ON PERMUTATIONS OF $\{1, \ldots, n\}$ AND RELATED TOPICS

Zhi-Wei Sun
Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

Abstract

In this paper we study combinatorial aspects of permutations of $\{1, \ldots, n\}$ and related topics. In particular, we show that there is a unique permutation π of $\{1, \ldots, n\}$ such that all the numbers $k+\pi(k)(k=1, \ldots, n)$ are powers of two. We also prove that $n \mid \operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant n}$ for any integer $n>2$. We conjecture that if a group G contains no element of order among $2, \ldots, n+1$ then any $A \subseteq G$ with $|A|=n$ can be written as $\left\{a_{1}, \ldots, a_{n}\right\}$ with $a_{1}, a_{2}^{2}, \ldots, a_{n}^{n}$ pairwise distinct. This conjecture is confirmed when G is a torsion-free abelian group.

1. Introduction

As usual, for $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ we let S_{n} denote the symmetric group of all the permutation of $\{1, \ldots, n\}$.

Let $A=\left[a_{i j}\right]_{1 \leqslant i, j \leqslant n}$ be a (0,1)-matrix (i.e., $a_{i j} \in\{0,1\}$ for all $i, j=$ $1, \ldots, n)$. Then the permanent of A given by

$$
\operatorname{per}(A)=\sum_{\pi \in S_{n}} a_{1 \pi(1)} \cdots a_{n \pi(n)}
$$

is just the number of permutations $\pi \in S_{n}$ with $a_{k \pi(k)}=1$ for all $k=1, \ldots, n$.
In 2002, B. Cloitre proposed the sequence [Cl, A073364] on OEIS whose n-th term $a(n)$ is the number of permutations $\pi \in S_{n}$ with $k+\pi(k)$ prime for all $k=1, \ldots, n$. Clearly, $a(n)=\operatorname{per}(A)$, where A is a matrix of order n whose (i, j)-entry $(1 \leqslant i, j \leqslant n)$ is 1 or 0 according as $i+j$ is prime or not. In 2018 P. Bradley $[\mathrm{Br}]$ proved that $a(n)>0$ for all $n \in \mathbb{Z}^{+}$.

Our first theorem is an extension of Bradley's result.

[^0] 20D60.

Keywords. Additive combinatorics, permutations, powers of two, permanents, groups.
Supported by the National Natural Science Foundation of China (grant no. 11571162) and the NSFC-RFBR Cooperation and Exchange Program (grant no. 11811530072).

Theorem 1.1. Let $\left(a_{1}, a_{2}, \ldots\right)$ be an integer sequence with $a_{1}=2$ and $a_{k}<$ $a_{k+1} \leqslant 2 a_{k}$ for all $k=1,2,3 \ldots$ Then, for any positive integer n, there exists a permutation $\pi \in S_{n}$ with $\pi^{2}=I_{n}$ such that

$$
\begin{equation*}
\{k+\pi(k): k=1, \ldots, n\} \subseteq\left\{a_{1}, a_{2}, \ldots\right\} \tag{1.1}
\end{equation*}
$$

where I_{n} is the identity of S_{n} with $I_{n}(k)=k$ for all $k=1, \ldots, n$.
Recall that the Fiboncci numbers F_{0}, F_{1}, \ldots and the Lucas sequence L_{0}, L_{1}, \ldots are defined by

$$
F_{0}=0, F_{1}=1, \text { and } F_{n+1}=F_{n}+F_{n-1}(n=1,2,3, \ldots)
$$

and

$$
L_{0}=0, L_{1}=1, \text { and } L_{n+1}=L_{n}+L_{n-1}(n=1,2,3, \ldots)
$$

If we apply Theorem 1.1 with the sequence $\left(a_{1}, a_{2}, \ldots\right)$ equal to $\left(F_{3}, F_{4}, \ldots\right)$ or ($L_{0}, L_{2}, L_{3}, \ldots$), then we immediately obtain the following consequence.
Corollary 1.1. Let $n \in \mathbb{Z}^{+}$. Then there is a permutation $\sigma \in S_{n}$ with $\sigma^{2}=$ I_{n} such that all the sums $k+\sigma(k)(k=1, \ldots, n)$ are Fibonacci numbers. Also, there is a permutation $\tau \in S_{n}$ with $\tau^{2}=I_{n}$ such that all the numbers $k+\tau(k)(k=1, \ldots, n)$ are Lucas numbers.

Remark 1.1. Let $f(n)$ be the number of permutations $\sigma \in S_{n}$ such that all the sums $k+\sigma(k)(k=1, \ldots, n)$ are Fibonacci numbers. Via Mathematica we find that

$$
(f(1), \ldots, f(20))=(1,1,1,2,1,2,4,2,1,4,4,20,4,5,1,20,24,8,96,200)
$$

For example, $\pi=(2,3)(4,9)(5,8)(6,7)$ is the unique permutation in S_{9} such that all the numbers $k+\pi(k)(k=1, \ldots, 9)$ are Fibonacci numbers.

