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NON-PERIODIC CONTINUED FRACTIONS FOR QUADRATIC

IRRATIONALITIES

MICHAEL O. OYENGO

Abstract. A well known theorem of Lagrange states that the simple contin-
ued fraction of a real number α is periodic if and only if α is a quadratic irra-
tional. We examine non-periodic and non-simple continued fractions formed
by two interlacing geometric series and show that in certain cases they con-
verge to quadratic irrationalities. This phenomenon is connected with certain
sequences of polynomials whose properties we examine further.
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1. Introduction

In 1770 Lagrange proved that any quadratic irrational has a continued fraction
expansion which is periodic after a certain stage and the converse was also proved,
see [2] or [3]. Precisely:

Theorem 1. ([2], p. 48) Every periodic continued fraction represents a quadratic
irrational number and every quadratic irrational number is represented by a periodic
continued fraction.

The above mentioned continued fractions are all simple. Now introduce the
continued fraction

F (x, y) = [x, y−1, x2, y−2, x3, y−3, x4, y−4, . . . ]

where x and y are integers. Despite its simple form, this two variable continued
fraction does not seem to appear in the literature. Some preliminary computer
experiments suggest;

Conjecture 2. If x and y are positive integers, and x 6= y, then F (x, y) is tran-
scendental.

However the case where x = y is different. Section 3 makes an in-depth study of
F (x, x). In particular we prove that for x a positive integer, F (x, x) is the largest
root of P (x, z) = z2 − (2x− 1)z − x.

The original motivation for this work came from the study of simple continued
fractions with many large partial quotients. A classical example is the continued
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2 MICHAEL O. OYENGO

fraction expansion for exp( 1
x
) given by Euler in the 1730’s namely,

(1)

∞
∑

k=0

x−k

k!
= [1, x− 1, 1, 1, 3x− 1, 1, 1, 5x− 1, 1, ..., 1, (2n+ 1)x− 1, 1, ...]

for x a large integer, there will be infinitely many large partial quotients, these are
partial quotients that are linear in x.

The phenomenon of large partial quotients also occurs for polynomial functions
of x. For example, one may simply truncate the series of (1). For another example,
consider the polynomial

P (a, x) = 3a(x+ 1) + x2 + 3x+ 5

where a is a very large positive integer. If we set a = 106, it has a root x0 near
x = −1 and a root x1 near x = −3000000. The continued fraction of −x0 begins

(2) [1, 106, 3,
106 − 1

3
, 9,

106 − 1

9
, 27,

106 − 1

27
, 81, 12345, 1, 2, 26, 1, 2, 4114, 1, 8, . . . ]

The other root of the quadratic has a similar pattern and is equal to −3000000− r
where the continued fraction of r begins
(3)

[1, 1, 106−1, 3,
106 − 1

3
, 9,

106 − 1

9
, 27,

106 − 1

27
, 81, 12345, 1, 2, 26, 1, 2, 4114, 1, 8, . . . ]

By Lagrange’s theorem these will eventually be periodic, with perhaps a very long
period. However the remarkable initial pattern suggests the study of F (x, y), at
least for x = y. We use the language of van der Poorten and Shallit [4], and call a
partial quotient (other than ‘the first’ which may be zero) ‘inadmissible’ if it is zero,
negative or a fraction. Hence all partial quotients of a regular continued fraction
expansion of a real number are admissible. From the initial pattern in (2) we are
led to an elegant continued fraction,

(4) [1, 106, 3,
106 − 1

3
, 32,

106 − 1

32
, 33,

106 − 1

33
, 34,

106 − 1

34
, . . . , 3k,

106 − 1

3k
, . . . ]

which has partial quotients that are inadmissible from some point on. From com-
putations in Mathematica it seems to converge to the same real number as (2).
Consider more generally, for nonzero positive integers x and s, the continued frac-
tion

(5) Fk(x, s) := [x,
s

x
, x2,

s

x2
, x3,

s

x3
, x4,

s

x4
, . . . , xk,

s

xk
].

We have;

Theorem 3. The continued fraction Fk(x, s) converges to the largest root of the
polynomial P (x, z, s) = sz2 − ((s+ 1)x− 1)z − x.

