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Parallel supercomputer-based Monte Carlo and stochastic simulatons require pseudorandom num-
ber generators that can produce distinct pseudorandom streams across many independent processes.
We propose a scalable class of parallel and vectorizable pseudorandom number generators based on
a non-cryptographic version of the RSA public-key exponentiation cipher. Our method generates
uniformly distributed IEEE double precision floating point pseudorandom sequences by encrypting
pseudorandom sequences of 64-bit integer messages by modular exponentiation. The advantages of
the method are: the method is parallelizable by parameterization with each pseudorandom number
generator instance derived from an independent composite modulus, the method is fully scalable on
massively parallel computing clusters because of the millions of 32-bit prime numbers, the seeding
and initialization of the independent streams is simple, the periods of the independent instances
are all different and greater than 8.5 × 1037, and the method passes a battery of intrastream and
interstream correlation tests. The calculations in each instance can be vectorized. and can produce
more than 108 pseudorandom numbers per second on each multicore CPU.

PACS numbers: 02.70.-c, 05.10.-a, 05.10.Gg, 05.10.Ln, 05.40.-a, 07.05.Tp, 95.75.Wx

I. INTRODUCTION

Parallel supercomputer-based Monte Carlo and stochastic simulatons require pseudorandom number generators
that can produce distinct pseudorandom streams across many independent processes. We have developed a new class
of scalable parallel and vectorizable pseudorandom number generators for use in massively parallel supercomputer
applications. The method we propose is based on a non-cryptographic version of the Rivest, Shamir and Adleman
(RSA) public key exponentiation cipher.1–6 The method creates pseudorandom streams by encrypting sequences of
64-bit integer plaintext messages mk into ciphertexts ck using the transformation

ck = me
k modn. (1)

Each generator instance is based on an independent composite modulus n = p1p2, where p1 and p2 are 32-bit safe
primes, and the exponent e is a small odd number. Here and throughout, x = ymod z means x is the remainder of
y upon division by z, with 0 ≤ x < z. This is not a cryptographically secure pseudorandom generator, which would
need to operate on integers that are thousands of bits long. The algorithm is fully scalable by parametrization on
parallel supercomputers since each node can be assigned independent pairs of primes. The algorithm is vectorizable,
and can generate more than 108 pseudorandom numbers per second on each multicore supercomputer node.

The pseudorandom number generator algorithm described here cycles through a sequence of integer messages mk

with k = 0, 1, 2, . . . uniformly selected from Zn = [0 . . n−1]. The encryption step in equation (1) then gives a sequence
of pseudorandom ciphertexts ck that is uniformly distributed on Zn. Uniformly distributed double precision floating
point pseudorandom numbers rk on the real interval [0 , 1) are formed with a floating point division: rk = ck/n. Since
(abc) modn = (a (bcmodn)) modn, repeated squaring and multiplying can be used to evaluate the exponentiation
(1) with less than 2 log2 e modular multiplications on Zn.

Most pseudorandom number generators generate the next pseudorandom integer from either the previous pseudo-
random integer in the sequence, or by operating on two or more pseudorandom integers from earlier in the sequence.
In our method, the pseudorandom sequence arises from the encryption of a sequence of integer messages. In this way,
it is similar to cryptographically secure pseudorandom number generators,2,3 and pseudorandom number generators
based on block ciphers.7–10 The quality of the pseudorandom sequence produced by our method is based on modular
exponentiation being a good one-way cryptographic function.1–3,11

Large-scale parallel programs that use pseudorandom numbers should utilize an algorithm that is scalably parallel.
Otherwise, different processes risk sampling overlapping pseudorandom subsequences which would give results that
are not statistically independent. Coddington12 recommends parallel pseudorandom number generators should have
the following characteristics (paraphrased here):

• The method should produce uncorrelated pseudorandom numbers in any number processes, and pass a battery
of stringent tests of randomness within each process and between processes.
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• The algorithm should have a provably long period that is far longer than a single process can exhaust in any
conceivable run.

