R y = 0$. For $\lambda \neq 0$, we may assume that $\lambda = 1$, since rescalling of the product does not exchange the algebraic structure.

Let us prove the statement by induction on n. For n = 1, we have either R = 0 or R = -id. Due to (5) we get either $x \circ y = xy$ or $x \circ y = -xy$, in both cases $A^R \cong A$.

Suppose that we have proved Theorem 3 for all numbers less n. Let a graph T' = T'(R) with n vertices be disconnected, denote by T_1, \ldots, T_k the connected components of T'. As earlier, we define $A = A_1 \oplus \ldots A_k$ for $A_s = \text{Span}\{e_j \mid j \in V(T_s)\}$ and define R_s as the induced RB-operator $R|_{A_s}$. By the induction hypothesis, $A_s^R \cong A_s$ for every s and so $A = A_1 \oplus \ldots \oplus A_k \cong A_1^R \oplus \ldots \oplus A_k^R = A^R$.

Now consider the case when T' is connected. We may assume that e_1 corresponds to the vertex 1, the only source in G. Note the space $I_1 = \text{Span}\{e_j \mid j \geq 2\}$ is an ideal in A^R which is isomorphic to $Fe_2 \oplus \ldots \oplus Fe_n$ by the induction hypothesis. Up to ϕ , we may assume that the vertex 1 in T' is colored in white and $2, \ldots, t$ is a list of all neighbours of 1 in T'. Let us consider the one-dimensional space I_2 in A^R generated by the vector $a = e_1 - c(2)e_2 - \ldots - c(t)e_t$, where

$$c(i) = \begin{cases} 1, & i \text{ is colored in white,} \\ -1, & i \text{ is colored in black.} \end{cases}$$

In terms of the matrix entries, $c(i) = 1 + 2r_{ii}$. We may assume that $c(2) = c(3) = \ldots = c(s) = 1$ and $c(s+1) = \ldots = c(t) = -1$ for some $s \in \{2, \ldots, t\}$.

By (5) we compute the product of a with e_k for k > t:

$$a \circ e_k = (e_1 + e_2 + \ldots + e_s - e_{s+1} - \ldots - e_t) \circ e_k$$

= $R(e_1 + e_2 + \ldots + e_s - e_{s+1} - \ldots - e_t)e_k.$

Since k is connected with only one vertex from $2, \ldots, t$ (due to (SF2)), say j, we have

$$a \circ e_k = R(e_1 - c(j)e_j)e_k = e_k - c(j)(1 + 2r_{jj})e_k = (1 - (c(j))^2)e_k = 0.$$

Analogously we can check that $a \circ e_k = 0$ for all k > 1. Thus, I_2 is an ideal in A^R .

Now, we calculate

$$a \circ a = e_1 \circ (e_1 + e_2 + \dots + e_s - e_{s+1} - \dots - e_t)$$

= $R(e_1)(e_1 + e_2 + \dots + e_s - e_{s+1} - \dots - e_t) + e_1$
= $(e_2 + \dots + e_s + e_{s+1} + \dots + e_t)(e_1 + e_2 + \dots + e_s - e_{s+1} - \dots - e_t) + e_1$
= $e_1 + e_2 + \dots + e_s - e_{s+1} - \dots - e_t = a$

and so I_2 is isomorphic to F.

Summarising, we have $A^R = I_1 \oplus I_2 \cong (Fe_2 \oplus \ldots \oplus Fe_n) \oplus F \cong A$. Theorem is proved.

Acknowledgements

The main part of the paper was done while working in Sobolev Institute of Mathematics in 2017. The research is supported by RSF (project N 14-21-00065).

References

- H. An, C. Bai. From Rota-Baxter Algebras to Pre-Lie Algebras. J. Phys. A (1) (2008), 015201, 19 p.
- [2] F.V. Atkinson. Some aspects of Baxter's functional equation. J. Math. Anal. Appl. 7 (1963) 1-30.
- [3] G. Baxter. An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10 (1960) 731–742.
- [4] A.A. Belavin, V.G. Drinfel'd. Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl. (3) 16 (1982) 159–180.
- [5] P. Benito, V. Gubarev, A. Pozhidaev. Rota—Baxter operators on quadratic algebras. Mediterr. J. Math. 15 (2018), 23 p. (N189).

- [6] S.L. de Bragança. Finite Dimensional Baxter Algebras. Stud. Appl. Math. (1) 54 (1975) 75–89.
- [7] D. Burde, K. Dekimpe and K. Vercammen. Affine actions on Lie groups and post-Lie algebra structures. Linear Algebra Appl. (5) 437 (2012) 1250–1263.
- [8] D. Burde, K. Dekimpe. Post-Lie algebra structures and generalized derivations of semisimple Lie algebras. Mosc. Math. J. (1) 13 (2013) 1–18.
- [9] D. Burde, V. Gubarev. Rota—Baxter operators and post-Lie algebra structures on semisimple Lie algebras. Commun. Algebra (accepted), arXiv:1805.05104 [RA], 18 p.
- [10] P. Cartier. On the structure of free Baxter algebras. Adv. Math. 9 (1972) 253–265.
- [11] R. Castelo and A. Siebes. A characterization of moral transitive acyclic directed graph Markov models as labeled trees. J. Stat. Plan. Inf. 115 (2003) 235–259.
- [12] V. Gubarev. Rota—Baxter operators on unital algebras. arXiv.1805.00723v2, 37 p.
- [13] V. Gubarev, P. Kolesnikov. Embedding of dendriform algebras into Rota—Baxter algebras. Cent. Eur. J. Math. (2) 11 (2013) 226–245.
- [14] L. Guo. An Introduction to Rota—Baxter Algebra. Surveys of Modern Mathematics, vol. 4, Int. Press, Somerville (MA, USA); Higher education press, Beijing, 2012.
- [15] F. Harary, J. Kabell, F. McMorris. Subtree acyclic digraphs. Ars Combin. 34 (1992) 93–95.
- [16] S. Lauritzen. Graphical Models. Oxford: Oxford University Press, 1996.
- [17] J.B. Miller. Baxter operators and endomorphisms on Banach algebras. J. Math. Anal. Appl. 25 (1969) 503–520.
- [18] OEIS Foundation Inc. The on-line encyclopedia of integer sequences, http://oeis.org.
- [19] G.-C. Rota. Baxter algebras and combinatorial identities. I. Bull. Amer. Math. Soc. 75 (1969) 325–329.
- [20] M.A. Semenov-Tyan-Shanskii. What is a classical r-matrix? Funct. Anal. Appl. 17 (1983) 259–272.

Vsevolod Gubarev University of Vienna

Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

Sobolev Institute of mathematics

Acad. Koptyug ave. 4, 630090 Novosibirsk, Russia

e-mail: vsevolod.gubarev@univie.ac.at