
ar
X

iv
:1

81
2.

02
16

6v
2 

 [
m

at
h.

C
O

] 
 3

1 
D

ec
 2

01
8

On unbalanced Boolean functions attaining the bound
2n/3− 1 on the correlation immunity∗

Denis Krotov, Konstantin Vorob’ev †

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract

It is known that the degree of correlation immunity of a nonconstant unbalanced
Boolean function in n variables cannot exceed 2n/3 − 1; moreover, it is 2n/3 − 1 if
and only if the function corresponds to an equitable 2-partition of the n-cube with an
eigenvalue −n/3 of the quotient matrix. The known series of such functions have the
proportion 1 : 3, 3 : 5, or 7 : 9 of the number of ones and zeros. We prove that if
a nonconstant unbalanced Boolean function attains the correlation-immunity bound and
has the ratio C : B of the number of ones and zeros, gcd(C,B) = 1, then CB is divided by
3. In particular, this proves the nonexistence of equitable partitions for an infinite series of
putative quotient matrices. We also establish that there are exactly 2 equivalence classes of
the equitable partitions of the 12-cube with the quotient matrix [[3, 9], [7, 5]] and 16 classes,
with the matrix [[0, 12], [4, 8]]. These parameters correspond to the Boolean functions in
12 variables with correlation immunity 7 and proportion 7 : 9 and 1 : 3, respectively. This
also implies the characterization of the orthogonal arrays OA(1024, 12, 2, 7).

1. Introduction

We study unbalanced Boolean functions with the maximum possible degree of correlation im-
munity. A function f : {0, 1}n → {0, 1} is called unbalanced if the number of its ones is different
from 0, 2n−1, and 2n. It is called t-th order correlation immune if the number of ones (equiv-
alently, zeros) (x1, . . . , xn) : f(x1, . . . , xn) = 1 is statistically independent on the values of any
t arguments. Fon-Der-Flaass [3] proved that the correlation-immunity order of an unbalanced
Boolean function in n variables cannot exceed 2n/3 − 1; moreover, any unbalanced Boolean
function f of correlation-immunity order 2n/3 − 1 corresponds to an equitable 2-partition of
the n-cube Qn with quotient matrix [[a, b], [c, d]], where a + b = c + d = n and a − c = −n/3
(a formal definition can be found in Section 2; here, it is essential that the number of ones
of f relates to the number of zeros as c : b). Nowadays, there are three known families of
quotient matrices corresponding to such functions: [[0, 3T ], [T, 2T ]], [[T, 5T ], [3T, 3T ]] (found in
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[14]), [[3T, 9T ], [7T, 5T ]] (found in [5]). For each of the matrices [[0, 3], [1, 2]], [[1, 5], [3, 3]], and
[[0, 6], [2, 4]], a function is unique up to equivalence. Kirienko [11] found that there are exactly
two nonequivalent unbalanced Boolean functions in 9 variables attaining the bound on the order
of correlation immunity (the corresponding quotient matrix is [[0, 9], [3, 6]]). Fon-Der-Flaass [5]
started the investigation of the equitable partitions of Q12 attaining the correlation-immunity
bound. It was shown that equitable partitions with the quotient matrix [[1, 11], [5, 7]] do not
exist, while equitable partitions with the quotient matrix [[3, 9], [7, 5]] were built (see the con-
struction in Section 5). These results were also important from the framework of the study of
parameters of equitable 2-partitions of the n-cube: they closed the smallest open cases remain-
ing after the general paper [4]. After that, all quotient matrices of equitable 2-partitions of the
n-cube were characterized for any n smaller than 24. For n = 24, the remaining questionable
matrices were [[1, 23], [9, 15]], [[2, 22], [10, 14]], [[3, 21], [11, 13]], [[5, 19], [13, 11]], [[7, 17], [15, 9]],
and it is notable that all these parameters correspond to unbalanced Boolean functions with
extreme order of correlation immunity, 15 = 2n/3− 1.

In the present work, we prove a new property of the equitable partitions that meet the
correlation-immunity bound with equality. In particular, our results imply the nonexistence of
equitable partitions with the quotient matrices [[2, 22], [10, 14]] and [[5, 19], [13, 11]], as well as
any Boolean function with correlation immunity 2n/3− 1 and proportion between the number
of ones and the number of zeros 5 : 11, 13 : 19, or any C : B such that CB is not divided by 3.
Besides that, we provide a characterization of all nonequivalent equitable 2-partitions with the
quotient matrices [[3, 9], [7, 5]] and [[0, 12], [4, 8]].

From the theoretical point of view, studying Boolean functions lying on the correlation-
immunity bound with different proportions of the number of ones and zeros is the most in-
triguing part of our research. On the other hand, the functions of correlation-immunity degree
2n/3 − 1 with 2n−2 ones are of special interest because of the following two connections, and
our classification related with the quotient matrix [[0, 12], [4, 8]] makes a contribution to their
study.

The first connection is with t-resilient functions. A function f : {0, 1}n → {0, 1}m is called
t-resilient if for every ā from {0, 1}m the function

fā(x̄) =

{

1 if f(x̄) = ā
0 if f(x̄) 6= ā

(1)

is correlation immune of degree t with 2n−m ones. The resilient functions are important for
applications in cryptography, see e.g. [2]. If m = 2, then t ≤ 2n/3 − 1 [6]. If m = 2 and
t = 2n/3 − 1, then the functions fā belong to the class of functions we study and correspond
to the equitable partitions of Qn with the quotient matrix [[0, 3T ], [T, 2T ]], T = n/3.

The second connection is with orthogonal arrays. An orthogonal array OA(N, n, 2, t) (we
consider only the binary orthogonal arrays) is a multiset of N vertices on the n-cube such
that the number of its elements (x1, . . . , xn) with prescribed values in any t positions does not
depend on those values, see e.g. [7]. (Often, the elements of an orthogonal array are considered
as being arranged as the rows or the columns of an N × n or n × N array, respectively). An
orthogonal array is simple if it is an ordinary set, without multiplicities more than one. It is
straightforward that simple OA(N, n, 2, t) are in one-to-one correspondence with the Boolean
functions {0, 1}n → {0, 1} of correlation-immunity degree t with N ones (actually, the set
of ones of such function forms the corresponding OA(N, n, 2, t)). A result of Bierbrouer [1,
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Theorem 1] says for OA(N, n, q, t) that

N ≥ qn
(

1−
(q − 1)n

q(t + 1)

)

;

moreover, for a non-simple array the inequality becomes strict, which is straightforward from the
proof (see [1, p. 181, line 4]). The arrays OA(2n−2, n, 2, 2n/3−1) lie on this bound; hence, they
are simple and correspond to the equitable partitions with the quotient matrix [[0, 3T ], [T, 2T ]],
T = n/3. In particular, the results of our classification imply that there are exactly 16 nonequiv-
alent OA(1024, 12, 2, 7). With the other parameters, the situation is different. The Fon-Der-
Flaass bound was generalized to the binary orthogonal arrays by Khalyavin [10], who proved
that any OA(N, n, 2, t) with N < 2n−1 satisfies t ≤ 2n/3 − 1. However, this does not mean
that any array lying on this bound is simple. Classification of non-simple orthogonal arrays
that meet the Fon-Der-Flaass–Khalyavin bound is a separate problem, which is not considered
in the current research.

