Rota-Baxter operators on a sum of fields
 V. Gubarev

Abstract

We count the number of all Rota-Baxter operators on a finite direct sum $A=F \oplus F \oplus \ldots \oplus F$ of fields and count all of them up to conjugation with an automorphism. We also study Rota-Baxter operators on A corresponding to a decomposition of A into a direct vector space sum of two subalgebras. We show that every algebra structure induced on A by a Rota-Baxter of nonzero weight is isomorphic to A.

Keywords: Rota-Baxter operator, (un)labeled rooted tree, 2-coloring, subtree acyclic digraph, transitive digraph.

1 Introduction

Given an algebra A and a scalar $\lambda \in F$, where F is a ground field, a linear operator $R: A \rightarrow A$ is called a Rota-Baxter operator (RB-operator, for short) on A of weight λ if the following identity

$$
\begin{equation*}
R(x) R(y)=R(R(x) y+x R(y)+\lambda x y) \tag{1}
\end{equation*}
$$

holds for any $x, y \in A$. The algebra A is called Rota-Baxter algebra (RB-algebra).
G. Baxter in 1960 introduced the notion of Rota-Baxter operator [3] as natural generalization of by parts integration formula. In 1960-1970s such operators were studied by G.-C.Rota [19], P. Cartier [10], J. Miller [17], F. Atkinson [2] and others.

In 1980s, the deep connection between constant solutions of the classical Yang-Baxter equation from mathematical physics and RB-operators on a semisimple finite-dimensional Lie algebra was discovered by A. Belavin and V. Drinfel'd [4] and M. Semenov-TyanShanskii [20.

About different connections of Rota-Baxter operators with symmetric polynomials, quantum field renormalization, Loday algebras, shuffle algebra see in the monograph [14] written by L. Guo in 2012.

In the paper, we study Rota-Baxter operators on a finite direct sum $A=F \oplus F \oplus$ $\ldots \oplus F$ of n copies of a field F. We continue investigations fulfilled by S. de Bragança in 1975 [6] and by H. An and C. Bai in 2008 [1]. Since all RB-operators on A of weight zero are trivial [12], i.e., equal to 0 , we study only RB-operators on A of nonzero weight λ.

In $\S 2$, we formulate some preliminaries about RB-operators, including splitting RBoperators which are projections on a subalgebra A_{1} parallel to another one A_{2} provided the direct vector space sum decomposition $A=A_{1} \dot{+} A_{2}$.

In $\S 3$, we show that RB-operators on A of nonzero weight λ are in bijection with 2-colored transitive subtree acyclic digraphs (subtree acyclic digraphs were defined by F. Harary et al. in 1992 [15]) or equivalently with labeled rooted trees on $n+1$ vertices
with 2-colored non-root vertices. For the last, we apply the result of R. Castelo and A. Siebes [11]. Thus, the number of all RB-operators on A of nonzero weight λ equals $2^{n}(n+1)^{n-1}$. With the help of the bijection, we show that splitting RB-operators on A of nonzero weight λ are in one-to-one correspondence with labeled rooted trees on $n+1$ vertices with properly 2 -colored non-root vertices. We also study the number of all RBoperators and all splitting RB-operators on A up to conjugation with an automorphism of A.

In 2012, D. Burde et al. initiated to study so called post-Lie algebra structures [7]. One of the questions arisen in the area [7, 8, ,9] is the following one: starting with a semisimple Lie algebra endowed RB-operator of weight 1 what kind of Lie algebras we will get under the new Lie bracket $[R(x), y]+[x, R(y)]+[x, y]$? Such problems could be stated not only for Lie algebras but also for associative or commutative ones. In $\S 4$, we show that every algebra structure induced on a finite direct sum A of fields by a Rota-Baxter operator of nonzero weight is isomorphic to A itself.

2 Preliminaries

Trivial RB-operators of weight λ are zero operator and $-\lambda i d$.
Statement 1 [14]. Given an RB-operator R of weight λ,
a) the operator $-R-\lambda$ id is an RB-operator of weight λ,
b) the operator $\lambda^{-1} R$ is an RB-operator of weight 1 , provided $\lambda \neq 0$.

Given an algebra A, let us define a map ϕ on the set of all RB-operators on A as $\phi(R)=-R-\lambda(R)$ id. It is clear that ϕ^{2} coincides with the identity map.

Statement 2 [5]. Given an algebra A, an RB-operator R on A of weight λ, and $\psi \in \operatorname{Aut}(A)$, the operator $R^{(\psi)}=\psi^{-1} R \psi$ is an RB-operator on A of weight λ.