The proof of this theorem for s = 1 is the subject of section 3. Of special interest
is the rate at which P (x, Fk(x, s), s) approaches zero as k → ∞; see equations
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(29) and (30) that occur in the proof of theorem 15. Additional results on (5) are
presented in section 4. We shall however begin with the case s = 1,

(6) F (x) := [x,
1

x
, x2,

1

x2
, x3,

1

x3
, x4,

1

x4
, . . . , xk,

1

xk
, . . . ]

In section 2, we express the convergents of this continued fraction in terms of
polynomials An(x) and Bn(x). Their properties are developed further in section 3.

Although P (1, z, 1) = 0 is the equation of the golden ratio, and (as we indicate
later) one of the convergence proofs in section 3 is analogous to a result involving
Fibonacci polynomials, we stress that these polynomials are of a different nature
than Fibonacci and Chebyshev polynomials.

Section 4 gives a generalization F (x, s) of of the continued fraction F (x) and its
properties. We conclude this section by drawing a connection between the continued
fraction F (1, y−1) and some q−series studied by Auluck [7], and a Ramanujan
q−series.

2. Convergents and generating functions

This section investigates the convergents of (6), which gives two sequences (Aj(x))
and (Bj(x)) of polynomials with positive integer coefficients. The recurrence rela-
tions and generating functions of these sequences are studied. It is rather difficult
to prove results on (6) in its given form, but it becomes easier when we transform
it into an ‘equivalent’ continued fraction of the form;

(7) b0 +
a1
b1 +

a2
b2 +

a3
b3 +

. . .
+

aj
bj +

. . .

We use the familiar notation

K

(

aj
bj

)

= K∞

j=1

(

aj
bj

)

:=
a1
b1 +

a2
b2 +

a3
b3 +

. . .
+

aj
bj +

. . .

Two continued fractions are said to be equivalent i.e. K(
aj

bj
) ∼ K(

cj
dj
), if they

have the same sequence of classical approximants (or convergents) ([1], pp 77). It
is straightforward to verify that ∼ is indeed an equivalence relation.

Theorem 4. ([1], pp 77) K
(

aj

bj

)

∼ K
(

cj
dj

)

if and only if there exists a sequence

{rj} of complex numbers with r0 = 1 and rj 6= 0 for all j ∈ N, such that,

cj = rj−1rjaj , dj = rjbj for all j ∈ N

Theorem 5. F (x) is equivalent to F̃ (x) defined as

(8) F̃ (x) := x+
x

1+

1

x+

x

1+
. . .

+

1

x+

x

1+
. . .

Proof. In the notation of (7), F (x) is expressed as

F (x) := x+
1

1/x+

1

x2 +

1

1/x2 +
. . .

+

1

xk +

1

1/xk +
. . .
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j Aj Bj

0 x 1
1 2x 1
2 x(2x+ 1) x+ 1
3 x(4x+ 1) 2x+ 1
4 x(4x2 + 3x+ 1) 2x2 + 2x+ 1
5 x(8x2 + 4x+ 1) 4x2 + 3x+ 1
6 x(8x3 + 8x2 + 4x+ 1) 4x3 + 5x2 + 3x+ 1
7 x(16x3 + 12x2 + 5x+ 1) 8x3 + 8x2 + 4x+ 1
8 x(16x4 + 20x3 + 13x2 + 5x+ 1) 8x4 + 12x3 + 9x2 + 4x+ 1
9 x(32x4 + 32x3 + 18x2 + 6x+ 1) 16x4 + 20x3 + 13x2 + 5x+ 1
10 x(32x5 + 48x4 + 38x3 + 19x2 + 6x+ 1) 16x5 + 28x4 + 25x3 + 14x2 + 5x+ 1

Table 1. First 11 polynomials for Aj and Bj .

Let K
(

aj

bj

)

= F (x) − x and apply theorem 4 with the sequence {rj} defined as

rj :=

{

x
j+1

2 for j odd

x−
j

2 for j even

�

From the relation
Aj+1

Bj+1
=

bj+1Aj+aj+1Aj−1

bj+1Bj+aj+1Bj−1
of the convergents

Aj

Bj
of (7) we have

the recurrence relations

(9)
Aj+1(x) = bj+1Aj(x) + aj+1Aj−1(x)
Bj+1(x) = bj+1Bj(x) + aj+1Bj−1(x)

This will be useful in proving a similar result for (6). The first 11 terms for Aj(x)
and Bj(x) are given in table 2.