The introductory part of the paper continues with definitions and basic facts (Section 2) and
Section 3, where we describe the computer tools used for the classification results. The main
theoretical results of the paper are proved in Section 4. Theorem 1 states (in an equivalent
formulation) that if the correlation-immunity degree of an unbalanced Boolean function f lies
on the Fon-Der-Flaass bound, then the number of ones of the derivative f (i)(x̄) = f(x̄) +
f(x̄ + ēi) of f in any basic direction ēi, i = 1, . . . , n, does not depend on the direction. As
a consequence, we have a new necessary condition on the existence of such functions and
corresponding equitable 2-partitions (Corollary 1). Section 5 contains the characterization of
nonequivalent equitable 2-partitions of the 12-cube with the quotient matrix [[3, 9], [7, 5]], based
on the combination of theoretical and computational results, and a description of the original
Fon-Der-Flaass construction [5] of such partitions, including the representation via the Fourier
transform. In Section 6, we describe the computational classification of the equitable partitions
of the 12-cube with the quotient matrix [[0, 12], [4, 8]]. The list of the all 16 nonequivalent
partitions is given in the appendix. As we mentioned above, the last partitions correspond to
the degree-7 correlation-immune Boolean functions in 12 variables with 210 ones, and to the
orthogonal arrays OA(210, 12, 2, 7).

2. Definitions and basic facts

Let G = (V,E) be an undirected graph. A partition (C1, . . . , Ct) of the set V is an equitable
partition with the quotient matrix M = (mij) if for all i, j ∈ {1, . . . , t} any vertex of Ci has
exactly mij neighbors in Cj.

Given an eigenvalue λ of the adjacency matrix of G, a function f : V → R is called an
eigenfunction or a λ-eigenfunction of the graph G if it is not constantly zero and for every
x ∈ V

λ · f(x) =
∑

y∈V :(x,y)∈E

f(y).

Note that the tuple of values of a λ-eigenfunction is essentially an eigenvector of the adjacency
matrix of G corresponding to the eigenvalue λ.
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The n-cube Qn = (V Qn, EQn) (also known as the Hamming graph H(n, 2)) is a graph
whose vertices are the words of length n over the alphabet {0, 1}, also treated as vectors
over the binary field GF(2). Two vertices are adjacent if and only if they differ in exactly
one coordinate position, which is referred to as the direction of the corresponding edge. The
Hamming distance d(x̄, ȳ) between vertices x̄, ȳ is the number of coordinates in which they
differ. The weight wt(x̄) of a word x̄ is the number of ones in it. By (x̄, ȳ), we denote the usual
inner product of vectors: (x̄, ȳ) = x1y1 + x2y2 + . . . + xnyn. For two vertices x̄ = (x1, . . . , xn),
ȳ = (y1, . . . , yn), we will write x̄ 4 ȳ if xi ≤ yi for all i from 1 to n. We denote by ēi the word
with all zeros except one 1 in the i-th position; by 0̄, the all-zero word.

For x̄, ȳ ∈ V Qn such that (x̄, ȳ) = 0, the set Γȳ
x̄ = {z̄ + ȳ : z̄ 4 x̄} is a k-face of Qn, where

k = wt(x̄) is the dimension of the face.
Two functions f1, f2 : V Qn → R are equivalent if there is a permutation π of n coordinate

positions and a vector ȳ such that f1(ȳ+ πx̄) = f2(x̄) for all x̄ ∈ V Qn. The norm of a function

f is ||f || = (
∑

ȳ∈V Qn
f(ȳ)2)

1

2 .
It is well known and easy to check that the eigen spectrum of Qn is {λi(n) = n − 2i : i =

0, 1, . . . , n} and the set of functions {χȳ(x̄) = (−1)(x̄,ȳ) : wt(ȳ) = i} is an orthogonal basis of
the λi(n)-eigenspace of Qn for i = 0, 1, . . . , n. Therefore, for a function f defined on V Qn, the
following identity holds

f(·) =
∑

ȳ∈V Qn

f̂(ȳ)χȳ(·),

where

f̂(ȳ) =
1

2n

∑

z̄∈V Qn

f(z̄)(−1)(z̄,ȳ)

is a Fourier coefficient. By the weight of the coefficient f̂(ȳ), we will understand the weight of
ȳ. The next properties of the basis {χȳ : ȳ ∈ V Qn} follow instantly from its definition.

Proposition 1. For x̄, ȳ ∈ V Qn the following equalities hold:
(i) f0 ≡ 1,
(ii) χx̄χȳ = χx̄+ȳ.

We will need the following well-known properties of the basis functions.

Proposition 2. (i) For every ȳ ∈ V Qn, wt(ȳ) = n− k, and any (k + 1)-face Γ, the following
equation holds:

∑

x̄∈Γ

χȳ(x̄) = 0.

(ii) For every x̄, ȳ ∈ V Qn, wt(x̄) = k, the following equation holds:

2n−k
∑

z̄4x̄

χ̂ȳ(z̄) = (−1)wt(ȳ)
∑

z̄<x̄

χȳ(z̄). (2)

Proof. (i) Let Γ = Γz̄′

z̄ for some vector z̄ of length k+1 and z̄′, (z̄, z̄′) = 0. Since wt(ȳ) = n−k,
there is some coordinate position j where z̄ and ȳ both have 1. Thus, for every x ∈ Γ, we have
χȳ(x̄) + χȳ(x̄+ ēj) = 0.

(ii) By the definition of a Fourier coefficient χ̂ȳ(z̄) equals 1 if z̄ = ȳ and 0 otherwise. Thus,
the left side of (2) is equal to 2n−k if ȳ 4 x̄ and zero otherwise. Clearly, for ȳ 4 x̄ in the right
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side of the equation we also have 2n−k for ȳ 4 x̄. In the remaining case we have 0 by arguments
we provided in item 1.

For a given set N of v elements, a (t, k, v)-covering, t ≤ k, is a set S of k-subsets of N such
that for every t-subset s1 of N there exists s2 from S for which s1 ⊆ s2. The following facts
are trivial and well known, see e.g. [13].

Proposition 3. Let S be a (t, k, v)-covering of a set N of size v then

(i) |S| ≥
(vt)
(kt)

.

(ii) For every a ∈ N , the set Sa = {s \ {a} : s ∈ S, a ∈ s} is a (t− 1, k − 1, v− 1)-covering
of N \ {a}.

The first bound follows from the fact that every t-set must be covered at least once. The
second property also follows directly from the definition.

Given an equitable 2-partition (C0, C1) of Qn with a quotient matrix [[a, b], [c, d]], by its
associated function we will understand the function f : V Qn → R defined as follows:

f(x̄) =

{

b, x̄ ∈ C0

−c, x̄ ∈ C1.

Lemma 1 ([3, 5]). Let (C0, C1) be an equitable 2-partition of Qn with a quotient matrix
[[a, b], [c, d]] and the associated function f : V Qn → R. Then the following identities take
place:

f̂(x̄) = 0 for all x̄ such that wt(x̄) 6=
b+ c

2
,

(b− c)f̂(x̄) =
∑

ȳ,z̄: ȳ+z̄=x̄

f̂(ȳ)f̂(z̄) for all x̄ 6= 0̄,

bc =
∑

ȳ

f̂(ȳ)2.