• The method should be able to create one instance, or a scalably large number of independent instances.

• To assist in debugging, the user should be able to seed the algorithm to give independent reproducible results
in any number of processes

• The code should be portable across wide range of computer architectures.

• The generator should have fast initialization and execution speeds that use limited memory, and each process
should run independently once initialized.

Two qualitatively different schemes have been used to create scalable systems of pseudorandom number genera-
tors: stream splitting and parameterization.13 Parallelization by stream splitting is based on a single pseudorandom
number generator with an extremely long period, with parallelization accomplished by subdividing the full period
into non-overlapping subsequences. By contrast, parallelization by parameterization produces independent pseudo-
random sequences by assigning different fixed parameters to each process. The most widely used classes of parallel
pseudorandom number generators are based on the lagged Fibonacci method.14,15,17–20 The algorithm is usually of
the form sk = (sk−q } sk−r) mod 2m, where } is one of the operations bitwise exclusive or, addition, subtraction, or
multiplication, where q < r are integer parameters chosen based on primitive polynomials modulo 2 that implement
a Galois field of order 2r.20,21 The bitwise exclusive-or algorithms with m = 1 have periods of P = 2r − 1, additive,
subtractive, and word-wise exclusive-or algorithms have periods of P = (2r − 1)2m−1, and multiplicative algorithms
have periods of P = (2r − 1)2m−2. The parameter r is typically chosen in the range of several hundred to several
thousand. The state of the generator is defined by a table of r m-bit integers, which represent the most recent
pseudorandom integers in the sequence. For m > 1, parallel implementation of these algorithms can be accomplished
by either stream splitting or parameterization.14,15,17,18

Our method is parallelized by parameterization by assigning a unique modulus n = p1p2 to each process. The num-
ber of independent streams is limited only by the number of prime pairs in the range defined by the implementation.
Each independent generator can vectorized by simultaneously calculating a vector of pseudorandom numbers, which
greatly speeds the calculation on vector processors or multicore CPUs.

II. RSA PUBLIC KEY ENCRYPTION

Asymmetric or public-key cryptography was first publicly proposed Ralph Merkle.22 Whitfield Diffie and Martin
Hellman23 were the first to publish a practical algorithm for key exchange based on modular exponentiation in a
prime field, and Ron Rivest, Adi Shamir and Leonard Adleman1 published their public key cryptosystem paper in
1978. (It is important to note that all of these methods were discovered earlier by British GCHQ mathematicians in
highly classified work: James Ellis proposed the idea of asymmetric ciphers, or what he called non-secret encryption,
Malcolm Williamson developed a key exchange method identical to Diffie–Hellman, and Clifford Cocks developed a
version of the RSA algorithm. These discoveries were not revealed publicly until their work was declassified in 1997.24)

Our generator mimics the manner that RSA is used in practice to establish a secure communications channel
between Alice and Bob.2 Alice wants to send an encrypted message to Bob even though they have never met to
securely exchange a secret symmetric encryption/decryption key. Bob first creates a public key consisting of a
composite number n = p1p2 where p1 and p2 are two large secret prime numbers. Bob publicly shares the product n
and a small exponent e that is coprime to p1 − 1 and p2 − 1. Alice uses Bob’s public key to encrypt her message m
into ciphertext c = me modn, and sends the ciphertext to Bob over an open channel. Bob can decrypt the ciphertext
using m = cd modn, where Bob’s decryption exponent d can be determined from e and the two secret primes. RSA
is usually used to securely share a secret symmetric key K. Alice encrypts a random key K using Bob’s public key,
and sends the ciphertext to Bob who decrypts the key. Both Alice and Bob can then use their shared secret key K
in a fast symmetric encryption algorithm.

