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Abstract. We investigate the effect on survival and coexistence of introducing forest fire
epidemics to a certain two-species spatial competition model. The model is an extension of the
one introduced by Durrett and Remenik [DR09], who studied a discrete time particle system
running on a random 3-regular graph where occupied sites grow until they become sufficiently
dense so that an epidemic wipes out large clusters. In our extension we let two species affected
by independent epidemics compete for space, and we allow the epidemic to attack not only
giant clusters, but also clusters of smaller order. Our main results show that, for the two-
type model, there are explicit parameter regions where either one species dominates or there
is coexistence; this contrasts with the behavior of the model without epidemics, where the
fitter species always dominates. We also characterize the survival and extinction regimes
for the particle system with a single species. In both cases we prove convergence to explicit
dynamical systems; simulations suggest that their orbits present chaotic behavior.

1. Introduction

In the mathematical biology literature, resource competition between n species is widely
modeled through Lotka-Volterra type ODEs of the form

dxi(t)

dt
= xi(t)

(
ai −

n∑
j=1

bijxj(t)

)
, i = 1, . . . , n

if time is taken to be continuous, and the analogous difference equations

xi(m+ 1)− xi(m) = xi(m)

(
ai −

n∑
j=1

bijxj(m)

)
, i = 1, . . . , n

if time is taken to be discrete, where xi ∈ [0, 1] represents the density of the i-th species
and the ai’s and bij ’s are the parameters of the model. The term inside the parentheses
determines the effect of inter-specific and intra-specific competition, and has the advantage
of being simple enough for an easy interpretation of its coefficients while, at the same time,
allowing the system to exhibit a rich asymptotic behavior, including fixed points, limit cycles
and attractors. However, despite its ubiquitousness, the classical model seems inadequate to
explain diverse and complex ecosystems, as conditions for stability become more restrictive
for larger values of n; the same seems to be true regarding conditions for coexistence (see e.g.
[HJ87; B+16]), implying that, unless the parameters have been finely tuned, most species will
be driven to extinction as a result of competition.

Even though it has been argued that natural selection alone may be able to tune the relevant
parameters to yield a coexistence regime [AG04], a considerable amount of effort has been
directed towards extending models such as Lotka-Volterra in ways that favor coexistence.
Extensions of this sort include, for example, the addition of predators [MKo86; HS89; Sch97],
of random fluctuations in the environment [ZY09; MMR02] and of diseases [HP85; SH06]; these
extensions succeed in promoting biodiversity, but result in much more complicated models.
An alternative way of extending the model is based on questioning the linear form of the inter-
specific and intra-specific competition terms; indeed, for large population densities the intra-
specific competition of a species has an increasingly important non-linear component, known
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as the crowding effect, which is overlooked in the original equations. The crowding effect
is capable of effectively outbalancing the inter-specific competition effect for a significantly
larger set of parameters, permiting coexistence even when n is large [HS02; Sev96; G+18].

One important source for the crowding effect is the fact that at high population densities the
connectedness between individuals tends to be high, making it easier for an infectious disease
to spread through the population and giving rise to epidemic outbreaks. To the best of our
knowledge, the effect that this phenomenon may have on coexistence has not been explored
in the setting of competing spatial population models. This provides the main motivation for
our paper.

The model which we will study is based on a particle system introduced by Durrett and
Remenik [DR09], which we will refer to as the moth model (MM). It is inspired by the
gypsy moth, whose populations grow until they become sufficiently dense for the nuclear
polyhedrosis virus (Borralinivirus reprimens, which strikes at larval stage and spreads between
nearby hosts) to reduce them to a low level. The MM is a discrete time particle system which
alternates between a growth stage akin to a discrete time contact process and a forest fire stage
where an epidemic randomly destroys entire clusters of occupied sites. (Forest fire models,
which were first introduced in [DS92], have received much interest as a prime example of a
system showing self-organized criticality, see e.g. [RT09], but this is not the focus of our paper).
[DR09] was devoted mostly to the study of the evolution of the density of occupied sites in
the limit as the size of the system goes to infinity. Its main reult showed that the system
converges to a discrete-time dynamical system which, for large enough rates of population
growth, and as a result of the forest fire epidemic mechanism, is chaotic.

In this work we study an extension of the moth model to a case where there are multiple
species competing for space, each one affected by a different disease. As expected, when birth
rates are sufficiently large the evolution of the system still presents chaotic behavior. The
main goal of our paper is to show that, in the case of two species, the introduction of forest
fire epidemics can promote coexistence. The intuition behind this phenomenon is simple.
Suppose that we have two species competing for space, in a situation where we would expect
the fitter species to drive the other one to extinction. If we introduce forest fire epidemics into
the system then the fitter species, which achieves higher densities, will be more susceptible
to the destruction of very large occupied clusters. This will have the effect of periodically
clearing space for the growth of the weaker species, which may then have a chance to survive.

Our main result shows that, for the particle system, and depending on the parameters of the
model, the weaker species may die out quickly or it may in fact coexist with the fitter species
for a relatively long time. We perform an analogous analysis of survival for the one-species
particle system, complementing the [DR09] result for the limiting dynamical system.

Since the MM provides the basic setting for all of our results, we will begin by introducing
it and the main results of [DR09] in some detail, and defer an overview of our extension and
results until Sections 1.2 and 1.3. The detailed discussion of our results will be postponed
until Section 2.

1.1. The moth model. The MM is a discrete time Markov process
(
ηNk
)
k≥0

taking values

in {0, 1}GN , where GN is a finite, possibly random graph of size N , in which each vertex x is
either occupied by a particle (ηNk (x) = 1) or empty (ηNk (x) = 0). The dynamics of the process
at each time step is divided into two consecutive stages, growth and epidemic:

Growth: Each particle gives birth to a mean β > 0 number of individuals and then dies.
Individuals born at site x are sent to a randomly chosen site in its growth neighborhood
NN (x) ⊆ GN .

Epidemic: Each site is attacked by an infection with probability αN , independently across dif-
ferent sites. When an occupied site x is attacked, the infection wipes out the entire connected
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component of occupied sites containing x. The occupied sites which survive the epidemic are
the ones making up the population at the start of the next time step.

The main goal of [DR09] was to show that, for suitable choices of graphs GN , and under
some growth conditions on NN and αN , the trajectories described by the densities

ρNk =
1

N

∑
x∈GN

ηNk (x) (1.1)

converge to the orbit of a deterministic dynamical system which, for certain parameter values,
is chaotic. The dynamical system obtained in [DR09] is defined by a map h : [0, 1]→ [0, 1] of
the form h = g0 ◦ fβ, where

fβ(p) = 1− e−βp

is the expected population density after the growth stage starting with density p and g0(q) is
the expected density of sites that survive the epidemic stage when it attacks a population with
density q which is uniformly spread (i.e. distributed according to a product measure with this
density). The particular form of fβ can be guessed by approximating the spatially dependent
model by its mean field version. The function g0, on the other hand, depends heavily on the
choice of the sequence of graphs GN and the epidemic parameters αN , which in [DR09] are
assumed to be in the weak epidemic regime αN −→ 0, which implies that in the N →∞ limit
the epidemic only attacks infinite connected components.

In the first part of [DR09], the authors take {GN}N∈N to be a sequence of random connected
3-regular graphs and work in the case of mean-field growth, where NN (x) = GN for all N . The
mean-field assumption implies that after the growth stage the process looks like percolation
on GN , and since this graph looks locally like a 3-regular tree then one can hope to obtain
explicit formulas: indeed, the probability that the root (and by consequence any vertex) is
in an infinite component can be computed in terms of the survival probability of a binary
branching process, and is given by

g0(p) =

{
p if p ≤ 1

2 ,
(1−p)3

p2 if 1
2 < p ≤ 1.

(1.2)

Together with the above expression for fβ, this gives

h(p) = g0 ◦ fβ(p) =

{
1− e−βp if 0 ≤ p ≤ a0,
e−3βp

(1−e−βp)2 if a0 < p ≤ 1.
(1.3)

To keep the notation simple, in everything that follows we omit the dependence of h on the
parameters of the model.

Throughout the paper we will use the notation DS(h) to denote the dynamical system(
hn(p)

)
n≥0

defined from the iterates hn of a given map h.

The following theorem states the precise convergence result for the evolution of the density
ρNk of occupied sites as N →∞:

Theorem 1.1 ([DR09], Thm. 2). Suppose that (GN )N∈N is a sequence of random connected
3-regular graphs and that NN (x) = GN for all x and N . Assume that the infection probability
of the epidemic satisfies αN −→ 0 and αN log2(N) −→ ∞ as N → ∞, and also that ρN0 −→
p ∈ [0, 1] in distribution as N → ∞. Then the process (ρNk )k≥0 converges in distribution as
N →∞ (on compact time intervals) to the (deterministic) orbit of DS(h) started at p.

The behavior of DS(h) can be described as follows (see [DR09] for more details):

• If β ≤ 1 then for every p ∈ [0, 1] the sequence hk(p) decreases to 0 as k →∞.

• If β ∈ (1, 2 log 2] then the orbit of hk(p) eventually gets trapped inside the interval [0, 1
2 ],

where h ≡ fβ, which means that there are no epidemic outbreaks. Inside this interval,

hk(p) converges to the only positive fixed point of fβ.
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• If β > 2 log 2 then the orbit of hk(p) is still trapped inside the interval [h(1
2), 1

2 ] but there
is no longer convergence to a fixed point. Indeed, since β > 2 log 2, the fixed point of fβ is

larger than 1
2 , so the successive growth stages drive the density above this value, at which

time the epidemic kicks in and forces a relatively large jump back to [h(1
2), 1

2 ].

Thus the case β ≤ 1 corresponds to the extinction regime (at least for the limiting dynamical
system), while for all β > 1 we have lim infk→∞ h

k(p) > 0 (for all p ≥ 0), which corresponds
to survival.

The next result establishes the chaotic behavior of the orbits of h when β > 2 log 2 (the
third of the cases above):

Theorem 1.2 ([DR09], Thm. 1). The dynamical system DS(h) restricted to the interval
[h(1

2), 1
2 ] is chaotic for every β > 2 log 2. Furthermore, if β ∈ (2 log 2, 2.48], then the system

has an invariant measure, µ = µ ◦ h−1, which is absolutely continuous with respect to the
Lebesgue measure.

The notion of chaos in the first assertion of the theorem is the one given by Li and York
[LY75] in their famous period three implies chaos theorem (see [DR09, Prop. 1.1] for more
details). The authors also proved versions of Theorem 1.1 and of the second assertion of
Theorem 1.2 (which is actually expected to hold for all β > 2 log 2) for the process running
on the discrete torus with local growth, where newly born particles are sent to a local neigh-
borhood with a diameter which grows suitably with N . However, in this case there is no
explicit formula for g, nor numeric values for the critical parameters. It is precisely because
of the availability of explicit formulas that, in everything that follows, we choose to work in
the setting of random 3-regular graphs.

1.2. The Multi-type Moth Model. Our main interest in this paper is the study of the
multi-type moth model (MMM), a natural extension of the moth model which considers
multiple species competing for space subject to the same sort of epidemics. We describe it
formally next. Fix a graph GN as before and let m ∈ N, which will be the number of species.
The MMM is a discrete time Markov chain

(
ηNk
)
k≥0

taking values in {0, . . . ,m}GN ; each

site x ∈ GN can be occupied by an individual of type i ∈ {1, ...,m} (ηNk (x) = i) or vacant

(ηNk (x) = 0). The process depends on two sets of parameters, ~β = (β(1), . . . , β(m)) ∈ Rm+ and
~αN = (αN (1), . . . , αN (m)) ∈ [0, 1]m, and as in the MM the dynamics of the process at each
time step is divided into two consecutive stages:

Growth: An individual of type i at site x ∈ GN sends a Poisson[β(i)] number of descendants
to sites chosen uniformly at random in NN (x) ⊆ GN . If a site receives individuals of more
than one type, then the type of the site is chosen uniformly among the individuals it receives.

Epidemic: Each site x occupied by an individual of type i after the growth stage is attacked
by an epidemic with probability αN (i), independently across sites. The individual at x then
dies along with its entire connected component of sites occupied by individuals of type i. This
happens independently for i = 1, . . . ,m.

Note that we have assumed that the offspring of each individual is Poisson distributed.
Although it would be possible to work with more general offspring distributions, as in the
MM, we opt to make this assumption in order to simplify the presentation and proofs.

If one suppresses the epidemic stage then our process turns into a multi-type contact process,
for which it is relatively easy to prove that the fitter species (i.e. the one with the largest
growth parameter β(i)) will outcompete and drive to extinction all the other ones. In our
main result, Theorem 2.11, we show that the introduction of forest fire dynamics changes this
picture, allowing two species to coexist even when they have different fitnesses. We remark,
however, that in our model we are assuming that epidemics affect each species independently;
this is natural when considering epidemics lacking cross-species transmission due to genetic
distance, but is not a very realistic assumption if one thinks about the competition of different



SURVIVAL AND COEXISTENCE FOR A SPATIAL POPULATION MODEL WITH FOREST FIRES 5

species of trees and takes the forest fire metaphor literally. It seems, nevertheless, that this
assumption is important for coexistence to arise in our setting, as we will discuss further in
Section 2.2, where we present an example with non-specific epidemics in which the stronger
species drives all the rest to extinction. It should be noted that this qualitative difference
between epidemics with and without cross-species transmission is somewhat similar to the
one found in the literature for predators, where the addition of a “specialist” predator to
Lotka-Volterra systems can be more effective in promoting coexistence than the addition of a
“generalist” predator (see [Sch97]).

Remark 1.3. A related model was studied by Chan and Durrett [CD06], who proved coexis-
tence for the two-type, continuous time contact processes in Z2 with the addition of a different
type of forest fires, which act by killing all individuals (regardless of their type, and regardless
of whether they are connected) within blocks of a certain size. They showed that if the weaker
competitor has a larger dispersal range then it is possible for the two species to coexist in the
model with forest fires; this contrasts with Neuhauser’s result [Neu92] for the model without
forest fires for which such coexistence is impossible. Our context is different, since we work
on a random graph with forest fires which travel only along neighbors of the same type and
which have an unbounded range, and since all species use the same dispersal neigborhoods.
The techniques we use are also different, and the results we obtain are of a slightly different
nature. But the motivation is similar, and our results complement nicely with theirs.

As we already mentioned, all of our results will be proved in the case where GN is a random
connected 3-regular graph. The first step in our analysis of the MMM is an adaptation of
Theorem 1.1 to the multi-type case, Theorem 2.2. More precisely, let

{
ρNk
}
k≥0

denote the

sequence of density vectors obtained from
{
ηNk
}
k≥0

as

ρNk = (ρ
N,(1)
k , . . . , ρ

N,(m)
k ) with ρ

N,(i)
k =

1

N

∑
x∈GN

1{ηNk (x)=i}. (1.4)

Then under suitable conditions on ~β, ~αN and the growth neighborhood NN (x), and assum-
ing further that ~αN converges to some limiting ~α ∈ [0, 1]m, we show that ρNk converges in
distribution to a certain dynamical system DS(h) which is an m-dimensional analogue of the
dynamical system we obtained for the MM.