Statement 3 [14]. Let an algebra A to split as a vector space into the direct sum of two subalgebras A_{1} and A_{2}. An operator R defined as

$$
\begin{equation*}
R\left(a_{1}+a_{2}\right)=-\lambda a_{2}, \quad a_{1} \in A_{1}, \quad a_{2} \in A_{2}, \tag{2}
\end{equation*}
$$

is RB-operator on A of weight λ.
Let us call an RB-operator from Statement 3 as splitting RB-operator with subalgebras A_{1}, A_{2}. Note that the set of all splitting RB-operators on an algebra A is in bijection with all decompositions A into a direct sum of two subalgebras A_{1}, A_{2}.

Remark 1. Given an algebra A, let R be a splitting RB-operator on A of weight λ with subalgebras A_{1}, A_{2}. Hence, $\phi(R)$ is an RB-operator of weight λ and

$$
\phi(R)\left(a_{1}+a_{2}\right)=-\lambda a_{1}, \quad a_{1} \in A_{1}, \quad a_{2} \in A_{2} .
$$

So $\phi(R)$ is splitting RB-operator with the same subalgebras A_{1}, A_{2}.
Lemma 1 5). Let A be a unital algebra, R be an RB-operator on A of nonzero weight λ. If $R(1) \in F$, then R is splitting.

We call an RB-operator R satisfying the conditions of Lemma 1 as inner-splitting one.

Lemma 2 [12. Let $A=A_{1} \oplus A_{2}$ be an algebra, R be an RB-operator on A of weight λ. Then the induced linear map $P: A_{1} \rightarrow A_{1}$ defined by the formula $P\left(x_{1}+x_{2}\right)=$ $\operatorname{Pr}_{A_{1}}\left(R\left(x_{1}\right)\right), x_{1} \in A_{1}, x_{2} \in A_{2}$, is an RB-operator on A_{1} of weight λ.

3 RB-operators on a sum of fields

Statement 4 [1, 6, 12]. Let $A=F e_{1} \oplus F e_{2} \oplus \ldots \oplus F e_{n}$ be a direct sum of copies of a field F. A linear operator $R\left(e_{i}\right)=\sum_{k=1}^{n} r_{i k} e_{k}, r_{i k} \in F$, is an RB-operator on A of weight 1 if and only if the following conditions are satisfied:
(SF1) $r_{i i}=0$ and $r_{i k} \in\{0,1\}$ or $r_{i i}=-1$ and $r_{i k} \in\{0,-1\}$ for all $k \neq i$;
(SF2) if $r_{i k}=r_{k i}=0$ for $i \neq k$, then $r_{i l} r_{k l}=0$ for all $l \notin\{i, k\}$;
(SF3) if $r_{i k} \neq 0$ for $i \neq k$, then $r_{k i}=0$ and $r_{k l}=0$ or $r_{i l}=r_{i k}$ for all $l \notin\{i, k\}$.
Example [2, 17]. The following operator is an RB-operator on A of weight 1:

$$
R\left(e_{i}\right)=\sum_{l=i+1}^{s} e_{l}, 1 \leq i<s, \quad R\left(e_{s}\right)=0, \quad R\left(e_{i}\right)=-\sum_{l=i}^{n} e_{l}, s+1 \leq i \leq n
$$

Remark 2. It follows from (SF3) that $r_{i k} r_{k i}=0$ for all $i \neq k$. In [1], the statement of Statement 4 was formulated with this equality and (SF1) but without (SF2) and the general version of (SF3). That's why the formulation in [1] seems to be not complete.

Remark 3. The sum of fields in Statement 4 can be infinite.
In advance, we will identify an RB-operator on A with its matrix.
Let us calculate the number of different RB-operators of nonzero weight λ on $A=$ $F e_{1} \oplus F e_{2} \oplus \ldots \oplus F e_{n}$. By Statement 1a, we may assume that $\lambda=1$. For $n=1$, we have only two RB-operators $\{0,-i d\}$. For $n=2$ we have 12 cases [1]:

$$
\begin{gathered}
\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
-1 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right), \\
\left(\begin{array}{cc}
0 & 0 \\
-1 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & -1 \\
0 & -1
\end{array}\right) .
\end{gathered}
$$