Proof. By direct counting values of f over neighbours of a given vertex, we have that f is a
(n− b− c)-eigenfunction of Qn. Thus, all its nonzero Fourier coefficients have weight b+c

2
. By

definition of an associated function, we know that (f − b)(f + c) = 0. Therefore,

(

∑

ȳ∈V Qn

f̂(ȳ)χȳ − bχ0̄

)(

∑

ȳ∈V Qn

f̂(ȳ)χȳ + cχ0̄

)

= 0.

After removing parentheses and using Proposition 1, we obtain the remaining equalities.

The kernel of an equitable 2-partition C = (C0, C1) is the set

ker(C) = {ȳ ∈ V Qn : C0 = C0 + ȳ} = {ȳ ∈ V Qn : f(x̄+ ȳ) = f(x̄) for all x̄ ∈ V Qn}

of all periods of the cells or, equivalently, of the associated function f .
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3. Computational tools

Exact covering. The approaches we apply for enumerating equitable partitions of Q12 (the
approaches are completely different for the quotient matrices [[3, 9], [7, 5]] and [[0, 12], [4, 8]])
include solving instances of the exact covering problem. In general, the exact covering problem
can be formulated as follows. Given elements a1, . . . , ak, natural numbers α1, . . . , αk, and a
collection A = {A1, . . . , Am} of subsets of the set {a1, . . . , ak}, find a subcollection A′ of A
such that each element ai is contained in exactly αi sets from A′. Most mathematical packages
include methods for finding an exact cover in the case α1 = . . . = αk = 1, which is solved much
effectively in practice than the general problem. However, our approaches need finding exact
covers with different multiplicities. We exploited the libexact package [9], which can be used
in c/c++ programs.

Isomorphism. To find the number of equivalence classes of 2-partitions of the vertices of Qn

from a considered class, or any intermediate objects, we use the standard technique described
in [8, Sect. 3.3]. Namely, sets of vertices of Qn are represented by graphs in such a manner that
two objects are equivalent if and only if the corresponding graphs are isomorphic. A famous
package to work with the graph isomorphism is nauty [12]. The same approach allows to find
the automorphism group of any object we deal with.

Double counting. The following nice approach, described in [8, Sect. 10.2], allows partially
validate the results of the exhaustive search. Assume that we have finished the classification of
some objects and have found a representative of every equivalence class. Knowing the order of
the automorphism group of each representative, we can calculate the total number of different
objects. If this number does not coincide with the number of objects found by the exhaustive
search, then the search was erroneous. This approach catches many kinds of systematic and
random mistakes, but only works if the result of the search is not empty. We checked the results
of every step of our classification by this double-counting method.

4. New necessary condition

In this section we provide a new necessary condition of the existence of equitable 2-partitions of
Qn attaining the bound [3] on correlation immunity. Given an equitable partition of a n-cube,
we will say that an edge of the graph is composite if it is incident to vertices from different cells
of the partition.

Theorem 1. Let (C1, C2) be an equitable 2-partition of Qn with a quotient matrix [[a, b], [c, d]],
b 6= c, attaining the correlation immunity bound. Let f : V Qn → R be the associated function
of this partition. The following statements are true:

(i) The value
∑

x̄: xi=0 f̂(x̄)
2 does not depend on i ∈ {1, 2, . . . , n}.

(ii) The number of composite edges of a fixed direction does not depend on the direction.

Proof. (i) Since our partition attains the bound on correlation immunity, we have a− c = −n
3
.

By Lemma 1, we know that f̂(x̄) = 0 if wt(x̄) 6= 2n
3
, and for every x̄ 6= 0̄, the following equality
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holds:

(b− c)f̂(x̄) =
∑

ȳ,z̄: ȳ+z̄=x̄

f̂(ȳ)f̂(z̄); hence, f̂(x̄)2 =
1

b− c

∑

ȳ,z̄: ȳ+z̄=x̄

f̂(x̄)f̂(ȳ)f̂(z̄).

Take some i ∈ {1, 2, . . . , n}. Consider the square of the norm of the subfunction corresponding
to xi = 0, where x̄ = (x1, . . . , xn). Our goal is to show that this norm does not depend on the
choice of i.

∑

x̄:xi=0

f̂(x̄)2 =
∑

x̄:xi=0

1

b− c

∑

ȳ,z̄: ȳ+z̄=x̄

f̂(x̄)f̂(ȳ)f̂(z̄) =
1

b− c

∑

x̄,ȳ,z̄:

x̄+ȳ+z̄=0̄
xi=0

f̂(x̄)f̂(ȳ)f̂(z̄)

=
1

3(b− c)









∑

x̄,ȳ,z̄:

x̄+ȳ+z̄=0̄
xi=0

f̂(x̄)f̂(ȳ)f̂(z̄) +
∑

x̄,ȳ,z̄:

x̄+ȳ+z̄=0̄
yi=0

f̂(x̄)f̂(ȳ)f̂(z̄) +
∑

x̄,ȳ,z̄:

x̄+ȳ+z̄=0̄
zi=0

f̂(x̄)f̂(ȳ)f̂(z̄)









.

We state that
∑

x̄,ȳ,z̄:

x̄+ȳ+z̄=0̄
xi=0

f̂(x̄)f̂(ȳ)f̂(z̄) +
∑

x̄,ȳ,z̄:

x̄+ȳ+z̄=0̄
yi=0

f̂(x̄)f̂(ȳ)f̂(z̄) +
∑

x̄,ȳ,z̄:

x̄+ȳ+z̄=0̄
zi=0

f̂(x̄)f̂(ȳ)f̂(z̄) =
∑

x̄,ȳ,z̄:

x̄+ȳ+z̄=0̄

f̂(x̄)f̂(ȳ)f̂(z̄).

Indeed, for every nonzero term f̂(x̄)f̂(ȳ)f̂(z̄), each of the words x̄, ȳ, z̄ has exactly n
3
zeros and

the positions of the zeros do not intersect for x̄, ȳ, and z̄ (which follows from x̄ + ȳ + z̄ = 0̄).
Therefore, every nonzero summand f̂(x̄)f̂(ȳ)f̂(z̄) in the right side occurs exactly in one sum in
the left side of the equality. This observation proves the last equality and the first claim of the
theorem.

(ii) Let us count the number of composite edges of an arbitrary direction i ∈ {1, 2, . . . , n}.
Clearly, this value equals

1

2(b− c)2

∑

x̄∈V Qn

(f(x̄+ ēi)− f(x̄))2.

Using the Fourier transform, we have that

∑

x̄∈V Qn

(f(x̄+ ēi)− f(x̄))2 =
∑

x̄∈V Qn

(

2
∑

ȳ∈V Qn: yi=1

f̂(ȳ)(−1)x̄,ȳ
)2

.

After removing parentheses, dividing by 2n+2 and changing the order of summing, we have

1

2n

∑

ȳ∈V Qn:yi=1

∑

ȳ′∈V Qn:y′i=1

f̂(ȳ)f̂(ȳ′)
∑

x̄∈V Qn

(−1)(x̄,ȳ+ȳ′) =
∑

ȳ∈V Qn:yi=1

f̂(ȳ)2 =
∑

ȳ∈V Qn

f̂(ȳ)2 −
∑

ȳ∈V Qn:yi=0

f̂(ȳ)2.

By claim (i), the proof is done.