Recall that those integers $T_{n}=n(n+1) / 2(n=0,1,2, \ldots)$ are called triangular numbers. Note that $T_{n}-T_{n-1}=n \leqslant T_{n-1}$ for every $n=3,4, \ldots$ Applying Theorem 1.1 with $\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(2, T_{2}, T_{3}, \ldots\right)$, we immediately get the following corollary.

Corollary 1.2. For any $n \in \mathbb{Z}^{+}$, there is a permutation $\pi \in S_{n}$ with $\pi^{2}=I_{n}$ such that each of the sums $k+\pi(k)(k=1, \ldots, n)$ is either 2 or a triangular number.

Remark 1.2. When $n=4$, we may take $\pi=(2,4)$ to meet the requirement in Corollary 1.2. Note that $1+1=3$ and $2+4=3+3=T_{3}$.

Our next theorem focuses on permutations involving powers of two.

Theorem 1.2. Let n be any positive integer. Then there is a unique permutation $\pi_{n} \in S_{n}$ such that all the numbers $k+\pi_{n}(k)(k=1, \ldots, n)$ are powers of two. In other words, for the $n \times n$ matrix A whose (i, j)-entry is 1 or 0 according as $i+j$ is a power of two or not, we have $\operatorname{per}(A)=1$.

Remark 1.3. Note that the number of 1's in the matrix A given in Theorem 1.2 coincides with

$$
\sum_{\substack{1 \leqslant i, j \leqslant n \\ i+j \in\left\{2^{k}: k \in \mathbb{Z}^{+}\right\}}} 1=\sum_{k=0}^{\left\lfloor\log _{2} n\right\rfloor}\left(2^{k}-1\right)+\sum_{i=2}^{\left\lfloor\log _{2} n\right\rfloor+1-n} 1=2^{n}-\left\lfloor\log _{2} n\right\rfloor-1
$$

Example 1.1. Here we list π_{n} in Theorem 1.2 for $n=1, \ldots, 11$:

$$
\begin{gathered}
\pi_{1}=(1), \pi_{2}=(1), \pi_{3}=(1,3), \pi_{4}=(1,3), \pi_{5}=(3,5), \pi_{6}=(2,6)(3,5), \\
\pi_{7}=(1,7)(2,6)(3,5), \pi_{8}=(1,7)(2,6)(3,5), \pi_{9}=(2,6)(3,5)(7,9), \\
\pi_{10}=(3,5)(6,10)(7,9), \pi_{11}=(1,3)(5,11)(6,10)(7,9)
\end{gathered}
$$

Theorem 1.2 has the following consequence.
Corollary 1.3. For any $n \in \mathbb{Z}^{+}$, there is a unique permutation $\pi \in S_{2 n}$ such that $k+\pi(k) \in\left\{2^{a}-1: a \in \mathbb{Z}^{+}\right\}$for all $k=1, \ldots, 2 n$.

Now we turn to our results of new types.
Theorem 1.3. (i) Let p be any odd prime. Then there is no $\pi \in S_{n}$ such that all the $p-1$ numbers $k \pi(k)(k=1, \ldots, p-1)$ are pairwise incongruent modulo p. Also,

$$
\begin{equation*}
\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant p-1} \equiv 0 \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant n} \equiv 0 \quad(\bmod n) \text { for all } n=3,4,5, \ldots \tag{1.3}
\end{equation*}
$$

Remark 1.4. In contrast with Theorem 1.3, it is well-known that

$$
\operatorname{det}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant n}=\prod_{1 \leqslant i<j \leqslant n}(j-i)=1!2!\ldots(n-1)!
$$

and in particular

$$
\operatorname{det}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant p-1}, \operatorname{det}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant p} \not \equiv 0 \quad(\bmod p)
$$

for any odd prime p.

Theorem 1.4. (i) Let a_{1}, \ldots, a_{n} be distinct elements of a torsion-free abelian group G. Then there is a permutation $\pi \in S_{n}$ such that all those $k a_{\pi(k)}(k=$ $1, \ldots, n)$ are pairwise distinct.
(ii) Let a, b, c be three distinct elements of a group G such that none of them has order 2 or 3 . Then $a^{\sigma(1)}$ and $b^{\sigma(2)}$ are distinct for some $\sigma \in S_{2}$. Also, $a^{\tau(1)}, b^{\tau(2)}, c^{\tau(3)}$ are pairwise distinct for some $\tau \in S_{3}$.

Remark 1.5. On the basis of this theorem, we will formulate a general conjecture for groups in Section 4.

We are going to prove Theorems 1.1-1.2 and Corollary 1.3 in the next section, and show Theorems 1.3-1.4 in Section 3. We will pose some conjectures in Section 4.

2. Proofs of Theorems 1.1-1.2 and Corollary 1.3

Proof of Theorem 1.1. For convenience, we set $a_{0}=1$ and $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. We use induction on $n \in \mathbb{Z}^{+}$to show the desired result.