Here we identify an RB-operator with its matrix $R \in M_{2}(F)$ by the rule $R\left(e_{i}\right)=\sum_{k=1}^{n} r_{i k} e_{k}$.
For $n=3$, we have $8 \cdot 16=128$ variants [1]:

$$
\left.\begin{array}{rl}
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right) & ,\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
2 c+1 & 2 c+1 & c
\end{array}\right),\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
2 c+1 & 0 & c
\end{array}\right)
\end{array}\right)\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 2 c+1 & c
\end{array}\right),
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
a & 2 a+1 & 2 a+1 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right),\left(\begin{array}{ccc}
a & 2 a+1 & 2 a+1 \\
0 & b & 0 \\
0 & 2 c+1 & c
\end{array}\right),\left(\begin{array}{ccc}
a & 0 & 0 \\
2 b+1 & b & 2 b+1 \\
0 & 0 & c
\end{array}\right),\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 2 b+1 \\
0 & 0 & c
\end{array}\right), \\
& \left(\begin{array}{ccc}
a & 0 & 0 \\
2 b+1 & b & 2 b+1 \\
2 c+1 & 0 & c
\end{array}\right),\left(\begin{array}{ccc}
a & 2 a+1 & 2 a+1 \\
0 & b & 2 b+1 \\
0 & 0 & c
\end{array}\right),\left(\begin{array}{ccc}
a & 0 & 2 a+1 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right),\left(\begin{array}{ccc}
a & 0 & 2 a+1 \\
2 b+1 & b & 2 b+1 \\
0 & 0 & c
\end{array}\right)
\end{aligned}
$$

for $a=r_{11}, b=r_{22}, c=r_{33} \in\{0,-1\}$.
For $n=4$, computer can help to state that there are exactly 2000 RB-operators of weight 1 on A. Thus, we get the first four terms from the sequence A097629 [18].

Theorem 1. Let $A=F e_{1} \oplus F e_{2} \oplus \ldots \oplus F e_{n}$ be a direct sum of copies of a field F. The number of different RB-operators on A of nonzero weight λ equals $2^{n}(n+1)^{n-1}$.

Proof. Let R be an RB-operator on A of weight λ. We may assume that $\lambda=1$. We follow the previous notations. We have 2^{n} variants to choose the values of the elements $r_{i i}, i=1, \ldots, n$. The choice of any of them, say $r_{i i}$, influences only on the possible signs of all elements $r_{i k}, k \neq i$. So, we may put $r_{i i}=0$ for all i and fix the factor 2^{n} for the answer.

Now, we want to construct a directed graph G on n vertices by any matrix $R=$ $\left(r_{i j}\right)_{i, j=1}^{n}$ with chosen $r_{i i}=0$. We consider the matrix R as the adjacency matrix of a directed graph G. Let us interpretate conditions (SF2) and (SF3) in terms of digraphs. Firstly, we rewrite (SF3) as two conditions:
(SF3a) if $r_{i k} \neq 0$ for $i \neq k$, then $r_{k i}=0$;
(SF3b) if $r_{i k} \neq 0$ for $i \neq k$, then $r_{k l}=0$ or $r_{i l}=r_{i k}$ for all $l \notin\{i, k\}$.
The condition (SF3a) says that if we have an edge between two vertices $i \neq k$, then the direction of such edge is well-defined, so, it is a correctness of getting a digraph by the matrix R. In graph theory, the condition (SF3b) is called transitivity, i.e., if have edges $(i, k) \in E$ and $(k, l) \in E$, then we have an edge $(i, l) \in E$.

Secondly, we read the condition (SF2) in terms of digraphs in such way: there are no in G induced subgraphs isomorphic to H with $V(H)=\{i, k, l\}$ and $E(H)=\{(i, l),(k, l)\}$ (see Pict. 1). In [11 the subgraph H was called immorality, thus, a digraph without immoralities is called moral digraph [16.

Picture 1. The forbidden induced subgraph H on three vertices $\{i, k, l\}$ due to (SF2)
We may reformulate our problem of counting the number N of different RB-operators on A of nonzero weight λ in such way: What is the number of all transitive moral transitive digraphs on n vertices? In terms of [11], the last is the same as the number of
all moral TDAGs on n vertices, here TDAG is the abbreviation for Transitive Directed Acyclic Graph (we are interested on transitive digraphs which are surely acyclic). In the graph-theoretic context, moral DAGs are known as subtree acyclic digraphs [15]. Thus,

$$
\begin{align*}
& N / 2^{n}=\#\{\text { moral TDAGs on } n \text { vertices }\} \\
& \tag{3}\\
& =\#\{\text { transitive subtree acyclic digraphs on } n \text { vertices }\}
\end{align*}
$$