Corollary 1. If there exists an equitable 2-partition of Qn with a quotient matrix [[a, b], [c, d]]
attaining the correlation immunity bound, b 6= c, then either b

gcd(b,c)
or c

gcd(b,c)
is divided by 3.
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Proof. Let (C1, C2) be an equitable 2-partition of Qn with a quotient matrix [[a, b], [c, d]], b 6= c,
attaining the correlation immunity bound. From the definition of an equitable partition, we see
that there are c

b+c
2n vertices in C1. Consequently, there are exactly bc

b+c
2n−1 composite edges

in the graph. By Theorem 1 we conclude that

bc

n(b+ c)
2n−1 ∈ N.

Since our partition attains the bound on correlation immunity, we have a−c = −n
3
. The degree

of the n-cube equals n = a + b; so, we have n = 3
4
(b + c). Substituting this expression to the

number of edges, we proof required statement.

Corollary 1 implies the nonexistence of an infinite sequence of putative parameters of eq-
uitable 2-partition of Qn for which this question was open before. In particular, it gives an
alternative proof of nonexistence of an equitable 2-partition of Q12 with the quotient matrix
[[1, 11], [5, 7]], which was proved in [5] and the nonexistence of 2-partitions of Q24 with quotient
matrices [[2, 22], [10, 14]] and [[5, 19], [13, 11]]:

Corollary 2 (example). There are no equitable 2-partitions with quotient matrices
[[T, 11T ], [5T, 7T ]] and [[5T, 19T ], [13T, 11T ]], where T ∈ N.

5. The equitable partitions with quotient matrix

[[3, 9], [7, 5]]

In this Section we characterize all nonequivalent 2-partitions of Q12 with the quotient matrix
[[3, 9], [7, 5]].

5.1. General properties

Let (C1, C2) be an equitable 2-partition with a quotient matrix [[3, 9], [7, 5]]. By direct counting,
we have |C1| = 7 · 256 and |C2| = 9 · 256. Let f be the associated function:

f(x̄) =

{

9, x̄ ∈ C1

−7, x̄ ∈ C2.

By Lemma 1, we know that f is an eigenfunction corresponding to the eigenvalue λ8(12) = −4
and all its nonzero Fourier coefficients have weight 8. Therefore, Proposition 2(i) guarantees
that the sum of values of f over any 5-face equals 0. Consequently, any 5-face contains exactly
18 vertices from C2 and 14 vertices from C1. Proposition 2(ii) gives us the identity

16 · f̂(x̄) =
∑

z̄<x̄

f(z̄) for all x̄, wt(x̄) = 8.

In the right side of the equality we have the sum of values of f over some 4-face of Q12.
This means that f̂(x̄) ∈ { 1

16
(9m − 7(16 −m)) : m = 0, 1, . . . 16} = {m − 7 : m = 0, 1, . . . 16}.

In particular, f̂(x̄) is integer.
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Let us take an arbitrary x̄ of weight 9 and use Proposition 2 one more time:

∑

z̄4x̄

f̂(z̄) =
1

8

∑

z̄<x̄

f(z̄).

Since the value from the right side of the equation belongs to {1
8
(9m − 7(8 − m)) : m =

0, 1, . . . 8} = {2m − 7 : m = 0, 1, . . . 8}, the value
∑

z̄4x̄ f̂(z̄) is odd. For a given x̄ ∈ V Qn

of weight 9, there is at least one z̄ 4 x̄ of weight 8 such that f̂(z̄) is odd. In other words, a
set of quadruples of zero coordinates of vertices z̄ of weight 8, for which f̂(z̄) is odd, forms a
(3, 4, 12)-covering T . Our next goal is to describe a set of possible values f̂ can take.

Applying Lemma 1 to our function, we have

f̂(x̄) = 0, if wt(x̄) 6= 8, (3)

2f̂(x̄) =
∑

ȳ,z̄: ȳ+z̄=x̄

f̂(ȳ)f̂(z̄), if x̄ 6= 0̄, (4)

∑

x̄

f̂(x̄)2 = 63. (5)

Suppose there is ȳ such that |f̂(ȳ)| ≥ 2. Without loss of generality we take

ȳ = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0).

By Theorem we have 1
∑

x̄:x12=0

f̂(x̄)2 = 21.

By Proposition 3(2), the elements of our covering T containing the 12-th coordinate position
form a (2, 3, 11)-covering by odd values of f̂ of the set {1, 2, . . .11}. Since the sum of squares
equals 21 and |f̂(ȳ)| ≥ 2, we conclude that the size of this covering is not bigger than 17. By
Proposition 3(i), it must be at least 19, and we get a contradiction.

Provided above arguments prove the following statement.

Lemma 2. Let f be the associated function of an equitable 2-partition with the quotient matrix
[[3, 9], [7, 5]]. Then f̂(x̄) ∈ {−1, 0, 1} for every x̄ ∈ V Qn.

5.2. Configurations of overcovered triples

As follows from Lemma 2 above, for every triple {i, j, k} of different coordinates the number
of nonzeros x̄ = (x1, ..., x12) of f̂ such that xi = xj = xk = 0 is odd. Since the nonzero x̄
has exactly 4 zero coordinates (the quadruple of these coordinates will be referred to as block),
we have a covering of all triples by 63 blocks, a (3, 4, 12) covering. Consider the multiset A
of all triples where the multiplicity of a triple is the number of blocks covering this triple (we
know this number is odd). Reducing the multiplicities by 1, we get a multiset B with the
coefficients coinciding to the number of “overcovering” of the corresponding triple. All these
coefficients are even, and hence we can divide them by 2, obtaining a multicet C. The elements
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of C will be called bitriples (naturally, one bitriple in C corresponds to two triples in B).
Taking into account the multiplicities, we have exactly 16 bitriples. Indeed, 63 blocks cover
4 · 63 = 252 = 220 + 2 · 16 triples in total; each of 12 · 11 · 10/3! = 220 3-subsets of the set of
coordinates is covered, plus each of 16 bitriples is covered twice.

Lemma 3. Every coordinate belongs to exactly 4 bitriples.

Proof. Every coordinate belongs to 21 blocks, which cover 21 · 3 = 63 triples with given coor-
dinate, taking account the multiplicities. The number of different such triples is 11 · 10/2 = 55.
So, we have (63−55)/2 bitriples (recall that each of bitriples corresponds to two overcoverings,
by the definition).

Lemma 4. (i) Every two different coordinates belong to an odd number of blocks, (ii) at least
5.

Proof. Assume that the 1th and 2th coordinates meet in exactly 21− k blocks. We know that
the number of all blocks is 63; exactly 63−42 = 21 of them contain the first coordinate; exactly
21−k of them contain the firs and the second coordinates. Hence, exactly k blocks contain the
first coordinate and do not contain the second. Similarly, exactly k blocks contain the second
coordinate and do not contain the first.

The sum of all 63 values of f is 9 or −7 (the value of f in 0̄).
(a) The value of f at 100̄ is also 9 or −7; therefore, among the 42 nonzeros with 1 in the

first coordinate, either a := 17, or a := 21, or a := 25 values −1 and 25, 21, or 17 values +1,
respectively (for example, if f(0̄) = −7 and f(100̄) = 9, then among 42 nonzeros with 1 in
the first coordinate, 25 should have the value −1 and 17 the value 1, for the sum change by
16 during the sign inverse, which corresponds to the translation of the partition by the vector
100̄).

(b) The value of f at 010̄ is also 9 or −7, therefore, among the 42 nonzeros with 1 in the
second coordinate, either b := 17, or b := 21, or b := 25 values −1 and 25, 21, or 17 values +1,
respectively.