For $n=1$, we take $\pi(1)=1$ and note that $1+\pi(1)=2=a_{1} \in A$.
Now let $n \geqslant 2$ and assume the desired result for smaller values of n. Choose $k \in \mathbb{N}$ with $a_{k} \leqslant n<a_{k+1}$, and write $m=a_{k+1}-n$. Then $1 \leqslant m \leqslant 2 a_{k}-n \leqslant$ $2 n-n=n$. Let $\pi(j)=a_{k+1}-j$ for $j=m, \ldots, n$. Then $\pi(\pi(j))=j$ for all $j=1, \ldots, n$, and

$$
\{\pi(j): j=m, \ldots, n\}=\{m, \ldots, n\} .
$$

Case 1. $m=1$.
In this case, $\pi \in S_{n}$ and $\pi^{2}=I_{n}$.
Case 2. $m=n$.
In this case, $a_{k+1}=2 n \geqslant 2 a_{k}$. On the other hand, $a_{k+1} \leqslant 2 a_{k}$. So, $a_{k+1}=2 a_{k}$ and $a_{k}=n$. Let $\pi(j)=n-j=a_{k}-j$ for all $0<j<n$. Then $\pi \in S_{n}$ and $j+\pi(j) \in\left\{a_{k}, a_{k+1}\right\}$ for all $j=1, \ldots, n$. Note that $\pi^{2}(k)=k$ for all $k=1, \ldots, n$.

Case 3. $1<m<n$.
In this case, by the induction hypothesis, for some $\sigma \in S_{m-1}$ with $\sigma^{2}=$ I_{m-1}, we have $i+\sigma(i) \in A$ for all $i=1, \ldots, m-1$. Let $\pi(i)=\sigma(i)$ for all $i=1, \ldots, m-1$. Then $\pi \in S_{n}$ and it meets our requirement.

In view of the above, we have completed the induction proof.
Proof of Theorem 1.2. Applying Theorem 1.1 with $a_{k}=2^{k}$ for all $k \in \mathbb{Z}^{+}$, we see that for some $\pi \in S_{n}$ with $\pi^{2}=I_{n}$ all the numbers $k+\pi(k)(k=1, \ldots, n)$ are powers of two.

Below we use induction on n to show that the number of $\pi \in S_{n}$ with

$$
\{k+\pi(k): k=1, \ldots, n\} \subseteq\left\{2^{a}: a \in \mathbb{Z}^{+}\right\}
$$

is exactly one.
The case $n=1$ is trivial.
Now let $n>1$ and assume that for each $m=1, \ldots, n-1$ there is a unique $\pi_{m} \in S_{m}$ such that all the numbers $k+\pi(k)(k=1, \ldots, m)$ are powers of two. Choose $a \in \mathbb{Z}^{+}$with $2^{a-1} \leqslant n<2^{a}$, and write $m=2^{a}-n$. Then $1 \leqslant m \leqslant n$.

Suppose that $\pi \in S_{n}$ and all the numbers $k+\pi(k)(k=1, \ldots, n)$ are powers of two. If $2^{a-1} \leqslant k \leqslant n$, then

$$
2^{a-1}<k+\pi(k) \leqslant k+n \leqslant 2 n<2^{a+1}
$$

and hence $\pi(k)=2^{a}-k$ since $k+\pi(k)$ is a power of two. Thus

$$
\left\{\pi(k): k=2^{a-1}, \ldots, n\right\}=\left\{2^{a-1}, \ldots, m\right\}
$$

If $k \in\left\{1, \ldots, 2^{a-1}-1\right\}$ and $2^{a-1}<\pi(k) \leqslant n$, then

$$
2^{a-1}<k+\pi(k) \leqslant n+n<2^{a+1}
$$

hence $k+\pi(k)=2^{a}=m+n$ and thus $m \leqslant k<2^{a-1}$. So we have

$$
\left\{\pi^{-1}(j): 2^{a-1}<j \leqslant n\right\}=\left\{m, \ldots, 2^{a-1}-1\right\} .
$$

(Note that $n-2^{a-1}=2^{a}-m-2^{a-1}=2^{a-1}-m$.)
By the above analysis, $\pi(k)=2^{a}-k$ for all $k=m, \ldots, n$, and

$$
\{\pi(k): k=m, \ldots, n\}=\{m, \ldots, n\}
$$

Thus π is uniquely determined if $m=1$.
Now assume that $m>1$. As $\pi \in S_{n}$, we must have

$$
\{\pi(k): k=1, \ldots, m-1\}=\{1, \ldots, m-1\} .
$$

Since $k+\pi(k)$ is a power of two for every $k=1, \ldots, m-1$, by the induction hypothesis we have $\pi(k)=\pi_{m}(k)$ for all $k=1, \ldots, m-1$. Thus π is indeed uniquely determined.