Alice and Bob assume that an eavesdropper Eve will be able to intercept the ciphertext c. The security of RSA
is based on both modular exponentiation mod n, and multiplying p1 and p2 to determine n are both good one-way
functions, i.e. multiplying and exponentiating are easy, while factoring and solving the discrete logarithm problem
are hard.2–5 Easy and hard are distinguished by whether or not a function can be calculated in a time proportional
to a power of log2 n (polynomial time). Cryptographic security currently requires that n should be thousands of bits
long. No known classical algorithm can factor a large composite or calculate a discrete logarithm in a polynomial
time. It is these problems that a successful quantum computer with thousands of qubits could potentially crack.25
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III. NUMBER THEORY

For every prime number p, the set of integers Zp = [0 . . p−1] forms a finite field, i.e. Zp is closed under addition and
subtraction modulo p, and the set of nonzero elements Z∗p = [1 . . p−1] forms a group that is closed under multiplication
and division modulo p. Division is defined since for every integer a ∈ Z∗p there exists a unique multiplicative inverse

a−1 ∈ Z∗p such that aa−1 mod p = 1 .

The message m can be decrypted from the ciphertext c using a decryption exponent d:1,3–6

c = md modn. (2)

The decryption exponent d exists and is unique if e and (p1 − 1)(p2 − 1) are co-prime. Decryption is based on
Fermat’s little theorem:4–6 for any prime p and for all m ∈ Z∗p, mp−1 mod p = 1. For the case of composite moduli of

the form n = p1p2, the generalization of Fermat’s little theorem is for all m co-prime to n, mφ(n) modn = 1, where
φ(n) = (p1−1)(p2−1) is Euler’s totient function, the number of elements in Z∗n that are coprime to n. The decryption
exponent is given by

d = e−1 modφ(n) = e−1 mod (p1 − 1)(p2 − 1), (3)

and can be calculated using the extended Euclidean algorithm by anyone who knows e, p1 and p2.3–6,26 The validity
of equation (2) is demonstrated as follows:

cd modn = mde modn = m1+uφ(n) modn = (m(mφ(n))u) modn = mmodn = m. (4)

The decryption in equation (2) works for all c ∈ Zn. Encryption and decryption are one-to-one mappings of Zn onto
the same set, so any message sequence {mk} that uniformly samples Zn will produce a ciphertext sequence {ck} that
uniformly samples Zn.

The Chinese remainder theorem (CRT)2–6 is used to speed up the modular exponentiations modulo n in RSA
cryptographic applications. Every integer m ∈ Zn with n = p1p2 can be uniquely represented in terms of two
numbers m1 ∈ Zp1 and m2 ∈ Zp2 given by

m1 = mmod p1, (5a)

m2 = mmod p2, (5b)

and the value of m can be recovered from m1 and m2 using Garner’s formula:

m = (((m1 −m2)(p−12 mod p1)) mod p1)p2 +m2. (6)

The exponentiation c = me modn can then be accomplished by calculating c1 = cmod p1 and c2 = cmod p2 by
exponentiating m1 and m2:

c1 = me
1 mod p1, (7a)

c2 = me
2 mod p2, (7b)

c = (((c1 − c2)(p−12 mod p1)) mod p1)p2 + c2. (7c)

Since we choose p1 and p2 to be 32-bit primes, the exponentiations can be accomplished using native 64-bit arithmetic.
In RSA cryptographic applications, this CRT-based speedup can only be used in the decryption step, since only Bob
knows p1 and p2.

IV. PSEUDORANDOM SKIPS

The sequence of messages to be encrypted can be expressed in terms of an integer skip sequence {sk} chosen from
Zn:

mk = (mk−1 + sk) modn, (8)

