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Abstract. Over all graphs or unicyclic graphs of a given order, we characterise all graphs
(or unicyclic graphs) that minimise or maximise the number of connected subgraphs or
connected induced subgraphs. For each of these classes, we find that the minimal graphs
for the number of connected induced subgraphs coincide with those that are known to
maximise the Wiener index (the sum of the distances between all unordered pairs of
vertices) and vice versa. For every k, we also determine the connected graphs that are
extremal with respect to the number of k-vertex connected induced subgraphs. We show
that, in contrast to the minimum which is uniquely realised by the path, the maximum
value is attained by a rich class of connected graphs.

1. Introduction and first results

Counting and understanding graph structures with particular properties has many ap-
plications, especially to network theory, computer science, biology and chemistry. For
instance, graphs can represent biological networks at the molecular or species level (pro-
tein interactions, gene regulation, etc.) [18]. The topological structure of an interconnection
network is a connected graph where, for example, vertices are processors and edges repre-
sent links between them [3]. In chemical networks, vertices are atoms and edges represent
their bonds. An important question is to find all matches of a specific motif within a
larger network (the subgraph isomorphism problem [19], or the induced subgraph isomor-
phism problem [23]). Both cases are known to be in general NP-complete [21] although
in some instances (such as planar graphs), efficient algorithms are available [22]. A step
to these problems usually consists of enumerating all possible subgraphs or induced sub-
graphs of the network [20]. This paper discusses the total number of subgraphs or induced
subgraphs of a finite and simple (no loops, no parallel edges, undirected) graph with a
particular emphasis on induced subgraphs of a connected graph.

Let G be a simple graph consisting of a finite (but not empty) set V (G) of vertices and
a finite set E(G) of edges. A graph H such that ∅ 6= V (H) ⊆ V (G) and E(H) ⊆ E(G) is
called a subgraph of G (so we do not consider the empty graph!). A graph formed from
G by taking a nonempty subset of vertices of G and all edges incident with them is called
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2 AUDACE A. V. DOSSOU-OLORY

an induced subgraph of G. In this paper, we are concerned with the extremal problem of
determining the minimum and maximum number of subgraphs or induced subgraphs of G,
and also characterising the extremal graphs. This problem will be considered from certain
types of graphs all sharing the same number of vertices.

It is trivial that every graph of order n (the number of vertices) has precisely 2n − 1
induced subgraphs since every graph has only one k-vertex induced subgraph for every
choice of k between 1 and n. A graph with no edge is called edgless, while a graph with an
edge between any two distinct vertices is called complete. It is clear that adding an edge
e to a graph G creates at least one new subgraph (namely the subgraph e). This implies
that among all graphs having n vertices, precisely the edgeless graph En has the minimum
number of subgraphs, and the maximum is uniquely attained by the complete graph Kn.
In fact, all subgraphs of En are induced subgraphs, namely the graphs Ek, each of them
counted precisely

(
n
k

)
times; so En also has the minimum number of k-vertex subgraphs

(for k > 1, En is the only minimal graph in this case). The complete graph Kn has
(
n
2

)
edges and thus 2(k

2) subgraphs of order k obtained by destroying between 0 and
(
k
2

)
edges

of Kk as all induced subgraphs of Kn are again complete subgraphs. In particular, Kn is
the only graph having the maximum number of k(> 1)-vertex subgraphs.

Distinct vertices u, v ∈ V (G) are said to be connected in G if there is a path from u to v
in G. The graph G is connected if and only if any two distinct vertices of G are connected
in G. The edgless graph and the complete graph are the only extremal graphs for the total
number of connected induced subgraphs:

Proposition 1. Every graph of order n has at least n connected induced subgraphs (with
equality for the edgless graph En only) and at most 2n − 1 connected induced subgraphs
(with equality for the complete graph Kn only).

Proof. Every single vertex of a graph G is a connected induced subgraph of G. Clearly,
the only connected induced subgraphs of the edgless graph are its vertices. If G is a graph
of order n which is not En, then G has at least one edge e; so e is a connected induced
subgraph of G. This proves the case of minimum.

For the maximum, it is clear that every induced subgraph of the complete graph Kn

is connected; so Kn has 2n − 1 connected induced subgraphs. If G is a graph of order n
which is not Kn, then G has at least two nonadjacent vertices u, v: the subgraph induced
by {u, v} is not connected, which proves the case of maximum. �

Note that the notions of subgraph and induced subgraph coincide for the edgeless graph
only. Adding an edge e in a graph increases the number of connected subgraphs by at least
one (namely, the graph e). Thus, the complete graph remains the only graph having the
maximum number of connected subgraphs. The problem becomes more interesting when
one considers the total number of connected subgraphs of a connected graph. In fact, the
various graphs used as models in different applications are connected. Tittmann et al. [13]
enumerated the number of connected components in induced subgraphs by means of a
generating function approach. Yan and Yeh [14] gave a linear-time algorithm for counting
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the sum of weights of subtrees of a tree (a connected acyclic graph). In their paper [14],
they also asked for methods to enumerate connected subgraphs of a connected graph.
Very recently, Kroeker et al. [7] investigated the extremal structures for the mean order
of connected induced subgraphs among so-called cographs (graphs containing no induced
path of order 4). Our main interest in this paper is to know the minimum and maximum
number of connected subgraphs that a connected graph of a given order can contain; the
approach we use does not involve generating functions.

The complete graph remains maximal among all connected graphs of a given order, while
the edgeless graph is no longer minimal.

Corollary 2. A connected graph G of order n has at most 2n − 1 connected induced
subgraphs with equality if and only if G = Kn.

Note that if e ∈ E(G), then G − e is the graph obtained from G by removing edge e
in G (but leaving the two vertices incident with e in G). We note that the notions of
connected subgraph and induced connected subgraph coincide for trees (connected acyclic
graphs) only. This is because every connected graph of order n has at least n − 1 edges
with equality if and only if the graph is a tree. In the next theorem, we show that the
n-vertex path Pn has very few connected induced subgraphs, and this is in fact the only
minimal graph among all connected graphs of order n.

Theorem 3. The path Pn which has
(
n+1
2

)
connected induced subgraphs, is the only minimal

graph among all connected graphs of order n.