We remark that in this work we are going beyond the weak epidemic regime of [DR09] by
allowing the infection rates αN (i) to converge to arbitrary values α(i) ∈ [0, 1]. This is natural
from the biological point of view, as it incorporates into the model the effect of diseases with a
fixed incidence rate. This generalization, which has the effect of modifying the m ≥ 1 analog
of g0 (see (1.2)), has a major impact on the dynamical system, allowing the epidemics to kill
not just infinite connected components but finite ones as well. In particular, for α(i) > 0 the
density of the type-i population no longer needs to be above the percolation parameter of the
network for the epidemic to kick in, so we observe its effects at all times.

1.3. Overview of the main results.

1.3.1. Phase diagram of the dynamical system. Since our main interest is to understand
whether the introduction of forest fire epidemics can promote coexistence, for simplicity we
restrict our study of the phase diagram of DS(h) to the case of two species (m = 2). Our
results (Theorems 2.7 and 2.9) show that, as expected, there exist parameter regions where
domination occurs (that is, where the fittest species drives the other one to extinction) as
well as other parameter regions where both species coexist (that is, where both coordinates
of hk remain bounded below as k → ∞). The regions obtained in our theorems are defined
through two explicit inequalities, (2.9) and (2.10), which are naturally expressed in terms of
the parameters

φi := (1− α(i))β(i),
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which we will refer to as the fitness of each species (and corresponds to the effective birth rate
of individuals after considering the probability that a newly born particle does not survive the
epidemic stage due to an infection arising in its location). In particular, we find the following
(see also Figure 5); here we assume that type 2 corresponds to the fitter species:

• Extinction is certain for any species with fitness value φi ≤ 1. This is analogous to
the extinction for the case β ≤ 1 described in the analysis of DS(h) for the MM.

• For every given fitness value φ2 > 1 of the stronger species we can choose φ1 sufficiently
close to, but larger than, 1, so that type 2 dominates.

• For any ε > 0 small we can choose φ1 and φ2 large but with relative fitness φ1

φ2
= ε

such that both species coexist.

Note that, in view of the second and third points above, given any small ε > 0 we can
choose two different sets of parameters with the same relative fitness ε so that in one case
type 1 is driven to extinction while in the other case there is coexistence. Hence relative fitness
does not provide enough information about the behavior of the system, which indicates that
the effect of the forest fire epidemics is what is driving the qualitative difference in behavior.

As we have mentioned, even in the case of m = 1 our model provides an extension of
the model studied in [DR09], as it drops the weak epidemics assumption by allowing for
αN → α > 0. This extension is far from trivial at the level of the limiting dynamical system
DS(h): as we will notice in Section 2.2.1, from numerical simulations it is clear that for each
fixed α ∈ (0, 1) the bifurcation diagram of DS(h) develops bifurcation cascades (also known
as period-doubling bifurcations) in β, such as those seen for example for the quadratic maps
x 7−→ rx(1− x), see Figure 1. See Section 2.2.1 for more details.

1.3.2. Coexistence and survival for the particle systems. Our main results concern the behavior
of the particle system for finite N and for one and two species. The main idea is to show that
the behavior of the limiting dynamical systems DS(h) provides a good guide for the behavior
of the original process. Note, however, that the MMM is a finite state Markov chain for
which the extinction time of all types is almost surely finite, so we need to change our notions
of coexistence and survival when working at the level of the particle systems. To this end
we follow the usual approach (see e.g. [Cox89; DL88]) where one characterizes the different
phases of the system in terms of the behavior of the (random) extinction times as a function
of the network size N . Our main result in the case with m = 2 is Theorem 2.11, which shows
that there are parameter choices so that the weaker species dies out quickly while the fitter
one survives for a relatively long time, and other parameter choices for which both species
survive for a relatively long time.

The main challenge in proving results for our particle systems comes from the slow con-
vergence of the empirical densities to the limiting dynamical system. This is intrinsic in the
very nature of our model: it is hard to obtain a fine control on the distance between the finite
system and its limit when the limiting system itself presents chaotic behavior, which makes it
essentially impossible to predict its evolution. As a consequence, in our proof of coexistence
we are not able to show that the extinction times of both species grow exponentially in N , as
should be expected. For the case m = 1 (Theorems 2.5 and 2.6), on the other hand, we prove
survival (when φ > 1) and extinction (when φ ≤ 1) arguing directly on the particle system
ηNk (and not relying on the convergence to the dynamical system), and as a result we are able
to prove that the expected extinction time does indeed grow exponentially at least for φ > φ∗

for some φ∗ > 1.

Outline. The rest of the article is organized as follows. In Section 2.1 we state our convergence
results (discussed in Section 1.3.1). In Section 2.2 we state the results related to the MM
(discussed in Section 1.3.1), while in Section 2.3 we state the results related to the MMM (the
multi-type case discussed in Section 1.3.2). Last two sections also contain brief discussions
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about the main aspects involved in the proofs of our results. The proof themselves are deferred
to Sections 4, 5 and A, devoted to the MM, the MMM and some technical results respectively.

2. Results

2.1. Convergence. As discussed in Section 1.2, the starting point of our work is a conver-
gence theorem for the MMM, analogous to the convergence proved in [DR09, Thm. 2] for the
MM with weak epidemics. Analogously to (1.3), the limiting dynamical system will be given
as DS(h) with h of the form g~α ◦ f~β, where f~β and g~α describe the limiting densities after the

growth and epidemic stage, respectively. In order to derive a good candidate for f~β we will

focus for simplicity on the mean-field model (NN (x) = GN ), even though our result will be
slightly more general, allowing for NN (x) = B(x, rN ) (the ball around x of radius rN in the
natural graph distance for GN ) for rN converging to infinity sufficiently fast. Recalling the
Poisson assumption on the offspring distribution, the expected number of occupied sites after
the growth stage with initial densities given by p ∈ [0, 1]m is 1 − e−

∑m
i=1 β(i)pi , and since in

the process we let each site choose its type uniformly at random from the particles it receives,
the expected density of sites occupied by type i after the growth stage is given by

f
(i)
~β

(p) =
(

1− e−
∑m
i=1 β(i)pi

) β(i)pi∑m
i=1 β(i)pi

. (2.1)

The function g~α, on the other hand depends heavily on the particular choice GN which, we
recall, we always take to be a random 3-regular connected graph. In this case, and as explained
in Section 1.1, the graph looks locally like a 3-regular tree, so in order to guess a candidate
for g~α we can pretend that the epidemic stage acts on the infinite 3-tree T . Let us also
assume for a moment that m = 1. Then we need to analyze the effect of the epidemic when
attacking a configuration of particles distributed as site percolation on T with a given density
q (whose distribution, i.e. a product measure on {0, 1}T where each vertex is occupied with
probability q, we denote as Pq). Note that if Cr denotes the connected component of occupied

sites containing r then the probability that r survives is given by (1− αN )|Cr|1{|Cr|>0}. As a
consequence, we should expect that the limiting probability that a given site is occupied after
the epidemic stage (when it attacks a system with a fraction q of occupied sites) be given by

gα(q) = Pq(r is occupied, r survives the epidemic) = Eq((1− α)|Cr|1{|Cr|>0})

(here r is any vertex of T ).

The right hand side can be computed explicitly:

Proposition 2.1. For any q ∈ [0, 1],

gα(q) =


0 if α = 1,(

1−
√

1−4(1−α)q(1−q)
)3

8(1−α)2q2 if α ∈ (0, 1),

q if α = 0.

The explicit formula in the case α ∈ (0, 1) (whose simple proof is included in Section 3)
is related to the generating function of the Catalan numbers. Now in the general case, when
m ≥ 1, since the epidemics attack each species independently, we deduce that the density of
sites occupied by type i after the epidemic stage acts on a population with initial densities
~q ∈ [0, 1]m should be given by

g
(i)
~α (~q) = gα(i)(qi). (2.2)

We are ready to state our main convergence result. Given p ∈ [0, 1]m define h(p) =(
h1(p), . . . , hm(p)

)
through

hi(p) = gα(i) ◦ f~β(p).

Note that in the case m = 1, h1 coincides with the function h defined above for the MM,
which justifies our use of the same notation in both cases.
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Theorem 2.2. Consider the MMM with m types and with NN (x) = B(x, rN ). Suppose that
the sequences ~αN and rN satisfy

αN (i) −−−−→
N→∞

α(i) ∈ [0, 1], αN (i)rN −−−−→
N→∞

∞, and rN ≤ 1
25 log2(N)2αN (i) ∀N ∈ N.

(2.3)

Suppose also that ηN0 is a product measure where each site is independently chosen to have type
i with probability pi. Then as N → ∞, the density process

(
ρNk
)
k≥0

associated to the MMM

converges in distribution (on compact time intervals) to the deterministic orbit, starting at
p = (p1, . . . , pm), of the dynamical system DS(h).

Note that the last two assumptions in (2.3) are trivially satisfied in the mean-field case
NN (x) = GN (i.e. rN = ∞) if α(i) > 0. The proof of Theorem 2.2 is based on a relatively
simple adaptation of the arguments of [DR09], needed to control the effect of the epidemic on
finite components in order to go beyond the weak epidemics regime. It is worth noting (and
will be clear from the proof) that in the mean-field case one could drop the product measure
assumption on the initial condition (simply because the growth step returns a product measure
anyway).

As discussed in the introduction, the behavior of the limiting dynamical system DS(h)
provides us with informed guesses regarding the behavior of our particle systems. However, the
above convergence result is not sufficient in order to prove that the behavior of the dynamical
systems is in fact mirrored at the level of the finite MMM particle system; this requires
quantitative estimates on the speed of convergence with an explicit control on the depedence
on N . The approximation result that follows provides the necessary estimates in the case of
mean-field growth. We believe that the result holds in the local growth setting of Theorem 2.2;
however, the algebraic expressions involved become even more complicated, so for simplicity
we choose, here and in basically all the other upcoming results, to restrict the discussion to
the simpler mean-field setting.

Let

θα(N) =

{
e−
√

log(N) if α = 0

N−α/5 if α > 0.

Theorem 2.3. Consider the mean-field MMM (i.e. NN (x) = GN for all x ∈ GN ) with m
types. Suppose that the sequence ~αN converges to some ~α ∈ [0, 1]m and satisfies

−αN (i) logN/ logαN (i) −→∞ (2.4)

for each i. Then for all δ > 0 and k ∈ N there is a constant C > 0 depending only on δ and
k such that for all N ∈ N and any initial condition ηN0 we have

P
(∥∥ρNk − hk(ρN0 )

∥∥ > δ
)
≤ Cθα(N), (2.5)

where α = min{α(1), . . . , α(M)}.

The main ingredient in the proof is Lemma 3.1, which uses a comparison with a branching
process to estimate the difference between h and the expected density after one step.

2.2. Results for the one-type model.

2.2.1. Phase diagram and bifurcation cascades. We begin our study of the MM by briefly
exploring the behavior of the limiting dynamical system. Recall our definition of the fitness
parameter

φ = φ(α, β) = β(1− α).

The following simple result establishes the desired phase transition between extinction and
survival in the orbits of DS(h).

Proposition 2.4. Let α ∈ [0, 1] and β > 0.
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(i) (Extinction) If φ(α, β) ≤ 1, then

hk(p)
k→∞−−−→ 0 ∀p ∈ [0, 1].

(ii) (Survival) if φ(α, β) > 1, then

lim inf
k→∞

hk(p) > 0 ∀p ∈ (0, 1).

Let us briefly comment on an interesting behavior which becomes apparent from numerical
simulations of the orbits of DS(h): the bifurcation cascades which we mentioned in Sec-
tion 2.2.1. These are sequences of period doubling bifurcations that occur as the parameter
β is increased (for fixed α > 0), and which accumulate at a certain finite value of β. Figure 1
(left) shows bifurcation diagrams for DS(h) which clearly suggest the occurence of this phe-
nomenon in our system. This behavior contrasts with case α = 0 where, as pointed out in
[DR09] (see the discussion preceding Prop. 1.1 there), the system proceeds directly from a
stable fixed point to a chaotic phase, without passing through period-doubling bifurcation; the
parameter α has thus the effect of modulating the appearance of these bifurcation cascades.

The prototypical example of a dynamical system presenting this behavior is the one defined
by the quadratic map x 7−→ rx(1−x), which has a first period doubling bifurcation occurring
at r = 3 and then subsequent ones which continue up to r ≈ 3.56, where a chaotic regime arises;
this pattern is then repeated for larger values of r. This intricate behavior has been intensely
studied since at least the 1970’s, and presents an intriguing form of universality, which roughly
states that the ratio of the gaps between subsequent period doubling bifurcations converges
to a universal constant for a wide class of dynamical systems showing this type of cascades
(see e.g. [Fei78; TC78], where several universality conjectures were settled). This area of
dynamical systems continues to be developed to this day (see e.g. [SY11; JSY10]); we refer
the reader to [TCF14] for a nice account. Our simulations suggest that cascades appear for
all α ∈ (0, 1) when β is increased above 1, but proving this appears to be difficult due to the
algebraic structure of h (in particular, the bifurcation points do not have a simple analytic
expression). Figure 1 (right) shows a simulation of the evolution of the MM for finite N and
different values of β; note how some of the period doubling bifurcation behavior of the limiting
system is still apparent in these simulations.

Figure 1. Left: Bifurcation diagram in β for DS(h) with α = 0.1, showing the orbits

of the system between iterations 900 and 1000 in the vertical direction for different

values of β.

Right: Simulation of the evolution of the mean-field MM for α = 0.1 and different

values of β, from iteration 900 to 1000. Here N ∈ {20000, 40000, 100000} (depending

on β).

Figure 2 presents a schematic summary, partly based on simulations, of the behavior of the
orbits of DS(h) as a function α and β.
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Figure 2. Approximate phase diagram of DS(h). The transition between extinction

and survival is justified by Proposition 2.4, while the one governing the appearance of

bifurcation cascades (dashed line) is based on simulations.

2.2.2. Extinction and survival for the particle system. We turn now to the dichotomy between
extinction and survival at the level of the MM particle system for finite N . As discussed in
the introduction, we will exhibit contrasting behaviors for the absorption time

τN := inf
{
k ≥ 1: ηNk (x) = 0 ∀x

}
= inf

{
k ≥ 1: ρNk = 0

}
.

The following result is satisfied for any fixed N (the size of the graph GN ) and any fixed
choice of α(N), but for the sake of concreteness one may think of the case α(N) −→ α (or
even α(N) = α).