Note that if the skip sequence uniformly and randomly (not pseudorandomly) samples Zn, then the sequence of
messages mk forms a uniform random sequence on Zn. Each message is, in effect, a one-time pad encryption of the
previous message.3 We will approximate this by choosing the skips sk pseudorandomly.
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In encryption it is essential to avoid cribs, i.e. messages that result in easily decoded ciphertexts. For example, the
messages m = 0, 1, n − 1 are cribs for all allowed exponents e since me modn = 0, 1, n − 1, respectively. RSA-based
cryptographic applications often use encryption exponents as small as e = 3, 5 for efficiency.2 Messages with me < n
and (n − m)e < n result in trivially decodable ciphertexts, so exponents e < log2 n result in additional cribs. In
cryptographic applications, messages are randomly padded2,3 to avoid cribs. For our purposes, it is not necessary to
eliminate cribs, since they would appear in any long random sequence of messages, but rather to prevent correlated
sequences of cribs. Our goal is to select a simple skip pattern that ensures a uniform sampling of the set of all
messages, avoids correlated cribs, is computationally fast, has a long period, and allows the use of small encryption
exponents.

The simplest skip sequence that uniformly samples Zn is the unit skip, i.e. sk = 1 for all k. Encryption of this
sequence gives a block cipher operating in counter mode which is used in some cryptographically secure pseudorandom
number generators.2,3 The message sequence is mk = (m0 + k) modn, with period P = n. In spite of the cribs near
m = 0 and n, pseudorandom sequences derived from a unit skip empirically pass the U01 battery of statistical
correlations tests10 for exponents e ≥ 9. A constant skip sk = b with 1 < b < n − 1, can eliminate sequential cribs.
but the pattern produced by constant skips is not substantially better than the unit skip pattern since

(kb)e modn = ((be modn)(ke modn)) modn, (9)

is just a constant multiplier permutation of the unit skip sequence.
We choose a skip sequence produced by a prime number linear congruential pseudorandom number generator:20,29–31

sk = ask−1 mod q = s0a
k mod q, (10)

with prime modulus q. The multiplier a is chosen to be a primitive root mod q4–6 that delivers a full period, well-
tested pseudorandom sequence. The period of the skip generator is q − 1 since every skip in Z∗q will appear once and
only once before the skip sequence repeats. If n is co-prime to q and q − 1, message/skip sequence does not begin
to repeat until after period P = (q − 1)n steps. Since a is a primitive root mod q, after q − 1 steps sk will have

cycled through every value in Z∗q , so sk+q−1 = sk and mk+q−1 =
(
mk +

∑q−1
s=1 s

)
modn = (mk + q(q − 1)/2) modn.

If gcd(q(q − 1)/2, n) = 1, then b = q(q − 1)/2 modn 6= 0. Therefore the skip and message values shifted forward
by (q − 1)u steps are given by sk+(q−1)u = sk and mk+(q−1)u = (mk + ub) modn. Therefore, every subsequence of
messages of length q − 1 is different from every other subsequence. Since sk+(q−1)n = sk and mk+(q−1)n = mk, the
period of the generator is P = (q−1)n. Using Fermat’s little theorem, the state of the generator after k = u(q−1)+v
steps, with u = bk/(q − 1)c and v = kmod (q − 1), is given by

sk = s0a
k mod q = s0a

v mod q = av0+v mod q, (11a)

mk =

m0 +

k∑
j=1

s0a
j mod q

 modn,

=

m0 + ub+

v∑
j=1

av0+j mod q

 modn, (11b)

ck = me
k modn, (11c)

where s0 = av0 mod q. Even though the message and ciphertext sequence can be expressed in closed form, calculating
the values of mk and ck for large k requires O(q) steps unless k is close to a multiple of q − 1. Likewise, determining
the value of k = (q − 1)u + v that gives a particular state (m, s) requires O(q) steps. The method has the following
properties:

• The algorithm is based on elementary number theory and cryptography, and satisfies all of Coddington’s
criteria.12

• Using a pseudorandom skip extends the period of the generator to P = (q−1)n, and provides a uniform sampling
of ciphertexts over the full period of the generator. Each message m ∈ Zn, and hence each ciphertext c ∈ Zn,
will appear exactly q − 1 times in the full-period sequence.