In [11], the authors constructed a bijection between the set of moral TDAGs on n vertices and the set of labeled rooted trees on $n+1$ vertices as follows (see Pict. 2). Define the function $f(i)$ for a vertex i by induction. For a source i (i.e., such a vertex i that there are no edges (j, i) in a digraph), we put $f(i)=0$. For a not-source vertex j, we may find the unique source i such that there exists a directed path p from i to j. So, we define $f(j)$ as the length of p. Now, we construct a labeled rooted tree $T=(U, F)$ by a moral TDAG $G=G(V, E)$:

$$
U=V \cup\{0\}, \quad F=\{(0, i) \mid f(i)=0\} \cup\{(i, j) \mid(i, j) \in E, f(i)=f(j)-1\} .
$$

G

T

Picture 2. The corresponding graph G and tree T to the RB-operator $R\left(e_{1}\right)=e_{2}+e_{3}+e_{4}, R\left(e_{2}\right)=-e_{2}-e_{3}-e_{4}, R\left(e_{3}\right)=-e_{3}, R\left(e_{4}\right)=0, R\left(e_{5}\right)=-e_{5}$.

Applying the above constructed correspondence, the number of moral TDAGs on n vertices equals $(n+1)^{n-1}$ by the Cayley theorem, and so $N=2^{n}(n+1)^{n-1}$. Theorem is proved.

Below we will apply the easy fact that $\operatorname{Aut}(A) \cong S_{n}$. It could be derived, e.g., from the Molin-Wedderburn-Artin theory, in particular from the uniqueness up to a rearrangement of summands of decomposition of a semisimple finite-dimensional associative algebra into a finite direct sum of simple ones.

Corollary 1 [6]. Let $A=F e_{1} \oplus F e_{2} \oplus \ldots \oplus F e_{n}$ be a direct sum of copies of a field F and R be an RB-operator on A of nonzero weight 1 . There exists an automorphism ψ of A such that the matrix of the operator $R^{(\psi)}$ in the basis e_{1}, \ldots, e_{n} is an upper-triangular matrix with entries $r_{i j} \in\{0, \pm 1\}$ and $r_{i i} \in\{0,-1\}$.

Proof. As we did in the proof of Theorem 1, we define by R a labeled rooted tree T. Define $t=\max \{f(i) \mid i \in V(T)\}$ and $k_{j}=\#\{i \mid f(i)=j\}$. We may reorder indexes $1,2, \ldots, n$ by action of a permutation from $S_{n} \cong \operatorname{Aut}(A)$ in a way such that

$$
\begin{aligned}
f(1)=\ldots & =f\left(k_{0}\right)=0 \\
f\left(k_{0}+1\right)=\ldots & =f\left(k_{0}+k_{1}\right)=1 \\
& \ldots \\
f\left(n-k_{t}+1\right) & =\ldots=f(n)=t
\end{aligned}
$$

Due to the definition of T, we get the upper-triangular matrix. The restrictions on the values of elements immediately follow from Statement 4.

Corollary 2. There is a bijection between the set of RB-operators of nonzero weight λ on $F e_{1} \oplus F e_{2} \oplus \ldots \oplus F e_{n}$ and
a) the set of 2-colored subtree acyclic digraphs on n vertices;
b) the set of labeled rooted trees on $n+1$ vertices with 2 -colored non-root vertices.

Now, we want to compute the number r_{n} of RB-operators of nonzero weight λ on $A=F e_{1} \oplus \ldots \oplus F e_{n}$ which lie in different orbits under the action of the automorphism $\operatorname{group} \operatorname{Aut}(A) \cong S_{n}$. The group $\operatorname{Aut}(A)$ acts on the set of RB-operators of weight λ in the way described in Statement 2, $\psi: R \rightarrow R^{(\psi)}=\psi^{-1} R \psi$.

In a light of Corollary 2 b , we may interpretate the number r_{n} as the number of unlabeled rooted trees on $n+1$ vertices with 2 -colored non-root vertices. It is exactly the sequence A000151 [18], the first eight values are 2, 7, 26, 107, 458, 2058, 9498, 44947 etc. Let us fix that in advance we will use two colors: white and black, white color corresponds to the case $r_{i i}=0$ and black color corresponds to $r_{i i}=-\lambda$. Considering the rooted tree T with $n+1$ vertices, we may assume that the root is colored in the third color, say grey.

Note that the map ϕ acts on a labeled (or unlabeled) rooted tree T on $n+1$ vertices with 2-colored non-root vertices as follows. The ϕ interchanges a color in every non-root vertex.

Let us describe splitting RB-operators of nonzero weight λ on A.
Theorem 2. An RB-operator R of nonzero weight λ on $A=F e_{1} \oplus \ldots \oplus F e_{n}$ is splitting if and only if the corresponding (labeled) rooted tree $T=T(R)$ on $n+1$ vertices is properly colored.