Proof. Let G be a connected graph of order n which contains a cycle C and e be an edge
of C. Clearly, every connected induced subgraph of G − e is again a connected induced
subgraph of G. However, the converse is not true: the two vertices that are incident with
e in G induce a disconnected graph in G − e. This immediately implies that a minimal
graph must be a tree. Futhermore, it is well known [11] that a tree T of order n has at
least

(
n+1
2

)
connected induced subgraphs with equality if and only if T is the path Pn. �

For a connected graph G, we shall denote by Nk(G) the total number of k-vertex con-
nected induced subgraphs of G. By deleting a vertex u ∈ V (G), we mean removing u and
all edges incident with u in G. So the subgraph induced by a (nonempty) set W ⊆ V (G)
is obtained by deleting in G all vertices that do not belong to W . From this point on-
wards, G is always a connected graph. A very basic observation is that N1(G) = |V (G)|,
N2(G) = |E(G)| and N|V (G)|(G) = 1. It is important to note that all induced subgraphs
(not necessarily connected) of order n−1 are easily established by deleting one vertex from
G, giving Nn−1(G) ≤ n. A vertex of degree 1 in G is called a pendent vertex of G. Thus,
the subgraph obtained by deleting a pendent vertex of a connected G is always connected.
We shall see that Nn−1(G) is at least the sum of the number of pendent vertices of G and
the number of vertices of G whose all neighbors are contained in the same cycle of G (a
precise interpretation of Nn−1(G) is given in Proposition 7). We denote by N(G) the total
number of connected induced subgraphs of G.
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If v0, v1, . . . , vk−1 are vertices of V (G), then we write G− {v0, v1, . . . , vk−1} to mean the
induced subgraph obtained from G by deleting vertices v0, v1, . . . , vk−1 in G. The cycle of
length k ≥ 3 will be denoted by Ck = (v0, v1, . . . , vk−1, vk = v0), where vj is adjacent to
vj+1 for every j ∈ {0, 1, . . . , k − 1}.

The rest of the paper is organised as follows. The next section (Section 2) carries a
study of the connected graphs that are extremal with respect to the total number of k-
vertex connected induced subgraphs Nk(G). We first introduce two lemmas and use them
thereafter to show that the path (resp. complete graph) provides the minimum (resp.
maximum) number of k-vertex connected induced subgraphs. In Section 3, we restrict
the study to unicyclic graphs (connected graphs having exactly one cycle) and investigate
the problem of finding the extremal unicyclic graphs, given the order. It will be shown,
after discussing a series of auxiliary results, that the so-called tadpole graph (obtained by
merging a vertex of a cycle to a pendent vertex of a path) is minimal, while the connected
graph obtained by adding one edge between two pendent vertices of the star is maximal.

It occurs very often that a certain tree is extremal with respect to several graph invariants
(the number of subtrees and the Wiener index, for instance) within a given class of trees.
This also holds in our current context: the unicyclic graphs that are found to be extremal
for the number of connected induced subgraphs were previously shown to be extremal for
the Wiener index and the energy (among others).

From now on, the term ‘subgraph’ always means ‘induced subgraph’, unless otherwise
specified.

2. The extremal graphs for Nk(G)

The focus in this section is on the graph parameter Nk(G), the total number of connected
subgraphs of order k of a connected graph G of order n. Sharp upper and lower bounds
are determined for Nk(G) in terms of order. In order to prove our results, we shall require
the following two lemmas.

Lemma 4. Let G be a connected graph of order at least 2. Then G contains a vertex v∗

whose removal yields a connected subgraph of G.

Proof. If G has a pendent vertex v, then it is clear that G − {v} remains connected (so
v∗ = v). Assume then that G does not have a pendent vertex. It follows that G contains
a cycle as it is well known (and easy to prove) that every tree of order at least 2 has two
or more leaves (pendent vertices). If G contains a cycle Ck and a vertex u ∈ V (Ck) such
that all neighbors of u in G belong to V (Ck), then deleting u in G immediately yields a
connected subgraph of G (so v∗ = u).

We are left with the situation in which G does not satisfy any of the above two assump-
tions. In this case, let Ck1 = (v0, v1, . . . , vk1−1, vk1 = v0) be a cycle in G. Since every vertex
vi ∈ V (Ck1) has at least one neighbor wi /∈ V (Ck1), we deduce that |V (G)| ≥ k1 + 1.
Moreover, by assumption none of the wi is a pendent vertex of G or belongs to a cycle Ck2

(V (Ck2) 6= V (Ck1)) of G such that all neighbors of wi in G lie in V (Ck2) (otherwise, we are
done immediately!). Therefore, wi ∈ V (Ck2) for some V (Ck2) 6= V (Ck1) and also has at
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least one neighbor xi /∈ V (Ck2)∪V (Ck1): this implies that |V (G)| ≥ k1+2. By assumption,
none of the xi is a pendent vertex of G or belongs to a cycle Ck3 (V (Ck3) 6= V (Ck1), V (Ck2))
of G such that all neighbors of xi in G lie in V (Ck3).

Since G is a finite graph (i.e., |V (G)| < ∞), this search process can not be repeated
indefinitely. Hence, the legitimate existence of vertex v∗, which completes the proof of the
lemma. �

The proof of Lemma 4 immediately implies that v∗ can always be chosen to be either a
pendent vertex of G or to have all its neighbors belonging to the same cycle of G. Hence,
Nn−1(G) is at least the sum of the number of pendent vertices of G and the number of
vertices of G whose all neighbors are contained in the same cycle of G. The next lemma
shows that G has a connected subgraph of every order less than or equal to |V (G)|.

Lemma 5. Let G be a connected graph of order n. Then G has a connected subgraph of
every order k between 1 and n.

Proof. Let T be a spanning tree of G. By repeatedly removing leaves from T , we obtain
subtrees (of T ) of every order k between 1 and n. Now add to each of these subtrees all
the missing edges between their vertices in G. This completes the proof of the lemma. �

It is important to note from the proof of Lemma 5 that G has, in particular, a connected
subgraph of every order k ≤ |V (G)| that contains a given vertex v of G. This is easily
seen by considering the rooted version of a spanning tree T of G (T is rooted at v). We
combine Lemmas 4 and 5 to prove the following theorem.

Theorem 6. Every connected graph of order n has at least n− k + 1 connected subgraphs
of order k, with equality holding (in the case 2 < k < n) only for the path Pn.

