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ABSTRACT. In this paper we study combinatorial aspects of permutations of

{1,...,n} and related topics. In particular, we show that there is a unique
permutation 7 of {1,... ,n} such that all the numbers k + w(k) (k=1,... ,n)
are powers of two. We also prove that n | per[ij_l]lgingn for any integer n > 2.
We conjecture that if a group G contains no element of order among 2,... ,n+1
then any A C G with |A| = n can be written as {a1,... ,an} with a1,a3,... ,a?
pairwise distinct. This conjecture is confirmed when G is a torsion-free abelian
group.

1. INTRODUCTION

As usual, for n € ZT = {1,2,3,...} we let S, denote the symmetric group
of all the permutation of {1,...,n}.

Let A = [aij]lgi,jgn be a (O,l)—matrix (i.e., a;; € {0,1} for all 1,] =
1,...,n). Then the permanent of A given by

per(A) = Z A17(1) " " Anx(n)
TES,

is just the number of permutations w € S, with agrx) =1forallk =1,... ,n.
In 2002, B. Cloitre proposed the sequence [Cl, A073364] on OEIS whose n-th
term a(n) is the number of permutations = € S,, with k + 7w (k) prime for all
k=1,...,n. Clearly, a(n) = per(A4), where A is a matrix of order n whose
(i,4)-entry (1 < 4,5 < n)is 1 or 0 according as ¢ + j is prime or not. In 2018
P. Bradley [Br] proved that a(n) > 0 for all n € Z*.
Our first theorem is an extension of Bradley’s result.
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Theorem 1.1. Let (a1, as,...) be an integer sequence with a; = 2 and aj <
a1 < 2ay, for allk =1,2,3.... Then, for any positive integer n, there exists
a permutation ™ € S,, with 7 = I,, such that

{k+mnk): k=1,...,n} C{ay,aqg,...}, (1.1)

where I,, is the identity of S, with I,(k) =k for allk=1,... n.

Recall that the Fiboncci numbers Fy, Fi, ... and the Lucas sequence Lg, L1, . ..
are defined by

F():O, Fl :1, and Fn_|_1 :Fn+Fn_1 (n:1,2,3,...),

and
L():O, Ll :1, and Ln_|_1 :Ln+Ln—1 (n:1,2,3,)

If we apply Theorem 1.1 with the sequence (aq,as, ...) equal to (F3, Fy,...) or
(Lo, Lo, L, . ..), then we immediately obtain the following consequence.

Corollary 1.1. Let n € Z*. Then there is a permutation o € S,, with 0? =
I, such that all the sums k + o(k) (k = 1,...,n) are Fibonacci numbers.
Also, there is a permutation T € S, with 7> = I,, such that all the numbers
k+71(k) (k=1,...,n) are Lucas numbers.

Remark 1.1. Let f(n) be the number of permutations o € S,, such that all the
sums k+o(k) (k =1,...,n) are Fibonacci numbers. Via Mathematica we find
that

(f(1), ..., f(20)) = (1,1,1,2,1,2,4,2,1,4,4,20,4,5, 1,20, 24, 8,96, 200).

For example, 7 = (2,3)(4,9)(5,8)(6,7) is the unique permutation in Sy such
that all the numbers k + w(k) (k =1,...,9) are Fibonacci numbers.

Recall that those integers T, = n(n +1)/2 (n = 0,1,2,...) are called tri-
angular numbers. Note that T,, — T,,_1 = n < T,,_1 for every n = 3,4,....
Applying Theorem 1.1 with (a1, az,as,...) = (2,1,T5,...), we immediately
get the following corollary.

Corollary 1.2. For any n € Z*t, there is a permutation © € S,, with 72 = I,,
such that each of the sums k + n(k) (k= 1,...,n) is either 2 or a triangular
number.

Remark 1.2. When n = 4, we may take m = (2,4) to meet the requirement in
Corollary 1.2. Note that 1 +1 =3 and 24+4 =3+ 3 =T5.

Our next theorem focuses on permutations involving powers of two.
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Theorem 1.2. Let n be any positive integer. Then there is a unique permu-
tation w, € S, such that all the numbers k + m,(k) (k =1,...,n) are powers
of two. In other words, for the n X n matrix A whose (i,7)-entry is 1 or 0
according as i+ j is a power of two or not, we have per(A) = 1.

