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DISSECTIONS OF STRANGE ¢-SERIES

SCOTT AHLGREN, BYUNGCHAN KIM, AND JEREMY LOVEJOY

Dedicated to George E. Andrews on his 80th birthday

ABSTRACT. In a study of congruences for the Fishburn numbers, Andrews and Sellers ob-
served empirically that certain polynomials appearing in the dissections of the partial sums
of the Kontsevich-Zagier series are divisible by a certain ¢-factorial. This was proved by the
first two authors. In this paper we extend this strong divisibility property to two generic
families of g-hypergeometric series which, like the Kontsevich-Zagier series, agree asymptot-
ically with partial theta functions.

1. INTRODUCTION

Recall the usual g-series notation

(a;q)n = (1 = a)(1 —aq)--- (1 — ag"™"), (1.1)
and let F(q) denote the Kontsevich-Zagier “strange” function [13] [14],
F(g) =D (@)
n>0

This series does not converge on any open subset of C, but it is well-defined both at roots
of unity and as a power series when ¢ is replaced by 1 — ¢. The coefficients £(n) of

F(1—q)=1+q+2¢° +5¢° + 15¢" +53¢" + - -

are called the Fishburn numbers, and they count a number of different combinatorial objects
(see [LT] for references).

Andrews and Sellers [4] discovered and proved a wealth of congruences for {(n) modulo
primes p. For example, we have

EGBn+4)=¢bBn+3)=0 (mod 5),
&(Tn+6)=0 (mod 7).
In subsequent work of the first two authors, Garvan, and Straub [1], [0} [12], similar congruences

were obtained for prime powers and for generalized Fishburn numbers.
Taking a different approach, Guerzhoy, Kent, and Rolen [7] interpreted the coefficients

(1.2)

in the asymptotic expansions of functions Pé}b{X(e_t) defined in (L.8)) below in terms of spe-
cial values of L-functions, and proved congruences for these coefficients using divisibility
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properties of binomial coefficients. These congruences are inherited by any function whose
expansion at ¢ = 1 agrees with one of these expansions; these include the function F(q)
and, more generally, the Kontsevich-Zagier functions described in Section [l below. See [7]
for details.

Although the congruences (.2 bear a passing resemblance to Ramanujan’s congruences
for the partition function p(n), it turns out that they arise from a divisibility property of
the partial sums of F(q). For positive integers N and s consider the partial sums

N

Flg;N) =) (4:9)n

n=0

and the s-dissection )
Flg;N) = q'AJ(N,i,q").
i=0

Let S(s) € {0,1,...s — 1} denote the set of reductions modulo s of the set of pentagonal
numbers m(3m + 1)/2, where m € Z. The key step in the proof of Andrews and Sellers is
to show that if p is prime and ¢ & S(p) then we have

(I=a)" | Ap(pn — 1,4,q). (1.3)
This divisibility property is also important for the proof of the congruences in [6, 12]. An-
drews and Sellers [4] observed empirically that (1 — ¢)" can be strengthened to (¢;¢q), in

(L3). The first two authors showed that this divisibility property holds for any s. To be
precise, define

N+1J
. )

AN, s) = { (1.4)

Then we have
Theorem 1.1 ([I]). Suppose that s and N are positive integers and that i ¢ S(s). Then
(¢ D) | As(N, 1, q). (1.5)
The proof of (LA relies on the fact that the Kontsevich-Zagier function satisfies the

“strange identity”
13 7 7L2 —

n>1
Here the symbol “ =7 means that the two sides agree to all orders at every root of unity
(this is explained fully in Sections 2 and 5 of [13]). In this paper we show that a analogue
of Theorem [L.T] holds for a wide class of “strange” ¢-hypergeometric series—that is, g-series
which agree asymptotically with partial theta functions.
To state our result, let F' and G be functions of the form

Fq) = (¢ 0)nfala), (1.6)

n=0
oo

G(q) =Y (4:6")ngn(a), (1.7)

n=0

where f,(q) and g,(q) are polynomials. (Functions of the form (L@l are said to lie in the
Habiro ring [8].) Note that F(q) is not necessarily well-defined as a power series in ¢, but
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it has a power series expansion at every root of unity (. In other words F(Ce™") has a
meaningful definition as a formal power series in ¢ whose coefficients are expressed in the
usual way as the “derivatives” of F(Ce™") at ¢ = 0. This is explained in detail in the next
section. Likewise, G(q) has a power series expansion at every odd-order root of unity.