Proof. The cases k ∈ {1, 2} are essentially trivial since N1(G) = n and it is well known (and
easy to prove) that every connected graph of order n has at least n−1 edges (N2(G) ≥ n−1)
with equality if and only if G is a tree. Assume k > 2 and let us prove the statement of
the theorem by induction on n. The case n = k is trivial (Nn(G) = 1).

Consider a connected graph G of order n > k. By Lemma 4, let v be a vertex of G whose
removal in G yields the connected subgraph G − {v}. The number of k-vertex connected
subgraphs of G that do not involve v is therefore Nk(G − {v}) and by the induction
hypothesis, we have Nk(G − {v}) ≥ n − k (the order of G − {v} is n − 1) with equality
if and only if G − {v} = Pn−1. On the other hand, G also has at least one connected
subgraph of order k that contains vertex v (see the proof of Lemma 5). It follows that
Nk(G) ≥ n− k + 1, and equality holds if and only if G− {v} = Pn−1 and G has precisely
only one connected subgraph of order k that involves v.

It remains to show that G is indeed a path in this case. To this end, consider a vertex
w adjacent to v. So w lies on the path Pn−1 since G − {v} = Pn−1. Let w1, w2, . . . , wn−1
be all vertices of Pn−1 such that wi is adjacent to wi+1 for every i ∈ {1, 2, . . . , n− 2}. We
have w = wj for some j ∈ {1, 2, . . . , n− 1}.
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• If 2 ≤ j ≤ n − k + 1, then G has at least two distinct v-containing subgraphs of
order k, namely the subgraphs induced by

{v, wj, wj+1, . . . , wj+k−2} and {v, wj−1, wj, wj+1, . . . , wj+k−3}

for instance.
• If n−k+2 ≤ j ≤ n−2, then G also has at least two distinct v-containing subgraphs

of order k, namely the subgraphs induced by

{wn−k+1, wn−k+2, . . . , wj−1, v, wj, wj+1, wj+2, . . . , wn−1}

and

{wn−k, wn−k+1, . . . , wj−1, v, wj, wj+1, wj+2, . . . , wn−2}

for instance.

Thus, we must have j ∈ {1, n− 1} if exactly one v-containing subgraph of order k is to be
obtained. Now we claim that in either situation j = 1 or j = n − 1, vertex v must be a
pendent vertex. We can assume (without loss of generality) that j = 1.

Suppose (for contradiction) that v has at least two neighbors w1 and wl for some l > 1.

• If l ≤ n − k + 1, then G has at least two distinct v-containing subgraphs of order
k, namely the subgraphs induced by

{v, w1, w2, . . . , wk−1} and {v, wl, wl+1, . . . , wl+k−2} .

• If l ≥ n − k + 2, then G also has at least two distinct v-containing subgraphs of
order k, namely the subgraphs induced by

{v, w1, w2, . . . , wk−1} and {wn−k+1, wn−k+2, . . . , wl−1, v, wl, wl+1, wl+2, . . . , wn−1} .

This is a contradiction: hence l = 1, proving that G must be a path if exactly one v-
containing subgraph of order k is to be obtained (which is indeed the case). This completes
the proof of the theorem. �

Proposition 7. Let G be a connected graph of order n. Then Nn−1(G) is precisely the
number of vertices of G that are leaves of a spanning tree of G.

Proof. By Lemma 4, let v be a vertex of G such that G − {v} is connected. Let T be a
spanning tree of G − {v} and w a neighbor of v in G. Let T+ be the tree obtained from
T and v by adding an edge between v and w. Then T+ is a spanning tree of G and v is a
leaf of T+. �

The maximum (analogue of Theorem 6) can be attained for a rich class of connected
graphs. We recall that N1(G) = |V (G)|, N2(G) = |E(G)|, N|V (G)|(G) = 1 and N|V (G)|−1(G) ≤
|V (G)| with equality holding for the cycle and the complete graph, for instance.

Denote by Gln the set of all inequivalent graphs that result from removing exactly l ≥ 1
independent edges (edges sharing no common vertex) in the complete graph Kn (n ≥ 3).
It is not difficult to see that every graph in Gln is of order n and connected. In general, we
have the following:
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Proposition 8. For every connected graph G of a fixed order n ≥ 3 and every k ∈
{3, 4, . . . , n}, the number of k-vertex connected subgraphs of G is at most

(
n
k

)
. Equality

holds for all graphs G ∈ Gln for every l.

Proof. For a connected graph G of order n, we have Nk(G) ≤
(
n
k

)
= Nk(Kn) for every k.

Equality holds if and only if every subset of k vertices of G induces a connected subgraph.
Therefore, we have Nk(G) =

(
n
k

)
for every G ∈ Gln and every k ≥ 3. �

For a vertex u of G, we denote by N (u) the set of all neighbors of u in G, and |N (u)|
its size (the degree of u in G).

3. The extremal unicyclic graphs

This section is concerned with a particularly well-studied class of tree-like structure as
a sole subject: we consider (connected) unicyclic graphs of a given order and investigate
which unicyclic graphs minimise or maximise the total number of connected subgraphs.
A unicyclic graph is a connected graph which contains exactly one cycle. The number of
unicyclic graphs of a fixed order n > 2 begins

1, 2, 5, 13, 33, 89, 240, 657, 1806, 5026, 13999, 39260, 110381, 311465, 880840, . . . ;

see the sequence A001429 in [17] for more information. It is clear that the complete graph
is no longer extremal among unicyclic graphs of a given order n > 3 (K3 = C3 is the only
unicyclic graph of order 3).

A number of different graph invariants were studied in various subclasses of unicyclic
graphs. This includes the sum of the absolute values of the eigenvalues (also known as the
energy of a graph) and two closely related parameters, namely the number of independent
sets (Merrifield-Simmons index) and the number of matchings (Hosoya index).

Hou [5] determined the unicyclic graphs with minimal energy, given the order. Li and
Zhou [8] found the graphs with minimal energy among all unicyclic graphs in terms of
order and diameter. Hou, Gutman and Woo [6] characterised the unicyclic bipartite graphs
(that are not cycle) with maximal energy, given the order. Andriantiana [1] determined
all unicyclic bipartite graphs with maximal energy in terms of order. Andriantiana and
Wagner [2] found the non-bipartite unicyclic graphs with the largest energy.