Theorem 6. The Aj(x) and Bj(x) from the convergents
Aj(x)
Bj(x)

of (8) are given by

the recurrence relations;

(10)
Aj(x) = (2x+ 1)Aj−2(x) − xAj−4(x)
Bj(x) = (2x+ 1)Bj−2(x) − xBj−4(x)

Proof. To simplify the notation we will use Aj and Bj . From (8) first observe that

for j odd, aj = x and bj = 1, and for j even, aj = 1 and bj = x. Let
Aj

Bj
be the

convergents of F̃ (x). The Aj and Bj have initial conditions A0 = x, A1 = 2x,
A2 = x(2x+ 1), B0 = B1 = 1 and B2 = x+ 1. Also for j = 4, (10) holds. Suppose
that for all i ≤ j (10) is true. Then for j even,

Aj+2

Bj+2
:= z̃j+2(x) = x+

x

1+

1

x+

x

1+
. . .

+

1

x+

x2

x+ 1

=
(x+ 1)Aj + x2Aj−1

(x+ 1)Bj + x2Bj−1
.
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Since j is even, by (9) Aj = xAj−1 +Aj−2 and Bj = xBj−1 +Bj−2 so that,

Aj+2 = (x+ 1)Aj + x(Aj −Aj−2)

= (2x+ 1)Aj − xAj−2,

Bj+2 = (x+ 1)Bj + x(Bj −Bj−2)

= (2x+ 1)Bj − xBj−2.

Similarly for j odd,

Aj+2

Bj+2
:= z̃j+2(x) = x+

x

1+

1

x+

x

1+
. . .

+

x

1+

1

2x

=
2xAj +Aj−1

2xBj +Bj−1

and by (9) Aj = Aj−1 + xAj−2 and Bj = Bj−1 + xBj−2. Thus

Aj+2 = 2xAj + (Aj − xAj−2)

= (2x+ 1)Aj − xAj−2,

and

Bj+2 = 2xBj + (Bj − xBj−2)

= (2x+ 1)Bj − xBj−2.

We have the same recurrence for j odd and j even. Hence by induction the
recurrence holds for all j. This is the recurrence for F (x) by the equivalence

F (x) ∼ F̃ (x). �

It is clear from the initial conditions and from the recurrence relations (10) that
Aj ’s and Bj ’s are polynomials in x with positive integer coefficients. We now give
their generating functions.

Proposition 7. A2j and A2j+1 have generating functions

x

1− (2x+ 1)t+ xt2
=

∞
∑

j=0

A2j(x)t
j ,(11)

x(2 − t)

1− (2x+ 1)t+ xt2
=

∞
∑

j=0

A2j+1(x)t
j ,(12)

while B2j and B2j+1 have generating functions

1

1− (2x+ 1)t+ xt2
=

∞
∑

j=0

B2j+1(x)t
j ,

(1− xt)

1− (2x+ 1)t+ xt2
=

∞
∑

j=0

B2j(x)t
j .
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Proof. From equation (10)

∞
∑

j=2

A2jt
j =

∞
∑

j=2

((2x+ 1)A2j−2 − xA2j−4) t
j

= (2n+ 1)x

∞
∑

j=2

A2j−2t
j−1 − xt2

∞
∑

j=2

A2j−4t
j−2

= (2n+ 1)x

∞
∑

j=1

A2j−2t
j−1 − xt2

∞
∑

j=2

A2j−4t
j−2 − (2x+ 1)tA0

hence

(

1− (2x+ 1)t+ xt2
)

∞
∑

j=0

A2jt
j = −(2x+ 1)tA0 +A0 + tA2.

= x

The proof of (12) and of Bj ’s follows the same pattern as above. �

From the generating functions, we can observe relationships between the Aj and
Bj polynomials. Here are some notable ones.

Corollary 8.

A2j+1 = 2A2j −A2j−2(13)

B2j+1 =
1

x
A2j(14)

B2j =
1

x
A2j −A2j−2(15)

= B2j+1 − xB2j−1(16)

There are other relationships of interest between Bj ’s and
1
x
Aj ’s, for example;

Lemma 9. Let Aj and Bj be defined as before (see theorem 6). Then

(17) Bj =
1

2x
Aj +

1

2
Bj−2

Proof. Proceed by induction on j with base case j = 2 using the initial conditions
for Aj and Bj as well as their recurrence relations. For j = 2, x+1 = 1

2xA2+
1
2B0 =

B2. Suppose for all i ≤ j, (17) is true. Then

Bj+1 = (2x+ 1)Bj−1 − xBj−3

= (2x+ 1)

(

1

2x
Aj−1 +

1

2
Bj−3

)

− x

(

1

2x
Aj−3 +

1

2
Bj−5

)

=
1

2x
((2x+ 1)Aj−1 − xAj−3)−

1

2
((2x+ 1)Bj−3 − xBj−5)

=
1

2x
Aj+1 +

1

2
Bj−1

�
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We use the above lemma to show that the Bj polynomials can be expressed in
terms of the Aj polynomials.