(c)The value of f at 110̄ is also 9 or −7, therefore, among the 2k nonzeros with different
values in the first and the second coordinate, either c = k− 4, or c = k, or c = k+4 values −1
and k + 4, k, or k − 4 values +1, respectively.

In the arguments (a), (b), (c), every nonzero occurs twice or does not occur at all (if it
starts with 00). Indeed, if we denote by αi,j the number of nonzeros x̄ = (x1, ..., x12) such that
x1 = i, x2 = j, and f(x̄) = −1, then we get a = α1,0 + α1,1, b = α0,1 + α1,1, c = α0,1 + α1,0.
Hence, a + b + c = 2(α1,0 + α0,1 + α1,1) is even. On the other hand, a + b + c ∈ {k + 30, k +
34, k + 38, k + 42, k + 46, k + 50, k + 54}. It follows that k is even and 21− k is odd.

(ii) follows from covering of all 10 triples that include the given pair.

Corollary 3. Each two different coordinates belong to an even number of bitriples, 0, 2, or 4.

Proof. Without loss of generality, consider the first two coordinates. every 4-block containing
them covers exactly two triples they belong to. So, the number of such 4-blocks is the half of
the number of different triples of form {1, 2, i}, i > 2, plus the number, say k, of bitriples of
such form. That is, (12− 2)/2 + k. By Lemma 4, this number is odd. Hence, k is even.
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Our next goal is to describe possible bitriple systems up to equivalence.
We first assume that there is at least one bitriple of multiplicity 1.

Lemma 5. If there is a bitriple of multiplicity 1, then it belongs to the collection of 8 bitriples
{4± 3, 5± 3, 6± 3}, up to a coordinate permutation.

Proof. Without loss of generality assume that we have a bitriple {1, 2, 3} of multiplicity 1. By
Corollary 3, there is another bitriple with 1 and 2. Without loss of generality it is {1, 2, 9}. By
Corollary 3, there is another bitriple with 1 and 3. It cannot be {1, 9, 3}, because in that case
any choice of the forth bitriple with 1 contradicts Corollary 3. So, it is {1, 8, 3}, without loss
of generality (we did not use 8 before). By Corollary 3, the fourth element with 1 is {1, 8, 9}.

Again by Corollary 3 and since the multiplicity of {1, 2, 3} is 1, there is another bitriple
with 2 and 3. If it is {9, 2, 3}, then we have bitriples {1, 2, 3}, {1, 2, 9}, {9, 2, 3} with 9, and
the fourth bitriple with 9 contradicts Corollary 3. A similar argument rejects {8, 2, 3} (with
respect to 3). So, without loss of generality, we have {7, 2, 3}.

Now, the fourth bitriple with 3 must be {7, 8, 3}; the fourth bitriple with 2 must be {7, 2, 9};
the fourth bitriple with 5 must be {7, 8, 9}.

Lemma 6. If there is a bitriple of multiplicity 1, then the multiset of bitriples is one of the
following, up to a coordinate permutation:

{

{4± 3, 5± 3, 6± 3}, {7± 3, 8± 3, 9± 3}
}

, (6)
{

{4± 3, 5± 3, 6± 3}, 4·{4, 5, 6}, 4·{10, 11, 12}
}

, (7)
{

{4± 3, 5± 3, 6± 3}, 2·{4, 5, 9± 3}, 2·{10, 11, 9± 3}
}

, (8)
{

{4± 3, 5± 3, 6± 3}, 2·{4, 5, 6}, 2·{4, 11, 12}, 2·{10, 5, 12}, 2·{10, 11, 6}
}

. (9)

Proof. By Lemma 5, we have the first 8 bitriples. If there is another, 9th bitriple of multiplicity
1, then by the same lemma we have (6). If there is no 9th bitriple of multiplicity 1, then the
remaining bitriples have multiplicity 2 or 4, and a simple exhaust search results in (7)–(9).

If there is no bitriple of multiplicity 1, then the multiplicities of bitriples are 2 or 4. In this
case, we can again divide them by 2, which results in a multiset of 8 triples, call them bibitriples.
Every coordinate is covered by exactly 2 bibitriples. So, if there is no bibitriples of multiplicity
2, then the 8 bibitriples form a 1-(12, 3, 2) design. If there is exactly one bibitriple of multiplicity
2, the remaining 6 form a 1-(9, 3, 2) design. If there is exactly two bibitriples of multiplicity 2,
the remaining 6 form a 1-(6, 3, 2) design. The remaining case is 4 bibitriples of multiplicity 2.
The number of 1-(v, 2, 2) designs is known for v = 12, 9, 6, see http://oeis.org/A110100. In
particular, up to permutation of the coordinates, we have 23, 6, and 2 solutions, respectively.

Finally, we know that the multiset of bibitriples is one of 36 = 4 + 23 + 6 + 2 equivalence
classes.

5.3. Coverings by 4-ples.

For each multiset of bitriples, we can find all possible systems of quadruples such that every
triple is included 1 + 2m times, where m is its multiplicity in the multiset of bitriples. To do
this, we have to solve the corresponding instance of the exact cover problem. This can be done
in seconds on a modern computer (we used the libexact [9] package with c++). The result is
as follows.
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Proposition 4. There are exactly 180 equivalence classes of (3, 4, 12) coverings such that the
overcovered triples correspond to one of the 36 equivalence classes of bitriples mentioned above.
Only 5 of 36 equivalence classes of bitriples can be realized in this way; namely, (6) (112
inequivalent coverings found), (7) (1 covering), (9) (51 coverings),

4× {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}

(1 covering), and

2× {{1, 2, 3}, {1, 5, 6}, {2, 4, 6}, {3, 4, 5}, {7, 8, 9}, {7, 11, 12}, {8, 10, 12}, {9, 10, 11}}

(15 coverings).

5.4. Finding signs of the Fourier coefficients

So, we have got 180 candidates for the set of nonzeros. To find the Fourier coefficient in each
nonzero, we will exploit the equations (4), (5). In particular, for x̄ 6= 0̄, we have

2f̂(x̄) =
∑

ȳ,z̄: ȳ+z̄=x̄

f̂(ȳ)f̂(z̄), or

f̂(x̄) =
∑

ȳ,z̄: ȳ≺z̄, ȳ+z̄=x̄

f̂(ȳ)f̂(z̄), in particular (10)

f̂(x̄) ≡
∑

ȳ,z̄: ȳ≺z̄, ȳ+z̄=x̄

f̂(ȳ)f̂(z̄) mod 2, (11)

where ≺ denotes lexicographic preceding. The last equation immediately gives a necessary
condition on the set of nonzeros (indeed, for every nonzero x̄, we have f̂(x̄) ≡ 1 mod 2; so, both
parts of (11) do not depend on the sign of f̂). This condition rejects 173 of 180 coverings, as
shown in the following computational proposition.

Proposition 5 (computational results). Among the 180 coverings found in Proposition 4,
exactly 7 coverings can correspond to the nonzeros of a {−1, 0, 1}-valued function f̂ satisfying
(11). All these 7 coverings correspond to the set (6) of bitriples.

Now assume that F is the set of nonzeros of f̂ and that the function φ : F → {0, 1} defines
the sign of f̂ in each nonzero:

f̂(x̄) =

{

(−1)φ(x̄) if x̄ ∈ F,
0 if x̄ 6∈ F.