In view of the above, the proof of Theorem 1.2 is now complete.
Proof of Corollary 1.3. Clearly, $\pi \in S_{2 n}$ and $k+\pi(k) \in\left\{2^{a}-1: a \in \mathbb{Z}^{+}\right\}$for all $k=1, \ldots, 2 n$, if and only if there are $\sigma, \tau \in S_{n}$ with $\pi(2 k)=2 \sigma(k)-1$ and $\pi(2 k-1)=2 \tau(k)$ for all $k=1, \ldots, n$ such that $k+\sigma(k), k+\tau(k) \in\left\{2^{a-1}: a \in\right.$ $\left.\mathbb{Z}^{+}\right\}$for all $k=1, \ldots, n$. Thus we get the desired result by applying Theorem 1.2.

3. Proofs of Theorems 1.3-1.4

Lemma 3.1 (Alon's Combinatorial Nullstellensatz [A]). Let A_{1}, \ldots, A_{n} be finite subsets of a field F with $\left|A_{i}\right|>k_{i}$ for $i=1, \ldots, n$ where $k_{1}, \ldots, k_{n} \in$ $\{0,1,2, \ldots\}$. If the coefficient of the monomial $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ in $P\left(x_{1}, \ldots, x_{n}\right) \in$ $F\left[x_{1}, \ldots, x_{n}\right]$ is nonzero and $k_{1}+\cdots+k_{n}$ is the total degree of P, then there are $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$ such that $P\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

Lemma 3.2. Let a_{1}, \ldots, a_{n} be elements of a field F. Then the coefficient of $x_{1}^{n-1} \ldots x_{n}^{n-1}$ in the polynomial

$$
\prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right)\left(a_{j} x_{j}-a_{i} x_{i}\right) \in F\left[x_{1}, \ldots, x_{n}\right]
$$

is $(-1)^{n(n-1) / 2} \operatorname{per}\left[a_{i}^{j-1}\right]_{1 \leqslant i, j \leqslant n}$.
Proof. This is easy. In fact,

$$
\begin{aligned}
& \prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right)\left(a_{j} x_{j}-a_{i} x_{i}\right) \\
= & (-1)^{\binom{n}{2}} \operatorname{det}\left[x_{i}^{n-j}\right]_{1 \leqslant i, j \leqslant n} \operatorname{det}\left[b_{i}^{j-1} x_{i}^{j-1}\right]_{1 \leqslant i, j \leqslant n}^{n} \\
= & (-1)^{\binom{n}{2}} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} x_{i}^{n-\sigma(i)} \sum_{\tau \in S_{n}} \operatorname{sign}(\tau) \prod_{i=1}^{n} a_{i}^{\tau(i)-1} x_{i}^{\tau(i)-1} .
\end{aligned}
$$

Therefore the coefficient of $x_{1}^{n-1} \ldots x_{n}^{n-1}$ in this polynomial is

$$
(-1)^{\binom{n}{2}} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma)^{2} \prod_{i=1}^{n} a_{i}^{\sigma(i)-1}=(-1)^{n(n-1) / 2} \operatorname{per}\left[a_{i}^{j-1}\right]_{1 \leqslant i, j \leqslant n}
$$

This concludes the proof.
Remark 3.1. See also [DKSS] and [S08, Lemma 2.2] for similar identities and arguments.

Proof of Theorem 1.3. (i) Let g be a primitive root modulo p. Then, there is a permutation $\pi \in S_{p-1}$ such that the numbers $k \pi(k)(k=1, \ldots, p-1)$ are pairwise incongruent modulo p, if and only if there is a permutation $\rho \in S_{n}$ such that $g^{i+\rho(i)}(i=1, \ldots, p-1)$ are pairwise incongruent modulo p (i.e., the numbers $i+\rho(i)(i=1, \ldots, p-1)$ are pairwise incongruent modulo $p-1)$.

Suppose that $\rho \in S_{p-1}$ and all the numbers $i+\rho(i)(i=1, \ldots, p-1)$ are pairwise incongruent modulo $p-1$. Then

$$
\sum_{i=1}^{p-1}(i+\rho(i)) \equiv \sum_{j=1}^{p-1} j \quad(\bmod p-1)
$$

and hence $\sum_{i=1}^{p-1} i=p(p-1) / 2 \equiv 0(\bmod p-1)$ which is impossible. This contradiction proves the first assertion in Theorem 1.3(i).

Now we turn to prove the second assertion in Theorem 1.3(i). Suppose that $\operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq p-1} \not \equiv 0(\bmod p)$. Then, by Lemma 3.2, the coefficient of $x_{1}^{p-2} \ldots x_{p-1}^{p-2}$ in the polynomial

$$
\prod_{1 \leqslant i<j \leqslant p-1}\left(x_{j}-x_{i}\right)\left(j x_{j}-i x_{i}\right)
$$

is not congruent to zero modulo p. Applying Lemma 3.1 with $F=\mathbb{Z} / p \mathbb{Z}$ and $A=\{k+p \mathbb{Z}: k=1, \ldots, p-1\}$, we see that there is a permutation $\pi \in S_{p-1}$ such that all those $k \pi(k)(k=1, \ldots, p-1)$ are pairwise incongruent modulo p, which contradicts the first assertion of Theorem 1.3(i) we have just proved.
(ii) Let $n>2$ be an integer. Then

$$
\begin{aligned}
\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leq n} & =\sum_{\sigma \in S_{n}} \prod_{k=1}^{n} k^{\sigma(k)-1} \\
& \equiv \sum_{\substack{\sigma \in S(n) \\
\sigma(n)=1}}(n-1)!\prod_{k=1}^{n-1} k^{\sigma(k)-2}=(n-1)!\sum_{\tau \in S_{n-1}} \prod_{k=1}^{n-1} k^{\tau(k)-1} \\
& =(n-1)!\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant n-1}(\bmod n) .
\end{aligned}
$$