Theorem 10. Let Aj and Bj be defined as before, then

B2k =
A0

2kx
+

1

x

k
∑

j=1

A2j

2k−j+1
(18)

B2k+1 =
1

x

k
∑

j=0

A2j+1

2k−j+1
(19)

Proof. From the initial conditions, A0

x
= B0 and A0

2x + A2

2x = B2. Suppose for i ≤ j
(18) is true. Then by by (17)

B2k+2 =
1

2x
A2k+2 +

1

2
B2k

=
1

2x
A2k+2 +

1

2





A0

2kx
+

1

x

k
∑

j=1

A2j

2k−j+1





=
A0

2k+1x
+

1

x





A2k+2

2
+

k
∑

j=1

A2j

2k−j+2





=
A0

2k+1x
+

1

x

k+1
∑

j=1

A2j

2k−j+2
.

Similarly, A1

2x = B1 and suppose for i ≤ j (19) is true. Then by by (17)

B2k+3 =
1

2x
A2k+3 +

1

2
B2k+1

=
1

2x
A2k+3 +

1

x

k
∑

j=0

A2j+1

2k−j+2

=
1

x

k+1
∑

j=0

A2j+1

2k−j+2
,

so by induction on j, (18) and (19) are true for all j. �

3. Convergence of Fk(x)

In this section we prove that Fk(x) converges to a quadratic irrational. We present

two different proofs for the convergence. Since F̃ (x) is periodic, if it converges, the
proof of its convergence is straightforward. By the equivalence proved in theorem
5, F (x) will converge to the same limit.

Proposition 11. If F̃ (x) converges, then the limit is a root of the quadratic
P (x, z) = z2 − (2x− 1)z − x.
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Proof. Suppose F̃ (x) converge to z, then,

z = x+
x

1+

1

x+

x

1+
. . .

+

1

x+

x

1+
. . .

= x+
x

1+

1

z

from which we get z2 + (1− 2x)z − x = 0. �

Let α be an irrational number with a simple continued fraction

α = [a0, a1, a2, . . . ].

We know by Lagrange that the continued fraction is periodic and does not termi-
nate. Let pn/qn be the convergents of the continued fraction for α. Call pn/qn an
even convergent if n is even, and an odd convergent if n is odd. By theorem 7.8 of
([5], p 193),

p0
q0

<
p2
q2

<
p4
q4

< · · · < α < · · · < p5
q5

<
p3
q3

<
p1
q1

.

Even convergents are strictly increasing while odd convergent are strictly decreas-
ing.

We now prove the convergence of Fk(x) by solving the recurrences (10) by the
method of characteristic roots (see for example [6] p 300). In particular, we treat
even and odd convergents of Fk(x) separately.

Theorem 12. Let Fk(x) be defined as below for k ≥ 1,

(20) Fk(x) := [x,
1

x
, x2,

1

x2
, x3,

1

x3
, x4,

1

x4
, . . . , xk,

1

xk
]

Then Fk(x) converges to a quadratic irrational that is the positive root of the poly-
nomial P (x, z) = z2 − (2x− 1)z − x.

Proof. Since odd convergents are increasing and even convergents are decreasing,
they will be treated differently. Let ak = A2k. Then from (10) we get the recurrence
ak = (2x+ 1)ak−1 − xak−2 with characteristic polynomial λ2 − (2x+ 1)λ+ x = 0.

Roots of this polynomial are λ1 = 1
2 (2x + 1 +

√
4x2 + 1) and λ2 = 1

2 (2x + 1 −√
4x2 + 1), both positive with λ1 > λ2 and ak = αλk

1 + βλk
2 .

From the initial conditions A0 = x and A2 = 2x2 + x, we get the values of the

constants α = λ2x−2x2
−x

−(λ1−λ2)
and β = λ1x−2x2

−x
λ1−λ2

so that

ak =
λ2x− 2x2 − x

−(λ1 − λ2)
λk
1 +

λ1x− 2x2 − x

λ1 − λ2
λk
2 .