(12)

We will show that the 63 values of φ satisfy a system of 212 − 1 linear equations over GF (2),
one equations for each x̄ 6= 0̄.

Consider any zero x̄ of f̂ different from 0̄, i.e., f̂(x̄) = 0, x̄ 6= 0̄. By (11), the number of
pairs {ȳ, z̄} of elements from F such that ȳ+ z̄ = x̄ is even (the pairs are unordered; so, we can
always assume ȳ ≺ z̄). Denote this number by p(x̄). From (11) we see that for p(x̄)/2 pairs
we have f̂(ȳ)f̂(z̄) = 1 and for the rest p(x̄)/2 pairs f̂(ȳ)f̂(z̄) = −1. It follows that the number
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of −1s among all such xs and xs has the same parity as p(x̄)/2. Let us write this fact as an
equation.

∑

ȳ,z̄∈F : ȳ≺z̄, ȳ+z̄=x̄

(φ(ȳ) + φ(z̄)) ≡
p(x̄)

2
mod 2, x̄ 6∈ F ∪ {0̄}. (13)

Next, consider an arbitrary nonzero x̄ ∈ F . For simplicity assume that f̂(x̄) = 1. From (11)
we see that p(x̄) is odd, and we find from (11) that the number of −1s among all considered

f̂(ȳ) and f̂(z̄) is p(x̄)−1
2

if f̂(x̄) = 1 and p(x̄)+1
2

if f̂(x̄) = −1. We derive the following identity.

φ(x̄) +
∑

ȳ,z̄∈F : ȳ≺z̄, ȳ+z̄=x̄

(φ(ȳ) + φ(z̄)) ≡
p(x̄)− 1

2
mod 2, x̄ ∈ F. (14)

We see that the 63 values of φ satisfy the system of 4095 equations (13), (14) over the finite field
GF(2) of order 2 (some of the equations (13) are trivial, 0 = 0; so, the actual system to solve
has less than 800 equations). This system can be solved for all of the 7 remaining candidates
for F .

Proposition 6 (computational results). Among the 7 sets considered in Proposition 5, the
system of equations (13), (14) is consistent for exactly 2 sets. In each of these 2 cases, the rank
of the system is 44; so, the number of solutions is 263−44 = 219.

It remains, among the 219 solutions in each of 2 cases, to choose the functions that correspond
to the Fourier transform of {−7, 9}-valued functions. It is doable in a reasonable time; however,
the following observation reduces the number of calculations even more.

Lemma 7. For each i from 1 to 12, define the coordinate function ψi : F → {0, 1} by the
identity ψi(v̄) = vi, where v̄ = (v1, ..., v12).

(i) If some φ : F → {0, 1} satisfies all the equations (13), (14) then φ+ ψi does.
(ii) Moreover, if f̂ , see (12), is the Fourier transform of a {−7, 9}-valued function, then

adding ψi to φ does not change this property.

Proof. (i) It is easy to see that the number of ȳs and z̄s involved in (13) that have 1 in the
ith position is even. Indeed, if xi = 0, then yi + zi = 0 for every pair (ȳ, z̄) under the sum. If
xi = 1, then yi + zi = 1, but the number p(x̄) of the pairs involved in the sum is even. Hence,
adding ψi does not change the parity of the left side of (13).

The similar argument works for (14) with the only difference that p(x̄) is even, which is
compensated by involving x̄ in the left side.

(ii) It is straightforward from the definition of the Fourier transform that the sum φ′ = φ+ψi

corresponds to the translation f ′(v̄) = f(v̄+ ēi), where ēi has 1 in the ith position and 0 in the
others.

So, the affine space of the all solutions φ can be partitioned into the cosets of the span
〈ψ1, . . . , ψ12〉 (the span has dimension 11 in one of the remaining cases and dimension 10 in the
other), and it is sufficient to test one representative from every coset. Finally we have found 6
admissible representatives in one of the cases and 12 in the other. It occurs that in each of two
cases, the equitable partitions found are equivalent.
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Theorem 2. There are exactly 2 nonequivalent equitable partitions of Q12 with quotient matrix
[[3, 9], [7, 5]]. Each of them has the automorphism group of order 48; the sizes of orbits under
the action of the automorphism group are 4830, 2414, 82 for the smallest cell (in the notation
[orbit size][number of orbits]) and 4840, 2416 for the largest cell. One partition is coordinate transitive
(that is, the 12 coordinates form one orbit under the action of the automorphism group) and
the size of its kernel is 2. The other partition has two coordinate orbits of size 6 and the kernel
of size 4.

5.5. Fon-Der-Flaass construction

In this section, we define the equitable partitions constructed by Fon-Der-Flaass [5] and describe
the corresponding Fourier transforms.

First, we color the vertices of Q6 into three colors as follows (symbol ∗ can be replaced by
each of 0 and 1; so, a word like 0∗∗100 represent a set from 4 vertices, which is referred to as
a 2-face).

Black: 000000, 111111, 000111, 111000.
White: 100000, 011111, 000011, 111100,

010000, 101111, 000101, 111010,
001000, 110111, 000110, 111001.

Gray: 0∗∗100, 1∗∗011, 1001∗∗, 0110∗∗,
12 ∗0∗010, ∗1∗101, 010∗1∗, 101∗0∗,

2-faces ∗∗0001, ∗∗1110, 001∗∗1, 110∗∗0.
Next, color Q12 as f12(ū, v̄) := f6(ū+ v̄).
It remains to separate gray vertices into white and black. For every 2-face B from the

twelve 2-faces above, with ∗s in the ith and jth position, we color (ū, v̄) = (u1, . . . , v6) such
that ū+ v̄ ∈ B with respect to the parity u1 + u2 + u3 + u4 + u5 + u6 + vi + vj (by black/white
or white/black; so we have the choice for each 2-face). In such a way, we obtain 212 different
black/white colorings of the vertices of Q12; the corresponding vertex partitions are equitable
with quotient matrix [[3, 9], [7, 3]] [5].

By Proposition 2(ii) the Fourier coefficient at z̄ (e.g., z̄ = 010011101111) is proportional
(with 1/16) to the sum of f over the corresponding 4-face (respectively, ∗0∗∗000∗0000).
So, the coefficients are straightforward to find. We omit technical details and describe the
212 possibilities corresponding to the 212 partitions constructed above. The nonzeros of one
possible Fourier transform, with the corresponding signs, are the following:
[

ū
v̄

]

:
[

001 111
001 111

]

−,
[

010 111
010 111

]

−,
[

100 111
100 111

]

−,
[

111 001
111 001

]

+,
[

111 010
111 010

]

+,
[

111 100
111 100

]

+,
[

011 011
011 011

]

+,
[

011 101
011 101

]

+,
[

011 110
011 110

]

+,
[

101 011
101 011

]

+,
[

101 101
101 101

]

+,
[

101 110
101 110

]

+,
[

110011
110011

]

+,
[

110101
110101

]

+,
[

110 110
110 110

]

+,
[

000 110
111 111

]

+,
[

001 111
110 110

]

+,
[

010 111
101 110

]

−,
[

011 110
100 111

]

−,
[

100 111
011 110

]

−,
[

101 110
010 111

]

−,
[

110 110
001 111

]

+,
[

111 111
000 110

]

+,
[

000 101
111 111

]