Theorem 2.5. For the mean-field MM and any N ∈ N we have:

(i) (Extinction) If φ(αN , β) ≤ 1, then for all n ∈ N and any initial density ρN0

P(τN ≥ n) ≤

1− (1− φ(αN , β)n)N if φ(αN , β) < 1,

1−
(

1− 2
n(1−αN )(σ2+αNβ2)

)N
if φ(αN , β) = 1,

where σ2 is the variance of the offspring distribution of each particle in the growth
stage. In particular, it follows that when φ(αN , β) < 1 there is a C > 0 independent
of N such that

E(τN ) ≤ C log(N). (2.6)

(ii) (Survival) If φ(αN , β) > 1 and ρN0 ≥ ρ̄0 for some ρ̄0 > 0, then there exists c > 0
(depending only on ρ̄0 and αN ) such that

P(τN ≥ n) ≥
(

1− c

N

)3n
.

In particular, if we assume that αN log2(N)→∞ then

E(τN ) ≥ N

4c
. (2.7)

The proof of extinction is simple, and is based on a comparison with a branching process
process where one essentially ignores the effect of epidemics. For survival the main idea of
the proof is to keep track of isolated occupied sites, which are not affected by epidemic events
coming from other sites.
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We believe that in the extinction regime the process actually has exponential expected
absorption times. In the next result we show that this is indeed the case, at least for large
enough φ, under an additional (but reasonable) condition on our random graphs.

Recall that a k-independent set of a graph G is a subset I of its vertices such that, for any
x, y ∈ I, dG(x, y) ≥ k. Given 0 ≤ b < 1 we define the events

RN (b) :=
{
GN has a 3-independent set I with |I| ≥ bN

}
.

From [BDZ05, Thm. 1.1] there exists b ≈ 0.09 such that

P
(
RN (b)

)
−−−−→
N→∞

1. (2.8)

In words, our random 3-regular graphs contain a 3-independent set made out of fraction of at
least b of its vertices with probability close to 1 as N becomes large. This justifies conditioning
on RN (b1) in the coming theorem.

Theorem 2.6. Fix b as in (2.8) and assume that φ(αN , β) > 1/b and that ρN0 ≥ ρ̄0 for some
ρ̄0 > 0. Then (in the case of mean-field growth) there is a c > 0, depending only on αN and
ρ̄0 such that

P
(
τN ≥ n

∣∣GN ∈ RN (b)
)
≥ (1− exp(−cN))3n.

In particular, if αN −→ α ∈ [0, 1) and αN log2(N) −→∞ as N →∞, then

E
(
τN |GN ∈ RN (b)

)
≥

{
3 exp(cN) if α ∈ (0, 1),

3 exp
(

cN
log(N)2

)
if α = 0.

2.3. Results for the multi-type model. In everything that follows we only consider the
two-type case, m = 2.

2.3.1. Phase diagram. As for the MM, we begin by studying the behavior of the orbits of
DS(h). The analysis is much more involved than the one for the one-type model, but it
will provide us with a glimpse on the role that the forest fire dynamics can have in aiding
coexistence. In fact, our results in this part, together with the above approximation result
(Theorem 2.3), will constitute the basic ingredients for our later analysis of the particle system.

We are interested in identifying two different regimes for DS(h): we say that there is
domination if one species goes extinct while the other one survives, i.e. if lim infk→∞ h

k(~p)
has one and only one vanishing coordinate, while we say that there is coexistence if both types
survive, i.e. if the same liminf is strictly positive in both coordinates. Notice that once one
species dies out, the behavior of the other one, say the one with type i, evolves according to
the dynamical system given by hi = gα(i) ◦ fβ(i) as in the one-type case.

Since we are interested in coexistence, we will restrict the discussion to the case when

φi := φ(α(i), β(i)) > 1

for both i = 1 and i = 2; by Proposition 2.4 we know that if this fails then at least one
of the species would die out even when facing no competition, whence it easily follows that
coexistence would be impossible. For concreteness we will always assume type 2 is fitter than
type 1, i.e. φ1 < φ2.

In order to ease notation, from now on we denote, for a given initial condition p ∈ [0, 1]2

and any i ∈ {1, 2}
pki = hki (p).

Theorem 2.7 (Coexistence). There is a continuous, increasing function z : [0, 1] −→ R+

(defined in (5.20)) satisfying z(0) = 2 log(2) and z(1) < 4 log(2) such that the following holds.
Suppose that φ2 > z(α(2)) and

φ1

√
2(1− e−κ2)(1− e−

φ2
2 )

κ2φ2
> 1, (2.9)
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where κ2 is the solution of κ2 = β(2)gα(2)(1−e−κ2). Then for any initial condition p ∈ (0, 1)2

we have
lim inf
k→∞

pk1 > 0, and lim inf
k→∞

pk2 > 0.

The intuition behind this result is the following. Consider the case where p1 is very small. In
that scenario the effect of the type 1 species on pk2 is negligible, meaning that type 2 evolves
as if it were alone. On the other hand, for p1 small, the total growth of type 1 after one
iteration will be roughly φ1 times a factor smaller than 1 corresponding to the competition
effect coming from p2. What condition (2.9) states is that, on average, this competition effect
coming from type 2 (represented by the square root factor) is not strong enough to compensate
the growth produced by φ1, allowing thus p1 to move away from low density values.

Remark 2.8. In (2.9), the parameter φ1 needs to grow roughly as
√
φ2 log(φ2) as a function

of φ2 in order for the left hand side to stay above 1. To see this, use the definition of κ2 to

write φ2 = κ2

gα(2)(1−e−κ2 )
= κ2

(1−e−κ2 )Gα(2)(1−e−κ2 )3 =
κ2(1+

√
1−4(1−α(2))e−κ2 (1−e−κ2 ))3

(1−e−κ2 )8e−3κ2
, which says

that κ2 grows roughly as log(φ2), and then substitute this approximation in (2.9).

The next result states the domination counterpart to Theorem 2.7.

Theorem 2.9 (Domination). Let a1(x) be the solution of a1(x) = x(1− e−a1(x)) and assume
that φ1 and φ2 satisfy

a1(φ1) <
φ2

1− α(2)
min

{
gα(2)(1− e−

φ2
2 ), gα(2)(1− e−a1(φ1))

}
. (2.10)

Then for any initial condition p with p2 ∈ (0, 1) we have

pk1 −−−→
k→∞

0 and lim inf
k→∞

pk2 > 0.

Even though the condition given in (2.10) is again relatively obscure (see Figure 5 for an
approximation of the associated region), the basic idea behind this result is simple. Starting
from any initial condition we show that the orbit of the dynamical system eventually reaches
a set B where p1 decays exponentially. We then employ (2.10) to show that neither low nor
high values of p2 can take the dynamical system out of B, making it a “trapping” set where
type 1 species dies out.

Remark 2.10. It is easy to see that a1(φ1) is increasing with respect to φ1, with a1(1) = 0,
so for a given φ2, any value of φ1 sufficiently close to 1 satisfies (2.10).

Simulations suggest that if φ2 is smaller than but sufficiently close to 2 log 2 and α(1), α(2) ∈
(0, 1), then there exists φ1 smaller than φ2 such that coexistence holds. See Figure 4 (right)
for a simulation which exhibits this behavior (note that both species have positive density to
the left of the leftmost vertical line).

2.3.2. Coexistence and domination in the MMM. We arrive finally at the main results of the
paper, which explore the possibility of domination and coexistence for the MMM. This is done
by using the approximation theorem to transfer the properties of DS(h) derived in the last
section to the associated particle systems for suitable families of parameters.

Let us stress again that, if we consider the MMM without epidemics, then the resulting
process is nothing more than a multi-type contact process, for which it is known that the
species with larger offspring parameter will always outcompete the other one (this has been
proved for other choices of GN , e.g. the result of [Neu92] mentioned in Remark 1.3, but in
the current setting of mean-field growth it would be simple to prove). The upcoming results
will show that, as advertised, there are choices of parameters for which there is coexistence
even when one species has a larger offspring parameter, and hence that the introduction of
forest fire dynamics can indeed lead to coexistence in a system which would otherwise show
domination.
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Figure 3. Bifurcation diagrams in β(1) for type 1 on the left and type 2 on the

right, with β(2) = 4 log(2) and α(1) = α(2) = 0. From left to right, in each figure, the

first vertical line is at φ1 = 2 log 2 and the second one at φ1 = φ2. These diagrams

reflect theorems 2.9(b) and theorem 2.7. These diagrams depict regions corresponding

to Theorems 2.9 (dominance of type 2 over type 1) and 2.7 (coexistence); coexistence

corresponds to the region between the two vertical lines in both figures.

Figure 4. Bifurcation diagram for type 1 (black) and type 2 (blue). Left: β(2) =

1.99 log(2), α(1) = 0.01 and α(2) = 0.2. From left to right, the first vertical line is at

φ1 = φ2 while the second one is at φ1 = 2 log 2. Right: β(2) = 2.6 log(2), α(1) = 0.01

and α(2) = 0.1. From left to right, the first vertical line is at φ1 = 2 log 2 while the

second one is at φ1 = φ2.

Let
τ iN = inf

{
k ≥ 1: ηNk (x) 6= i ∀x ∈ GN

}
= inf

{
k ≥ 1 : ρ

N,(i)
k = 0

}
denote the extinction time of the type i.

Theorem 2.11. Consider the two-species mean-field MMM running on a random 3-regular
graph GN . Suppose that for each N the initial density of the process ρN0 is in (0, 1)2, and
that the sequence ~αN satisfies the conditions in Theorem 2.3. Then there are constants C =
C(ρN0 ) > 0 and γ ∈ (0, 1) such that for α = min{α(1), α(2)} we have:

(i) (Coexistence) If ~αN and ~β satisfy the conditions of Theorem 2.7, then

P(τ1
N , τ

2
N ≥ n) ≥

(
1− Cθα(N)

)n
. (2.11)

(ii) (Domination of type 2 over type 1) If ~αN and ~β satisfy the conditions of Theorem 2.9,
then

P(τ2
N ≥ n) ≥

(
1− Cθα(N)

)n+1
(2.12)

and
P(τ1

N ≥ n) ≤ 2− (1− γn)N −
(
1− Cθα(N)

)n
+ Cθα(N). (2.13)

In particular, if we assume that ρN0 −→ p ∈ (0, 1)2 as N →∞, then:
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(i’) For ~α and ~β satisfying the conditions of Theorem 2.7 and all ε > 0,

P
(
τ1
N , τ

2
N ≥ 1/θα(N)1−ε) N→∞−−−−→ 1. (2.14)

(ii’) For ~α and ~β satisfying the conditions of Theorem 2.9, and for all ε > 0, there is a
C ′ > 0 depending only on p such that

P(τ1
N ≤ C ′ logN)

N→∞−−−−→ 1 and P
(
τ2
N ≥ 1/θα(N)1−ε) N→∞−−−−→ 1. (2.15)

Recalling that θα(N)1−ε is of larger order than log(N), this gives domination.

Figure 5. Summary of the domination and coexistence regimes for the MMM, for

α(1) = α(2) = 0 on the left and α(1) = α(2) = 0.1 on the right. The white (resp.

black) regions represent the domination regime of type 1 over type 2 (resp. type 2 over

type 1); these regions are justified by Theorems 2.9 and 2.11. The gray regions roughly

correspond the coexistence regime, and are justified by Theorems 2.7 and 2.11 (the

coexistence regions are only approximate in the sense that they where plotted based

on their asymptotic behavior: as φ2 →∞, φ1 grows as
√
φ2 log(φ2), see Remark 2.8).

As a consequence if condition (2.4) is satisfied, then (in the mean-field case) we have that:

(a) Under the conditions of Theorem 2.7 there is coexistence, in the sense that with high
probability both species are present in the system for an amount of time of order at
least θα(N)−1.

(b) Under the conditions of Theorem 2.9 there is domination, in the sense that, with high
probability, the extinction time of type 1 is at most of order log(N) while type 2
survives for at least an amount of time of order at least θα(N)−1.

(c) The possibilities for survival and extinction listed in Section 1.3.1 hold for the MMM.
(d) In particular, there exist φ2 > 2 log(2) and φ1 < φ′1 < φ2, such that in the MMM

associated to (φ1, φ2) type 2 dominates over type 1 while the MMM associated to
(φ′1, φ2) is in the coexistence regime. This can be achieved, moreover, when α(1) =
α(2) = 0.

Figure 5 contains a sketch of the regions of the phase diagram of the process which have been
probed in Theorem 2.11, which in particular makes the existence of the parameter triplets
(φ1, φ

′
1, φ2) referred to in (d) above apparent. In fact, as φ2 → ∞ we have that φ′1 is of

order
√
φ2 log(φ2) (see 2.8 for an explanation), and hence we can find φ′1 < φ2 satisfying the

corollary for β(2) sufficiently large.
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3. Proofs of the convergence and approximation results

We begin with the simple proof of the formula for gα.

Proof of Proposition 2.1. Recall that T denotes an infinite 3-tree, Pp denotes the site perco-
lation measure on T with density p, and Cr denotes the percolation cluster containing a given
vertex r. The cases α = 0 and α = 1 are straightforward, so we turn to the case α ∈ (0, 1),
where we have

Ep((1− α)|Cr|1|Cr|>0) =
∞∑
n=1

(1− α)nPp(|Cr| = n).