Similarly let bk = B2k. Then from (10), and the fact that the recurrences are
the same, bk = α′λk

1 + β′λk
2 . From the initial conditions B0 = 1 and B2 = x + 1,

we get α′ = λ2−x−1
−(λ1−λ2)

and β′ = λ1−x−1
λ1−λ2

so that

bk =
λ2 − x− 1

−(λ1 − λ2)
λk
1 +

λ1 − x− 1

λ1 − λ2
λk
2 ,
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ak
bk

=
(λ2x− 2x2 − x)λk

1 − (λ1x− 2x2 − x)λk
2

(λ2 − x− 1)λk
1 − (λ1 − x− 1)λk

2

=
(λ2x− 2x2 − x) − (λ1x− 2x2 − x)(λ2/λ1)

k

(λ2 − x− 1)− (λ1 − x− 1)(λ2/λ1)k
,

and recalling that λ2 < λ1,

(21) lim
k→∞

ak
bk

=
λ2x− 2x2 − x

λ2 − x− 1
.

Substitute for λ2 in equation 21 and rationalize the denominator to get

lim
k→∞

ak
bk

=
2x− 1 +

√
4x2 + 1

2
.

On the other hand, let ak = A2k−1. Since we have the same recurrence relation
as before, ak = γλk

1 + δλk
2 . From the initial conditions A1 = 2x and A3 = 4x2 + x,

we get γ = 2xλ2−4x2
−x

(λ1λ2−λ2
1
)

and δ = 2xλ1−4x2
−x

λ1λ2−λ2
2

. Thus

ak =
2xλ2 − 4x2 − x

λ1λ2 − λ2
1

λk
1 +

2xλ1 − 4x2 − x

λ1λ2 − λ2
2

λk
2 .

Similarly let bk = B2k−1. From (10) and the fact that the recurrences are the
same, bk = γ′λk

1 + δ′λk
2 . From the initial conditions B1 = 1 and B3 = 2x + 1, we

get γ′ = λ2−2x−1
λ1λ2−λ2

1

and δ′ = λ1−2x−1
λ1λ2−λ2

2

. Thus

bk =
λ2 − 2x− 1

λ1λ2 − λ2
1

λk
1 +

λ1 − 2x− 1

λ1λ2 − λ2
2

λk
2 .

Hence

(22) lim
k→∞

ak
bk

=
2xλ2 − 4x2 − x

λ2 − 2x− 1
.

Substitute λ2 into (22) and rationalize the denominator to get

lim
k→∞

ak
bk

=
2x− 1 +

√
4x2 + 1

2
.

This completes the proof. �

In preparation for an inductive proof of theorem 12, we give some results on linear
combinations of products of the Aj and Bj polynomials that yield monomials.

Lemma 13. Let
Aj

Bj
be the convergents of F (n). For j ≥ 1,

A2j−2A2j+2 −A2
2j = −xj+2,(23)

B2j−2B2j+2 −B2
2j = xj+1,

and for j ≥ 2,

A2j−3A2j+1 −A2
2j−1 = xj ,(24)

B2j−3B2j+1 −B2
2j−1 = −xj−1.
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Proof. From the initial conditions A0 = x, A2 = 2x2 + x and A4 = 4x3 + 3x2 + x,
A0A4 −A2

2 = −x3. Suppose (23) holds for all integers up to j. Then

A2jA2j+4 −A2
2j+2 = A2j{(2x+ 1)A2j+2 − xA2j} −A2

2j+2

= A2j+2{(2x+ 1)A2j} − xA2
2j −A2

2j+2

= A2j+2{A2j+2 + xA2j−2} − xA2
2j −A2

2j+2

= xA2j−2A2j+2 − xA2
2j

= −xj+3

where we have used the recurrence relations (10) for Aj . By induction on j, equation
(23) is true for all j. The proofs of the other relations are identical to the above
proof with the only difference being the initial conditions. �

Remark 1. This provides an alternative definition of Aj(x) and Bj(x) by non-linear
recurrences. For x = 1 this reduces to the well known non-linear recurrences that
define the Fibonacci numbers.

Lemma 14. Let Aj and Bj be as before. Then for j ≥ 0,

(25) A2
2j − (2x− 1)A2jB2j − xB2

2j = −xj+2,

and for j ≥ 1,

(26) A2
2j−1 − (2x− 1)A2j−1B2j−1 − xB2

2j−1 = xj .