• The method is parallelizable by parameterization, with each independent process derived from a distinct com-
posite modulus n = p1p2. The method is fully scalable on massively parallel supercomputers due to the millions
of 32-bit primes.
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• Pseudorandom sequences that result from different moduli are independent, and have different periods.

• The seeding and initialization of the independent streams is simple.

• The state of each generator is defined by a few fixed integer parameters {n = p1p2, e, q, a}, and a few integer
state values {m, s, c} that change during each call to the generator.

• By using 32-bit primitive roots mod q for the skip generator, 32-bit primes p1 and p2, the Chinese Remainder
Theorem, and small exponents e, the implementation below requires only a few native 64-bit integer operations
per pseudorandom number.

• The calculation in each independent process can be vectorized by operating simultaneously on vectors of messages
and skips that belong to widely separated subsequences.

• If needed, one can use equation (11) to jump far forward in the sequence, as long as the jump distance is close
to a multiple of q − 1.

• The method passes a battery of strong randomness tests, within each stream and between streams.

V. IMPLEMENTATION IN 64 BITS

We choose the pseudorandom skip modulus to be q = 263 − 25, the largest prime less than 263. Equation (10) can
be implemented using 64-bit arithmetic if the primitive root is chosen from the restricted set of values a <

√
q.27–29

This can be shown by expressing q in the form q = aq1 + q2, where q1 = bq/ac and q2 = qmod a:

asmod q = (as− bs/q1cq) mod q

= (as− bs/q1c(aq1 + q2)) mod q

= (a(s− bs/q1cq1)− q2bs/q1c)) mod q

= (a(smod q1)− q2bs/q1c)) mod q. (12)

If 231 < a <
√
q, then a, q1, and q2 are all 32-bits, and intermediate results s1 = a(smod q1) and s2 = q2bs/q1c

in the final line of equation (12) are both less than q. L’Ecuyer, Blouin, and Couture,30 and Sezgin and Sezgin31

give a handful of restricted primitive roots a <
√
q that have good spectral test properties and pass all U01 Crush

and BigCrush tests.10 By using restricted primitive roots, 32-bit primes, and the Chinese Remainder Theorem, the
entire RSA calculation can be implemented using fast native unsigned 64-bit integer arithmetic. The algorithm uses
three pre-calculated values q1 = bq/ac, q2 = qmod a, and p−12 mod p1. The pseudocode for generating the next double
precision floating point pseudorandom number r on the interval [0 , 1) is given by:

s1 := a (smod q1), (13a)

s2 := q2 bs/q1c, (13b)

s := (s1 − s2) mod q, (13c)

m1 := (m1 + s) mod p1, (13d)

m2 := (m2 + s) mod p2, (13e)

c1 := me
1 mod p1, (13f)

c2 := me
2 mod p2, (13g)

c :=
((

(c1 − c2)(p−12 mod p1)
)

mod p1
)
p2 + c2, (13h)

r := c/n. (13i)

Care needs to be taken in steps (13c) and (13h) to avoid negative intermediate results and, since n > 253, step (13i)
needs to include a test to avoid returning the upper limit r = 1.0 in the IEEE double precision floating point format.

There are 98,182,656 primes in the range [231, 232],35 but cryptography theory suggests choosing p1 and p2 from
the set of safe primes, i.e. primes p for which (p− 1)/2 is also prime.3,32 Since the 64-bit ciphertexts are determined
by c1 ∈ Zp1 and c2 ∈ Zp2 using Garner’s formula, we performed many statistical tests using 32-bit prime moduli
n = p.33,34 Most primes work fine, but occasionally primes in which p − 1 contains only small factors fail some of
the U01 tests. For those two reasons, we recommend using only safe primes to construct n = p1p2. This does not
seriously limit the scalability of our generator since there are 3,060,794 safe primes in the range [231, 232],36 so there
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are 4.68 × 1012 safe prime pairs. Using safe primes has the added advantage that every small odd exponent e is
coprime to φ(n).