If n is an odd prime p, then we have $n \mid \operatorname{per}\left[i^{j-1}\right]_{1 \leq i, j \leq n}$ since $p \mid \operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant p-1}$ by Theorem 1.3(i). For $n=4$, we have

$$
\begin{aligned}
\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leq 4} & =3!\sum_{\tau \in S_{3}} 1^{\tau(1)-1} 2^{\tau(2)-1} 3^{\tau(3)-1} \\
& \equiv 6\left(1^{2-1} 2^{1-1} 3^{3-1}+1^{3-1} 2^{1-1} 3^{2-1}\right) \equiv 0(\bmod 4)
\end{aligned}
$$

Now assume that $n>4$ is composite. By the above, it suffices to show that $(n-1)!\equiv 0(\bmod n)$. Let p be the smallest prime divisor of n. Then $n=p q$ for some integer $q \geqslant p$. If $p<q$, then $n=p q$ divides $(n-1)$!. If $q=p$, then $p^{2}=n>4$ and hence $2 p<p^{2}$, thus $2 n=p(2 p)$ divides $(n-1)!$.

In view of the above, we have completed the proof of Theorem 1.3.
Proof of Theorem 1.4. (i) The subgroup H of G generated by a_{1}, \ldots, a_{n} is finitely generated and torsion-free. As H is isomorphic to \mathbb{Z}^{r} for some positive integer r, if we take an algebraic number field K with $[K: \mathbb{Q}]=n$ then H is isomorphic to the additive group O_{K} of algebraic integers in K. Thus, without any loss of generality, we may simply assume that G is the additive group \mathbb{C} of all complex numbers.

By Lemma 3.2, the coefficient of $x_{1}^{n-1} \ldots x_{n}^{n-1}$ in the polynomial

$$
P\left(x_{1}, \ldots, x_{n}\right):=\prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right)\left(j x_{j}-i x_{i}\right) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

is $(-1)^{n(n-1) / 2} \operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant n}$, which is nonzero since $\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant n}>0$. Applying Lemma 3.1 we see that there are $x_{1}, \ldots, x_{n} \in A=\left\{a_{1}, \ldots, a_{n}\right\}$ with $P\left(x_{1}, \ldots, x_{n}\right) \neq 0$. Thus, for some $\pi \in S_{n}$ all the numbers $k a_{\sigma(k)}(k=1, \ldots, n)$ are distinct. This ends the proof of part (i).
(ii) Let e be the identity of the group G. Suppose that $a=b^{2}$ and also $a^{2}=b$. Then $a=\left(a^{2}\right)^{2}=a^{4}$, and hence $a^{3}=e$. As the order of a is not three, we have $a=e$ and hence $b=a^{2}=e$, which leads a contradiction since $a \neq b$. Therefore $a^{\sigma(1)}$ and $b^{\sigma(2)}$ are distinct for some $\sigma \in S_{2}$.

To prove the second assertion in Theorem 1.4(ii), we distinguish two cases.
Case 1. One of a, b, c is the square of another element among a, b, c. Without loss of generality, we simply assume that $a=b^{2}$. As $a \neq b$ we have $b \neq e$. As b is not of order two, we also have $a \neq e$. Note that $b^{2}=a \neq c$. If $b^{2}=a^{3}$, then $a=a^{3}$ which is impossible since the order of a is not two. If $a^{3} \neq c$, then c, b^{2}, a^{3} are pairwise distinct.

Now assume that $a^{3}=c$. As a is not of order three, we have $b \neq a^{2}$ and $c \neq e$. Note that $a^{3}=c \neq b$ and also $a^{3}=c \neq c^{2}$. If $b \neq c^{2}$, then b, c^{2}, a^{3} are pairwise distinct. If $b=c^{2}$, then $a=b^{2}=c^{4}=\left(a^{3}\right)^{4}$ and hence the order of a is 11 , thus $a^{2} \neq\left(a^{3}\right)^{3}=c^{3}$ and hence b, a^{2}, c^{3} are pairwise distinct.