Let An be the number of possible connected components of size n in a 3-tree rooted at r,
so that Pp(|Cr| = n) = Anp

n(1 − p)n+2 (notice that n + 2 is the number of vacant sites
surrounding a cluster Cr of size n). Noting that a 3-tree is a root connected to three binary
trees and recalling that the analog of An for a binary tree is given by the Catalan numbers
Cn, we get

A0 = 1 and An+1 =
∑n

i=0

∑n−i
j=0CiCjCn−i−j . (3.1)

Defining the generating functions A(x) =
∑∞

n=0Anx
n and C(x) =

∑∞
n=0Cnx

n, the above
equation gives

A(x) = xC(x)3 + 1 = x
(

1−
√

1−4x
2x

)3
+ 1,

where we have used the explicit formula for C(x) (see [Slo10]). Using this above yields

Ep((1− α)|Cr|1|Cr|>0) =
∞∑
n=1

(1− α)npn(1− p)n+2An = (1− p)2
(
A((1− α)p(1− p))− 1

)
=

(
1−
√

1−4(1−α)p(1−p)
)3

8(1−α)2p2 . �

The proof of the convergence result, Theorem 2.2, is a relatively simple adaptation of the
proof of [DR09, Thm. 4] for the one-species model running on the torus, so we defer it to the
appendix. We turn next to the approximation result:

Proof of Theorem 2.3. Define the event HN = {x ∈ GN : GN ∩ B(x, LN ) is a finite 3-tree}
with LN = log2(N)/5. Observe first that, since δ > 0 is arbitrary, and from the uniform
continuity of h, we only need to prove the statement of the theorem for k = 1. Even further,
it is enough to show that for any fixed j ∈ {1, . . . ,m} and δ > 0 we can find C such that

P
( ∣∣ρN,(j)1 − hj(ρN0 )

∣∣ > δ
)
≤ Cθα(j)(N). (3.2)

Fix then any such j and, as in [DR09], define η̃N1 as η̃N1 (x) = j if the vertex x belongs to HN

and at time 1
2 it is occupied by an individual of type j that survives the epidemic when one

ignores infections arising outside B(x, LN ). Defining ρ̃N1 analogously to ρN1 as the density of
η̃N1 , the event inside the probability (3.2) is contained in

QN :=
{∣∣ρN,(j)1 − 1

N |η
N,(j)
1 ∩HN |

∣∣+
∣∣ 1
N |η

N,(j)
1 ∩HN | − ρ̃N,(j)1

∣∣
+ |ρ̃N,(j)1 − E(ρ̃

N,(j)
1 )|+ |E(ρ̃

N,(j)
1 )− hj(ρN0 )| > δ

}
,

and using Markov’s inequality we obtain

P(QN ) ≤ 4
δ E
(∣∣ρN,(j)1 − 1

N |η
N,(j)
1 ∩HN |

∣∣)+ 4
δ E
(∣∣ 1

N |η
N,(j)
1 ∩HN | − ρ̃N,(j)1

∣∣)
+ 4

δ E
(
|ρ̃N,(j)1 − E(ρ̃

N,(j)
1 )|

)
+ P

(
|E(ρ̃

N,(j)
1 )− hj(ρN0 )| > δ

4

)
, (3.3)
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so the result will follow by showing that each term in on the right hand side is bounded by
Cθα(j)(N) for some C independent of ρN0 . For the first term we use the bound

E
(∣∣ρN,(j)1 − 1

N |η
N,(j)
1 ∩HN |

∣∣) ≤ E(GN \HN )

N
≤ 4N−3/5,

the second inequality by [DR09, Lem. 3.2], while for the third term we use

E
(
|ρ̃N,(j)1 − E(ρ̃

N,(j)
1 )|

)2
≤ Var(ρ̃

N,(j)
1 ) ≤ N−2 |{(x, y) ∈ HN ×HN , d(x, y) ≤ 2LN}|

≤ N−2
∑

x∈GN
|B(x, LN )| = N−2(2N ·N2/5) ≤ 2N−3/5,

where we used independence between any pair of events of the form x ∈ η̃N,(j)1 and y ∈ η̃N,(j)1

for x, y ∈ HN with d(x, y) > 2LN . Hence for both terms we obtain a bound 16
δ N

−3/10, which
(since α < 1) is smaller than Cθα(j)(N).

In order to control the second and fourth terms in (3.3) observe that by translation in-

variance we can fix any vertex r ∈ GN and use the definition of η̃N1 to express E(ρ̃
N,(j)
1 )

as

E(ρ̃
N,(j)
1 ) = P(η̃N1 (r) = j) = E

(
1{r∈ηN,(j)

1/2
∩HN}

(1− αN (j))|C
j
r∩B(r,LN )|

)
,

where Cjr is the type j connected component containing r. Now, the event r ∈ HN implies that
B(r, LN ) is a 3-tree, and by the mean-field assumption for the growth stage, at time 1/2 each

vertex is occupied by a type j individual independently with probability q = f
(j)
~β

(ρN0 ). As a

result, |Cjr∩B(r, LN )| will be the size of the cluster containing r in the percolated 3-tree, which
we represent as the total amount of individuals of a Galton-Watson process Z0, Z1, . . . , ZLN−1.
More precisely since a 3-tree can be seen as a vertex connected to the root of three binary trees,
we set the offspring distribution of the first generation of the Galton-Watson process to be a
Binomial[3, q] and of all subsequent generations to be a Binomial[2, q], with Z0 = 1{r∈ηN,(j)

1/2
},

giving the expression

E(ρ̃
N,(j)
1 ) = E

(
1{r∈HN}Z0(1− αN (j))Z0+Z1+···+ZLN−1

)
= P(r ∈ HN )E

(
Z0(1− αN (j))Z0+Z1+···+ZLN−1

)
,

(3.4)

where the second equality comes from the fact that given the event r ∈ HN , the variables
Z0, Z1, . . . , ZLN−1 do not depend on the particular realization of GN .

The next result, whose proof we postpone to the appendix, allows us to control E(ρ̃
N,(j)
1 ):

Lemma 3.1. Take a sequence (αN )N≥0 ⊆ [0, 1] converging to some α, and a Galton-Watson
process Z0, Z1, . . . as above. Assuming that −αN logN/ logαN −→ ∞, there is a C > 0
independent of q such that for all N ,∣∣E(Z0(1− αN )Z0+Z1+···+ZLN−1

)
− gαN (q)

∣∣ ≤ Cθα(N). (3.5)

The same bound holds for E
(
Z0(1− αN )Z0+Z1+···+ZLN−11{ZLN−1=0}

)
.

Using Lemma 3.1, (3.4), the uniform convergence of gαN (j) to gα(j), and that P(0 ∈ HN ) −→ 1,

we deduce that there is are C,N0 independent of ρN0 such that |E(ρ
N,(j)
1 )−hj(ρN0 )| < Cθα(N)

for all N ≥ N0. In particular, we deduce

P
(
|E(ρ̃

N,(j)
1 )− hj(ρN0 )| > δ

4

)
≤ 4

δCθα(j)(N),

so it only remains to control the second term in (3.3). Notice that ρ̃
N,(j)
1 − 1

N |η
N,(j)
1 ∩ HN |

corresponds by definition to the fraction of vertices x in HN which at time 1
2 are occupied by

an individual of type j that survives the restricted epidemic but not the unrestricted one. In
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particular, for any such vertex there must be an open path to the boundary of B(x, LN ) used
by the unrestricted infection to kill x, so we deduce

E
(∣∣∣ 1

N |η
N,(j)
1 ∩HN | − ρ̃N,(j)1

∣∣∣) ≤ E
(
1{r∈ηN,(j)

1/2
∩HN}

(1− αN (j))|C
j
r∩B(r,LN )|1{Cjr 6⊆B(r,LN )}

)
≤ E

(
Z0(1− αN (j))Z0+Z1+···+ZLN−11{ZLN−1>0}

)
,

where the variables Z0, . . . , ZLN−1 are defined as before. This last bound is equal to

E
(
Z0(1− αN (j))Z0+Z1+···+ZLN−1

)
− E

(
Z0(1− αN (j))Z0+Z1+···+ZLN−11{ZLN−1=0}

)
,

but from Lemma 3.1 both therms are at distance at most Cθα(N) from gαN (j)(q), so

E
(∣∣∣ 1

N |η
N,(j)
1 ∩HN | − ρ̃N,(j)1

∣∣∣) ≤ 2Cθα(N),

giving the result. �

4. Proofs for the one-type model

Proof of Theorem 2.5(i). We start by sampling the graph GN , which will remain fixed for the
rest of the argument, and labeling its vertices as {1, . . . , N}. The proof is based on a simple
coupling of the MM on GN with a branching process (Zn)n∈N. To this end we consider stacks

{(Oji )i∈N}j∈N of i.i.d. random variables distributed according to the offspring distribution of

the MM model and stacks {(Eji )i∈N}j∈N of i.i.d. random variables with P(Eji = 1) = 1−P(Eji =
0) = α. We use the subset of these stacks of random variables with subindices i ≤ N to define
the MM process (ηn)n∈N on GN with a given initial configuration η0 in the obvious way,

using Oji to determine the offspring of the individual at site i and time j (if occupied) and Eji
similarly for the occurence of an epidemic event. Using these variables we define the branching

process as follows: we set Z0 = |η0| and then use the random variable Oji (1−Eji ) to determine
the offspring of i-th individual of Zj−1. Z corresponds to a version of the MM where there
is no restriction on the number of individuals per site, and where the epidemics attack each
individual independently with probability α but they are not transmitted; it is clear then that
|ηn| ≤ Zn for all n.

Let now τGW
k = inf{n ≥ 1 : Zn = 0} be the extinction time of the Galton-Watson process

started with k particles. From branching process theory we know that, since the mean offspring
is φN , then starting with 1 particle we have that

P(τGW
1 ≥ n) ≤

{
(φN )n if φN < 1,

2
Var(X1

1)n
if φN = 1.

Focusing on the case φN < 1, it follows that, since |η0| ≤ N , there exists a c > 0 such that

P(τN ≥ n) ≤ P(τGW
|η0| ≥ n) = P

(
maxi∈{1,2,...,|η0|} τ

GW
1 (i) ≥ n

)
≤ 1− (1− (φN )n)|η0| ≤ 1− (1− (φN )n)N ≤ 1− exp (−c(φN )nN) .

The next-to-last bound is what we wanted. The last bound yields the estimate on the expec-
tation: in fact, for K0 = logφ−1

N
(N) there exists C > 0, such that∑

n∈N (1− exp(−c(φN )nN)) ≤ K0 +
∑

n≥K0
(1− exp(−c(φN )nN)) ≤ K0 + c

1−φN ≤ C log(N).

The same arguments yield the result in the case φN = 1. �

The proof of Theorem 2.5(ii) will be adapted from that of Theorem 2.6, so we turn to that
proof next.

Proof of Theorem 2.6. The basic idea of the proof is to keep track of the isolated particles
in each stage (growth and epidemic). Notice that since we are in the mean-field case we can
suppose without loss of generality that we start from a product measure (the growth step
returns a product measure anyway). We will need an upper bound on the number of empty
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sites. We will say that a site is infected by the epidemic if the epidemic attacks the site,
irrespective of whether the site is occupied or not. Let EPi denote the number of sites infected
by the epidemic at time i. Since the mean number of sites attacked by the epidemic is αNN ,
a Chernoff bound yields P(|EPi−αNN | ≤ αNN/2) ≥ 1− 2 exp(−α2

NN/2). In particular (and
uniformly on the initial condition we have)

P(Di) ≥ 1− 2 exp(−α2
NN/2) with Di = {ρi ≤ 1− αN/2}. (4.1)

Note that the process after the growth stage (started with density p) is just site percolation
on GN with parameter fβ(p). We say that a vertex u of GN is isolated at time i+ 1/2 if u is
open in ηi+1/2 but all its neighbors are closed, and we let Xiu = 1{u is isolated at time i+1/2}. The

family {Xiu}u∈GN is of course not independent; in order to produce an independent family we
will divide the graph into a set of disjoint claws, by which we mean one vertex joined with its
three neighbors.

By hypothesis the graph has a 3-independent set IN of size at least bN , which implies
that it has at least bN disjoint claws (each given by a vertex in IN together with its three
neighbors).

v0

v1 v2 v3

Figure 6. The left figure depicts a claw, also called a cherry or K1,3 in the
literature. The right figure depicts the local behavior of a 3-independent set
on the 3-regular tree (black vertices belong to IN ).

Consider the family (Xiu)u∈IN , and notice that it is made of independent random variables.
Let pi+1/2 be the density of isolated particles after the growing stage in the i-th iteration of
the system. Let also pi+1 be the density of isolated sites that survive the epidemic:

pi+1 =
1

N

∑
v∈GN

ηi+1(v)Xiv.

Let ρIN = |IN |/N and define IsoN (ρ) = (1−e−βρ)e−3βρρIN ; this quantity will be important in
the developments that follow as it represents the expected number of isolated particles after the
growth stage in IN . More formally, starting with density ρ, the probability that a given site is
empty after the growth stage is by translation invariance equal to the expectation of the density
after the growth stage starting with density ρ, and this expectation is equal to (1−β/N)ρN ≈
e−βρ. For simplicity we will use the function IsoN not just as an approximation for the
expectation, but instead of the actual expectation; this may be justified from the fact that
this approximation has a rate of convergence which is much faster than the approximations
which we do in what follows, but we leave these details to the reader. Notice that we can
suppose that we sample the graph, we choose IN , and then we run the process, so that the
function Iso at this point is deterministic; we omit the dependence on the graph and on N .
Define Iso(ρ) := (1 − e−βρ)e−3βρb and notice that IsoN (x) ≥ Iso(x) for all x ∈ [0, 1], since we
are conditioning on GN ∈ RN (b). Let

m = m(δ) = min
x∈[δ,1−δ]

Iso(x).

This minimum is attained at one of the boundary values, as can be checked from simple
properties of Iso(x). In particular, Iso′(x) vanishes at x = x̄ defined as the unique point
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satisfying exp(βx̄) = 4/3, which is a maximum. The values of the function are strictly
positive inside [0, 1], hence m > 0. Also 0 is not attractive since the derivative there is bβ > 1.

Lemma 4.1. For small enough ε > 0 there exists δ̄ ∈ (0, 1/2) such that for every δ ∈ (0, δ̄)
satisfying m(δ)(1− αN )(1− 2ε) ≤ x ≤ 1− αN/2, we have m(δ) ≤ Iso(x).

Proof. Notice that limx→0
Iso(x)
x = bβ, so for γ ≥ 0 small, there exists θγ such that if 0 ≤

x ≤ θγ , then Iso(x(1−αN )(1−2ε))
x(1−αN )(1−2ε) ≥ bβ

1+γ . But since 1 < (1− αN )βb, the conclusion follows if we

choose γ and ε such that (1−αN )βb (1−2ε)
(1+γ) ≥ 1, since it is enough then to consider δ̄ such that

m ≤ θγ . �

Fix some small ε > 0 and choose δ such that m(δ)(1 − αN )(1 − 2ε) ≤ ρN0 ; this can be
achieved since m(δ) is decreasing in δ. The event {ρN0 ≤ 1 − αN/2}, on the other hand,
happens with high probability thanks to (4.1). Hence with our parameter choices we may
apply Lemma 4.1. Now we have all the elements to prove the theorem. Define the events

Ai = {m(1− αN )(1− 2ε) ≤ ρi ≤ 1− αN/2},
Ai = ∩ij=0Aj ,

Bi+1/2 = {|pi+1/2 − IsoN (ρi)| ≤ εIsoN (ρi)},
Ci+1 = {|pi+1 − pi+1/2(1− αN )| ≤ ε(1− ε)(1− αN )pi+1/2},

Ei = {ρi ≥ m(1− αN )(1− 2ε)}.