We will consider partial theta functions

nzfll
P (q) = n'x(n)g 7", (1.8)

n>0

where v € {0,1}, a > 0 and b > 0 are integers, and y : Z — C is a function satisfying the

following properties:
2

A (1.9)

x(n) #0 only if

and for each root of unity (,

7L27a
the function n — ¢ ¢ x(n) is periodic and has mean value zero. (1.10)

These assumptions are enough to ensure that for each root of unity ¢, the function P(S;),X(C e t)
has an asymptotic expansion as t — 07 (see SectionBlbelow). We note that (ILI0) is satisfied
by any odd periodic function. To see this, suppose that y is odd with period T', and let (
be a kth root of unity. Set M = lem(7), bk). Then we have

(an)zfa n2

¢ x(M—n)=—C"7 x(n),

and so

M1,
> TFx(n) =0.
n=0

For positive integers s and N, consider the partial sum

N
F(g;N) =Y fald) (@ 0n (1.11)
n=0
and its s-dissection
s—1
F(g;N) =D ' Aps(N,i,¢").
i=0

Define Sy (s) € {0,1,...,s — 1} by

Sapa(8) = {

Our first main result is the following.

n®>—a

mod s) + x(m) £ 0}

Theorem 1.2. Suppose that F is a function as in ([LL0) and that Pé;)),x 15 a function as in

(CH). Suppose that for each root of unity ¢ we have the asymptotic expansion
Pa(:/bfx((e_t) ~F(Ce™) as t—07". (1.12)
Suppose that s and N are positive integers and that i & Sqp(5). Then we have
(Q; Q))\(N,s) | AF,S(N7 'éa Q)
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Analogously, for positive integers s and N with s odd, consider the partial sum

N
G(;N) = gula)(4;¢")n (1.13)
n=0
and its s-dissection
s—1
Gl N) =) q'Aca(Ni,q").
i=0
Then the Ag (N, 1, %) also enjoy strong divisibility properties. Define
N 1
N, k,s)=|——+ = 1.14
u(,k5) = | s + 5 (1.14)

Theorem 1.3. Suppose that G is a function as in (1) and that P(S;),X
(8. Suppose that for each root of unity ¢ of odd order we have

P%%X(Ce_t) ~ G(Ce™) ast — 0T,

s a function as in

a

Suppose that s and N are positive integers with s odd and that i & S, (s). Then we have
(Q7 qz),u(N,l,s) | AG,S(N7 'éa Q)

We illustrate Theorem with an example from Ramanujan’s lost notebook. Consider
the g-series

G(a) = (@:6*)nq"

n>0
From [3| Entry 9.5.2] we have the identity
D (G @ng" =Y (=) g (14 Y,
n>0 n>0

which may be written as

n n2_
> (G )ng" =D xe(n)g™ V7,

n>0 n>0
where
1, ifn=1,2 (mod 6),
xe(n) =< -1, ifn=4,5 (mod 6),
0, otherwise.