Choosing n ≈ q has the advantage that D-dimensional message sequence {mk,mk+1..,mk+D} samples ZDn nearly
uniformly, so each message is a pseudorandom one-time pad-like encryption of the previous message. This choice
further reduces the total number of moduli available, but there are still over ten million independent values of n that
differ from q by less than one part in a million. The full period of each generator is then P = (q−1)n ≈ 2126 ≈ 8.5×1037.

One can use fast primality tests to select the primes p1 and p2. The Rabin-Miller test,2,3,6,37,38 which is the same
as Algorithm P in Knuth,20 provides a simple probabilistic test for primality. Every odd prime p = 1 + 2ut with t

odd satisfies one of the following conditions for every base g ∈ Z∗p: either gt mod p = 1, or g2
jt mod p = p − 1 for

some some j in the range 0 ≤ j < u. A composite modulus n satisfying these criteria is called a strong pseudoprime
to base g. For any odd composite, the number of bases for which n is a strong pseudoprime is less than n/4. If
the test is applied repeatedly with M randomly chosen bases in Z∗n, the probability that a composite will pass every
test is less than 4−M .6,20,37,38 Better yet, the Rabin-Miller test can deterministically identify all primes below 264.
There are no composite numbers below 264 that are strong pseudoprimes to all of the twelve smallest prime bases
(g = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37).39–43 Therefore, any number less than 264 that passes the Rabin-Miller test
for all twelve of these bases is prime. Likewise, any number less than 232 that passes the Rabin-Miller test for all
of the five smallest prime bases (g = 2, 3, 5, 7, 11) is prime. For efficiency, one first checks to see if any small primes
divide the modulus before applying the Rabin-Miller test.

VI. PARALLELIZATION AND VECTORIZATION

In a multiprocessor supercomputer environment, independent parallel pseudorandom streams can be created by
assigning distinct parameters p1, p2, and a to each process. If the number of choices for p1, p2, and a are Np1 , Np2 ,
and Na, respectively, each process can be assigned a unique parameter 0 ≤ β < Np1Np2Na based on a time stamp t
and process identifier α. For example, if we label the Mp processes with identifiers α = 0, . .Mp − 1, we can choose
β = (t + ασ)ε mod (Np1Np2Na) where σ is an integer close to b(Np1Np2Na)/Mpc that is coprime to Np1Np2Na, and
exponent ε that is coprime to φ(Np1Np2Na) . One can then choose p1 in process α to be the βmodNp1-st prime, etc.
Message Passing Interface (MPI) calls can be used to initialize the Mp parallel processes with independent parameters.

Algorithm (13) can be vectorized in each process. Vectors of messages m and skips s, with Mv 64-bit elements each,
can be can be updated simultaneously with fixed parameters n = p1p2, e, q, and a to return a vector of pseudorandom
reals r. The vector pseudocode is

s := asmod q, (14a)

m := (m + s) modn, (14b)

r := (me modn) /n. (14c)

The elements of the vectors can be updated simultaneously in parallel on a vector processor, or the calculation can be
shared among multiple cores available to each process using Open Multiprocessing (OpenMPI). As described above,
we can use restricted primitive roots and the CRT to update the vectors using only 64-bit arithmetic. Our state
vector (m, s) consists of only 2Mv 64-bit words. By contrast, vectorizing lagged Fibonacci generators with recursion
relation sk = (sk−q } sk−r) mod 2m requires much larger state vectors of rMv m-bit words.