Proof. From the initial conditions A0 = x and B0 = 1, A2
0− (2x− 1)A0B0−xB2

0 =
−x2. Suppose equation (25) is true for all i ≤ j. By using the recurrence relations
(10),

A2
2j+2 − (2x− 1)A2j+2B2j+2 − xB2

2j+2 = [(2x+ 1)A2j − xA2j−2]
2

−(2x− 1)((2x+ 1)A2j − xA2j−2)((2x+ 1)B2j − xB2j−2)− x((2x+ 1)B2j − xB2j−2)
2

= (2x+ 1)2(A2
2j − (2x− 1)A2jB2j − xB2

2j) + x2(A2
2j−2 − (2x− 1)A2j−2B2j−2 − xB2

2j−2)

−(2x+ 1)(2xA2j−2A2j − (2x− 1)(xA2jB2j−2 + xA2j−2B2j)− 2x2B2j−2B2j)

= −(2x+ 1)2xj+2 − xj+3

−(2x+ 1)[2xA2j−2A2j − (2x− 1)(xA2jB2j−2 + xA2j−2B2j)− 2x2B2j−2B2j ].

It suffices to show that the square bracket equals −(2n+ 1)nj+2. Using (15) and
(23) we get

2xA2j−2A2j − (2x− 1)(xA2jB2j−2 + xA2j−2B2j)− 2x2B2j−2B2j

= 2xA2j−2A2j − (2x− 1)(A2j(A2j−2 − xA2j−4) +A2j−2(A2j − xA2j−2))

−2(A2j−2 − xA2j−4)(A2j − xA2j−2)

= −2xA2j−2A2j + x(2x+ 1)(A2
2j−2 +A2j−4A2j)− 2x2A2j−4A2j−2

= −2xA2j−2(A2j + xA2j−4) + x(2x+ 1)(2A2j−2 − xj+1)

= −2xA2j−2((2x+ 1)A2j−2) + x(2x+ 1)(2A2j−2 − xj+1)

= −(2x+ 1)xj+2.
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Substituting back gives

A2
2j+2 − (2x− 1)A2j+2B2j+2 − xB2

2j+2 = −xj+3.

Similarly, A1 = 2x and B1 = 1 so that A2
1 − (2x− 1)A1B1 − xB2

1 = x. Suppose
equation (26) is true for all i ≤ j. By using the recurrence relations (10), we get

A2
2j+1 − (2x− 1)A2j+1B2j+1 − xB2

2j+1 = [(2x+ 1)A2j−1 − xA2j−3]
2

−(2x− 1)((2x+ 1)A2j−1 − xA2j−3)((2x+ 1)B2j−1 − xB2j−3)− x((2x+ 1)B2j−1 − xB2j−3)
2

= (2x+ 1)2(A2
2j−1 − (2x− 1)A2j−1B2j−1 − xB2

2j−1) + x2(A2
2j−3 − (2x− 1)A2j−3B2j−3 − xB2

2j−3)

−(2x+ 1)(2xA2j−3A2j−1 − (2x− 1)(xA2j−1B2j−3 + xA2j−3B2j−1)− 2x2B2j−3B2j−1)

= (2x+ 1)2xj + xj+1

−(2x+ 1)[2xA2j−3A2j−1 − (2x− 1)(xA2j−1B2j−3 + xA2j−3B2j−1)− 2x2B2j−3B2j−1].

It suffices to show that the square bracket in the equation above equals (2x+1)xj .
Using (??), (14) and (24), we get

2xA2j−3A2j−1 − (2x− 1)(xA2j−1B2j−3 + xA2j−3B2j−1)− 2x2B2j−3B2j−1

= 2xA2j−3A2j−1 − (2x− 1)(A2j−1(A2j−3 − xA2j−5) +A2j−3(A2j−1 − xA2j−3))

−2(A2j−3 − xA2j−5)(A2j−1 − xA2j−3)

= −2xA2j−3A2j−1 + x(2x+ 1)(A2
2j−3 +A2j−5A2j−1)− 2x2A2j−5A2j−3

= −2xA2j−2(A2j + xA2j−4) + x(2x+ 1)(2A2j−2 − xj+1)

= −2xA2j−3((2x+ 1)A2j−3) + x(2x+ 1)(2A2j−3 + xj−1)

= (2x+ 1)xj .

Substituting back gives

A2
2j+1 − (2x− 1)A2j+1B2j+1 − xB2

2j+1 = xj+1.

By induction on j, (25) and (26) are true for all j. �

We now use lemma 14 to prove the convergence of Fk(x) in a manner that
quantifies how close the convergents are to the limit.