Pedersen and Vestergaard [10] determined sharp upper and lower bounds for the Merrifield-
Simmons index in a unicyclic graph in terms of order. They also found the maximal
unicyclic graphs for the Merrifield-Simmons index in terms of order and girth. Ou [9] char-
acterised both the unicyclic graphs that have the largest and the second-largest Hosoya
index, given the order. Zhu and Chen [16] determined the maximal unicyclic graphs for
the Merrifield-Simmons index, given girth and number of pendent vertices.

Among unicyclic graphs of a given order (and potentially other structural restrictions),
the largest and second-largest energies are usually attained by cycles and so-called tadpole
graphs (obtained by merging a vertex of a cycle to a pendent vertex of a path). Among all
unicyclic graphs of order n ≥ 6, the minimum energy is attained by the graph that results
from connecting two leaves of a star by an edge. These extremal graphs will also play an

A001429
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important role in our current context of determining the number of connected subgraphs
of a unicyclic graph, given the order. The following lemma will aid in proving our next
results.

Lemma 9. The cycle Cn has n2 − n + 1 connected subgraphs.

Proof. Let Cn = (v0, v1, . . . , vn−1, vn = v0) be the cycle of order n. Then a subset S of
k elements of V (Cn) induces a connected subgraph if and only the vertices in S can be
arranged in the unique form

(vj, v(j+1) mod n, v(j+2) mod n, . . . , v(j+k−1) mod n)

for some j ∈ {0, 1, . . . , k − 1} such that v(j+i) mod n is adjacent to v(j+i+1) mod n for every
i ∈ {0, 1, . . . , k−2}. This representation fails to be unique if and only if vertex v(j+k−1) mod n

is adjacent to vertex vj: this only happens when k = n. Therefore, Cn has precisely n
connected subgraphs of every order k between 1 and n−1, while it has only one connected
subgraph of order n (the subgraph Cn). This proves the lemma. �

The tadpole graph Gp,q is the connected graph obtained by identifying a vertex of the
cycle Cp with a pendent vertex of the path Pq+1. So the order of Gp,q is p + q.

Lemma 10. The tadpole graph Gp,q has(
p

2

)
+

(
q + 1

2

)
+

(q + 1)(p2 − p + 2)

2

connected subgraphs.

Proof. Consider the tadpole graph Gp,q as depicted in Figure 1. We distinguish between
connected subgraphs of Gp,q that contain vertex v0 and connected subgraphs of Gp,q that
do not contain v0.

v0

v1v2

vp−1

u1 u2 uq

Figure 1. The tadpole graph Gp,q.

Since deleting v0 in Gp,q yields the two connected components Pp−1 and Pq, we deduce
by Theorem 3 that

N(Pp−1) + N(Pq) =

(
p

2

)
+

(
q + 1

2

)
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gives the number of connected subgraphs of Gp,q that do not contain v0. On the other
hand, every v0-containing connected sugraph of Gp,q is uniquely determined by merging a
v0-containing connected subgraph of the cycle Cp and a v0-containing connected subgraph
of the path Pq+1 at vertex v0 (a fixed pendent vertex of Pq+1): thus, there are

(q + 1)(p2 − p + 2)

2

of them. Indeed, a path of order n contains exactly n subtrees containing a fixed pendent
vertex of Pn, while by the proof of Lemma 9, the number of v0-containing connected
subgraphs of Cp is given by p2 − p + 1−

(
p
2

)
. This completes the proof of the lemma. �

We shall also need the following simple lemma about trees.

Lemma 11. Let T be a rooted tree. The number of root-containing subtrees of T is at least
the order of T , with equality if and only if T is a path rooted at one of its pendent vertices.

Proof. By induction on the order n of a tree. The case n = 1 is trivial. For the induction
step, let n > 1 and consider the r branches T1, T2, . . . , Tr of T (all connected components
that remain after deleting the root u of T ) endowed with their natural roots u1, u2, . . . , ur

(all the neighbors of u in T ). Then the number N(T )u of root-containing subtrees of T is
given by

N(T )u =
r∏

j=1

(1 + N(Tj)uj
) ≥ 1 +

r∑
j=1

N(Tj)uj
.

This is established by noticing that every root containing subtree of T must involve the
root or the empty set of a branch of T . By applying the induction hypothesis to each of
the N(Tj)uj

, we obtain

N(T )u ≥ 1 +
r∑

j=1

|V (Tj)| = |V (T )| = n .

Moreover, equality can only hold if r = 1 at every induction step (in which case T is indeed
a path). This proves the lemma. �

Our next result shows that the tadpole graph G3,n−3 is the minimal graph with respect
to the total number of connected subgraphs. It is interesting to point out that the tadpole
graph G3,n−3 is also known to maximise the Wiener index (the sum of the distances between
all unordered pairs of vertices) among all unicyclic graphs of a given order; see [12, 15, 4].

For a graph G and two vertices u, v of G, we shall denote by N(G)u (resp. N(G)u,v) the
total number of connected subgraphs of G that contain u (resp. both u and v).

Theorem 12. Among all unicyclic graphs of order n, only the tadpole graph G3,n−3 has
(n2 + 3n− 4)/2 connected subgraphs and this is the mininmum possible.
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Proof. The specialisation p = 3 in Lemma 10 yields

N(G3,n−3) =
(n− 1)(n + 4)

2
=

n2 + 3n− 4

2
.

The statement is true for n = 3 as C3 = G3,0 is the only unicyclic graph of order 3 and
N(C3) = 7. By Lemma 9, we have N(Cn) = n2 − n + 1 and so it is easy to see that

n2 − n + 1 = N(Cn) >
n2 + 3n− 4

2
= N(G3,n−3)

provided that n 6= 3. For n > 3, let G 6= Cn be a unicyclic graph of order n. It is easy to
see that G has at least one pendent vertex (otherwise, G is a cycle).

Let v∗ be a pendent vertex of G . In this case, G − {v∗} is a unicyclic graph of order
n− 1. We induct on n to prove that N(G) ≥ (n− 1)(n + 4)/2 with equality holding only
for G3,n−3. Consider the unique cycle Ck = (v0, v1, v2, . . . , vk−1, vk = v0) of G. For every
j ∈ {0, 1, 2, . . . , k−1}, the subgraph Tj of G depicted in Figure 2 is a tree rooted at vertex
vj.

v0

v1v2

vk−1

T0

T1

T2

Tk−1

Figure 2. The general shape of a (connected) unicyclic graph.