Case 2. None of a, b, c is the square of another one among a, b, c.
Suppose that there is no $\tau \in S_{3}$ with $a^{\tau(1)}, b^{\tau(2)}, c^{\tau(3)}$ pairwise distinct. Then $c^{3} \in\left\{a, b^{2}\right\} \cap\left\{a^{2}, b\right\}$. If $c^{3}=a$, then $c^{3} \neq b$ and hence $a=c^{3}=a^{2}$, thus $a=e=c$ which leads a contradiction. Therefore $c^{3}=b^{2}$. As c is not of order three, if $b=e$ then we have $c=e=b$ which is impossible. So $c^{3}=b^{2} \neq b$ and hence $b^{2}=c^{3}=a^{2}$. Similarly, $a^{3}=b^{2}=c^{2}$. Thus $a^{3}=b^{2}=a^{2}$, hence $a=e$ and $b^{2}=a^{2}=e$, which contradicts $b \neq a$ since b is not of order two.

In view of the above, we have finished the proof of Theorem 1.4.

4. Some conjectures

Motivated by Theorem 1.3(i) and Theorem 1.4, we pose the following conjecture for finite groups.

Conjecture 4.1. Let n be a positive integer, and let G be a group containing no element of order among $2, \ldots, n+1$. Then, for any $A \subseteq G$ with $|A|=n$, we may write $A=\left\{a_{1}, \ldots, a_{n}\right\}$ with $a_{1}, a_{2}^{2}, \ldots, a_{n}^{n}$ pairwise distinct.

Remark 4.1. (a) Theorem 1.4 shows that this conjecture holds when $n \leqslant 3$ or G is a torsion-free abelian group.
(b) For $n=4,5,6,7,8,9$ we have verified the conjecture for cyclic groups $G=\mathbb{Z} / m \mathbb{Z}$ with $|G|=m$ not exceeding $100,100,70,60,30,30$ respectively.
(c) If G is a finite group with $|G|>1$, then the least order of a non-identity element of G is $p(G)$, the smallest prime divisor of $|G|$.

Inspired by Theorem 1.3, we formulate the following conjecture.

Conjecture 4.2. (i) For any $n \in \mathbb{Z}^{+}$, we have

$$
\begin{equation*}
\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant n-1} \not \equiv 0 \quad(\bmod n) \Longleftrightarrow n \equiv 2 \quad(\bmod 4) \tag{4.1}
\end{equation*}
$$

(ii) If p is a Fermat prime (i.e., a prime of the form $2^{k}+1$), then

$$
\begin{equation*}
\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant p-1} \equiv p \times \frac{p-1}{2}!\quad\left(\bmod p^{2}\right) \tag{4.2}
\end{equation*}
$$

If a positive integer $n \not \equiv 2(\bmod 4)$ is not a Fermat prime, then

$$
\begin{equation*}
\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant n-1} \equiv 0 \quad\left(\bmod n^{2}\right) \tag{4.3}
\end{equation*}
$$

Remark 4.2. We have checked this conjecture via computing per $\left[i^{j-1}\right]_{n-1}$ modulo n^{2} for $n \leqslant 20$. The sequence $a_{n}=\operatorname{per}\left[i^{j-1}\right]_{1 \leqslant i, j \leqslant n}(n=1,2,3, \ldots)$ is available from [S18, A322363]. We also introduce the sum

$$
S(n):=\sum_{\pi \in S_{n}} e^{2 \pi i \sum_{k=1}^{n} k \pi(k) / n}=\operatorname{per}\left[e^{2 \pi i j k / n}\right]_{1 \leq j, k \leqslant n}
$$

which has some nice properties (cf. [S18b]).
Conjecture 4.3. (i) For any $n \in \mathbb{Z}^{+}$, there is a permutation $\sigma_{n} \in S_{n}$ such that $k \sigma_{n}(k)+1$ is prime for every $k=1, \ldots, n$.
(ii) For any integer $n>2$, there is a permutation $\tau_{n} \in S_{n}$ such that $k \tau_{n}(k)-1$ is prime for every $k=1, \ldots, n$.

Remark 4.3. See [S18, A321597] for related data and examples.
Conjecture 4.4. (i) For each $n \in \mathbb{Z}^{+}$, there is a permutation π_{n} of $\{1, \ldots, n\}$ such that $k^{2}+k \pi_{n}(k)+\pi_{n}(k)^{2}$ is prime for every $k=1, \ldots, n$.
(ii) For any positive integer $n \neq 7$, there is a permutation π_{n} of $\{1, \ldots, n\}$ such that $k^{2}+\pi_{n}(k)^{2}$ is prime for every $k=1, \ldots, n$.

Remark 4.4. See [S18, A321610] for related data and examples.
As usual, for $k=1,2,3, \ldots$ we let p_{k} denote the k-th prime.
Conjecture 4.5. For any $n \in \mathbb{Z}^{+}$, there is a permutation $\pi \in S_{n}$ such that $p_{k}+p_{\pi(k)}+1$ is prime for every $k=1, \ldots, n$.

Remark 4.5. See [S18, A321727] for related data and examples.
In 1973 J.-R. Chen [Ch] proved that there are infinitely many primes p with $p+2$ a product of at most two primes; nowadays such primes p are called Chen primes.