Theorem 15. For k ≥ 1, let

(27) Fk(x) := [x,
1

x
, x2,

1

x2
, x3,

1

x3
, x4,

1

x4
, . . . , xk,

1

xk
],

and

(28) F ∗

k (x) := [x,
1

x
, x2,

1

x2
, x3,

1

x3
, x4,

1

x4
, . . . , xk]

be truncations of F (x) to give odd and even convergents respectively. Then Fk(x)
and F ∗

k (x) converge to the positive root of P (x, z) = z2 − (2x− 1)z − x.



12 MICHAEL O. OYENGO

Proof. Since Fk(x) =
A2k−1

B2k−1
, equation (26) yields

P (x, Fk(x)) =
A2

2k−1 − (2x− 1)A2k−1B2k−1 − xB2
2k−1

B2
2k−1

=
xk

B2
2k−1(x)

.(29)

Here B2k−1(x) has positive integer coefficients and deg(B2k−1(x)) = k − 1, so for
x > 1,

lim
k→∞

P (x, Fk(x)) = lim
k→∞

xk

B2
2k−1(x)

≤ lim
k→∞

1

xk2
−3k+1

= 0.

Since F ∗

k (x) =
A2k−2

B2k−2
, equation (25) yields

P (x, F ∗

k (x)) =
A2

2k−2 − (2x− 1)A2k−2B2k−2 − xB2
2k−2

B2
2k−2

=
−xk+1

B2
2k−2(x)

.(30)

As before, B2k(x) has positive integer coefficients and deg(B2k−2(x)) = k − 1, so
for x > 1,

lim
k→∞

P (x, F ∗

k (x)) = lim
k→∞

−xk+1

B2
2k−2(x)

≤ lim
k→∞

−1

xk2−3k
= 0.

To show that they converge to the positive root of P (x, z), write P (x, z) = (z −
z1)(z − z2) where z1 =

1
2 (2x− 1+

√
4x2 + 1) and z2 = 1

2 (2x− 1−
√
4x2 + 1). Note

that Fk(x) and F ∗

k (x) are all positive and so they converge to z1. �

The evaluations of the function P (x, z) at the convergents of the continued frac-
tion is analogous to the known result that u2 − xu− 1 evaluated at [x, . . . , x] with
n partial quotients of x is

(−1)n

F 2
n(x)

where Fn(x) is the Fibonacci polynomial of degree n. This result implies that

[x, x, x, . . . ] converges to 1
2 (x+

√
4 + x2), a root of u2 − xu − 1, for x ≥ 1.

4. A generalization of Fk(x)

We now give a generalization of (6) by introducing a parameter ‘s’ to get a
continued fraction of the form (4). In this section, we just present results and omit
the proofs since they have the same construction as the proofs already presented.
For a positive integer s, define F (x, s) as;

(31) F (x, s) := [x,
s

x
, x2,

s

x2
, x3,

s

x3
, x4,

s

x4
, . . . , xk,

s

xk
, . . . ]

then F (x, s) has an equivalent presentation

(32) F̃ (x, s) := x+
x

s+

1

x+

x

s+
. . .

+

1

x+

x

s+
. . .
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It is straightforward to verify the equivalence using theorem (4) with the sequence

{rj} defined earlier. Clearly, F̃ (x, s) is periodic and converges to a root of the

polynomial P (x, z, s) = sz2 − ((s + 1)x − 1)z − x. By the equivalence to F̃ (x, s),

F (x, s) converges to the same limit. To see this, consider the convergents
Aj(x,s)
Bj(x,s)

of F (x, s). The polynomials Aj(x, s) and Bj(x, s) have initial conditions A0 =
x, A1 = x(s+ 1), A2 = x((s + 1)x + 1), B0 = 1, B1 = s and B2 = xs + 1 with
recurrence relations

(33)
Aj(x, s) = ((s+ 1)x+ 1)Aj−2(x, s)− xAj−4(x, s)
Bj(x, s) = ((s+ 1)x+ 1)Bj−2(x, s)− xBj−4(x, s)

From the recurrence relations (33), we have the generating functions,

x

1− ((s+ 1)x+ 1)t+ xt2
=

∞
∑

j=0

A2j(x, s)t
j

x((s+ 1)− t)

1− ((s+ 1)x+ 1)t+ xt2
=

∞
∑

j=0

A2j+1(x, s)t
j

s

1− ((s+ 1)x+ 1)t+ xt2
=

∞
∑

j=0

B2j+1(x, s)t
j

(1 − xt)