Proof. Wuthout loss of generality, we put $\lambda=1$. For simplicity, let us consider the graph $T^{\prime}=T \backslash\{$ root $\}$, which is a forest in general case.

Let us prove the statement by induction on n. For $n=1$, we have either $R=0$ (the only non-root vertex is white) or $R=-\lambda$ id (the only non-root vertex is black), both RB-operators are splitting with subalgebras F and (0).

Suppose that we have proved Theorem 2 for all natural numbers less than n. Let a graph T^{\prime} with n vertices be disconnected, denote by T_{1}, \ldots, T_{k} the connected components of T^{\prime}. So, $A=A_{1} \oplus \ldots A_{k}$ for $A_{s}=\operatorname{Span}\left\{e_{j} \mid j \in V\left(T_{s}\right)\right\}$. Define R_{s} as the induced RB-operator $\left.R\right|_{A_{s}}$ (see Lemma 2). By the definition, R is splitting if and only if $A=$
$\operatorname{ker}(R) \dot{+} \operatorname{ker}(R+\mathrm{id})$ or equivalently $A_{s}=\operatorname{ker}\left(R_{s}\right) \dot{+} \operatorname{ker}\left(R_{s}+\mathrm{id}\right), s=1, \ldots, k$. By the induction hypothesis, we have such decomposition for every s if and only if the coloring of T_{s} is proper.

Now consider the case when T^{\prime} is connected. We may assume that e_{1} corresponds to the vertex 1 , the only source in G, and $\{2, \ldots, k\}$ is the set of all vertices of G with the value of $f(x)$ equal to 1 . We also define T_{s} for $s=2, \ldots, k$ as the connected component of $T^{\prime} \backslash\{1\}$ which contains the vertex s. Note that R induces the RB-operator of weight λ on the subalgebra $A_{s}=\operatorname{Span}\left\{e_{j} \mid j \in V\left(T_{s}\right)\right\}$ for all s by Lemma 2 .

The condition of R to be splitting is equivalent to the condition

$$
\begin{equation*}
\operatorname{rank}(R)+\operatorname{rank}(R+\mathrm{id})=n \tag{4}
\end{equation*}
$$

Analysing the e_{1}-coordinate, we have

$$
n=\operatorname{rank}(R)+\operatorname{rank}(R+\mathrm{id}) \geq 1+\operatorname{rank}\left(R^{\prime}\right)+\operatorname{rank}\left(R^{\prime}+\mathrm{id}\right)
$$

for R^{\prime}, the induced RB-operator on the subalgebra $\operatorname{Span}\left\{e_{j} \mid j \geq 2\right\}$. Thus, $\operatorname{rank}\left(R^{\prime}\right)+$ $\operatorname{rank}\left(R^{\prime}+\mathrm{id}\right)=n-1$, i.e. R^{\prime} is splitting or equivalently $\left.R\right|_{A_{s}}$ is spplitting for every $s=2, \ldots, k$. By the induction hypothesis, the graph $T^{\prime} \backslash\{1\}$ is properly 2 -colored. It remains to prove that the vertices $2, \ldots, k$ are colored in the same color and the vertex 1 is colored in another one.

Up to the action of ϕ, which preserves the splitting structure of an RB-operator (see Remark 1), we may assume that the vertex 1 is colored in white. Since we know that $\operatorname{rank}(R+\mathrm{id})=\operatorname{rank}\left(R^{\prime}+\mathrm{id}\right)+1$, we have to state the equality $\operatorname{rank}(R)=\operatorname{rank}\left(R^{\prime}\right)$. So, the condition (4) is fulfilled if and only if the first row $(0,1,1, \ldots, 1)$ of the matrix R is linearly expressed via other rows. By the definition of the matrix R, the vertices $2, \ldots, k$ have to be colored in black. Theorem is proved.

Corollary 3. An RB-operator R of nonzero weight λ on $A=F e_{1} \oplus \ldots \oplus F e_{n}$ is inner-splitting if and only if in $T=T(R)$ all vertices with even value of f are colored in one color and all vertices with odd value of f are colored in another color.

Proof. Up to ϕ, we may assume that $R(1)=0$. Thus, any vertex with the value of $f(x)$ equal to 0 has to be colored in white. By Theorem $2, T^{\prime}=T \backslash\{\operatorname{root}\}$ is properly 2 -colored, so, all vertices with the value of $f(x)$ equal to 1 are colored in black, all vertices with the value of $f(x)$ equal to 2 are colored in white and so on.

Now, we collect all our knowledges about all RB-operators (in Table 1) and all nonisomorphic RB-operators (in Table 2) of nonzero weight on a sum of fields $A=$ $F e_{1} \oplus F e_{2} \oplus \ldots \oplus F e_{n}$.