Denote by aj the number of vj-containing subtrees of Tj and by Sj,1, Sj,2, . . . , Sj,aj all
the corresponding aj subtrees. Let S0,1, S0,2, . . . , S0,b0 be those subtrees of T0 that contain
both v∗ and v0 (we definitely assume that v∗ is a leaf of T0). It follows immediately that
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the subgraphs induced by

V (S0,1), V (S0,2), . . . , V (S0,b0) ,

V (T0) ∪ V (S1,1), V (T0) ∪ V (S1,2), . . . , V (T0) ∪ V (S1,a1),

V (T0) ∪ V (T1) ∪ V (S2,1), V (T0) ∪ V (T1) ∪ V (S2,2), . . . ,

V (T0) ∪ V (T1) ∪ · · · ∪ V (Tk−2) ∪ V (Sk−1,1), V (T0) ∪ V (T1) ∪ · · · ∪ V (Tk−2) ∪ V (Sk−1,2),

. . . , V (T0) ∪ V (T1) ∪ · · · ∪ V (Tk−2) ∪ V (Sk−1,ak−1
)

(1)

are all connected subgraphs of G that contain both v∗ and v0: thus, their number is
precisely b0 +a1 + · · ·+ak−1. Since k ≥ 3, vertices v1 and vk−1 are distinct; so the subgraph
induced by V (T0) ∪ V (Sk−1,1) also contains both v∗ and v0.

Now consider those subtrees of T0 that contain v∗ but not v0 (T0 is chosen in such a
way that v∗ and v0 are distinct vertices – this is clearly possible since G is not a cycle):
thus, their number is N(T0)v∗ − b0, where N(T0)v∗ stands for the number of v∗-containing
subtrees of T0. Hence, the number of connected subgraphs of G that contain v∗ is at least

b0 + a1 + · · ·+ ak−1 + 1 + N(T0)v∗ − b0 .

By Lemma 11, N(T0)v∗ ≥ V (T0) and aj ≥ V (Tj) for every j ∈ {0, 1, . . . , k − 1}. Hence,
the number of connected subgraphs of G that contain v∗ is at least

V (T1) + · · ·+ V (Tk−1) + 1 + V (T0) = n + 1 .

From the above discussion (including the types of subgraphs in (1)), equality can only hold
if and only if

a1 = a2 = · · · = ak−1 = 1, k = 3 and T0 = P|V (T0)| .

On the other hand, since G− {v∗} is a unicyclic graph of order n− 1, we obtain

N(G− {v∗}) ≥ (n− 2)(n + 3)

2

by the induction hypothesis. Equality holds if and only if G − {v∗} is the tadpole graph
G3,n−4. It follows that

N(G) ≥ (n− 2)(n + 3)

2
+ n + 1 =

(n− 1)(n + 4)

2
.

Equality holds if and only if G − {v∗} = G3,n−4, k = 3, |V (T1)| = |V (T2)| = 1 and
T0 = Pn−2. In this case, we have G = G3,n−3. This completes the proof of the theorem. �

Before we can state our next and final theorem (the analogue of Theorem 12), we need
to start with a few definitions and auxiliary results. Recall that the star Sn is the unique
connected graph of order n > 2 that has n − 1 pendent vertices (S1 is defined to P1 and
S2 = P2). For n > 2, its unique vertex of degree at least 2 is called the center of Sn. Denote
by Qn the connected graph obtained by adding one edge between two pendent vertices of
the star Sn (n > 2). Then Qn contains only one cycle and its length is 3. We are going
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to show that the graph Qn is maximal with respect to the total number of connected
subgraphs of a unicyclic graph. Again, it is worth mentioning that the graph Qn is known
to minimise the Wiener index among all unicyclic graphs of a given order [12, 15, 4].

It is important to note that since Q4 = G3,1 and there are only two unicyclic graphs of
order 4, the cycle C4 is therefore the maximal graph. On the other hand, it is not difficult
to see that out of the five unicyclic graphs of order 5 (see Figure 3), only the cycle C5, the
graph Q5 and the so-called banner graph B5 (obtained by dropping a pendent edge from
a vertex of C4) are maximal: N(C5) = N(Q5) = N(B5) = 21. Also, recall that Q3 = C3 is
the only unicyclic graph of order 3.

C5 B5
Q5 G3,2

Figure 3. All the unicyclic graphs of order 5.

We begin with a counterpart of Lemma 11.

Proposition 13. Let T be a rooted tree of order n whose root is v. Then the number of
v-containing subtrees of T is at most 2n−1. Equality holds if and only if T is the star Sn.

Proof. We go by induction on the order n of the tree. The case n = 1 is trivial. Let T
be a rooted tree of order n > 1 whose root is v. Denote by T1, T2, . . . , Tr all the branches
of T endowed with their natural roots v1, v2, . . . , vr (all neighbors of v). As in Lemma 11,
every v-containing subtree of T must involve the root or the empty set of a branch of T :
this yields

N(T )v =
r∏

j=1

(1 + N(Tj)vj) .
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Note that n ≥ r + 1 since T has precisely r branches for some r ≥ 1. The induction
hypothesis implies that

N(T )v ≤
r∏

j=1

(1 + 2|V (Tj)|−1)

= 1 + 2−1
r∑

j=1

2|V (Tj)| + 2−2
∑

1≤i1<i2≤r

2|V (Ti1
)|+|V (Ti2

)| + · · ·

+ 2−(r−1)
∑

1≤i1<···<ir−1≤r

2|V (Ti1
)|+···+|V (Tir−1

)| + 2−r · 2
∑r

j=1 |V (Tj)|

≤ 1 + 2−1
r∑

j=1

2n−1−(r−1) + 2−2
∑

1≤i1<i2≤r

2n−1−(r−2) + · · ·

+ 2−(r−1)
∑

1≤i1<···<ir−1≤r

2n−1−(r−(r−1)) + 2−r · 2n−1−(r−r)

as |V (T1)|+ · · ·+ |V (Tr)| = |V (T )| = n− 1. It follows that

N(T )v ≤ 1 + 2−1
(
r

1

)
2n−r + 2−2

(
r

2

)
2n−(r−1) + · · ·

+ 2−(r−1)
(

r

r − 1

)
2n−2 + 2−r

(
r

r

)
2n−1

= 1 + 2n−r−1
r∑

i=1

(
r

i

)
= 1− 2n−r−1 + 2n−1 ≤ 2n−1

and equality holds if and only if n = r+1, in which case T is indeed a star. This completes
the proof of the proposition. �

In general, we define the banner graph Bn of order n ≥ 4 to be the connected graph
constructed from C4 by dropping n− 4 pendent edges from the same vertex of C4.