Therefore, for each odd-order root of unity ¢ we find that
P (Ce) ~G(ce™)  ast— 07

Since xg is odd, it satisfies conditions (L9)) and (LI0). Thus, from Theorem [[.3] we find
that for i & Sy 3,,(s) we have

For example, when s =5 we have S; 3,,(5) = {0,1,3}. For N = 8 we have
Ag5(8.2,0) = ¢*(4:6*)2(1 + ¢* — ¢ + 24" — ¢ +2¢° + ¢°)
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and
Ag5(8,4,9) = —a(a:¢°)o(1 =g+ )1+ q+¢* +q" +¢°),
as predicted by (L.I5]), while the factorizations of Ag5(8,1,¢) into irreducible factors for
i €{0,1,3} are
Ag5(8,0,9) = (1 —q)(1 + ¢ —2¢° +¢° —2¢" +2¢° — 3¢° + ¢*° — 2¢" + ¢*?),
Ags(8,1,9) =1+2¢> — ¢* +2¢° — 3¢° + 5¢" — 5¢° + 4¢° — 5¢"° + 4¢™" — 2¢"* + ¢"* — ¢"*,
Ags(8,3,9) = q(—=1 4 ¢* = 2¢° + 2¢* — 5¢° + 5¢° — 4¢" + 5¢° — 4¢° + 3¢ — 2¢"" + ¢"*).

The rest of the paper is organized as follows. In the next section we discuss power series
expansions of I’ and G at roots of unity, and in Section 3 we discuss the asymptotic ex-
pansions of partial theta functions. In Section 4 we prove the main theorems. In Section 5
we give two further examples—one generalizing (LH) and one generalizing (LIH]). We close
with some remarks on congruences for the coefficients of F'(1 — ¢) and G(1 — q).

2. POWER SERIES EXPANSIONS OF F' AND (G

Let F'(¢q) be a function as in (@) and G(gq) be a function as in (7). Here we collect some
facts which allow us to meaningfully define F'({e™") and G(Ce™") as formal power series.

Lemma 2.1. Let F(q; N) be as in (LI]), and let G(q; N) be as in (LI3). Suppose that ¢
is a kth root of unity.

¢
(1) The values (qdiq) F(q; N)‘qzc are stable for N > (¢ + 1)k — 1.

are stable for 2N > (20 + 1)k.

¢
(2) If k is odd then the values (qd%) G(g; N)‘qzc

Proof. For each positive integer k& we have
1= [ (g;q)n  for N> (C+1)k,
(1— N [ (¢®)y for 2N > (20+1)(2k — 1) + 1.

It follows that for 0 < j < ¢ we have
J
(d%) (@a)v|,_ =0 for N> ((+1k,

J
<d%) (; q2)N‘q:< =0 forodd kand 2N > (20+ 1)k + 1.

¢
The lemma follows since for any polynomial f(q), the polynomial (qd%) f(q) is a linear

combination (with polynomial coefficients) of <diq>] f(q) with 0 < j < ¢ (see for example [4]

Lemma 2.2]). O

For any polynomial f(q), any ¢ and any ¢ > 0 we have [4, Lemma 2.3]

(%)Zf«e—t)\tzo - (-1 (qdiq)gﬂq)\qzc. (21)
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Let F'(q) be as in (L6) and let { be a kth root of unity. The last fact together with
Lemma 2.1 allows us to define

d\’ d\'
(%> F((e_t)}tzo = <%> F(¢e ™ N)|,_ , forany N >k(£+1)—1.

We therefore have a formal series expansion

F((e_t) _ Z (E) F(Ce_ )‘t:O té' (22)

[
P 4

Similarly, if G(q) is a function as in (7)) and ¢ is a kth root of unity with odd k, then we
can define

d\’ . d\’ .
(E) G(Ce™ )‘t o (dt) G(Ce™ ;N)‘tzo for any 2N > k(20 + 1), (2.3)

using (2.I)) and Lemma 211 Thus, we have a formal series expansion

G(Ce_t) _ Z (E) G(Ce_ )‘t:O T,Z. (24)

4
=0
3. THE ASYMPTOTICS OF Pa( b)x

In this section we discuss the asymptotic expansion of the partial theta functions Péfﬁx(q)
defined in ([L§). Recall that

abx an b )

n>0

where v € {0,1}, @ > 0 and b > 0 are integers, and x : Z — C is a function satisfying

properties (L.9) and (L.I0).
The properties which we describe in the next proposition are more or less standard (see for
example [I0, p. 98]). For convenience and completeness we sketch a proof of the following:

Proposition 3.1. Suppose that P;Z{X(q) is as in (L8). Let ¢ be a root of unity and let N

n?—a - .
be a period of the function n+— ("5 x(n). Then we have the asymptotic expansion

a b X <6 Z ’Yn 7 L — O+a
where
m2—a
W)= > a(m,n,N) (3.1)
1<m<N
x(m)#0

with certain complex numbers a(m,n, N).