Conjecture 4.6. Let $n \in \mathbb{Z}^{+}$. Then, there is an even permutation $\sigma \in S_{n}$ with $p_{k} p_{\sigma(k)}-2$ prime for all $k=1, \ldots, n$. If $n>2$, then there is an odd permutation $\tau \in S_{n}$ with $p_{k} p_{\tau(k)}-2$ prime for all $k=1, \ldots, n$.

Remark 4.6. See [S18, A321855] for related data and examples. If we let $b(n)$ denote the number of even permutations $\sigma \in S_{n}$ with $p_{k} p_{\sigma(k)}-2$ prime for all $k=1, \ldots, n$, then

$$
(b(1), \ldots, b(11))=(1,1,1,1,3,6,1,1,33,125,226)
$$

Conjecture 2.17(ii) of Sun [S15] implies that for any odd integer $n>1$ there is a prime $p \leqslant n$ such that $p n-2$ is prime.

In 2002, Cloitre [Cl, A073112] created the sequence A073112 on OEIS whose n-th term is the number of permutations $\pi \in S_{n}$ with $\sum_{k=1}^{n} \frac{1}{k+\pi(k)} \in \mathbb{Z}$. Recently Sun [S18a] conjectured that for any integer $n>5$ there is a permutation $\pi \in S_{n}$ satisfying

$$
\sum_{k=1}^{n} \frac{1}{k+\pi(k)}=1
$$

and this was later confirmed by the user Zhao Shen at Mathoverflow via clever induction arguments.

In 1982 A. Filz (cf. [G], pp. 160-162]) conjectured that for any $n=2,4,6, \ldots$ there is a circular permutation i_{1}, \ldots, i_{n} of $1, \ldots, n$ such that all the n adjacent sums

$$
i_{1}+i_{2}, i_{2}+i_{3}, \ldots, i_{n-1}+i_{n}, i_{n}+i_{1}
$$

are prime.
Motivated by this, we pose the following conjecture.
Conjecture 4.7. (i) For any integer $n>5$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\sum_{k=1}^{n-1} \frac{1}{\pi(k) \pi(k+1)}=1 \tag{4.4}
\end{equation*}
$$

(ii) For any integer $n>6$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\sum_{k=1}^{n-1} \frac{1}{\pi(k)+\pi(k+1)}=1 \tag{4.5}
\end{equation*}
$$

Also, for any integer $n>7$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\frac{1}{\pi(1)+\pi(2)}+\frac{1}{\pi(2)+\pi(3)}+\ldots+\frac{1}{\pi(n-1)+\pi(n)}+\frac{1}{\pi(n)+\pi(1)}=1 \tag{4.6}
\end{equation*}
$$

(iii) For any integer $n>5$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\sum_{k=1}^{n-1} \frac{1}{\pi(k)-\pi(k+1)}=0 \tag{4.7}
\end{equation*}
$$

Also, for any integer $n>7$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\frac{1}{\pi(1)-\pi(2)}+\frac{1}{\pi(2)-\pi(3)}+\ldots+\frac{1}{\pi(n-1)-\pi(n)}+\frac{1}{\pi(n)-\pi(1)}=0 \tag{4.8}
\end{equation*}
$$

Remark 4.7. See [S18, A322069 and A322070] for related data and examples, and note that

$$
\sum_{k=1}^{n-1} \frac{1}{k(k+1)}+\frac{1}{n \times 1}=1
$$

For the latter assertion in Conjecture 4.7(ii), the equality (4.6) with $n=8$ holds if we take $(\pi(1), \ldots, \pi(8))=(6,1,5,2,4,3,7,8)$.
Conjecture 4.8. For any integer $n>7$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\sum_{k=1}^{n-1} \frac{1}{\pi(k)^{2}-\pi(k+1)^{2}}=0 \tag{4.9}
\end{equation*}
$$

Remark 4.8. This conjecture is somewhat mysterious. See [S18, A322099] for related data and examples.

Conjecture 4.9. (i) For any integer $n>1$, there is a permutation $\pi \in S_{n}$ such that

$$
\begin{equation*}
\sum_{0<k<n} \pi(k) \pi(k+1) \in\left\{2^{m}+1: m=0,1,2, \ldots\right\} . \tag{4.10}
\end{equation*}
$$

(ii) For any integer $n>4$, there is a unique power of two which can be written as $\sum_{k=1}^{n-1} \pi(k) \pi(k+1)$ with $\pi \in S_{n}$ and $\pi(n)=n$.