+,
[

001 111
110 101

]

−,
[

010 111
101 101

]

+,
[

011 101
100 111

]

−,
[

100 111
011 101

]

−,
[

101 101
010 111

]

+,
[

110 101
001 111

]

−,
[

111 111
000 101

]

+,
[

000011
111111

]

+,
[

001111
110011

]

−,
[

010111
101011

]

−,
[

011011
100111

]

+,
[

100111
011011

]

+,
[

101011
010111

]

−,
[

110011
001111

]

−,
[

111111
000011

]

+,
[

110000
111111

]

+,
[

111001
110110

]

−,
[

111010
110101

]

+,
[

110011
111100

]

−,
[

111100
110011

]

+,
[

110101
111010

]

−,
[

110110
111001

]

+,
[

111111
110000

]

−,
[

101 000
111 111

]

+,
[

111 001
101 110

]

+,
[

111 010
101 101

]

−,
[

101 011
111 100

]

−,
[

111 100
101 011

]

+,
[

101 101
111 010

]

+,
[

101 110
111 001

]

−,
[

111 111
101 000

]

−,
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[

011 000
111 111

]

+,
[

111 001
011 110

]

+,
[

111 010
011 101

]

+,
[

011 011
111 100

]

+,
[

111 100
011 011

]

−,
[

011 101
111 010

]

−,
[

011 110
111 001

]

−,
[

111 111
011 000

]

−.

In each of the last six groups, all the signs can be inversed. Additionally, in each of the last six
groups, one can apply the coordinate permutation (4 10)(5 11)(6 12) to all 8 nonzeros. The
last transformation, applied to one group, switches between the two equivalence classes of the
equitable partitions.

6. [[0,12],[4,8]]: classification

The equitable partitions of the 12-cube with quotient matrix [[0, 12], [4, 8]] can be classified
utilizing rather straightforward approach, a local exhaustive search, using the exact-covering
software. Let S be the quotient matrix [[0, 12], [4, 8]]. We say that the pair of disjoint sets P0,
P1 of vertices is an r-local (equitable) partition if P0 ∪P1 are the all words of weight at most r
and the neighborhood of every vertex of weight less than r satisfy the local condition from the
definition of the equitable partition.

So, there are exactly two 0-local partitions, ({0}, ∅) and (∅, {0}). For each of them, there is
only one 1-local partition, up to isomorphism.

Proposition 7. Up to isomorphism, there are exactly 94 two-local partitions (P0, P1) with
0 ∈ P0, and exactly 6 with 0 ∈ P1.

Proof. Let 0 ∈ P0. In this case, all weight-1 words are in P1. Consider the graph Γ on the 12
weight-1 words, where two vertices are adjacent if in the 12-cube they are adjacent to a common
weight-2 word from P0. So, the weight-2 words from P0 are in one-to-one correspondence with
the edges of Γ (indeed, a weight-2 word has exactly 2 weight-1 neighbors). Next, we see that Γ is
a cubic graph. (Indeed, every weight-1 word is in P1 and hence has exactly 4 neighbors from P0;
one of them is 0, the other 3 correspond to edges of Γ. The number of unlabelled connected cubic
graphs on 4, 6, 8, and 12 vertices is 1, 2, 5, 85, respectively, see http://oeis.org/A002851.
So, the number of connected and disconnected graphs is 85 + 5 + 3 + 1 = 94.

Let 0 ∈ P1. Without loss of generality, all weight-1 words with 1 in the first 8 coordinates
are assumed to be in P1, the other 4 in P0. The last four words have no neighbors in P0; so,
any weight-2 word in P0 has two weight-1 neighbors in P1 and can be considered as an edge of
some graph Γ′ on 8 vertices (weight-1 words of P1). From the quotient matrix, we see that Γ′

is regular of degree 4; so, its complement is cubic. There are 5 connected cubic graphs of order
8 and 1 disconnected.

The search of the 3-local partitions was done by solving instances of the exact covering
problem. We fix some 2-local partition (P0, P1) and consider the weight-2 words in P1 as the
“points”. To each “point” x̄, we assign the multiplicity µ = 4−λ, where λ is the number of its
weight-1 neighbors from P0. To each weight-3 word ȳ that has no neighbors from P0, we assign a
“set” s(ȳ) of 3 ”points”, namely the 3 weight-2 neighbors of ȳ. With the chosen “points”, their
multiplicities, and the “sets”, we have an instance Cov(P0, P1) of the exact-covering problem.
Straightforwardly from the definitions, we have the following one-to-one correspondence.

Proposition 8. Given a 2-local partition (P0, P1), the 3-local partitions (R0, R1) such that
P0 ⊂ R0 and P1 ⊂ R1 are in one-to-one correspondence with the solutions S of Cov(P0, P1).
Namely, S = {s(ȳ) | ȳ ∈ R0\P0}.
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In such a way, for each of 94 + 6 non-isomorphic 2-local partitions, using libexact, we
found all 3-local continuations. After the isomorph rejection, we found all non-isomorphic 3-
local partitions. The same approach allows to proceed the next step in finding the 4-local
partitions. The results are checked using the double-counting approach (see Section 3).

Proposition 9 (computational results). The number of non-isomorphic 3-local partitions
(P0, P1) with 0 ∈ P0 and 0 ∈ P1 is 34 and 222, respectively. For 4-local partitions, the number
is 37 and 81, respectively.

The remaining part of the classification is based on the fact that the sum of the values of the
{12,−4}-valued eigenfunction corresponding to a putative equitable partition (with considered
parameters) over any 5-face is zero. Using this condition, one can uniquely reconstruct an
eigenfunction by its values on the words of weight at most 4 (actually, it is sufficient to know
the values on the weight-4 words, see [15]). It occurs that every 4-local partition continues to
a complete equitable partition (we have no theoretical proof of this fact).

Theorem 3 (computational results). There are exactly 16 equivalence classes of equitable par-
titions (P0, P1) of the 12-cube with the quotient matrix [[0, 12], [4, 8]]. In one of them, P0 is a
linear (or affine) subspace of the 12-cube; two are “full-rank”, i.e., the affine span of P0 is the
whole 12-cube; the other 13 are “semilinear”, that is, the affine span of P0 consists of a half of
the vertices of the 12-cube. See the appendix for the list of representatives.

Remark 1. For the classification, it is sufficient to consider only the local partitions that meet
0̄ ∈ P0, or only the local partitions that meet 0̄ ∈ P1. However, as both ways were successful,
we described in Propositions 7 and 9 the intermediate results for the both cases.

Remark 2. The local search algorithm described in this section can be applied for finding
equitable partitions with different parameters (in different graphs). However, we failed in the
classification of the equitable partition of the 12-cube with quotient matrices [[2, 10], [6, 6]]
and [[3, 9], [7, 5]] using the same approach. The corresponding instances of the exact-covering
problem occur to be too large to solve with known tools.