Remark 1.3. Note that the number of 1’s in the matrix A given in Theorem 1.2
coincides with

[logy n ] n
> 1= > (2"-1+ > 1=2"— |logyn| — 1.
1<i,j<n k=0 i=2llog2 n]+1_p
i+je{2k: kezt}
Ezample 1.1. Here we list m,, in Theorem 1.2 forn =1,...,11:
™ = (1)7 T2 = (1)7 ™3 = (173)7 T4 = (173)7 s = (37 5)7 e = (276)(37 5)7
w7 = (1,7)(2,6)(3,5), ms = (1,7)(2,6)(3,5), m9 = (2,6)(3,5)(7,9),
10 = (37 5)(67 10)(77 9)7 11 = (17 3)(57 11)(67 10)(77 9)

Theorem 1.2 has the following consequence.

Corollary 1.3. For any n € Z*, there is a unique permutation m € So, such
that k+m(k) € {2* —1: a € Z*} forallk=1,...,2n.

Now we turn to our results of new types.

Theorem 1.3. (i) Let p be any odd prime. Then there is no m € S, such that
all the p— 1 numbers kn(k) (k=1,... ,p—1) are pairwise incongruent modulo
p. Also,

per[i’ i< j<p—1 =0 (mod p). (1.2)
(ii) We have

per[i’ i< j<cn =0 (mod n) foralln =3,4,5,.... (1.3)

Remark 1.4. In contrast with Theorem 1.3, it is well-known that

detli icijen= ] G-D=121..(n—1)

1<i<j<n
and in particular
det[i? 1< j<p—1, det[? igijp Z0  (mod p)

for any odd prime p.
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Theorem 1.4. (i) Let aq,... ,a, be distinct elements of a torsion-free abelian
group G. Then there is a permutation ™ € S,, such that all those kary (k =
1,...,n) are pairwise distinct.

(ii) Let a, b, c be three distinct elements of a group G such that none of them
has order 2 or 3. Then a®Y) and b"®) are distinct for some o € Sy. Also,
a™ M b7 ¢7G) gre pairwise distinct for some T € Ss.

Remark 1.5. On the basis of this theorem, we will formulate a general conjecture
for groups in Section 4.

We are going to prove Theorems 1.1-1.2 and Corollary 1.3 in the next section,
and show Theorems 1.3-1.4 in Section 3. We will pose some conjectures in
Section 4.

2. Proors oF THEOREMS 1.1-1.2 AND COROLLARY 1.3

Proof of Theorem 1.1. For convenience, we set ag = 1 and A = {ay, as,as, ... }.
We use induction on n € Zt to show the desired result.

For n =1, we take m(1) = 1 and note that 1 + 7(1) =2 =a; € A.

Now let n > 2 and assume the desired result for smaller values of n. Choose
k € N with ap, < n < ag4+1, and write m = a1 —n. Then 1 < m < 2a;, —n <
2n —n =mn. Let 7(j) = agy1 — j for j = m,... ,n. Then n(n(j)) = j for all
7=1,...,n,and

{r(j): j=m,...,n}={m,... n}.

Case 1. m = 1.

In this case, 7 € S,, and 72 = I,,.

Case 2. m =n.

In this case, ax+1 = 2n > 2ag. On the other hand, arpy1 < 2a. So,
arp+1 = 2ar and ar = n. Let n(j) =n—j =ar — j for all 0 < j < n. Then
7 €8, and j+ 7(j) € {ag,ars1} for all j =1,... ,n. Note that 7%(k) = k for
allk=1,... ,n.

Case 3. 1 <m <n.

In this case, by the induction hypothesis, for some o € S,,_; with 02 =
I—1, we have i + 0(i) € Aforalli =1,... ,m — 1. Let w(i) = o(i) for all
i=1,...,m—1. Then 7w € S,, and it meets our requirement.

In view of the above, we have completed the induction proof. [

Proof of Theorem 1.2. Applying Theorem 1.1 with a, = 2F for all k € Z1, we
see that for some m € S, with 72 = I,, all the numbers k+ (k) (k=1,... ,n)
are powers of two.

Below we use induction on n to show that the number of 7 € 5,, with

{k+nk): k=1,...,n} C{2%: acZ"}
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is exactly one.

The case n =1 is trivial.