We have noticed that the first values of number of splitting RB-operators coincides with the sequence A007830 [18] (in labeled case) and coincides with the sequence A000106 [18] (in unlabeled case). Actually it should be proven for all n.

Remark 4. Counting rooted trees on $n+1$ vertices with properly 2 -colored non-root vertices is not the same as counting properly 2 -colored forests on n vertices.

TABLE 1. Number of RB-operators of nonzero weight on a sum of n fields

Class of RB-operators	Description	formula and OEIS 18	first 5 values
all	labeled rooted trees on $n+1$ vertices with 2 -colored non-root vertices	$\begin{gathered} 2^{n}(n+1)^{n-1} \\ \mathrm{~A} 097629 \end{gathered}$	$\begin{array}{\|l\|} \hline 2,12,128, \\ 2000,41472 \end{array}$
splitting	labeled rooted trees on $n+1$ vertices with properly 2 -colored non-root vertices	$\begin{gathered} \hline 2(n+2)^{n-1} ?! \\ \text { A007830?! } \end{gathered}$	$\begin{aligned} & \hline 2,8,50, \\ & 432,4802 \end{aligned}$
inner-splitting	labeled rooted trees on $n+1$ vertices (twice)	$\begin{gathered} \hline 2(n+1)^{n-1} \\ 2 \cdot \mathrm{~A} 000272 \end{gathered}$	$\begin{aligned} & 2,6,32, \\ & 250,2592 \end{aligned}$
non-splitting	labeled rooted trees on $n+1$ vertices with improperly 2 -colored non-root vertices	-	$\begin{aligned} & \hline 0,4,78, \\ & 1568,36670 \end{aligned}$

TABLE 2. Number of RB-operators of nonzero weight on a sum of n fields (up to conjugation with an automorphism)

Class of RB-operators	Description	OEIS [18]	first 5 values
all	rooted trees on $n+1$ vertices with 2-colored non-root vertices	A000151	$2,7,26,107,458$
splitting	rooted trees on $n+1$ vertices with properly 2-colored non-root vertices	A000106 ?!	$2,5,12,30,74$
inner-splitting	rooted trees on $n+1$ vertices (twice)	$2 \cdot$ A0000081	$2,4,8,18,40$
non-splitting	rooted trees on $n+1$ vertices with improperly 2-colored non-root vertices	-	$0,2,14,77,384$

Let us write down all non-splitting pairwise nonisomorphic RB-operators for $n=2,3$.
Statement 5. Up to ϕ, we have the following non-splitting pairwise nonisomorphic RB-operators
a) for $n=2: R\left(e_{1}\right)=e_{2}, R\left(e_{2}\right)=0$;
b) for $n=3$:
(RB1) $R\left(e_{1}\right)=e_{2}+e_{3}, R\left(e_{2}\right)=e_{3}, R\left(e_{3}\right)=0$,
(RB2) $R\left(e_{1}\right)=e_{2}+e_{3}, R\left(e_{2}\right)=e_{3}, R\left(e_{3}\right)=-e_{3}$,
(RB3) $R\left(e_{1}\right)=e_{2}+e_{3}, R\left(e_{2}\right)=-e_{2}-e_{3}, R\left(e_{3}\right)=-e_{3}$,
(RB4) $R\left(e_{1}\right)=e_{2}+e_{3}, R\left(e_{2}\right)=R\left(e_{3}\right)=0$,
(RB5) $R\left(e_{1}\right)=e_{2}+e_{3}, R\left(e_{2}\right)=-e_{2}, R\left(e_{3}\right)=0$,
(RB6) $R\left(e_{1}\right)=e_{2}, R\left(e_{2}\right)=R\left(e_{3}\right)=0$,
(RB7) $R\left(e_{1}\right)=e_{2}, R\left(e_{2}\right)=0, R\left(e_{3}\right)=-e_{3}$.
Proof. a) Non-splitting case appears only when the graph T^{\prime} is non-empty and improperly 2 -colored. Up to ϕ, we may assume that two vertices are colored in white.
b) Cases (RB1)-(RB3) correspond to improperly 2-colorings of the graph T^{\prime} with $V\left(T^{\prime}\right)=\{1,2,3\}$ and $E\left(T^{\prime}\right)=\{(1,2),(2,3)\}$. Cases (RB4), (RB5) correspond to improperly 2 -colorings of the graph T^{\prime} with $E\left(T^{\prime}\right)=\{(1,2),(1,3)\}$. Finally, cases (RB6), (RB7) correspond to improperly 2 -colorings of the graph T^{\prime} with $E\left(T^{\prime}\right)=\{(1,2)\}$.