On the other hand, the approach of Section 5 works only for the quotient matrix [[3, 9], [7, 5]],
as for [[2, 10], [6, 6]] and [[0, 12], [4, 8]], the nonzeros of the Fourier transform do not form a 3-
covering in general. So, the case [[2, 10], [6, 6]] remains unsolved. We know that the first cell
induces the union of cycles, but known examples show that the lengths of cycles can be different,
4 or more.
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Appendix

Below we list all 16 nonequivalent equitable partitions (P0, P1) with quotient matrix [[0, 12], [4, 8]].
The parameters are listed in the following order: rank, i.e., the dimension of the affine span of P0 (10,
11, or 12); the order of the automorphism group, i.e., of the stabilizer of P0 in Aut(H(12, 2)); the orbit
sizes, for P0, then for P1; the subspace Ker (the “kernel”, given by a basis) and a set Repr (the set of
representatives of cosets of the kernel) such that P0 = {k + r|k ∈ Ker, r ∈ Repr} (the kernel Ker is
the maximal subspace for which such decomposition is possible). The binary words of length 12 are
represented by hexadecimal numbers, e.g. 0a1 = 0000 1010 0001.

1. Rank: 10, |Aut| = 84934656, orbits: 1024; 3072;
Ker: 〈003, 005, 009, 030, 050, 090, 300, 500, 900, 111〉, Repr: {000}

2. Rank: 11, |Aut| = 1179648, orbits: 1024; 1024, 2048;
Ker: 〈300, 500, 900, 111, 222, 444, 888, 00f〉, Repr: {000, 003, 005, 081}

3. Rank: 11, |Aut| = 393216, orbits: 1024; 1024, 2048;
Ker: 〈300, 500, 900, 111, 222, 444, 888, 003〉, Repr: {000, 005, 009, 048}

4. Rank: 11, |Aut| = 147456, orbits: 2×128, 768; 2×128, 768, 2×1024;
Ker: 〈300, 500, 900, 111, 222, 444, 888〉, Repr: {000, 003, 005, 006, 00a, 00c, 00f, 018}

5. Rank: 11, |Aut| = 49152, orbits: 2×512; 2×6, 3×512, 1024; Ker: 〈900, c00, 300, 444, 222, 099〉,
Repr: {000, 003, 005, 006, 00a, 00c, 017, 018, 030, 03c, 04b, 050, 0a0, 0c0, 188, 809}

6. Rank: 11, |Aut| = 24576, orbits: 2×512; 2×512, 2×1024; Ker: 〈900, 300, 500, 144, 111, 0aa〉,
Repr: {000, 003, 005, 006, 00a, 00c, 018, 01e, 027, 030, 060, 081, 096, 0c0, 488, 828}

7. Rank: 11, |Aut| = 196608, orbits: 2×512; 2×512, 2048; Ker: 〈900, c00, 300, 033, 066, 0cc〉,
Repr: {000, 003, 006, 00c, 012, 018, 048, 069, 224, 428, 4e1, 805, 809, 80a, 811, 814}

8. Rank: 11, |Aut| = 9216, orbits: 64, 3×192, 384; 64, 128, 3×192, 6×384;
Ker: 〈900, 300, 500, 144, 4bb〉,
Repr: {000, 003, 005, 006, 00a, 00c, 017, 018, 02e, 030, 035, 03c, 04b, 050, 059, 05a, 060, 069, 072,
081, 09c, 0a0, 0c0, 809, 811, 812, 821, 822, 828, 882, 888, 890}

9. Rank: 11, |Aut| = 24576, orbits: 2×256, 512; 2×256, 3×1024; Ker: 〈900, 300, 500, 0aa, 055〉,
Repr: {000, 003, 005, 006, 00a, 00c, 018, 027, 030, 036, 03c, 060, 06c, 081, 0b1, 0c0, 166, 2b4, 40f,
809, 811, 812, 814, 821, 822, 824, 828, 82d, 842, 848, 884, 890}

10. Rank: 11, |Aut| = 147456, orbits: 1024; 256, 768, 2×1024; Ker: 〈900, 300, 500, 847, 1b8〉,
Repr: {000, 003, 005, 006, 00c, 018, 01b, 022, 02b, 02d, 030, 035, 048, 059, 05a, 060, 069, 071, 081,
08b, 090, 0c0, 809, 80a, 811, 812, 814, 821, 824, 850, 882, 884}

11. Rank: 11, |Aut| = 147456, orbits: 256, 768; 256, 768, 2048; Ker: 〈900, 300, 500, 0aa, 055〉,
Repr: {000, 003, 006, 00c, 00f, 012, 018, 021, 030, 036, 039, 048, 060, 081, 084, 0c0, 1b1, 21e, 2cc, 472,
496, 805, 809, 80a, 811, 814, 822, 824, 828, 82d, 842, 890}

12. Rank: 11, |Aut| = 18432, orbits: 256, 2×384; 2×256, 2×384, 2×768; Ker: 〈900, c00, 300, fff〉,
Repr: {000, 003, 006, 00c, 00f, 011, 017, 018, 028, 02b, 02d, 030, 035, 036, 03a, 044, 04b, 04d, 053,
056, 059, 05a, 05c, 060, 063, 066, 06a, 071, 081, 082, 09a, 0c0, 155, 178, 1b1, 1c6, 247, 2cc, 41b, 46c,
472, 805, 809, 80a, 812, 814, 81d, 81e, 821, 822, 824, 82e, 841, 842, 848, 850, 884, 888, 88b, 890, 896,
8a0, 8c3, 8d8}

13. Rank: 11, |Aut| = 6144, orbits: 4×128, 2×256; 4×64, 6×128, 8×256; Ker: 〈900, c00, 300, fff〉,
Repr: {000, 003, 006, 00c, 00f, 011, 017, 018, 028, 02b, 02d, 030, 035, 036, 03a, 044, 04b, 04e, 053,
055, 059, 05a, 05c, 060, 063, 069, 072, 081, 082, 099, 09a, 0c0, 133, 1e4, 247, 256, 26a, 278, 427, 439,
46c, 4c3, 805, 809, 80a, 812, 814, 81d, 81e, 821, 822, 824, 82e, 841, 842, 848, 84d, 850, 871, 874, 884,
888, 890, 8a0}

14. Rank: 11, |Aut| = 18432, orbits: 256, 768; 3×256, 3×768; Ker: 〈900, c00, 300, fff〉,
Repr: {000, 003, 006, 00c, 00f, 011, 018, 01d, 027, 028, 02d, 030, 033, 036, 03a, 044, 04b, 04e, 053,
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055, 056, 059, 05a, 060, 063, 069, 06a, 081, 082, 08b, 09a, 0c0, 199, 21b, 21e, 22b, 235, 23c, 247, 278,
2a3, 46c, 472, 4b2, 805, 809, 80a, 812, 814, 817, 821, 822, 824, 82e, 841, 842, 848, 850, 871, 884, 888,
890, 8a0, 8c6}

15. Rank: 12, |Aut| = 32768, orbits: 1024; 1024, 2048; Ker: 〈111, 222, 444, 888, 003, 840〉,
Repr: {000, 04c, 009, 005, 054, 090, 030, 060, 051, 066, 06a, 01d, 03a, 036, 02c, 07c}

16. Rank: 12, |Aut| = 49152, orbits: 1024; 3072; Ker: 〈00f, 0f0, f00, 333〉,
Repr:{000, 005, 050, 500, 550, 505, 055, 555, 021, 028, 041, 048, 210, 280, 410, 480, 102, 802, 104, 804,
126, 146, 826, 846, 261, 461, 268, 468, 612, 614, 682, 684, 016, 086, 206, 406, 160, 860, 062, 064, 601,
608, 620, 640, 111, 118, 181, 811, 881, 818, 188, 888, 013, 083, 130, 830, 301, 308, 516, 586, 165, 865,
651, 658}
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