Now let n > 1 and assume that for each m = 1,... ,n — 1 there is a unique
Tm € Sm such that all the numbers k4 7(k) (k= 1,...,m) are powers of two.
Choose a € Z1 with 247! < n < 2%, and write m = 2* —n. Then 1 < m < n.

Suppose that 7 € S, and all the numbers k+ (k) (k =1,...,n) are powers
of two. If 297! < k < n, then

207t < k4 7m(k) <k+n<2n <20t
and hence 7(k) = 2% — k since k + w(k) is a power of two. Thus
{m(k): k=271 ... n}={2"1 ... ,m}
If ke {l,...,2¢71 —1} and 27! < 7(k) < n, then
207 < b+ 7w(k) <n+n <20
hence k + 7(k) = 2% = m +n and thus m < k < 27, So we have
{771(): 2t <j<n}={m,... 271 —1}.

(Note that n — 2071 = 20—y — 201 = 9a=1 _ 4 )
By the above analysis, 7(k) = 2% — k for all k =m, ... ,n, and

{n(k): k=m,...,n}={m,... ,n}.

Thus 7 is uniquely determined if m = 1.
Now assume that m > 1. As 7w € S,,, we must have

{n(k): k=1,... , m—1}y={1,...,m—1}.

Since k + w(k) is a power of two for every k = 1,... ,m — 1, by the induction
hypothesis we have 7w(k) = m,(k) for all k = 1,... ,;m — 1. Thus 7 is indeed
uniquely determined.

In view of the above, the proof of Theorem 1.2 is now complete. [

Proof of Corollary 1.3. Clearly, € S, and k+ 7(k) € {2* —1: a € ZT} for
all k =1,...,2n, if and only if there are o, 7 € S,, with 7(2k) = 20(k) — 1 and
7(2k—1) = 27(k) forall k =1,... ,n such that k+o(k),k+7(k) € {271 : a €
Z*} for all k =1,...,n. Thus we get the desired result by applying Theorem
1.2. O
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3. PROOFS OF THEOREMS 1.3-1.4

Lemma 3.1 (Alon’s Combinatorial Nullstellensatz [A]). Let Ai,...,A, be
finite subsets of a field F' with |A;| > k; fori = 1,...,n where ky,... ,k, €
{0,1,2,...}. If the coefficient of the monomial z¥* ---xkn in P(zy,... 2,) €

Flzy,...,x,] is nonzero and ki + - - - + ky, is the total degree of P, then there
are a; € Ay, ... ,a, € A, such that P(ay,...,a,) # 0.

Lemma 3.2. Let ay,...,a, be elements of a field F'. Then the coefficient of

x’f_l ...z 1 in the polynomial

H ({13] —{IJZ)(CLJIIJ] _ai.’lfi) EF[:EIM" 73371]
1<i<j<n
18 (—1)”(”_1)/2per[az_l]1<i,j<n.

Proof. This is easy. In fact,

H (l‘j — xi)(aja:j — a¢$i>

1<i<j<n

—(-1)) det[27 ) 1<i jan det [ 0 M 1s s

n

:(—1)(3) Z Sign(U)Hx?_a(i) Z Sign(T)Haz(i)_lxz(i)_l,
oESn i=1 TESn i=1

n—

Therefore the coefficient of x?_l ...2" 1 in this polynomial is

(DG Y sign(@)? T[ a7 9" = (1" 2perfal i< j<n.
oc€ES, =1

This concludes the proof. [

Remark 3.1. See also [DKSS] and [S08, Lemma 2.2] for similar identities and
arguments.

Proof of Theorem 1.3. (i) Let g be a primitive root modulo p. Then, there is
a permutation m € S,_; such that the numbers kn(k) (k =1,...,p— 1) are
pairwise incongruent modulo p, if and only if there is a permutation p € S,
such that ¢***(®) (i =1,...,p—1) are pairwise incongruent modulo p (i.e., the
numbers i + p(i) (i =1,...,p — 1) are pairwise incongruent modulo p — 1).