To ensure that the Mv sub-streams labelled γ = 0, 1, ..,Mv − 1 sample greatly separated subsequences, we use
the jump ahead property of the skip generator sk = s0a

k mod q to widely distribute the skips across the period
of the skip generator. This can be accomplished by setting initial values of the elements of the skip vector to be

s
(γ)
0 = s

(0)
0 aγb(q−1)/Mvcmod q. The skip sequences in successive sub-streams will not begin to overlap until the vector

has been updated about b(q − 1)/Mvc times, i.e. after a total of about q − 1 pseudorandom numbers have been
generated. Since q ≈ 263, this would take hundreds of years for one node to accomplish. Even after the skip sequences
in the sub-streams begin to overlap, it is very improbable that any two message subsequences become synchronized
since that probability is of the order of Mv/n. (Note that equation (11) allows one to subdivide the period P = (q−1)n
into n subsequences, each with length q − 1. However, in that case the skips in each subsequence are the same, and
the messages in different subsequences differ by multiples of b = q(q − 1)/2 modn. We recommend avoiding the use
such strongly correlated message patterns.)

We developed and tested our code on the University of Colorado Boulder Summit supercomputer, which uses
2.50GHz Intel Xeon E5-2680 v3 processors and 24 cores per node.51 We tested the speed of the code by averaging
sequences of 109 pseudorandom numbers, and use OpenMP to share the calculation across multiple cores on each
node. By assigning all 24 cores to each process, the code generates more than 108 pseudorandom numbers per second
per process for exponents as large as e = 257. We recommend exponents e ≤ 17, whose 24 core speed ranges from
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1.25 × 108 to 1.72 × 108 pseudorandom numbers per second per process. Eight core speeds range from 5.6 × 107 to
9.3 × 107 pseudorandom numbers per second per process By comparison, the highly optimized (but not necessarily
scalable parallel or vectorized) pseudorandom number generators in the Intel MKL library deliver from 2.7 to 6.0×108

pseudorandom numbers per second per process.

VII. TESTS

We applied the well-established pseudorandom number test suites DIEHARD,44 NIST,45 and TestU01,10 to ensure
the generator passes a wide variety of tests, and calculated χ2 and the associated p-value for the following fourteen
additional chi-squared tests.

• One-dimensional frequency test:20 We distributed sequences of pseudorandom numbers into a one-dimensional
histogram with 220 bins, and compared the histogram to a uniform Poisson distribution.

• Serial test in D=2, 3, 4, 5, and 6 dimensions:20 We distributed sequences of D successive pseudorandom
numbers {r1, . . . , rD} into a D-dimensional histogram with either 220 or 106 bins, and compared the histogram
to a uniform Poisson distribution. This tests for D-dimensional sequential correlations in the sequence.

• Poker test:20 We used groups of five pseudorandom numbers and counted the number of pairs, three-of-a-
kind etc. formed from five cards with sixteen denominations, and compared the resulting histogram to a Poisson
distribution derived from the exact probabilities. This tests for a variety of five-point correlations in the sequence.

• Collision tests:20 We used the pseudorandom stream to distribute 214 balls into 220 urns, and compare the
distribution of the number of collisions with the exact distribution. We used this to test for correlations in the
twenty most significant bits of each pseudorandom number, and the most significant bit of twenty sequential
pseudorandom numbers.

• Gaps test:20 We compared the histogram of the length of runs of 0’s (r ≤ 0.5) and 1’s (r > 0.5) to the exact
Poisson distribution. This tests for correlations in the leading bits.

• Max-of-t test:20 We compared the distribution of the maximum value among {r1, r2, . . . , rt} for t = 32 with the
exact probability distribution.

• Permutations test:20 We compared the permutation ordering number of t successive pseudorandom numbers
{r1, r2, . . . , rt} for t = 10, with the uniform distribution of t! possibilities.

• Fourier test:14 We used a fast Fourier transform46 to calculate the Fourier coefficients of sequences of M = 220

pseudorandom numbers,

x̂k =
1√
M

M−1∑
j=0

xje
2πijk/M , (15)

where xj = (r2j−0.5)+ i(r2j+1−0.5). We compared the distribution of the real and imaginary parts of x̂k with
the exact normal distribution with zero mean and variance 1/12. This test exposes long-range pair correlations
in the pseudorandom sequence.