Statement 6. Up to ϕ, we have the following splitting but not inner-splitting pairwise nonisomorphic RB-operators:
a) for $n=2$: $R\left(e_{1}\right)=-e_{1}, R\left(e_{2}\right)=0$;
b) for $n=3$:
($\mathrm{RB1}^{\prime}$) $R\left(e_{1}\right)=e_{2}, R\left(e_{2}\right)=0, R\left(e_{3}\right)=-e_{3}$,
(RB^{\prime}) $R\left(e_{1}\right)=-e_{1}, R\left(e_{2}\right)=R\left(e_{3}\right)=0$.

4 RB-induced algebra structures on a sum of fields

Let C be an associative algebra and R be an RB-operator on C of weight λ. Then the space C under the product

$$
\begin{equation*}
x \circ_{R} y=R(x) y+x R(y)+\lambda x y \tag{5}
\end{equation*}
$$

is an associative algebra [14, 13]. Let us denote the obtained algebra as C^{R}. It is easy to see that $C^{\phi(R)} \cong C^{R}$.

Let us denote by Ab_{n} the n-dimensional algebra with zero (trivial) product.
Theorem 3. Given an algebra $A=F e_{1} \oplus \ldots \oplus F e_{n}$ and an RB-operator R of weight λ on A, we have $A^{R} \cong \begin{cases}\mathrm{Ab}_{n}, & \lambda=0, \\ A, & \lambda \neq 0 .\end{cases}$

Proof. If $\lambda=0$, then $R=0[12]$ and $x \circ_{R} y=0$. For $\lambda \neq 0$, we may assume that $\lambda=1$, since rescalling of the product does not exchange the algebraic structure.

Let us prove the statement by induction on n. For $n=1$, we have either $R=0$ or $R=-$ id. Due to (5) we get either $x \circ y=x y$ or $x \circ y=-x y$, in both cases $A^{R} \cong A$.

Suppose that we have proved Theorem 3 for all numbers less n. Let a graph $T^{\prime}=T^{\prime}(R)$ with n vertices be disconnected, denote by T_{1}, \ldots, T_{k} the connected components of T^{\prime}. As earlier, we define $A=A_{1} \oplus \ldots A_{k}$ for $A_{s}=\operatorname{Span}\left\{e_{j} \mid j \in V\left(T_{s}\right)\right\}$ and define R_{s} as the induced RB-operator $\left.R\right|_{A_{s}}$. By the induction hypothesis, $A_{s}^{R} \cong A_{s}$ for every s and so $A=A_{1} \oplus \ldots \oplus A_{k} \cong A_{1}^{R} \oplus \ldots \oplus A_{k}^{R}=A^{R}$.

Now consider the case when T^{\prime} is connected. We may assume that e_{1} corresponds to the vertex 1 , the only source in G. Note the space $I_{1}=\operatorname{Span}\left\{e_{j} \mid j \geq 2\right\}$ is an ideal in A^{R} which is isomorphic to $F e_{2} \oplus \ldots \oplus F e_{n}$ by the induction hypothesis. Up to ϕ, we may assume that the vertex 1 in T^{\prime} is colored in white and $2, \ldots, t$ is a list of all neighbours of 1 in T^{\prime}. Let us consider the one-dimensional space I_{2} in A^{R} generated by the vector $a=e_{1}-c(2) e_{2}-\ldots-c(t) e_{t}$, where

$$
c(i)= \begin{cases}1, & i \text { is colored in white } \\ -1, & i \text { is colored in black }\end{cases}
$$

In terms of the matrix entries, $c(i)=1+2 r_{i i}$. We may assume that $c(2)=c(3)=\ldots=$ $c(s)=1$ and $c(s+1)=\ldots=c(t)=-1$ for some $s \in\{2, \ldots, t\}$.

By (5) we compute the product of a with e_{k} for $k>t$:

$$
\begin{aligned}
a \circ e_{k}=\left(e_{1}+e_{2}+\ldots+e_{s}-e_{s+1}-\ldots-e_{t}\right) & \circ e_{k} \\
& =R\left(e_{1}+e_{2}+\ldots+e_{s}-e_{s+1}-\ldots-e_{t}\right) e_{k} .
\end{aligned}
$$

Since k is connected with only one vertex from $2, \ldots, t$ (due to (SF2)), say j, we have

$$
a \circ e_{k}=R\left(e_{1}-c(j) e_{j}\right) e_{k}=e_{k}-c(j)\left(1+2 r_{j j}\right) e_{k}=\left(1-(c(j))^{2}\right) e_{k}=0
$$