Suppose that p € S,_1 and all the numbers i 4+ p(i) (i =1,...,p— 1) are
pairwise incongruent modulo p — 1. Then

p—1 p—1

» (i+p@) =) j (modp-—1),

i=1 j=1
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and hence > 7 _1 i =p(p—-1)/2 =0 (mod p — 1) which is impossible. This
contradiction proves the first assertion in Theorem 1.3(i).
Now we turn to prove the second assertion in Theorem 1.3(i). Suppose
that per[i?']1<; j<p—1 #Z 0 (mod p). Then, by Lemma 3.2, the coefficient of
p-2 P~2 in the polynomial

f
T (=), — i)

1<i<j<p—1

p—1

is not congruent to zero modulo p. Applying Lemma 3.1 with F' = Z/pZ and

A={k+pZ: k=1,...,p— 1}, we see that there is a permutation 7 € S,_1

such that all those km(k) (k =1,...,p — 1) are pairwise incongruent modulo

p, which contradicts the first assertion of Theorem 1.3(i) we have just proved.
(ii) Let » > 2 be an integer. Then

peri! igijen = ) ﬁ ko

ceSy k=1
n—1
= Z:(n—l)!l_[k:“(k)2 (n—1)! Z Hk;T(k) !
ceS(n) k=1 TESn—1 k=1

o(n)=1

=(n — 1)!per[i’iij<n—1 (mod n).

If n is an odd prime p, then we have n | per[i/ 1)1 <; j<n since p | per[i ~']1<i j<p—1
by Theorem 1.3(i). For n = 4, we have

per[ij_l]lgi’jgl =3I Z 17_(1)_127'(2)—137'(3)—1
7'653

=6 (1*712'713%71 + 137121713271) = 0 (mod 4).

Now assume that n > 4 is composite. By the above, it suffices to show that
(n—1)! =0 (mod n). Let p be the smallest prime divisor of n. Then n = pq
for some integer ¢ > p. If p < ¢, then n = pq divides (n — 1)!. If ¢ = p, then
p? =n > 4 and hence 2p < p?, thus 2n = p(2p) divides (n — 1)!.

In view of the above, we have completed the proof of Theorem 1.3. [

Proof of Theorem 1.4. (i) The subgroup H of G generated by aq,...,a, is
finitely generated and torsion-free. As H is isomorphic to Z" for some positive
integer r, if we take an algebraic number field K with [K : Q] = n then H is
isomorphic to the additive group O of algebraic integers in K. Thus, without
any loss of generality, we may simply assume that G is the additive group C of
all complex numbers.

By Lemma 3.2, the coefficient of 27 ".. .z

n—1
n

P(xl,. .. ,xn) = H (in —xz)(jl‘J — Zl‘l) € C[.’El,. .. ,xn]

1<i<j<n

in the polynomial
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is (—1)"=D/2per[i" =], <; j<n, which is nonzero since per[i’~!]i<; j<n > 0.
Applying Lemma 3.1 we see that there are z1,... ,x, € A ={aq,...,a,} with
P(x1,...,2y,) # 0. Thus, for some 7 € ), all the numbers kay ) (k=1,...,n)
are distinct. This ends the proof of part (i).

(ii) Let e be the identity of the group G. Suppose that a = b? and also
a? = b. Then a = (a?)? = a*, and hence a® = e. As the order of a is not three,
we have a = e and hence b = a? = e, which leads a contradiction since a # b.
Therefore a®®) and b7 are distinct for some o € Ss.

To prove the second assertion in Theorem 1.4(ii), we distinguish two cases.

Case 1. One of a, b, ¢ is the square of another element among a, b, c. Without
loss of generality, we simply assume that a = b%. As a # b we have b # e. As
b is not of order two, we also have a # e. Note that b?> = a # c. If b> = a3,
then a = a® which is impossible since the order of a is not two. If a® # ¢, then
¢, b2, a? are pairwise distinct.

Now assume that a® = c¢. As a is not of order three, we have b # a? and
c # e. Note that a® = ¢ # b and also a® = ¢ # c2. If b # ¢2, then b, c?, a® are
pairwise distinct. If b = ¢2, then a = b?> = ¢* = (a®)* and hence the order of a
is 11, thus a? # (a®)3 = ¢® and hence b, a?, ¢® are pairwise distinct.

Case 2. None of a, b, c is the square of another one among a, b, c.

Suppose that there is no 7 € Ss with a™™, 572 ™) pairwise distinct.
Then ¢ € {a,b*} N {a?b}. If ¢3 = a, then ¢ # b and hence a = ¢ = a?, thus
a = e = ¢ which leads a contradiction. Therefore ¢® = b. As c is not of order
three, if b = e then we have ¢ = e = b which is impossible. So ¢® = b? # b and
hence b? = ¢3 = a?. Similarly, a® = b2 = ¢2. Thus a® = b®> = a?, hence a = e
and b? = a? = e, which contradicts b # a since b is not of order two.