Lemma 14. The banner graph Bn has precisely 2 + n + 7 · 2n−4 connected subgraphs.

Proof. The statement is true for n = 4 as B4 = C4 and N(C4) = 13 by Lemma 9.
For n > 4, let v be the neighbor of a pendent vertex of Bn (see Figure 4). Deleting
v in Bn yields n − 4 copies of the one vertex graph and one copy of the path P3. So
N(Bn − {v}) = n− 4 + N(P3) = n− 2 as N(Pn) =

(
n+1
2

)
by Theorem 3.

On the other hand, every v-containing connected subgraph of Bn decomposes naturally
into a v-containing connected subgraph of the cycle C4 and a connected subgraph of the
star Sn−3 whose root is v: this gives N(Bn)v = N(C4)v ·N(Sn)v = 7·2n−4 by Proposition 13.
Thus, N(Bn) = 2 + n + 7 · 2n−4, completing the proof of the lemma. �

We are now ready to state our next theorem.
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v

v1 vn−4
Bn

v

v1 vn−3
Qn

Figure 4. The unicyclic graphs Bn (left) and Qn (right) of order n.

Theorem 15. Among all unicyclic graphs of a fixed order n > 5, only the graph Qn has
n + 2n−1 connected subgraphs and this is the maximum possible.

To prove the theorem, we shall need one more auxiliary result.

Proposition 16. Let T be a rooted tree of order n > 1 whose root is v. If l 6= v is a leaf
of T , then the number of subtrees of T that involve both v and l is at most 2n−2. Equality
holds if and only if T is the star Sn.

In a certain sense, Proposition 16 parallels a result of Székely and Wang [11] who proved
that the star maximises the number of subtrees of T that contain at least one leaf of T
among all trees T of a given order.

Proof of Proposition 16. We prove the statement by induction on n. The case n = 2 is
trivial since the tree in this case is the path P2. For n > 2, let T1, T2, . . . , Tr be all the
branches of T endowed with their natural roots v1, v2, . . . , vr, respectively. If r = 1, then
the number N(T )v,l of subtrees of T that involve both v and l is precisely N(T1)v1,l and
since v1 6= l, we can apply the induction hypothesis to T1: this gives

N(T )v,l = N(T1)v1,l ≤ 2|V (T1)|−2 = 2|V (T )|−3 < 2|V (T )|−2

and in this case, we are done. Otherwise r ≥ 2: If T is a star, then the number of subtrees
of T that involve both v and l is precisely N(Sn−1)v. By Proposition 13, N(Sn−1)v = 2n−2

and in this case, we are done as well. Otherwise, we can assume without loss of generality
that |V (T1)| ≥ 2 and let l be a leaf of T1. Denote by D the tree whose branches are
T2, . . . , Tr (the root of D is v). With this decomposition, N(T )v,l is immediately given by

N(T )v,l = N(T1)v1,l ·N(D)v

as every subtree of T containing both v, l induces a subtree of T1 containing both v1, l and
a subtree of T − V (T1) = D containing v. Thus, the induction hypothesis yields

N(T )v,l ≤ 2|V (T1)|−2 ·N(D)v ≤ 2|V (T1)|−2 · 2|V (D)|−1 = 2V (T )−3 ,

where the last inequality follows from Proposition 13. This completes the induction hy-
pothesis and thus the proof of the proposition. �
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We can now give a proof of Theorem 15.

Proof of Theorem 15. For n > 3, let v be the unique vertex of Qn whose degree is at least
3 (see Figure 4). By identifying v with a pendent vertex of the path P2 and a vertex of the
cycle C3, all connected v-containing subgraphs of Qn are uniquely determined by taking
n−3 connected subgraphs of P2 that contain v, a connected subgraph of C3 that contain v
and merging them at v. Thus, their number is 4 ·2n−3 = 2n−1. On the other hand, deleting
vertex v in Qn yields n− 3 copies of the single vertex graph and one copy of P2. Thus, the
number of connected subgraphs of Qn that do not involve v is n− 3 + 3 = n. This proves
that N(Qn) = 2n−1 + n.

It is obvious that if G is the banner graph Bn of order n > 5, then by Lemma 14, we
have

N(G) = N(Bn) = 2 + n + 7 · 2n−4 < n + 2n−1 = N(Qn) .

For the rest of the proof, we assume that G is not a banner graph. Let G be a unicyclic
graph of a fixed order n ≥ 5. Let Ck = (v0, v1, . . . , vk−1, vk = v0) be the unique cycle of G.
Then G has precisely the shape depicted in Figure 2, where T0, T1, . . . , Tk−1 are all trees
rooted at vertices v0, v1, . . . , vk−1, respectively. Assume G has the maximum number of
connected subgraphs among all unicyclic graphs of order n.

Claim 1: Each of the trees T0, T1, . . . , Tk−1 is a star.
For the proof of the claim, suppose (without loss of generality) that T0 is not a star.

Let us first derive a formula for the number N(G;T0) of connected subgraphs of G that
contain a subtree of T0. Every such subgraph is

(1) either a subtree of T0 only;
(2) or contains all vertices of Ck;
(3) or involves v0 and a left sequence v1, v2, . . . , vl of consecutive vertices of Ck such

that l < k − 1;
(4) or involves v0 and a right sequence vk−1, vk−2, . . . , vk−r of consecutive vertices of Ck

such that k − r > 1;
(5) or involves v0, a (left) nonempty sequence v1, v2, . . . , vl of consecutive vertices of Ck

and a (right) nonempty sequence vk−1, vk−2, . . . , vk−r of consecutive vertices of Ck

such that l + 1 < k − r.