1− ((s+ 1)x+ 1)t+ xt2
=

∞
∑

j=0

B2j(x, s)t
j

From the generating functions, we establish relationships between the Aj(x, s) and
Bj(x, s) polynomials given by

A2j+1(x, s) = (s+ 1)A2j(x, s)−A2j−2(x, s)

xB2j+1(x, s) = sA2j(x, s)

sB2j(x, s) = B2j+1(x, s)− xB2j−1(x, s)

=
1

x
A2j(x, s)−A2j−2(x, s)

It can be shown that for j ≥ 0,

(34) A2j(x, s)
2 − (2x− 1)A2j(x, s)B2j(x, s) − xB2j(x, s)

2 = −xj+2,

and for j ≥ 1,

(35) A2j−1(x, s)
2 − (2x− 1)A2j−1(x, s)B2j−1(x, s)− xB2j−1(x, s)

2 = xjs.

Thus one finds from equation (35) that for odd convergents Fk(x, s)

(36) P (x, Fk(x, s)) =
xks

B2
2k−1(x, s)

.

Here, B2k−1(x, s) has positive integer coefficients, has s as a factor and deg(B2k−1(x)) =
k − 1. Hence for x > 1,

lim
k→∞

P (x, Fk(x, s)) = lim
k→∞

xks

B2
2k−1(x)

≤ lim
k→∞

1

xk2
−3k+1s

= 0.
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Similarly one finds from equation (34) that for even convergents F ∗

k (x, s)

(37) P (x, F ∗

k (x, s)) =
−xk+1

B2
2k−2(x, s)

.

As before, B2k(x, s) has positive integer coefficients and deg(B2k−2(x)) = k − 1.
Hence for x > 1,

lim
k→∞

P (x, F ∗

k (x, s)) = lim
k→∞

−xk+1

B2
2k−2(x, s)

≤ lim
k→∞

−1

xk2
−3k

= 0.

Since for all k, Fk(x, s) and F ∗

k (x, s) are positive, F (x, s) is positive and converges
to the positive root of the quadratic

P (x, z, s) = sz2 − ((s+ 1)x− 1)z − x.

This proves that

Theorem 16. The continued fraction

F (x, s) := [x,
s

x
, x2,

s

x2
, x3,

s

x3
, x4,

s

x4
, . . . , xk,

s

xk
, . . . ]

converges to the positive root of the quadratic P (x, z, s) = sz2− ((s+1)x− 1)z−x.

We conclude by drawing a relationship between the continued fraction F (1, x−1)
and some q−series studied by Auluck, see [7] and a Ramanujan q−series. Define a
continued fraction with m interlacing geometric series by

(38) F (m;x1, . . . , xm) := [x1, . . . , xm, x2
1, . . . , x

2
m, x3

1, . . . , x
3
m, . . . ]

Aside from the present work, nothing seems to be known for m ≥ 2. We also don’t
see anything of immediate interest for m ≥ 3, or even the case m = 1 (despite
a superficial resemblance to the famous Rogers-Ramanujan continued fraction).
However the case m = 2, x1 = 1 and x2 = x, namely;

(39) F (2; 1, x) := [1, x, 1, x2, 1, x3, 1, x4, . . . ]

does seem of immediate interest. Write the kth truncation of F (2; 1, x) in reduced

form as Nk(x)
Dk(x)

. Here (Dk(x)) seems to converge, as a formal power series, to the

q−series
∞
∑

k=1

x
k2+k

2

((1 − x)(1 − x2) . . . (1− xk−1))2(1− xk)

studied by Auluck in [7]. Coefficients of this power series are A0015241. On the
other hand, reversing the coefficients of D2k+1(x), the sequence (Dk(x)) seems to
converge as a formal power series to another q−series studied by Auluck whose
coefficients are A0055762.

1As given in the Online Encyclopedia of Integer Sequences https://oeis.org/A001524
2As given in the Online Encyclopedia of Integer Sequences https://oeis.org/A005576
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The sequence of polynomials (N2k+1(x)) seems to converge, as a formal power
series, to a Ramanujan q−series

∞
∑

k=1

x
k2+k

2

((1− x)(1 − x2) . . . (1− xk))2

which has coefficients A1431843.
Note: The An(x, s) and Bn(x, s) polynomials that appear in the convergents of

Fk(x, s) have an interesting root distribution. This together with related results
will be a subject of another paper.
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