Observe that, from the previous comment and (4.1), P(A0) > 1− exp(−α2
NN/2) by choosing

δ > 0 sufficiently small. Also observe that P(τN ≥ n+1) ≥ P(An+1) = P(A0)
∏n
i=0 P(Ai+1|Ai)

and that we have the decomposition

P(Ai+1|Ai) = P(Ei+1|Ai,Di+1)P(Di+1|Ai) ≥ P(Ci+1,Bi+1/2|Ai,Di+1)P(Di+1|Ai)
= P(Ci+1|Ai,Bi+1/2,Di)P(Bi+1/2|Ai,Di+1)P(Di+1|Ai);

(4.2)

the inequality follows from ρi ≥ pi and noting that on the events Bi+1/2 and Ci+1 we have

|pi+1 − IsoN (ρi)(1− αN )| ≤ εpi+1/2(1− αN ) + (1− αN )εIsoN (ρi)

≤ ε(1− αN )(1− ε)IsoN (ρi) + (1− αN )εIsoN (ρi) ≤ 2ε(1− ε)(1− αN )IsoN (ρi),

which together with Lemma 4.1 gives ρi+1 ≥ pi+1 ≥ IsoN (ρi)(1−αN )(1−2ε) ≥ m(1−αN )(1−
2ε) as needed. We need to bound the product in the second line of (4.2). The bound for the
third factor is obtained from (4.1) The middle factor can be bounded using a Chernoff bound
similarly to (4.1) (notice that independence is crucial here again),

P(Bi+1/2|Ai,Di+1) = 1− P(Bci+1/2|Ai,Di+1) ≥ 1− E(E(2e−2N IsoN (ρi)
2ε2 |ρi,Ai,Di+1)|Ai,Di+1)

≥ 1− 2 exp(−2Nm2ε2).

For the first factor we use that, conditional on Bi+1/2 and Ai, pi+1/2 ≥ (1 − ε)IsoN (ρi) ≥
m(1− ε), and that each isolated particle lives independently from the others with probability
(1− αN ); a similar estimate then gives

P(Ci+1|Bi+1/2,Ai,Di+1) ≥ 1− 2 exp(−2Nm2(1− αN )2ε2(1− ε)4).

The conclusion is that P(Ai+1|Ai) ≥ (1− e−cN )3 for some c which depends on αN and in ρ0,
and hence

P(τN ≥ n+ 1) ≥ (1− e−cN )3(n+1) (4.3)

as desired.

To obtain an estimate on the expected value appearing in the theorem we need to sum
the right hand side of (4.3) in n. Note that in the above bounds, ε, δ and m are fixed,
so we only need to understand how the constant c in (4.3) depends on αN . Notice first
that (since α ∈ [0, 1)) the dependence on αN comes only from our bound on P(A0), namely
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P(A0) > 1 − exp(−α2
NN/2). If αN → α ∈ (0, 1) then there is nothing to prove. Otherwise,

if αN → 0, the condition αN log2(N) −→ ∞ gives a similar bound, since fixing M ∈ N
one gets αN ≥ M

log2(N) for large enough N , and then there exists c′ > 0 such that P(A0) ≥
1− exp

(
−c′N(log2(N))−2

)
, which again gives us the bound we want. �

Proof of Theorem 2.5(ii). We will just we explain how to adapt the proof of Theorem 2.6 to
obtain this result. We use the whole graph instead of a 3-independent set, and since the
variables are now dependent, we change the Chernoff bounds to Chebyshev bounds. Conse-
quently we use Isop(x) = (1 − e−βρ)e−3βρ instead of Iso, and we bound the middle factor on
the second line of (4.2) by

P(Bi+1/2|Ai,Di+1) = 1− P(Bci+1/2|Ai,Di+1) = 1− E(1Bc
i+1/2
|Ai,Di+1)

≥ 1− E
(
Var(pi+1/2)

ε2Isop(ρi)2 |Ai,Di+1

)
≥ 1− 10

ε2Nm2 ,

where m := minx∈[m(1−α)(1−2ε),1−α/2] Isop(x), and where the inequality is obtained from site-
percolation with parameter fβ(ρi), at time i, and the following computation, which uses the
independence between Xiv and Xiu for u ∈ B(v, 2).

Var
(∑

v∈GN Xiv

)
= E

((∑
v∈GN Xiv

)2
)
− E

(∑
v∈GN Xiv

)2

=
∑

v∈GN ,u∈B(v,2) E
(
XivX

i
u

)
+
∑

v∈GN ,u/∈B(v,2) E
(
XivX

i
u

)
−N2Iso(ρi)

≤ 10N + (N2 − 10N)Iso(ρi)−N2Iso(ρi)

≤ 10N(1− Iso(ρi)
2) ≤ 10N. �

Now we turn to the results concerning the dynamical system DS(h). The following propo-
sition will help us prove Proposition 2.4.

Proposition 4.2. DS(h) has 0 as a unique attractive fixed point if α ∈ [0, 1], β ∈ (0,∞]
satisfy

φ(α, β) ≤ 1.

If this condition does not hold, i.e. φ(α, β) > 1, then 0 is a repulsive fixed point.

Proof. The origin is clearly a fixed point, and it is attractive if limp→0 h
′(p) ≤ 1 and repulsive

otherwise. A simple computation gives limp→0 h
′(p) = φ(α, β), so all that remains is to prove

the uniqueness in the case φ(α, β) ≤ 1. This will follow from showing that in this case the
identity function is lies above h. In order to achieve this, write h(p) = gα(1 − e−βp) =
(1−α)(1−e−βp)Gα(1−e−βp)3 (see (5.6)) so that, since the function Gα is decreasing in α (by
Lemma 5.4) it is enough to study the case α = 1− 1

β , meaning that our assertion is equivalent

to proving that p− (1− e−βp)G1−1/β(1− e−βp)3 is positive for all p ∈ (0, 1] and for all β > 1.

Again, since G1−1/β is decreasing in β, and since 1−e−βp
β is also decreasing in β, it is enough

to prove that p −
(

1−
√

1−4e−p(1−e−p)
)3

8(1−e−p)2 > 0 for all p ∈ (0, 1]. But the infimum of the right

hand side is attained (strictly) as p→ 0, where its value is 0, which yields the result. �

Proof of Proposition 2.4. The case α = 0 corresponds to the setting of [DR09] while the case
α = 1 is trivial, so we restrict to α ∈ (0, 1). In this case, from Proposition 5.5 the function
gα has a unique critical point x0, which is a maximum. Without loss of generality we can
suppose that p ∈ [0, f−1

β (p∗α)] , otherwise apply h once to make this happen. Because it is the

composition of two increasing functions, h is increasing inside [0, f−1
β (p∗α)]. Using a restricted

version of h : [0, f−1
β (p∗α)] −→ [0, f−1

β (p∗α)], we get that 0 is the unique fixed point according

to Proposition 4.2. Finally, from Proposition 2.3.5 in [HK03] the property holds in the first
case. For the second case it is enough to notice that h is positive in (0, 1), hence the repulsive
behavior of 0 in this regime yields the conclusion. �
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5. Proofs of the multi-type results

5.1. Interior-recurrent sets. As discussed in Section 2, our approach to prove Theorem 2.11
consists in using Theorem 2.3 to show that the particle system follows the behavior observed for
the dynamical system in Theorems 2.7 and 2.9. However, in order to apply our approximation
theorem, we need more information about DS(h) than just the definitions of coexistence and
domination. These definitions only explicit the behavior of DS(h) in the long term, giving no
control of the initial part of the orbits, where the randomness of the particle system might
have a large impact. With this in mind we introduce a concept which will draw most of our
attention in this section:

Definition 5.1. We say that a set A ⊆ [0, 1]2 is interior-recurrent for DS(h) if there are
0 < δ′ < δ and k̄ ∈ N such that

(i) ∀p ∈ A, d(p,Ac) > δ =⇒ d(h(p), Ac) ≥ δ′,
(ii) ∀p ∈ A, d(p,Ac) ≤ δ =⇒ d(hk(p), Ac) ≥ δ′ for some k ≤ k̄.

In words, a set A is interior-recurrent if the dynamical system cannot exit its interior using
jumps larger than a certain size δ and if every time it gets to distance smaller than δ to the
boundary, it takes a bounded number of steps for it to go back to the interior of A, where by
interior here we mean a certain subset of A bounded away from the boundary.

Interior-recurrent sets will play a crucial role in showing that the particle system tracks
closely the behavior of DS(h) (at least for a fixed, finite number of steps). The next proposition
shows that, thanks to the approximation result Theorem 2.3, the control on DS(h) furnished
by interior-recurrent sets can be transferred to the particle system.

Proposition 5.2. Let (ηNk )k∈N be the mean-field MMM with parameters satisfing the condi-

tions in Theorem 2.3, and assume that its initial condition ρN0 lies within an interior-recurrent
set A with parameters δ, δ′ and k̄. Then there is a C > 0 depending only on A such that

P
(
ρNk /∈ A, ∀k ∈ {1, 2, . . . , k̄}

)
≤ Cθα(N). (5.1)

Proof. From Theorem 2.3 there is a C > 0 independent of ρN0 and N such that for any k ≤ k̄,
we have

P
(∥∥ρNk − hk(ρN0 )

∥∥ > δ′
)
≤ Cθα(N).

Now we use the interior-recurrent property of A. If d(ρN0 , A
c) ≥ δ then d(h(ρN0 ), Ac) > δ′, so

the left hand side of (5.1) is bounded by

P
(
ρN1 /∈ A

)
≤ P

(
‖ρN1 − h(ρN0 )‖ > δ′

)
≤ Cθα(N).

Otherwise, if d(ρN0 , A
c) < δ, then there is a k ≤ k̄ such that d(hk(ρN0 ), Ac) > δ′, and the same

argument shows that the left hand side of (5.1) is bounded by Cθα(N). �

In the next result we use the concept of interior-recurrence to provide a stronger version of
coexistence and domination for DS(h).

Theorem 5.3. Consider the dynamical system DS(h) with initial condition p0 ∈ (0, 1)2:

(i) (Coexistence) Assume that the parameters ~α and ~β satisfy the conditions in Theo-
rem 2.7. Then there is a compact interior-recurrent set A ⊆ (0, 1)2 which contains p0

as an interior point.

(ii) (Domination) Assume that the parameters ~α and ~β satisfy the conditions in Theo-
rem 2.9. Then, there are γ1, γ2 ∈ (0, 1) and an interior-recurrent set B (independent
of p0) with parameter k̄ = 1 such that for all p ∈ B

(1− α(1))f
(1)
~β

(p) ≤ γ1p1 and γ2 < p2. (5.2)

Furthermore, there is a k ∈ N such that hk(p0) is an interior point of B.
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Before turning to the proof of Theorem 5.3, we show how it yields all the results in Sec-
tion 2.3.

Proof of Theorem 2.9. By Theorem 5.3 we know that the orbit of DS(h) eventually reaches
an interior-recurrent set B with parameter k̄ = 1, which satisfies (5.2) for some γ1, γ2 ∈ (0, 1).
Now, since k̄ = 1, from Definition 5.1 we deduce that the set B is actually trapping for the
dynamical system, meaning that h(p) ∈ B for all p ∈ B. Since γ2 < p2 for p ∈ B, we deduce

that lim infk→∞ h
k
2(p) ≥ γ2 > 0; similarly, since h1(p) ≤ (1 − α(1))f

(1)
~β

(p1) ≤ γ1p1 for p ∈ B
(the first inequality follows from comparing with a system where we let the epidemic attack
but not spread), we deduce that limk→∞ h

k
1(p) = 0. This shows domination of type 2. �

Proof of Theorem 2.7. By Theorem 5.3 we know that there is a compact interior-recurrent
set A ⊆ (0, 1)2 containing p0, and thus we know that every time the dynamical system
leaves A, it spends at most k̄ units of time in Ac. Thus the orbit of DS(h) is contained in

Ak̄ := ∪k̄l=0h
l(A), which is also compact. Since Ak̄ ⊆ (0, 1)2 (otherwise it would contain an

orbit that never returns to A), compactness implies that it must be bounded away from the
axes, so in particular we deduce that lim infk→∞ h

k
i (p) > 0 for i = 1, 2, giving coexistence. �

Proof of Theorem 2.11. Consider the mean-field MMM and assume first that the parameters
of the model satisfy the conditions of Theorem 2.7. As in the proof of the previous theorem,
Theorem 5.3 gives a set A ⊆ (0, 1)2 containing ρN0 which is interior-recurrent for the dynam-
ical system DS(h). Let σn denote the n-th return time of the dynamical system to A. By
Proposition 5.2 we have P(σ1 > k̄) ≤ Cθα(N) for some C > 0 which depends only on A, and
since the bound is uniform on the initial condition, by the strong Markov property we get

P
(
σ1 ≤ k̄, σ2 − σ1 ≤ k̄, . . . , σn − σn−1 ≤ k̄

)
≥ (1− Cθα(N))n.

The event on the left hand side implies in particular that σn < ∞ a.s., but since σn ≥ n it
follows that ρNk ∈ A for some k ≥ n. Since both species have to be alive to lie within A, on
this event both τ1

N and τ2
N must be larger than n, so we conclude (2.11).

To deduce (2.14) we start by repeating the above argument for an interior-recurrent set A
containing p (using that A contains ρN0 for large enough N), yielding a constant C ′ > 0 such

that P(τ1
N , τ

2
N ≥ n) ≥

(
1− C ′ θα(N)

)n
for all N ∈ N. Taking n = θα(N)−(1−ε) gives the

result. (2.14).

We turn now our attention to the MMM with parameters satisfying the conditions of
Theorem 2.9. Under this assumption Theorem 5.3 gives an interior-recurrent set B with
parameter k̄ = 1 which satisfies (5.2). Assume first that ρN0 ∈ B; we will explain later how to
treat the case ρN0 /∈ B.

Since k̄ = 1, Definition 5.1 implies that regardless of the value of d(ρN0 , B
c) we have

d(h(ρN0 ), Bc) > δ′, so Theorem 2.3 gives some C > 0 depending only on B such that
P(ρN1 /∈ B) ≤ P

(
δ′ <

∥∥ρN1 − h(ρN0 )
∥∥) ≤ Cθα(N). Since the bound is uniform over ρN0 ∈ B,

an application of the strong Markov property gives that, for any n ∈ N,

P(ρNk ∈ B ∀k ≤ n) ≥ (1− Cθα(N))n. (5.3)

Noticing that γ2 < p2 for all p ∈ B we deduce that the event on the left hand side implies
τ2
N ≥ n, yielding (2.12).

To deduce (2.13) observe first that (as in the proof of Theorem 2.9) the number of type
1 individuals at time 1 is dominated by a Poisson random variable with parameter (1 −
αN (1))f

(1)
~β

(ρN0 ), which is less than γ1ρ
N
0 when ρN0 ∈ B. From this it is easy to see that,

on the event En = {ρNk ∈ B ∀k ≤ n}, the process (ρNk )k≤n is stochastically dominated

by a subcritical Galton-Watson process starting with ρN0 N individuals and with offspring
distribution Poisson[γ1]. By (5.3) and branching processes theory we get

P
(
τ1
N ≥ n

)
≤ P

(
En ∩ {τ1

N > n}
)

+ P(Ecn) ≤ 1− (1− γn)N + 1− (1− Cθα(N))n (5.4)
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with γ = γ1, as desired.