Thus, we have

N(G;T0) = N(T0) +
k−1∏
j=0

N(Tj)vj + N(T0)v0

k−2∑
l=1

l∏
j=1

N(Tj)vj + N(T0)v0

k−2∑
r=1

r∏
j=1

N(Tk−j)vk−j

+
k−3∑
l=1

k−l−2∑
r=1

(
l∏

j=1

N(Tj)vj ·N(T0)v0 ·
r∏

j=1

N(Tk−j)vk−j

)
,

where every single summand corresponds to the cases distinction in this order.
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Construct from G a new unicyclic graph G′ by replacing T0 with the star T ′0 = S|V (T0)|
centered at vertex v0. Thus, we also have

N(G′;T ′0) = N(T ′0) + N(T ′0)v0

k−1∏
j=1

N(Tj)vj + N(T ′0)v0

k−2∑
l=1

l∏
j=1

N(Tj)vj

+ N(T ′0)v0

k−2∑
r=1

r∏
j=1

N(Tk−j)vk−j
+

k−3∑
l=1

k−l−2∑
r=1

(
l∏

j=1

N(Tj)vj ·N(T ′0)v0 ·
r∏

j=1

N(Tk−j)vk−j

)

by a simple substitution. By taking the difference, we obtain

N(G′;T ′0)−N(G;T0) = N(T ′0)−N(T0) + (N(T ′0)v0 −N(T0)v0)

(
k−1∏
j=1

N(Tj)vj

+
k−2∑
l=1

l∏
j=1

N(Tj)vj +
k−2∑
r=1

r∏
j=1

N(Tk−j)vk−j
+

k−3∑
l=1

k−l−2∑
r=1

(
l∏

j=1

N(Tj)vj ·
r∏

j=1

N(Tk−j)vk−j

))
.

By Proposition 13, we have N(T ′0)v0 −N(T0)v0 > 0, while it is also known that N(T ′0)−
N(T0) > 0 (see Szekely and Wang [11, Theorem 3.1]). Hence, N(G′;T ′0) > N(G;T0). This
contradicts the optimality of G as both G and G′ have the same number of connected
subgraphs avoiding a subtree of T0 or T ′0. The claim is proved.

In the following, we assume that each of the trees T0, T1, . . . , Tk−1 is a star.
Claim 2: We have k = 3.
For the proof of this claim, suppose (for contradiction) that k > 3. Let us first derive a

formula for the number N(G;T0∪Tk−1) of connected subgraphs of G that contain a subtree
of T0 or Tk−1. The number of connected subgraphs of G that contain

(1) a subtree of T0 but not a subtree of Tk−1 is given by

N(T0) + N(T0)v0

k−2∑
l=1

l∏
j=1

N(Tj)vj ;

(2) a subtree of Tk−1 but not a subtree of T0 is given by

N(Tk−1) + N(Tk−1)vk−1

k−1∑
r=2

r∏
j=2

N(Tk−j)vk−j
;
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(3) a subtree of both T0 and Tk−1 is given by

N(T0)v0N(Tk−1)vk−1
+

k−1∏
j=0

N(Tj)vj + N(T0)v0N(Tk−1)vk−1

k−3∑
l=1

l∏
j=1

N(Tj)vj

+ N(T0)v0N(Tk−1)vk−1

k−2∑
r=2

r∏
j=2

N(Tk−j)vk−j

+
k−4∑
l=1

k−l−2∑
r=2

(
l∏

j=1

N(Tj)vj (N(T0)v0N(Tk−1)vk−1
)

r∏
j=2

N(Tk−j)vk−j

)
.

Combining all cases, we obtain

N(G;T0 ∪ Tk−1) = N(T0) + N(Tk−1) + N(T0)v0

k−2∑
l=1

l∏
j=1

N(Tj)vj

+ N(Tk−1)vk−1

k−1∑
r=2

r∏
j=2

N(Tk−j)vk−j
+ N(T0)v0N(Tk−1)vk−1

(
1 +

k−2∏
j=1

N(Tj)vj

+
k−3∑
l=1

l∏
j=1

N(Tj)vj +
k−2∑
r=2

r∏
j=2

N(Tk−j)vk−j
+

k−4∑
l=1

k−l−2∑
r=2

l∏
j=1

N(Tj)vj

r∏
j=2

N(Tk−j)vk−j

)

(2)

for the number of connected subgraphs of G that contain a subtree of T0 or Tk−1.
Construct from G a new unicyclic graph G′′ by deleting all vertices of Tk−1 except vk−1,

then contracting vertex vk−1 and finally replacing T0 with the star T ′′0 = S|V (T0)|+|V (Tk−1)|
centered at vertex v0. By distinguishing cases as we did in Claim 1, we obtain

N(G;T ′′0 ) = N(T ′′0 ) + N(T ′′0 )v0

k−2∏
j=1

N(Tj)vj + N(T ′′0 )v0

k−3∑
l=1

l∏
j=1

N(Tj)vj

+ N(T ′′0 )v0

k−2∑
r=2

r∏
j=2

N(Tk−j)vk−j
+

k−4∑
l=1

k−l−2∑
r=2

(
l∏

j=1

N(Tj)vj N(T ′′0 )v0

r∏
j=2

N(Tk−j)vk−j

)
(3)
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for the number N(G;T ′′0 ) of connected subgraphs of G′′ that contain a subtree of T ′′0 . The
difference (3)-(2) is given by

N(G;T ′′0 )−N(G;T0 ∪ Tk−1) = N(T ′′0 )−N(T0)−N(Tk−1)−N(T0)v0N(Tk−1)vk−1

+ N(T ′′0 )v0 −N(T0)v0(1 + N(Tk−1)vk−1
)
k−2∑
l=1

l∏
j=1

N(Tj)vj

+ N(T ′′0 )v0 −N(Tk−1)vk−1
(1 + N(T0)v0)

k−2∑
r=2

r∏
j=2

N(Tk−j)vk−j

+ (N(T ′′0 )v0 −N(T0)v0N(Tk−1)vk−1
)
k−5∑
l=1

k−l−2∑
r=2

(
l∏

j=1

N(Tj)vj

r∏
j=2

N(Tk−j)vk−j

)

+ (N(T ′′0 )v0 −N(T0)v0N(Tk−1)vk−1
−N(Tk−3)vk−3

N(Tk−1)vk−1
)

k−2∏
j=1

j 6=k−3

N(Tj)vj

(4)

after some basic manipulations. By Proposition 13 and Theorem 3.1 in [11], we have

N(T ′′0 )−N(T0)−N(Tk−1)−N(T0)v0 ·N(Tk−1)vk−1

=
(
2|V (T0)|+|V (Tk−1)|−1 + |V (T0)|+ |V (Tk−1)| − 1

)
−
(
2|V (T0)|−1 + |V (T0)| − 1

)
−
(
2|V (Tk−1)|−1 + |V (Tk−1)| − 1

)
− 2|V (T0)|−1 · 2|V (Tk−1)|−1

=
(
2|V (Tk−1)|−1 − 1

)(
2|V (T0)|−1 − 1

)
≥ 0

and

N(T ′′0 )v0 −N(T0)v0
(
1 + N(Tk−1)vk−1

)
= 2|V (T0)|+|V (Tk−1)|−1 − 2|V (T0)|−1

(
1 + 2|V (Tk−1)|−1

)
= 2|V (T0)|−1

(
2|V (Tk−1)|−1 − 1

)
≥ 0 .