In view of the above, we have finished the proof of Theorem 1.4. [

4. SOME CONJECTURES

Motivated by Theorem 1.3(i) and Theorem 1.4, we pose the following con-
jecture for finite groups.

Conjecture 4.1. Let n be a positive integer, and let G be a group containing
no element of order among 2,... ,n+ 1. Then, for any A C G with |A| = n,
we may write A = {ay,...,a,} with a1,a3,...,a" pairwise distinct.

Remark 4.1. (a) Theorem 1.4 shows that this conjecture holds when n < 3 or
G is a torsion-free abelian group.
(b) For n = 4,5,6,7,8,9 we have verified the conjecture for cyclic groups
G = Z/mZ with |G| = m not exceeding 100, 100, 70, 60, 30, 30 respectively.
(c) If G is a finite group with |G| > 1, then the least order of a non-identity
element of G is p(G), the smallest prime divisor of |G|.

Inspired by Theorem 1.3, we formulate the following conjecture.
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Conjecture 4.2. (i) For any n € Z*, we have
per[i’ Micij<n-1 Z0 (modn) <= n=2 (mod4). (4.1)

(ii) If p is a Fermat prime (i.e., a prime of the form 2F + 1), then

i -1
per[zj 1]1§i,j§p—1 =pX P 5 ! (mod p2). (42)
If a positive integer n %= 2 (mod 4) is not a Fermat prime, then

per[i’ ']i<ij<n—1 =0 (mod n?). (4.3)

Remark 4.2. We have checked this conjecture via computing per[i? ~!],,_; mod-
ulo n? for n < 20. The sequence a,, = per[i’ 1< j<n (n = 1,2,3,...) is
available from [S18, A322363]. We also introduce the sum

S(TL) — Z 6271'1'22:1 kr(k)/n _ per[ezﬂijk/"]1§j7kgn,
TeS,

which has some nice properties (cf. [S18b]).

Conjecture 4.3. (i) For any n € Z™, there is a permutation o, € S, such
that ko, (k) + 1 is prime for every k=1,... ,n.

(ii) For any integer n > 2, there is a permutation 1, € S, such that k7, (k)—1
is prime for every k =1,... ,n.

Remark 4.3. See [S18, A321597] for related data and examples.

Conjecture 4.4. (i) For eachn € Z™", there is a permutation 7, of {1,... ,n}
such that k? + kn, (k) + m,(k)? is prime for every k =1,... ,n.
(ii) For any positive integer n # 7, there is a permutation 7, of {1,...,n}

such that k? + m,(k)? is prime for every k =1,... ,n.

Remark 4.4. See [S18, A321610] for related data and examples.
As usual, for £k =1,2,3,... we let pi denote the k-th prime.
Conjecture 4.5. For any n € Z*, there is a permutation © € S, such that
Pk + Pr(k) + 1 is prime for every k=1,... n.
Remark 4.5. See [S18, A321727] for related data and examples.

In 1973 J.-R. Chen [Ch] proved that there are infinitely many primes p with
p+ 2 a product of at most two primes; nowadays such primes p are called Chen
primes.
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Conjecture 4.6. Let n € Z*. Then, there is an even permutation o € S,
with pxPek) — 2 prime for all k = 1,...,n. If n > 2, then there is an odd
permutation T € S, with prpr) — 2 prime for allk =1,... ,n.

Remark 4.6. See [S18, A321855] for related data and examples. If we let b(n)
denote the number of even permutations o € S, with pxps ) — 2 prime for all
k=1,...,n, then

(b(1),...,b(11)) = (1,1,1,1,3,6, 1, 1, 33, 125, 226).

Conjecture 2.17(ii) of Sun [S15] implies that for any odd integer n > 1 there is
a prime p < n such that pn — 2 is prime.

In 2002, Cloitre [Cl, A073112] created the sequence A073112 on OEIS whose
n-th term is the number of permutations = € S, with Y ;_, ﬁ(k) € Z. Re-

cently Sun [S18a] conjectured that for any integer n > 5 there is a permutation
m € S, satisfying

- 1
— =1,
;k—l—w(l{:)

and this was later confirmed by the user Zhao Shen at Mathoverflow via clever
induction arguments.
In 1982 A. Filz (cf. [G], pp. 160-162]) conjectured that for any n = 2,4,6, . ..

there is a circular permutation i1, ... ,4, of 1,...  n such that all the n adjacent
sums

11+ 192, o+ 193, .., Ip_1+in, tn + 11
are prime.