Suppose now that ρN0 /∈ B and observe that from Theorem 5.3 there is some k ∈ N
depending only on ρN0 such that hk(ρN0 ) is an interior point of B. Let ε > 0 be small so that
B contains the ball of center ρN0 with radius ε. Using Theorem 2.3 there is a C̄ depending on
k and ε such that

P(ρNk /∈ B) ≤ P
(∥∥ρNk − hk(ρN0 )

∥∥ > ε
)
≤ C̄θα(N), (5.5)

so the general proof of (2.12) and (2.13) follows from restricting to the event on the left hand
side above and restarting the process at time k.

Finally, to conclude (2.15) observe that these inequalities would follow directly from (2.12),
(2.13), and our definition of θα(N) if the parameter C was independent from ρN0 . However,

neither the bound in (5.3) nor the one in (5.4) depend on ρN0 , so the only parameter dependent
on ρN0 is C̄ in (5.5). Now under the additional assumption ρN0 −→ p we may take k ≥ 0 such
that hk(p) is an interior point of B (such k exists because of Theorem 5.3), and then choose
ε > 0 such that B contains the ball centered at p with radius ε. Since ρN0 → p, for large
enough N we have ‖hk(ρN0 )− hk(p)‖ < ε

2 , so from Theorem 2.3 we obtain

P(ρNk /∈ B) ≤ P
(∥∥ρNk − hk(p)∥∥ > ε

)
≤ P

(∥∥ρNk − hk(ρN0 )
∥∥ > 1

2ε
)
≤ C̄θα(N),

for some C̄ depending only on p. �

The rest of this section is devoted to the proof of Theorem 5.3, which is rather lengthy and
technical, so we divide it into three parts. In Section 5.2 we present some preliminary notation
and functions which will be used to facilitate the analysis of the trajectories of DS(h), as well
as some technical results about them. Using these results we prove the coexistence part of
the theorem in Section 5.3, and the extinction part in Section 5.4.

5.2. Preliminaries. We begin this section by decomposing the function gα as

gα(x) = (1− α)xGα(x)3 with Gα(x) =
1−

√
1− 4(1− α)x(1− x)

2(1− α)x
. (5.6)

Lemma 5.4. The function Gα : [0, 1]→ [0, 1] satisfies the following:

(1) When α = 0, it is given by

G0(x) =

{
1 if x ≤ 1/2

1−x
x if x > 1/2

.

(2) It is decreasing as a function of both α and x, with Gα(0) = 1 and Gα(1) = 0 for all
α ∈ [0, 1).

(3) As α→ 1, it converges monotonically to G1(x) := 1− x.

We omit the simple proof of this result. Let now p̄ ∈ [0, 1]2 be the maximum possible
density achieved after the epidemic stage, that is

p̄i = supx∈[0,1] gα(i)(x).

Since gα ≤ (1 − α)g0, it is easily seen that p̄i ≤ 1−α(i)
2 . By definition, except maybe for the

initial value p0, the orbit of DS(h) lies within [0, p̄], where the next result provides control on
the behavior of gα:

Proposition 5.5. There is a single value x0 ∈ [0, 1/2] where gα attains its global maximum.
This value is characterized as the solution of Gα(x0) = x0 + 1

2 and satisfies:

(1) If α > 0, this is the only critical point of gα in [0, 1].

(2) If φi < 2 log 2, then for any p with pi ≤ p̄i we have f
(i)
~β

(p) < x0. In particular,

g′α(i) ◦ f
(i)
~β

(p) ≥ 0 for all p ∈ [0, p̄].
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Even if gα is not monotone, the last result still yields sufficient information about the growth
of h:

Proposition 5.6. For each i = 1, 2 define li : [0, 1]2 → R+ as li(p) = hi(p)/pi. Then:

(1) The function f
(1)
~β

(p) is increasing in p1 and decreasing in p2.

(2) The function l1(p) is decreasing in p1.
(3) If φ1 < 2 log 2, then h1(p) is increasing in p1 and decreasing in p2. In particular, in

this case l1 is also decreasing in p2.

The reason why we are interested in li is that, from the relation hi(p) = li(p)pi, it is enough
to bound li in order to show exponential growth or decay of the density of a species. This is
precisely what we do in the next result.

Proposition 5.7. For any small ε > 0 define κε as the unique solution of

gα(1)(1− e−β(1)κε) = (1− ε)κε.
Under the assumption φ2 > φ1 there are c̄, ε, ε′ > 0 small such that for all c ≤ c̄:

(i) For all 0 < p1 < κε it holds that

p2 ∈ (0, c) =⇒ l2(p) > 1 + ε′, (5.7)

p2 ∈ (c, p̄2) =⇒ h2(p) > (1 + ε′)c. (5.8)

(ii) Under the additional assumption φ2 > 2 log 2, the property above holds for all p1 > 0.
(iii) If φ1 < 2 log 2, then:

p1 ∈ (0, κε) =⇒ h1(p) ≤ (1− ε′)κε. (5.9)

p1 ∈ (κε, p̄1) =⇒ l1(p) ≤ 1− ε′. (5.10)

Properties (i) and (ii) state that when the stronger species starts at a low density, it starts
growing exponentially until it reaches a certain threshold value c, which becomes a lower
bound for its density from that time onwards. Property (iii), on the other hand, states that
if the fitness of the weaker species is below 2 log 2, then its density decays exponentially until
it reaches a trapping set [0, κε].

The proofs of the last three propositions are mostly calculus, so we defer them to the
appendix.

5.3. Proof of Theorem 5.3(i). As we just discussed, Proposition 5.7 already provides a
good control on the behavior of the stronger species, so our main focus will be on the weaker
one. Assuming that the conditions of Theorem 2.7 are satisfied, our approach consists in
analyzing the dynamical system when the density of the weaker species is at low values. In
that situation we will approximate h by a simpler function h̄, and show that for this particular
dynamical system the density p1 tends to grow on average.

The approximating map h̄ : [0, 1]2 → [0, 1]2 which we will use is the linear approximation
of h in the first component,

h̄(p) =

(
h1(0, p2) + p1

∂h1
∂p1

(0, p2)

h2(0, p2)

)
=

(
φ1p1

1−e−β(2)p2

β(2)p2

h2(0, p2)

)
.

The next result states that this approximation is good uniformly on p2:

Proposition 5.8. For all k ∈ N we have limp1→0
h̄k1(p)

hk1(p)
= 1 uniformly on p2 ∈ [0, 1].

Proof. Let Σk(p) = β(1)hk1(p)+β(2)hk2(p) and Σk(p) = β(2)h̄k2(p). Using these values and the
definition of h and h̄ it is fairly simple to see that

h̄k1(p)

hk1(p)
=

h̄k−1
1 (p)

hk−1
1 (p)

ψ(Σk−1(p))

ψ(Σk−1(p))
(Gα(1))

−3 ◦ f (1)
~β
◦ hk−1

1 (p) (5.11)
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where ψ is defined as ψ(x) = 1−e−x
x , which is uniformly continuous and bounded away from 0

for x ∈ [0, 1]. Noticing that Σk(p) and Σk(p) converge to the same value as p1 → 0, the last two
factors on the right hand side of (5.11) converge to 1 uniformly, so h̄k1(p)/hk1(p) converges to 1

uniformly if h̄k−1
1 (p)/hk−1

1 (p) does. Since h̄0
1(p) = h0

1(p) = p1, the result follows by repeating
the argument k times. �

Thanks to this proposition we can approximate h by h̄ whenever p1 is small enough, in-
dependently of the value of p2. The resulting dynamical system (qk)k∈N can be realized by
first running the one-dimensional MM for type 2 by itself, and then using its trajectory to
compute the values of qn1 as

qn1 = q0
1

n−1∏
k=0

φ1(1− e−β(2)qj2)

β(2)qj2
= q0

1

(
φ1

β(2)
eϕ̄

n(q0
2)

)n
(5.12)

with

ϕ̄n(x) =
1

n

n−1∑
k=0

ϕ(hk2(0, x)),

where ϕ(x) = log(1−e−β(2)x

x ). This suggests that it will be useful to study the following

observable of the orbit (qk2 )k∈N:

ϕ̄(x) = lim
n→∞

ϕ̄n(x).

The limit exists for all x ≤ p̄2: in fact, since p̄2 ≤ 1
2 , hk2(0, x) ≥ 2−2e−β(2)/2 > 1 thanks to the

assumption φ2 > z(α(2)) > 2 log 2, so by monotonicity of ϕ the summands in the definition

of ϕ̄(x) are positive and bounded. In view of (5.12), φ1

β(2)e
ϕ̄ can be interpreted as the average

growth of type 1 when taking into account the effect of type 2. In order to control this growth
we define η to be the smallest possible value of ϕ̄, that is

η = infx∈[0,p̄2] ϕ̄(x).

The following result shows that controlling η properly allows us to make qk1 grow to be as
large as we want:

Lemma 5.9. Suppose that the conditions of Theorem 2.7 hold. If φ1

β(2)e
η > 1, then for all

M > 0 there exists k̄ ∈ N satisfying the following property: for all q0
2 ∈ [0, p̄2], there is a

0 ≤ k ≤ k̄ such that
k−1∏
j=0

φ1(1− e−β(2)qj2)

β(2)qj2
> M. (5.13)

Proof. From the hypothesis we know that there exists δ > 0 such that φ1 = β(2)e−η(1 + 2δ).
Taking ε > 0 small enough such that (1 − ε)(1 + 2δ) > 1 + δ, for each q0

2 we can find k ∈ N
such that for all k ≥ k

φ1

β(2)
exp

(
ϕ̄k(q0

2)
)
> (1− ε) φ1

β(2)
exp

(
ϕ̄(q0

2)
)
≥ (1− ε) φ1

β(2)
eη > 1 + δ,

where the first inequality follows from convergence of ϕ̄k to ϕ̄. Using the definition of ϕ̄k we

obtain φ1

β(2)

(∏k−1
j=1

1−e−β(2)q
j
2

qj2

)1/k

> 1 + δ for all k ≥ k. In particular we find that for each q0
2

there is some k ≥ k such that (
φ1

β(2)

)k k−1∏
j=0

1− e−β(2)qj2

qj2
> M.

For k fixed call Ok the set of all q0
2 satisfying the inequality above for that given value of k.

From the continuity of h̄ each Ok is open, and from the previous argument, each q0
2 belongs
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to some k, so (Ok)k∈N is an open cover of [0, p̄2], which necessarily contains a finite subcover.
Taking k̄ to be the largest index of the subcover gives the result. �

The next result shows that, in our setting, (ii) in the definition of interior-recurrence follows
directly from Proposition 5.8 and Lemma 5.9. The idea is simple: as long as the trajectory
of pk1 stays small then the system is well approximated by DS(h̄), but by the last proposition
the first component of this system gets large, which hints at a contradiction.

Proposition 5.10. Suppose that the conditions of Lemma 5.9 are satisfied. If p0
2 ∈ (0, 1),

then there is a c̄ ∈ (0, p0
1) satisfying the following: for all c ≤ c̄ we can find k̄ ∈ N such that

for all n ∈ N
pn1 ≥ c =⇒ ∃k ≤ k̄ such that pn+k

1 > 3
2r c (5.14)

with r = infp≤p̄ l1(p).

In other words, after the trajectory gets above a certain threshold parameter c, it cannot
stay below c for more than k̄ consecutive steps.

Proof of Proposition 5.10: Let M = 2
r2 , choose k̄ as in Lemma 5.9 and use the uniform con-

vergence proved in Proposition 5.8 to choose δ0 > 0 such that

p1 < δ0 =⇒ h̄k1(p)/hk1(p) < 4/3 ∀p2 ∈ [0, 1], ∀k = 1, . . . , k̄. (5.15)

Define now c = min{2
3δ0,

1
2p

0
1}. We prove (5.14) by contradiction as follows. Suppose that for

some n ∈ N we have pn1 ≥ c > pn+1
1 and that there is no k ≤ k̄ such that pn+k

1 > 3
2r c. From

our choice of c we know each pn+k
1 is smaller than δ0, so from (5.15), for each k ≤ k̄ we have

pn+k
1 = hk1(pn) ≥ 3

4 h̄
k
1(pn) = 3

4 p
n+1
1

(
φ1

β(2)

)k∏k−1
j=0

1−e−β(2)q
j
2

qj2
. (5.16)

However, for the specific value of k given in Lemma 5.9 with initial condition pn+1
1 , we can

bound the right hand side in (5.16) by 3
2r2 p

n+1
1 . This is a contradiction with our assumption

pn+k
1 < 3

2r c because

pn+k
1 > 3

2r2 p
n+1
1 = 3

2r2 l1(pn1 )pn1 ≥ 3
2r2 rc = 3

2r c, (5.17)

where the last inequality follows from the definition of r and the assumption pn1 ≥ c. �

Using the results obtained so far, as well as Proposition 5.7, we are finally ready to prove
Theorem 5.3(i). To do so observe that after one iteration, the orbit of DS(h) lies within
[0, p̄1] × [0, p̄2], so we may assume that p0 lies in this set. Let us assume that φ1e

η > β(2);
we will show that this is the case below. Then given r = l1(p̄) we can take c1 so that (5.14)
holds for all c ≤ c1. Next, observe that from the hypotheses of Theorem 2.7 we have that
φ2 > z(α(2)) > 2 log 2 so we can take c2 so that the statement of Proposition 5.7(ii) holds for
all c ≤ c2. We claim that the set

A := [c1, p̄1]× [c2, p̄2]

satisfies the properties required in Theorem 5.3(i). Indeed, it is clear that the set is compact
and contains p0 as an interior point. To see that the set is interior-recurrent, notice that from
(5.8) in Proposition 5.7, for any p2 ∈ (c2, p̄2) we have h2(p2) > (1 + ε′)c2 independently of
p1, so that both requirements for interior-recurrent are satisfied with k̄ = 1 in the second
component. To deduce the same for the first component notice that from the definition of r,
we have that p1 >

c1
r implies that p1

1 > c1, and from Proposition 5.10 there is k̄ such that
c1
r > p1 ≥ c1 implies that there is a k ≤ k̄ such that pk1 > 3

2r c1, so both requirements for
interior-recurrence are satisfied in this component as well.

To finish the proof we need to show that the hypotheses assumed in Theorem 2.7 imply
that φ1e

η > β(2). To see this notice that ϕ is decreasing and that for any value of p0
2 we have
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pk2 ≤ p̄2 ≤ 1−α(2)
2 , so in particular

ϕ(pk2) ≥ ϕ
(1−α(2)

2

)
= log(2(1−e−φ2/2)

1−α(2) ), (5.18)

so the expression on the right hand side provides a lower bound for η. We can improve
this bound by reasoning as follows. Take κ2 as defined in Theorem 2.7 so that in particular
P2 := κ2

β(2) is a fixed point of h2(0, ·). Now, since the function x → 1 − e−β(2)x is increasing,

from Proposition 5.5 it follows that the function h2(0, ·) has a unique critical point P1, where
it attains its maximum. Assume for a moment that P1 ≤ P2. Then h2(0, ·) is decreasing on
[P2,

1
2 ], so that

P2 ≤ x =⇒ h2(0, x) ≤ h2(0, P2) = P2.