Remark 4.9. Concerning part (i) of Conjecture 4.9 , when $n=4$ we may choose $(\pi(1), \ldots, \pi(4))=(1,3,2,4)$ so that

$$
\sum_{k=1}^{3} \pi(k) \pi(k+1)=1 \times 3+3 \times 2+2 \times 4=2^{4}+1
$$

For any $\pi \in S_{n}$, if for each $k=1, \ldots, n$ we let

$$
\pi^{\prime}(k)= \begin{cases}\pi\left(\pi^{-1}(k)+1\right) & \text { if } \pi^{-1}(k) \neq n \\ \pi(1) & \text { if } \pi^{-1}(k)=n\end{cases}
$$

then $\pi^{\prime} \in S_{n}$ and

$$
\pi(1) \pi(2)+\ldots+\pi(n-1) \pi(n)+\pi(n) \pi(1)=\sum_{k=1}^{n} k \pi^{\prime}(k) .
$$

By the Cauchy-Schwarz inequality (cf. [N, p. 178]), for any $\pi \in S_{n}$ we have

$$
\left(\sum_{k=1}^{n} k \pi(k)\right)^{2} \leqslant\left(\sum_{k=1}^{n} k^{2}\right)\left(\sum_{k=1}^{n} \pi(k)^{2}\right)
$$

and hence

$$
\sum_{k=1}^{n} k \pi(k) \leqslant \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

If we let $\sigma(k)=n+1-\pi(k)$ for all $k=1, \ldots, n$, then $\sigma \in S_{n}$ and

$$
\begin{aligned}
\sum_{k=1}^{n} k \pi(k) & =\sum_{k=1}^{n} k(n+1-\sigma(k))=(n+1) \sum_{k=1}^{n} k-\sum_{k=1}^{n} k \sigma(k) \\
& \geqslant \frac{n(n+1)^{2}}{2}-\frac{n(n+1)(2 n+1)}{6}=\frac{n(n+1)(n+2)}{6} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\{\sum_{k=1}^{n} k \pi(k): \pi \in S_{n}\right\} \subseteq T(n):=\left\{\frac{n(n+1)(n+2)}{6}, \ldots, \frac{n(n+1)(2 n+1)}{6}\right\} . \tag{4.11}
\end{equation*}
$$

Actually equality holds when $n \neq 3$, which was first realized by M. Aleksevev (cf. the comments in $[\mathrm{B}]$). Note that $|T(n)|=n\left(n^{2}-1\right) / 6+1$.

Inspired by the above analysis, here we pose the following conjecture in additive combinatorics.

Conjecture 4.10. Let $n \in \mathbb{Z}^{+}$and let F be a field with $p(F)>n+1$, where $p(F)=p$ if the characteristic of F is a prime p, and $p(F)=+\infty$ if the characteristic of F is zero. Let A be any finite subset of F with $|A| \geqslant n+\delta_{n, 3}$, where $\delta_{n, 3}$ is 1 or 0 according as $n=3$ or not. Then, for the set

$$
\begin{equation*}
S(A):=\left\{\sum_{k=1}^{n} k a_{k}: a_{1}, \ldots, a_{n} \text { are distinct elements of } A\right\}, \tag{4.12}
\end{equation*}
$$

we have

$$
\begin{equation*}
|S(A)| \geqslant \min \left\{p(F),(|A|-n) \frac{n(n+1)}{2}+\frac{n\left(n^{2}-1\right)}{6}+1\right\} . \tag{4.13}
\end{equation*}
$$

Remark 4.10. One may compare this conjecture with the author's conjectural linear extension of the Erdős-Heilbronn conjecture (cf. [SZ]). Perhaps, Conjecture 4.10 remains valid if we replace the field F by a finite additive group G with $|G|>1$ and use $p(G)$ (the least prime factor of $|G|$) instead of $p(F)$.

References

[A] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. (1999), 7-29.
[B] J. Boscole, Sequence A126972 in OEIS, 2007, Website: http://oeis.org/A126972.
[Br] P. Bradley, Prime number sums, preprint, arXiv:1809.01012 (2018).
[Ch] J.-R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176.
[Cl] B. Cloitre, Sequences A073112 and A073364 in OEIS (2002), http://oeis.org.
[DKSS] S. Dasgupta, G. Karolyi, O. Serra and B. Szegedy, Transversals of additive Latin squares, Israel J. Math. 126 (2001), 17-28.
[G] R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004.
[N] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math., Vol. 164, Springer, New York, 1996.
[S08] Z.-W. Sun, An additive theorem and restricted sumsets, Math. Res. Lett. 15 (2008), 1263-1276.
[S15] Z.-W. Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28-Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
[S18] Z.-W. Sun, Sequences A321597, A321610, A321611, A321727, A3210855, A322069, A322070, A322099, A322363 in OEIS (2018), http://oeis.org.
[S18a] Z.-W. Sun, Permutations $\pi \in S_{n}$ with $\sum_{k=1}^{n} \frac{1}{k+\pi(k)}=1$, Question 315648 on Mathoverflow, Nov. 19, 2018. Website: https://mathoverflow.net/questions/315648.
[S18b] Z.-W. Sun, On the sum $\sum_{\pi \in S_{n}} e^{2 \pi i} \sum_{k=1}^{n} k \pi(k) / n$, Question 316836 on Mathoverflow, Dec. 3, 2018. Website: https://mathoverflow.net/questions/316836.
[SZ] Z.-W. Sun and L.-L. Zhao, Linear extension of the Erdös-Heilbronn conjecture, J. Combin. Theory Ser. A 119 (2012), 364-381.

[^0]: 2010 Mathematics Subject Classification. Primary 05A05, 11B75; Secondary 11B39,