• Two-dimensional Ising model energy distribution test:47,48 We performed Wolff algorithm49 Monte Carlo simu-
lations at the critical point of the two-dimensional Ising model on a 128× 128 square lattice, and compared the
energy histogram to a Poisson distribution derived from the exact probabilities47,48 Since the Wolff algorithm
is based on stochastically growing fractal critical clusters that can span the system, this tests for long-range
correlations in the pseudorandom sequence, and has proven to be effective at identifying weak generators.47,48,50

See figure 1.

We tested the generator with thousands of different safe prime pairs for exponents as small as e = 3. Every instance
passed all of our correlations tests, some with as many as 1013 pseudorandom numbers per test. In no case did a
chi-squared test produce a p-value less than 10−6 or greater than 1 − 10−6. We also counted the number of tests
that produced p-values less than 10−3 or greater than 1 − 10−3, and confirmed the number was consistent with the
expected rate of one per one-thousand for each. We also applied the 1D frequency test, D-dimensional serial tests,
the poker test, collisions tests, and gaps tests to the least significant bits, which also passed every test.
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FIG. 1: The exact energy distribution47,48 for a 128×128 square-lattice two-dimensional Ising model at the critical temperature
(solid line) on a log scale, and the distribution calculated from 1.34 × 108 configurations chosen from 4.36 × 108 Monte Carlo
steps per spin. The simulation was performed using from a Wolff49 algorithm (error bars). The Wolff algorithm effectively
eliminates critical slowing down, so the selected configurations are nearly uncorrelated with correlation time τ = 0.44. The
absissa is the energy above the ordered ground state in units of four times the coupling constant J . The simulation was about
8 × 108 Monte Carlo steps per spin. The simulation included 32 independent parallel processes, using approximately 1013

pseudorandom numbers generated withexponent e = 9. The result was χ2 = 990 with 1026 degrees of freedom, for a p-value of
p = 0.79.

We confirmed that the algorithm displayed lack of correlation between streams. Each of Mp distinct streams
labeled α = 0, 1, ..Mp − 1 was assigned a different prime pairs p1 and p2. Our interstream correlations tests drew the

pseudorandom numbers from the Mp streams in the order r
(0)
1 , r

(1)
1 , r

(2)
1 , . . . , r

(Np−1)
1 , r

(0)
2 , r

(1)
2 , . . . , with various values

of Mp. To ensure that seeding coincidences do not cause correlations, we performed the interstream correlations tests
using the same primitive root a in each stream, and initialized every sequence with the same values m0 = 0 and
s0 = 1. The interstream correlations passed all of the U01 SmallCrush, Crush and BigCrush tests, even for e = 3.

To examine the resilience of the generator, we tested various intentionally weakened versions the generator. As
noted before, the generator passes the U01 tests with a unit or constant skip for e ≥ 9. We tested the generator with
e = 1, i.e. ck = mk to test our use of n ≈ q. Since the messages nearly uniform sample of ZDn , the messages themselves
pass gentle randomness tests such as U01 SmallCrush. To test the sensitivity of the generator to the quality of the
skip sequence, we tested the skip generator with a = 3, 6, 7, 10, 11, the smallest, and arguably worst, primitive roots
mod q. The generator passes the U01 Crush tests with e = 3 even with these bad primitive roots.

VIII. CONCLUSION

We propose a new class of parallel pseudorandom number generators based on a non-cryptographic RSA expo-
nentiation cipher operating on 64-bit messages. The method is fully scalable based on parametrization since each
process can be assigned a unique composite modulus n = p1p2, where p1 and p2 are 32-bit safe primes, and the period
of each instance greater than 8 × 1037. By vectorizing the calculation, the method can produce over one-hundred
million pseudorandom numbers per second on each a node of a multi-core supercomputer. We tested thousands
of different pseudorandom streams, and all passed a battery of statistical tests. The C source code is available at
https://github.com/PDBeale/randomRSA.git.

https://github.com/PDBeale/randomRSA.git
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