In words, every time qk2 in the orbit of q2 which is larger than P2 is followed by an element

qk+1
2 which is smaller than P2, so at least half of the points in the orbit lie in [0, P2]. Bounding

by ϕ(P2) the value of ϕ in this interval, and by ϕ(1−α(2)
2 ) the value outside of it, we obtain

ϕ̄(p0
2) ≥ 1

2

[
log
(

1−e−β(2)P2

P2

)
+ log

(
2−2e−φ2/2

1−α(2)

)]
∀p0

2 ∈ [0, 1/2].

This is then also a lower bound for η, and it is easy to see that, assuming this bound,
φ1 > e−ηβ(2) is equivalent to condition (2.9).

It only remains to show that indeed P1 ≤ P2. From the facts that P1 is the unique
maximizer of h2(0, ·) and that P2 is a fixed point of this function one checks that the inequality
is equivalent to

P1 ≤ gα(2)(1− e−β(2)P1). (5.19)

From the above definition of P1, x0 = 1 − e−β(2)P1 is a critical point of gα(2), and thus by

Proposition 5.5 it satisfies Gα(2)(x0) = x0 + 1
2 . Replacing these equalities into (5.19) we obtain

that x0 must satisfy
φ2x0(x0 + 1

2)3 + log(1− x0) ≥ 0.

Now, from Lemma 5.4, the equality Gα(2)(x0) = x0 + 1
2 defines an implicit function x0(α(2))

which is strictly decreasing in α(2) and satisfies x0(0) = 1/2 and x0(1) = 1/4. Solving for φ2,
the inequality above becomes

φ2 > z(α(2)) :=
− log(1− x0)

x0(x0 + 1/2)3
, (5.20)

which is satisfied by our hypothesis on φ2 so we conclude that P1 ≤ P2 as needed.

5.4. Proof of Theorem 5.3(ii). We want to prove that there is an interior-recurrent set B
where the stronger species survives while the density of the weaker one decays exponentially.
The cornerstone of this section is the following result:

Lemma 5.11. Assume that conditions of Theorem 2.9 hold. Take c̄, ε and ε′ as in Proposi-
tion 5.7 and for sufficiently small c < c̄ let

B1 =
{
p ∈ [0, κε]× [c, p̄2], l1(p) < 1

}
,

where κε is defined in Proposition 5.7 as the solution of gα(1)(1− e−β(1)κε) = (1− ε)κε. Then

supp∈B1
l1 ◦ h(p) < 1 and inf l1(p)≥1 l2(p) > 1. (5.21)

Proof. We begin by observing that φ1 < 2 log 2. To see this, observe first that from the
assumption φ1 < φ2 the bound holds trivially if φ2 ≤ 2 log 2, so we only need to worry about
the case φ2 > 2 log 2, where condition (2.10) gives

a1(φ1) < φ2

1−α(2)gα(2)(1− e−
φ2
2 ) ≤ 8φ2(1− e−

φ2
2 )e−

3φ2
2 ,

where we have used that Gα(2)(x) ≤ 2(1−x). The function on the right hand side is decreasing

in (2 log 2,+∞), so a1(φ1) ≤ 16 log 2(1 − e−
2 log 2

2 )e−3 log 2 = log 2, and thus φ1 < 2 log 2,
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using the definition and monotonicity of a1(x). Thanks to this bound on φ1, h1 satisfies the
monotonicity stated in (3) of Proposition 5.6.

From Proposition 5.6 we also know that l1 is strictly decreasing on both p1 and p2, so the
level set {l1(p) = 1} defines a strictly decreasing function p2 = s(p1), for which there are
values a and b such that l1(a, c) = l1(0, b) = 1. Using these values we can easily characterize
B1 as a set bounded by the curves

C1 := {(p1, c), a ≤ p1 ≤ κε}
C2 := {(κε, p2), c ≤ p2 ≤ p̄2}
C3 := {(p1, p̄2), 0 ≤ p1 ≤ κε}
C4 := {(0, p2), b ≤ p2 ≤ p̄2}
C5 := {(p1, s(p1)), 0 ≤ p1 ≤ a} p1

p2

C4

C1

C3

C2
B1

C5

b

c

a κε

We will make use of the following lemma; its proof is postponed.

Lemma 5.12.
supp∈B1

l1 ◦ h(p) = maxp∈C1∪C4∪C5 l1 ◦ h(p). (5.22)

Thus in order to obtain the first statement in (5.21) we need to find the maximum of l1 ◦ h
on each set C1, C4 and C5 separately.

Consider first C1. From Proposition 5.6 we know that l1(·, 0) is strictly decreasing and
since φ1 < 2 log 2, the same proposition states that h1(·, 0) is strictly increasing on (0, κε].
As a result, the function p1 7→ l1(h1(p1, 0), 0) is strictly decreasing with no critical points on
any interval [u, κε], so its derivative is negative and bounded away from zero. Since all the
functions involved in the argument are smooth, if c is sufficiently small we also obtain that
∂
∂p1

l1◦h is negative and bounded away from zero on C1. We conclude that l1◦h is maximized at

the point (a, c), so we need to show that its value at that point is less than 1. Indeed, using the
definition of a, we obtain h1(a, c) = a, and since a < κε we can use Proposition 5.7 to deduce
that h2(a, c) > c, where the inequality follows from Proposition 5.7; from the monotonicity of
l1 we deduce now that l1 ◦ h(a, c) < l1(a, c) = 1.

Next consider C4. Here we have p1 = 0, which greatly simplifies the analysis since

h1(0, p2) = 0, h2(0, p2) = gα(2)(1− e−β(2)p2), l1 ◦ h = φ1
1−e−β(2)h2

β(2)h2
.

Indeed, from the particular form of l1 ◦ h on this set, the condition l1 ◦ h < 1 is equivalent

to 1−e−β(2)h2

β(2)h2
< 1−e−a1(φ1)

a1(φ1) from the definition of a1(φ1). Now, since the function 1−e−x
x is

decreasing we obtain

l1 ◦ h(0, p2) < 1 ⇐⇒ a1(φ1) < β(2)gα(2)(1− e−β(2)p2). (5.23)

Observe now that l1 is decreasing, so it is maximized at the points where h2 attains its
minimum. From the special form of h2 given above, we deduce from Proposition 5.5 that h2 is
minimized either where p2 is maximal or minimal. From this we conclude that the maximum
value of l1 on C4 is either l1◦h(0, p̄2) or l1◦h(0, b). Now from (5.23) we see that l1◦h(0, p̄2) < 1

if and only if a1(φ1) < β(2)gα(2)(1− e−β(2)p̄2), which follows from p̄2 <
1−α(2)

2 and (2.10). To
deal with l1(0, b) we observe that that a1(φ1) = β(2)b, so (5.23) shows that l1 ◦ h(0, b) < 1 if

and only if a1(φ1) < β(2)gα(2)(1− e−a1(φ1)), which follows directly from (2.10).

Finally for C5 it will be enough to show that

infp∈C5
[
φ2G

3
α(2) ◦ f

(2)
~β
− φ1G

3
α(1) ◦ f

(1)
~β

]
(p) > 0. (5.24)

Indeed, if (5.24) is satisfied then multiplying the inequality by 1−e−Σp

Σp
, with Σp = β(1)p1 +

β(2)p2, gives l2(p) > l1(p) = 1, and this implies p2 < h2(p), which implies l1(h) = l1(p1, h2) <
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l1(p) = 1. To prove (5.24) recall that s(p1) is a decreasing function, which means that

f
(1)
~β

(p1, s(p1)) is increasing and f
(2)
~β

(p1, s(p1)) is decreasing. It follows that on C5 the function

in (5.24) is increasing on p1, so the infimum is positive if the inequality holds at (0, b), which
in this case follows from assumption (2.10).

To complete the proof we need to show that infp: l1(p)≥1 l2(p) > 1, but l2 is decreasing in p2

and the maximal values of p2 within the region given by l1 ≤ 1 are found at l1 = 1. This way,
it is enough to show that inf l1(p)=1 l2(p) > 1, and this is analogous to the proof of (5.24). �

It remains to prove Lemma 5.12, which follows from similar monotonicity arguments.

Proof of Lemma 5.12. Observe that, since f
(2)
~β

is increasing in p2 and decreasing in p1, the

level sets {f (2)
~β

(p) = γ} define strictly increasing functions p2 = rγ(p1). On these level sets h2

is clearly constant and h1 is increasing in p1; this last statement follows from the monotonicity

of gα(1) (proved in Proposition 5.5) and from f
(1)
~β

(p1, rγ(p1)) + γ = (f
(1)
~β

+ f
(2)
~β

)(p1, rγ(p1)) =

1 − exp(−β(1)p1 − β(2)rγ(p1)), which implies that f
(1)
~β

increases in p1. Since l1 is decreasing

in both arguments, at each level set l1(h) attains its maximum at points of minimal values of

p1. Our claim then is a result of the fact that each point p ∈ A belongs to a level set f
(2)
~β
≡ γ

which attains a minimal value of p1 at C1 ∪ C4 ∪ C5. �

The rest of the proof of Theorem 5.3.2 consists of modifying B1 until obtaining the interior-
recurrent set B required in the lemma. As a first step, observe that from Lemma 5.11 there
is some γ ∈ (0, 1) such that supp∈B1

l1 ◦ h(p) = γ. We will build an interior-recurrent set B2

simply by modifying slightly the definition of B1. Define

B20 =
{
p ∈ [0, κε]× [c, p̄2], l1(p) < γ̄

}
for some γ̄ ∈ (γ, 1). We claim that this set is interior-recurrent with parameter k̄ = 1. Indeed,
take any p ∈ B2, then, from our choice of parameters:

• From Proposition 5.7.(iii) we have h1(p) ≤ (1− ε′)κε.
• Since p1 ≤ κε, from Proposition 5.7.(i) we have h2(p) ≤ (1 + ε′)c.
• From Lemma 5.11 we have supp∈B2

l1 ◦ h(p) ≤ supp∈B1
l1 ◦ h(p) = γ.

This way, there is some δ > 0 such that d(h(p), Bc
2) > δ uniformly on p ∈ B2, which proves

the claim. To show that the dynamical system reaches B2, it suffices to show that it reaches
B1 in finite time. Fix an initial condition p0. If p0

1 > κε, then by Proposition 5.7(iii) we have
p1

1 ≤ (1− ε′)p0
1, and we may repeat the argument until the trajectory reaches [0, κε]× [0, p̄2],

where it remains forever. From this point on we assume that p0
2 > c, since if this is not

satisfied we use Proposition 5.7.(i) to obtain p1
2 > p0

2(1 + ε′), and then repeat the argument to
show that the sequence eventually reaches [0, κε]× [c, p̄2], where it remains forever. Hence to
finish the proof it is enough to consider an initial condition p0 inside this set and show that
there is some finite k such that l1(pk) < 1. Suppose this is not the case. Then for all n ∈ N
we have l1(pn) ≥ 1, but from Lemma 5.11 this implies that there is some ε > 0 such that
l2(pn) > 1 + ε for all n. In particular, pn+1

2 > (1 + ε)pn2 for all n and hence pn2 →∞, which is
impossible since p2 ∈ [0, 1]. We conclude that the dynamical system reaches B1.

It remains to show that there are γ1 and γ2 such that

(1− α(1))f
(1)
~β

(p) ≤ γ1p1 and γ2 < p2.

Taking γ2 = c the second inequality is trivially satisfied. The main problem is that in B2 the
decay we get is of the form h1(p) ≤ γ̄p1, which is not as strong as the one we need. However,
once inside B2 we have pk1 −→ 0, so in particular it is easy to see that for each δ, the set
Bδ ⊆ B2 given by

Bδ :=
{
p ∈ [0, δ]× [c, p̄2], l1(p) < γ̄

}
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is also interior-recurrent and satisfies the same properties as B2. Indeed, once the dynamical
system reaches B2, pn1 decreases exponentially so it reaches Bδ. For any ε > 0 we can take δ

sufficiently small, so that for any p1 < δ we have G3
α(1)◦f

(1)
~β

(p) ≥ 1−ε. Choosing ε sufficiently

small, we use the inequality above to conclude that (1− α(1))f
(1)
~β

(p) ≤ γ̄
1−εp1, and the result

then follows taking γ1 = γ̄
1−ε .

Appendix A. Technical proofs

A.1. Proofs from Section 3. As we mentioned, the proof of the convergence result, Theo-
rem 2.2, is an adaptation of the proof of [DR09, Thm. 4] for the one-species model running
on the torus, so we will only explain what needs to be changed. The extension to m > 1 is
relatively straightforward, so we will focus first on the adaptations needed to drop the weak
epidemics assumption αN −→ 0. The main step in their proof consists in considering bad
sites, which are sites x such that the density of occupied sites in the ball of radius rN around
it is far from the global density of occupied sites, and then proving (see their Prop. 5.1) that
if the system starts with a small enough density of bad points then the density of bad points
remains small after one time step.

We introduce the following definitions:

B(x, r) = {y ∈ RN : d(x, y) ≤ r}, V (r) = |B(x,m)| = 3 · 2r − 2,

d
N,(i)
k (x) =

1

V (rN )

∑
y∈B(x,rN )

η
N,(i)
k (y), GNk (ε)= {x ∈ GN :

∑m
i=1 |d

N,(i)
k (x)− hki (p)| < ε}.

In the next lemma we will use the same random variables defined in the proof of [DR09, Thm.
4], only changing their C0 by Cr.

Lemma A.1. Assume m = 1. Given ε > 0 there exists N sufficiently large such that

E
(
|ρ̃Nk+1 − ρ̂Nk+1|

)
≤ ε.

Proof. We will use δ1 > 0, δ2 > 0 as small as needed. Changing the proof of convergence
given for |dNk (x)− dNk (0)| in [DR09, Lem. 5.4] by

P
(
|dNk (i)− dNk (0)| > δ1 for some x ∈ B(0, lN )

)
≤ V (lN ) supx∈B(0,lN ) P

(
|dNk (x)− dNk (0)| > δ1

)
= V (lN ) supx∈B(0,lN ) P

(∣∣∣ 1
V (rN )

(∑
y∈B(x,rN )\B(0,rN ) η

N
k (y)−

∑
y∈B(0,rN )\B(x,rN ) η

N
k (y)

) ∣∣∣ > δ1

)
≤ supx∈B(0,lN )

V (lN )Var

(∣∣∣∑y∈B(x,rN )\B(0,rN ) η
N
k (y)−

∑
y∈B(0,rN )\B(x,rN ) η

N
k (y)

∣∣∣)
V (rN )2δ2

1

≤ supx∈B(0,lN )

V (lN )Var
(∑

y∈B(x,rN )\B(0,rN )∪B(0,rN )\B(x,rN ) η
N
k (y)

)
V (rN )2δ2

1

≤ 2V (lN )V (rN )Var(ηNk (0))
V (rN )2δ2

1

gives

P
(
|dNk (i)− dNk (0)| > δ1 for some i ∈ B(0, lN )

)
≤ 2V (lN )

V (rN )δ2
1
≤ 1

δ2
1
2lN−rN+2 −→ 0.