Likewise,

N(T ′′0 )v0 −N(Tk−1)vk−1

(
1 + N(T0)v0

)
= 2|V (T0)|+|V (Tk−1)|−1 − 2|V (Tk−1)|−1

(
1 + 2|V (T0)|−1

)
= 2|V (Tk−1)|−1

(
2|V (T0)|−1 − 1

)
≥ 0

and

N(T ′′0 )v0 −N(T0)v0N(Tk−1)vk−1
= 2|V (T0)|+|V (Tk−1)|−1 − 2|V (T0)|−1 · 2|V (Tk−1)|−1

= 2|V (T0)|+|V (Tk−1)|−2 > 0 .

Also,

N(T ′′0 )v0 −N(T0)v0N(Tk−1)vk−1
−N(Tk−3)vk−3

N(Tk−1)vk−1

= 2|V (Tk−1)|−2(2|V (T0)| − 2|V (Tk−3)|) ≥ 0

as T0 can be chosen to have the maximum order among the trees T0, T1, . . . , Tk−1. The
following conclusions about (4) can be derived immediately:
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• If k ≥ 6 then N(G;T ′′0 ) > N(G;T0 ∪ Tk−1);
• If k = 5 then

0 ≤ N(G;T ′′0 )−N(G;T0 ∪ T4) =
(
2|V (T4)|−1 − 1

)(
2|V (T0)|−1 − 1

)
+ 2|V (T0)|−1

(
2|V (T4)|−1 − 1

) 3∑
l=1

l∏
j=1

N(Tj)vj

+ 2|V (T4)|−1
(
2|V (T0)|−1 − 1

) 3∑
r=2

r∏
j=2

N(T5−j)v5−j

+ 2|V (T4)|−2(2|V (T0)| − 2|V (T2)|)N(T1)v1N(T3)v3 .

Thus, N(G;T ′′0 ) > N(G;T0 ∪ Tk−1) as soon as |V (T0)| > 1. This is indeed the case
since T0 was chosen to have the maximum order among the trees T0, T1, . . . , Tk−1:
we have |V (T0)| = 1 if and only if G = C5 (the cycle of order 5).
• If k = 4 then

0 ≤ N(G;T ′′0 )−N(G;T0 ∪ T3) =
(
2|V (T3)|−1 − 1

)(
2|V (T0)|−1 − 1

)
+ 2|V (T0)|−1

(
2|V (T3)|−1 − 1

) 2∑
l=1

l∏
j=1

N(Tj)vj

+ 2|V (T3)|−1
(
2|V (T0)| − 1− 2|V (T1)|−1

)
N(T2)v2 .

It is easy to see that N(G;T ′′0 )−N(G;T0∪T3) = 0 if and only if |V (T0)| = |V (T1)| =
|V (T3)| = 1.

Now, observe that the number of connected subgraphs of G that contain neither a subtree
of T0, nor a subtree of Tk−1 is the same as the number of connected subgraphs of G′′ that
do not contain a subtree of T ′′0 . Altogether, we conclude that k = 3. This completes the
proof of the claim.

The specialisation k = 3 in equation (2) yields

N(G;T0 ∪ T2) = N(T0) + N(T2) + N(T0)v0N(T1)v1 + N(T2)v2N(T1)v1

+ N(T0)v0N(T2)v2(1 + N(T1)v1)

for the number of connected subgraphs of G that contain a subtree of T0 or T2. We assume
that T0 has the maximum order among the trees T0, T1, T2.

Claim 3: We have |V (T1)| = |V (T2)| = 1.
To see this, suppose (for contradiction) that |V (T2)| > 1. Construct from G a new

unicyclic graph G′′′ by replacing both T2 with the star T ′′′2 = S|V (T2)|−1 centered at vertex v2,
and T0 with the star T ′′′0 = S|V (T0)|+1 centered at vertex v0. Thus, the number N(G;T ′′′0 ∪T ′′′2 )
of connected subgraphs of G′′′ that contain a subtree of T ′′′0 or T ′′′2 is given by

N(G;T ′′′0 ∪ T ′′′2 ) = N(T ′′′0 ) + N(T ′′′2 ) + N(T ′′′0 )v0N(T1)v1 + N(T ′′′2 )v2N(T1)v1

+ N(T ′′′0 )v0N(T ′′′2 )v2(1 + N(T1)v1)
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which implies that

N(G;T ′′′0 ∪ T ′′′2 )−N(G;T0 ∪ T2) = N(T ′′′0 ) + N(T ′′′2 )−N(T0)−N(T2)

+ (N(T ′′′0 )v0 + N(T ′′′2 )v2 −N(T0)v0 −N(T2)v2)N(T1)v1

+ (N(T ′′′0 )v0N(T ′′′2 )v2 −N(T0)v0N(T2)v2)(1 + N(T1)v1) .

Again Proposition 13 along with Theorem 3.1 in [11] gives

N(T ′′′0 ) + N(T ′′′2 )−N(T0)−N(T2) = 2|V (T0)|−1 − 2|V (T2)|−2 ,

N(T ′′′0 )v0 + N(T ′′′2 )v2 −N(T0)v0 −N(T2)v2 = 2|V (T0)|−1 − 2|V (T2)|−2

and

N(T ′′′0 )v0N(T ′′′2 )v2 −N(T0)v0N(T2)v2 = 0 .

Therefore, we get

N(G;T ′′′0 ∪ T ′′′2 )−N(G;T0 ∪ T2) = (2|V (T0)|−1 − 2|V (T2)|−2)(1 + N(T1)v1) > 0

which completes the proof of the claim. Hence, |V (T1)| = |V (T2)| = 1 and this also
completes the proof of the theorem. �
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