Analogously we can check that $a \circ e_{k}=0$ for all $k>1$. Thus, I_{2} is an ideal in A^{R}.
Now, we calculate

$$
\begin{aligned}
& a \circ a=e_{1} \circ\left(e_{1}+e_{2}+\ldots+e_{s}-e_{s+1}-\ldots-e_{t}\right) \\
& \quad \begin{array}{r}
\quad R\left(e_{1}\right)\left(e_{1}+e_{2}+\ldots+e_{s}-e_{s+1}-\ldots-e_{t}\right)+e_{1} \\
=\left(e_{2}+\ldots+e_{s}+e_{s+1}+\ldots+e_{t}\right)\left(e_{1}+e_{2}+\ldots+e_{s}-e_{s+1}-\ldots-e_{t}\right)+e_{1} \\
\quad
\end{array} \quad=e_{1}+e_{2}+\ldots+e_{s}-e_{s+1}-\ldots-e_{t}=a
\end{aligned}
$$

and so I_{2} is isomorphic to F.
Summarising, we have $A^{R}=I_{1} \oplus I_{2} \cong\left(F e_{2} \oplus \ldots \oplus F e_{n}\right) \oplus F \cong A$. Theorem is proved.

Acknowledgements

The main part of the paper was done while working in Sobolev Institute of Mathematics in 2017. The research is supported by RSF (project N 14-21-00065).

References

[1] H. An, C. Bai. From Rota-Baxter Algebras to Pre-Lie Algebras. J. Phys. A (1) (2008), 015201, 19 p.
[2] F.V. Atkinson. Some aspects of Baxter's functional equation. J. Math. Anal. Appl. 7 (1963) 1-30.
[3] G. Baxter. An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10 (1960) 731-742.
[4] A.A. Belavin, V.G. Drinfel'd. Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl. (3) 16 (1982) 159-180.
[5] P. Benito, V. Gubarev, A. Pozhidaev. Rota-Baxter operators on quadratic algebras. Mediterr. J. Math. 15 (2018), 23 p. (N189).
[6] S.L. de Bragança. Finite Dimensional Baxter Algebras. Stud. Appl. Math. (1) 54 (1975) 75-89.
[7] D. Burde, K. Dekimpe and K. Vercammen. Affine actions on Lie groups and post-Lie algebra structures. Linear Algebra Appl. (5) 437 (2012) 1250-1263.
[8] D. Burde, K. Dekimpe. Post-Lie algebra structures and generalized derivations of semisimple Lie algebras. Mosc. Math. J. (1) 13 (2013) 1-18.
[9] D. Burde, V. Gubarev. Rota-Baxter operators and post-Lie algebra structures on semisimple Lie algebras. Commun. Algebra (accepted), arXiv:1805.05104 [RA], 18 p.
[10] P. Cartier. On the structure of free Baxter algebras. Adv. Math. 9 (1972) 253-265.
[11] R. Castelo and A. Siebes. A characterization of moral transitive acyclic directed graph Markov models as labeled trees. J. Stat. Plan. Inf. 115 (2003) 235-259.
[12] V. Gubarev. Rota-Baxter operators on unital algebras. arXiv.1805.00723v2, 37 p.
[13] V. Gubarev, P. Kolesnikov. Embedding of dendriform algebras into Rota-Baxter algebras. Cent. Eur. J. Math. (2) 11 (2013) 226-245.
[14] L. Guo. An Introduction to Rota-Baxter Algebra. Surveys of Modern Mathematics, vol. 4, Int. Press, Somerville (MA, USA); Higher education press, Beijing, 2012.
[15] F. Harary, J. Kabell, F. McMorris. Subtree acyclic digraphs. Ars Combin. 34 (1992) 93-95.
[16] S. Lauritzen. Graphical Models. Oxford: Oxford University Press, 1996.
[17] J.B. Miller. Baxter operators and endomorphisms on Banach algebras. J. Math. Anal. Appl. 25 (1969) 503-520.
[18] OEIS Foundation Inc. The on-line encyclopedia of integer sequences, http://oeis.org.
[19] G.-C. Rota. Baxter algebras and combinatorial identities. I. Bull. Amer. Math. Soc. 75 (1969) 325-329.
[20] M.A. Semenov-Tyan-Shanskii. What is a classical r-matrix? Funct. Anal. Appl. 17 (1983) 259-272.

Vsevolod Gubarev
University of Vienna
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
Sobolev Institute of mathematics
Acad. Koptyug ave. 4, 630090 Novosibirsk, Russia
e-mail: vsevolod.gubarev@univie.ac.at