SURVIVAL AND COEXISTENCE FOR A SPATIAL POPULATION MODEL WITH FOREST FIRES 31

Now define Y (δ) = #
(
ξ
hk(p)+2δ1
1/2 \ ξhk(p)

1/2

)
. For the inequality in (5.4) in [DR09] in our case

we consider the following bound

P
(
ξ
hk(p)+2δ1,N
1 (0) = 0, ξ

hk(p),N
1 (0) = 1,#ξ

hk(p)+2δ1
1/2 <∞

)
≤ E

(
1−

(
(1−α)

2

)Y (δ1)
1
{#ξ

h
k

(p)+2δ1
1/2

<∞}

)
≤
∑∞

i=0

(
1−

(
(1−α)

2

)i)
P
(
Y (δ1) = i

∣∣∣#ξhk(p)+2δ1
1/2 <∞

)
.

The last term converges to 0 when δ1 → 0, because (here Aj comes from (3.1))

P
(
ξ
hk(p)+2δ1
1/2 = ξ

hk(p)

1/2

∣∣∣#ξhk(p)+2δ1
1/2 <∞

)
=

e−β(hk(p)+2δ1)+
∑∞
j=1 Aj

(
1−e−βhk(p)

)j
e−(j+2)β(hk(p)+2δ1)

1−Pq(|Cr|=∞) −−−→
δ1→0

1,

where q = 1− e−β(hk(p)+2δ1). The last limit is obtained using the proof of Proposition 2.1 and
the Dominated Convergence Theorem. The conclusion follows as in [DR09]. �

Proof of Theorem 2.2. The case m = 1 follows by changing Lemma 5.4 in [DR09, Thm. 4]
by Lemma A.1 above. The proof for the case m ≥ 2 is just an adaptation of the case m = 1
multiple species, here we show the key points. In these adaptations one should always use
‖ · ‖1 instead of | · |. Recall that the evolution in the growth step of a given site x depends on

the local density d
N,(i)
k . Given that each occupied site x of type i sends a Poisson[β(i)/V (rN )]

number of births to each of its V (rN ) neighbors in B(x, rN ) it follows that each site receives

a Poisson[β(i)d
N,(i)
k ] number of births of type i and a total Poisson[

∑m
i=1 β(i)d

N,(i)
k ] number

of births. Then, given ηNk (x), the site x has a particle of type i after the growing stage with
probability

P
(
ηNk+1/2(x) = i

)
=
(

1− exp
(∑m

j=1 β(j)d
N,(j)
k

))
β(i)d

N,(i)
k∑m

j=1 β(j)d
N,(j)
k

.

The random variables η̃Nk , ηNk and η̂Nk have to be extended for multi-species and the coupling
between these has to be reformulated accordingly. These are simple adaptations so they are
left to the reader, together with the remainder of the proof. �

Proof of Lemma 3.1. For each k ≥ 2 define

Wk =
√

E1

(
(1− αN )Z2+···+Zk

)
where E1 stands for the law of the Galton-Watson process with Z1 = 1. Since Z0 is a Bernoulli
random variable with parameter q, we clearly have (with the obvious notation)

E
(
Z0(1− αN )Z0+···+ZLN−1

)
= q(1− αN )E

(
(1− αN )Z1+···+ZLN−1

)
= q(1− αN )E

(
(1− αN )Z1

(
E1

(
1− αN )Z2+···+ZLN−1

)Z1
)

= q(1− αN )r((1− αN )W 2
LN−1)

where r(x) = (qx + 1 − q)3 is the probability generating function of a Binomial[3, q] random
variable. To obtain an expression for WLN−1 we study the sequence (Wk)k≥2 which, using the
same reasoning as above, satisfies the quadratic recurrence equation

Wk+1 = q(1− αN )W 2
k + 1− q (A.1)

with initial condition W2 = (1−αN )q+ 1− q. This recurrence equation has two fixed points,
1±
√

1−4q(1−q)(1−αN )

2q(1−αN ) ; the one with a plus is repulsive while the one with a minus is attractive, so

all orbits starting in [0, 1] converge to the latter which we call W . From its definition we have
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r((1−αN )W
2
) =

[
q(1− αN )W

2
+ 1− q

]3
= W

3
, and observing that gαN (q) = q(1−αN )W

3
,

we deduce that (3.5) is equivalent to

q(1− αN )
∣∣∣r((1− αN )W 2

LN−1)− r((1− αN )W
2
)
∣∣∣ ≤ Cθα(N). (A.2)

Since q(1− αN ) ≤ 1 and |r(a)− r(b)| ≤ 3|a− b| for all a, b ∈ [0, 1], it will be enough to show
that |WLN−1 −W | ≤ Cθα(N). To this end we notice that, from the definition of W ,∣∣Wk+1 −W

∣∣ =
∣∣∣[q(1− αN )W 2

k + 1− q
]
−
[
q(1− αN )W

2
+ 1− q

]∣∣∣
= q(1− αN )

∣∣Wk −W
∣∣(Wk +W

)
≤ q(1− αN )

∣∣Wk −W
∣∣(1 +W

)
,

(A.3)

but it can be easily deduced that q(1 +W ) ≤ 1, thus∣∣Wk+1 −W
∣∣ ≤ (1− αN )

∣∣Wk −W
∣∣ (A.4)

for all k ≥ 2. In particular, we obtain

|WLN−1 −W | ≤ 2(1− αN )LN−2 ≤ Ce−αNLN = CN
− αN

5 log(2) ,

where the last equality follows from the definition of LN . If α 6= 0, then for N large the
exponent is smaller than −α

5 , giving the result. When α = 0, we need to improve this bound.

To do so, we use (A.4) to bound the distance between the LN
2 -th term of the sequence and

W , obtaining the similar expression;

|WLN/2 −W | ≤ 2e−
αN (LN−2)

2 ≤ Ce2 logαN = C(αN )2,

where in the second inequality we used condition (2.4) to bound the exponent (this is valid
for N large, hence the C factor). Noticing that Wk converges monotonically to W , the above

bound is valid for all Wk with k ≥ LN
2 , so we can restart the sequence at the LN

2 -th term to
improve the bound in (A.3) to∣∣Wk+1 −W

∣∣ = q(1− αN )
∣∣Wk −W

∣∣(Wk +W
)
≤ q(1− αN )

∣∣Wk −W
∣∣(C(αN )2 + 2W

)
.

But 2q(1− αN )W = 1−
√

1− 4q(1− q)(1− αN ) ≤ 1−√αN , giving
∣∣Wk+1 −W

∣∣ ≤ ∣∣Wk −
W
∣∣[1−√αN + C(αN )2

]
for all k ≥ LN

2 . In particular,

|WLN−1 −W | ≤ 2
[
1−
√
αN + C(αN )2

]LN/2 ≤ Ce−√αN logN

20 ≤ Ce−
√

logN ,

where we used that αN logN →∞ as N →∞. �

A.2. Proofs from Section 5.2.

Proof of Proposition 5.5. We prove only the case α > 0; the case α = 0 is much easier to
handle. Observe first that Gα(x) satisfies

Gα(x)
√

1− 4(1− α)x(1− x) = −Gα(x) + 2− 2x, (A.5)

G′α(x) = Gα(x)−1

x
√

1−4(1−α)x(1−x)
= Gα(x)−1

x[1−2(1−α)xGα(x)] . (A.6)

To find the maximum of gα we impose the first order condition 0 = g′α(x) = xG3
α(x)

[
1
x + 3G′α(x)

Gα(x)

]
.

The factor xG3
α(x) equals 0 only at 0 and 1, so g′α(x) = 0 only if the factor in brackets van-

ishes. It is left to the reader that together with (A.5) and (A.6), the condition above gives
Gα(x) = x + 1/2. This way, since Gα ≤ 1, every critical point of the function must lie in
[0, 1/2].

The first part of the proposition will follow if we show that at every critical point x0 we have
g′′α(x0) < 0 (so every critical point is a maximum, and hence there can be only one). Now,

since g′α(x0) = 0, g′′α(x0) = gα(x0)
[

3G′′α(x0)
Gα(x0) −

4
3x2

0

]
, and it is enough to show that G′′α(x0) < 0.

Using (A.5) and (A.6) we find G′′α(x) = [Gα(x)−1]2(1−α)x[2Gα(x)+xG′α(x)]
[x(1−2(1−α)xGα)]2

, which is negative as
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soon as 2Gα(x0) + xG′α(x0) > 0 since Gα ≤ 1. By (A.5) and (A.6) this is equivalent to
3− 4x > Gα(x0), which is satisfied because 0 ≤ x ≤ 1/2.

To prove the second part of the proposition write Σp = β(1)p1 + β(2)p2 so that

f
(i)
~β

(p) = 1−e−Σp

Σp
β(i)pi.

Since x 7→ 1−e−x
x is decreasing, it follows that f

(i)
~β

(p) ≤ 1 − e−β(i)pi ≤ 1 − e−β(i)gα(i)(x0) so it

will be enough to prove that 1− e−β(i)gα(i)(x0) ≤ x0. Since x0 is characterized by Gα(i)(x0) =

x0 + 1/2, it is enough to show that V (x0) := φix0

(
1
2 + x0

)3
+ log(1 − x0) ≤ 0. But, in fact,

V is non-positive on the entire interval [0, 1/2]. Indeed, V (0) = 0 and V (1/2) = φi
2 − log 2,

which is negative from our assumption φi < 2 log 2, so it is enough to prove that the inequality
holds at the critical points of V ; this follows from V ′(x) = φi(

1
2 + x)2(1

2 + 4x)− 1
1−x , V ′′(x) =

φi(
1
2 + x)(3 + 12x) − 1

(1−x)2 , so whenever V ′(x1) = 0 we have (1 − x1)V ′′(x1) = φi(x1 +

1/2)[−16x2
1 + 13x1/2 + 11/4], which is positive in [0, 1/2], giving that x1 is a minimum. �

Proof of Proposition 5.6. We keep the notation Σp used in the previous proof. For the de-

pendence of f
(1)
~β

on p1 we write the function as (1 − e−Σp)β(1)p1

Σp
which, for fixed p2, is the

product of two increasing functions. For the dependence of f
(1)
~β

on p2, on the other hand,

we write f
(1)
~β

as 1−e−Σp

Σp
β(1)p1; the factor on the left is decreasing on p2 while the one on the

right is constant. This gives (1). Next observe that l1(p) = φ1
1−e−Σp

Σp
G3
α(1) ◦ f

(1)
~β

(p) and the

same analysis shows that f
(1)
~β

is increasing and Gα is decreasing, giving (2).

If φ1 < 2 log 2, then from Proposition 5.5 we know that g′α(i) ◦ f
(i)
~β

(p) ≥ 0, so h1 satisfies

the same monotonicity as f
(1)
~β

on each argument. Since l1(p) = h1(p)
p1

, it must behave as h1

with respect to p2. This gives (3). �

Proof of Proposition 5.7. Again we keep definition of Σp used in the proof of Proposition 5.5.
To prove (5.7) we take c small (to be fixed later) and suppose that p2 < c. Observing that

f
(2)
~β

(p) = 1−e−Σp

Σp
β(2)p2 we deduce that 1−e−β(1)p1

β(1)p1
β(2)p2 < f

(2)
~β

(p) < β(2)p2, so from the

assumption p2 < c and the monotonicity of Gα, we deduce

l2(p) = (1− α(2))
f

(2)
~β

(p)

p2
G3
α(2) ◦ f

(2)
~β

(p) ≥ φ2
1−e−β(1)p1

β(1)p1
G3
α(2)(β(2)c). (A.7)

Since the fraction is decreasing on p1 we obtain a lower bound by taking p1 = κε and using

its definition to obtain l2 ≥ (1 − ε)φ2

φ1

G3
α(2)

(β(2)c)

G3
α(1)

(1−e−β(1)κε )
. But φ2

φ1
> 1, and as c → 0 we have

Gα(2)(β(2)c) → 1, so taking first ε small and then c sufficiently small, the right hand side is
larger than 1 + ε′ for some ε′.

For (5.8), Proposition 5.5 gives that gα(2) has a single critical point which is a maximum,

so h2 = gα(2) ◦ f
(2)
~β

is minimized either when f
(2)
~β

is minimized or maximized. Remembering

that f
(2)
~β

decreases with p1 and increases with p2, we conclude that the minimum of h2 over

the set [0, κε] × [c, p̄2] is obtained either at (0, 1−α(2)
2 ) or at (κε, c). We already saw that at

p = (κε, c) we have h2(p) = l2(p)p2 > (1 + ε′)c, meaning that we need only to control h2 at

(0, 1−α(2)
2 ), which is equal to gα(2)(1− e−φ2/2) and the result follows by taking c small enough

so that gα(2)(1− e−φ2/2) > (1 + ε′)c.

To get (ii) in the proposition we need to extend the above properties for a general value
of p1. We proceed analogously, but when computing (A.7) we use the additional information
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φ2 > 2 log 2 to improve the lower bound without imposing any restriction on p1. Indeed, since

φ1 < φ2 we deduce that β(1)p1 ≤ φ2

2 so, from monotonicity of 1−e−x
x ,

l2(p) ≥ φ2
1−e−β(1)p1

β(1)p1
G3
α(2)(β(2)c) ≥ 2(1− e−φ2/2)G3

α(2)(β(2)c),

but 2(1 − e−φ2/2) > 1 from the assumption on φ2, so taking c sufficiently small we conclude
again that l2(p) > 1 + ε′ for some ε′ small. The proof of the second property is exactly the
same as in 5.8.

We turn finally to (5.9) and (5.10). Notice that, since φ1 < 2 log 2, from Proposition 5.6 we
know that h1 is increasing in p1 and decreasing in p2, so using the definition of κε we deduce

p1 < κε =⇒ h1(p) ≤ h1(κε, 0) = gα(1)(1− e−β(1)κε) = (1− ε)κε,
which proves (5.9). To prove (5.10) we use a similar argument with l1, which we know is
decreasing in both arguments, so that

κε < p1 =⇒ l1(p) ≤ l1(κε, 0) =
gα(1)(1−e−β(1)κε )

κε
= (1− ε),

and the result follows. �
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