Motivated by this, we pose the following conjecture.

Conjecture 4.7. (i) For any integer n > 5, there is a permutation ™ € Sy,

such that
1

n

1

TrkD) 44

>
Il

1

(ii) For any integer n > 6, there is a permutation m € S,, such that

n—1 1
; (SR oy R (45)

Also, for any integer n > 7, there is a permutation m € S,, such that

1 1 1 1
m(1) + 7(2) + )+ 703) +...+ =) 7 () + )+ D) 1. (4.6)
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(iii) For any integer n > 5, there is a permutation m € S,, such that

4.
Z —7( k + 1) (47)
k:
Also, for any integer n > 7, there is a permutation m € S, such that
1 1 1 1
=0. (4.
3 St w5 S e ey e i e S R

Remark 4.7. See [S18, A322069 and A322070] for related data and examples,

and note that
— k(k+1) nx1l

For the latter assertion in Conjecture 4.7(ii), the equality (4.6) with n = 8 holds
if we take (7(1),...,7(8))=(6,1,5,2,4,3,7,8).

Conjecture 4.8. For any integer n > 7, there is a permutation ™ € S,, such
that

(4.9)

‘M'

2—7 k—l—l)

Remark 4.8. This conjecture is somewhat mysterious. See [S18, A322099] for
related data and examples.

Conjecture 4.9. (i) For any integer n > 1, there is a permutation m € S,
such that

Y owk)w(k+1)e{2m+1: m=0,1,2,...}. (4.10)
0<k<n

(ii) For any integer n > 4, there is a unique power of two which can be
written as Zz;ll w(k)m(k+ 1) with 7 € S,, and w(n) = n.

Remark 4.9. Concerning part (i) of Conjecture 4.9, when n = 4 we may choose
(m(1),...,m(4)) = (1,3,2,4) so that

3
> wlk)m(k+1)=1x3+3x2+2x4=2"+1.

For any m € S5, if for each k =1,... ,n we let

— a(r k) +1) if 7 Y(k)#n
(k) = { (1) if 771(k) = n,
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then 7’ € S,, and

n

m()m(2)+...+7(n—1)w(n) + w(n)r(l) = Z kr'(k).
k=1

By the Cauchy-Schwarz inequality (cf. [N, p.178]), for any 7 € S,, we have
n 2 n n
<Z lmr(k:)) < <Z k2) (Zw(k)Q)
k=1 k=1 k=1

and hence

i ", nn+1)2n+1)
kr(k) <)y k= .
SR ;

If welet o(k) =n+1—mn(k) forall k=1,...,n, then 0 € S,, and

S kr(k) =Y k(n+1—o(k)=m+1)> k=Y ko(k)
k=1 k=1 k=1

k=1
>n(n+ 1) nn+1(2n+1) nn+1)(n+2)
- 2 6 N 6 '
Thus
- . [nn+1)(n+2) n(n+1)(2n +1)
{;kw(k).weSn}gT(n).—{ : ; }

(4.11)
Actually equality holds when n # 3, which was first realized by M. Aleksevev
(cf. the comments in [B]). Note that |T'(n)| = n(n? —1)/6 + 1.
Inspired by the above analysis, here we pose the following conjecture in
additive combinatorics.

Conjecture 4.10. Let n € Z" and let F be a field with p(F) > n + 1, where
p(F) = p if the characteristic of F is a prime p, and p(F) = +oo if the
characteristic of F' is zero. Let A be any finite subset of F' with |A| > n+ 6,3,
where 0y, 3 15 1 or 0 according as n = 3 or not. Then, for the set

S(A) := {Zkak D ay,...,a, are distinct elements of A}, (4.12)
k=1
we have
1 2.1
|S(A)| = min {p(F), (14| — n)”(”; ), nln . ) 4 1} . (4.13)

Remark 4.10. One may compare this conjecture with the author’s conjectural
linear extension of the Erdés-Heilbronn conjecture (cf. [SZ]). Perhaps, Conjec-
ture 4.10 remains valid if we replace the field I’ by a finite additive group G
with |G| > 1 and use p(G) (the least prime factor of |G|) instead of p(F).
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