We begin with a lemma. For n > 0 let B,(z) denote the nth Bernoulli polynomial. In the
rest of this section we use s for a complex variable since there can be no confusion with the
parameter s used above.
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Lemma 3.2. Let C : Z — C be a function with period N and mean value zero, and let

L(s,C) = f: Cr(:)’ Re(s) > 0.

Then L(s,C) has an analytic continuation to C, and we have

L(—n, ;fz Z C(m)By 41 ( ) forn > 0. (3.2)

Proof. Let ((s,a) denote the Hurwitz zeta function, whose properties are described for ex-
ample in [B, Chapter 12]. We have

N
L(s,C) = N7) " C(m)( (s, ). (3.3)

m=1
The lemma follows using the fact that each Hurwitz zeta function has only a simple pole
with residue 1 at s = 1 and the formula for the value of each function at s = —n [5 Thm.
12.13]. 0

Proof of Proposition[31]. 1t is enough to prove the proposition for the function

n2t
f(t) —e_TPabX Zn x(n)C e, t>0.

n>1

Setting

we have the Mellin transform

/ T dE = BT(s)L(2s — 1, C),  Re(s) >

N | —

Inverting, we find that

1
t) = — b°I'(s)L(2s — v, C)t ° ds,
) =5 | VTOLEs=1.C)
for ¢ > %, where we write s = x + iy. Using ([B3)), the functional equation for the Hurwitz
zeta functions, and the asymptotics of the Gamma function, we find that, for fixed z, the
function L(s,C') has at most polynomial growth in |y| as |y| — oo. Shifting the contour to
the line = —R — % we find that for each R > 0 we have

=3 (Z;;)!nL(—Qn N e) A (tR+%) ,

from which

ity ~ S C L o

|
—~ bnn!

The proposition follows from (4] and (B.2). O
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4. PROOF OF THEOREMS AND 3]

We begin with a lemma. The first assertion is proved in [4, Lemma 2.4], and the second,
which is basically equation (2.4) in [1]], follows by extracting an arithmetic progression using
orthogonality. (We note that there is an error in the published version of [I] which is corrected
below; in that version the operators d% and qd% are conflated in the statement of (2.3) and
(2.4). This does not affect the truth of the rest of the results.)

Let Cy; ;(s) be the array of integers defined recursively as follows:

(1) C070’0(S> = 1,
(2) Crio(s)=1"and Cy;j(s) =0for j > ¢+ 1orj <0,
(3) Cry1,i5(8) = (i 4+ 35)Cij(s) + sCrij-1(s) for 1 < 5 < L.

Lemma 4.1. Suppose that s is a positive integer and that

s—1
hg) =Y q'As(i, q")
i=0
with polynomials A(i,q). Then the following are true:
(1) For all ¢ > 0 we have

l l s—1
(473) 10 = X Cator™ a0 .0)
7=0 =0
(2) Let (s be a primitive sth root of unity. Then for £ > 0 and ig € {0,...,s — 1} we
have

J4 s—1
7 El 1) ( s 1 —ks ¢
5 Casog )40 o) = 5 Y ((a) o) (@)
: s
5=0 k=0
Proof of Theorem[L.2. Suppose that F(q) and P, (q) are as in the statement of the theo-
rem. Suppose that s and k are positive integers, that i & S, (s) and that (j is a primitive

kth root of unity. Let ®(q) be the kth cyclotomic polynomial. Recall the definition (L.4))
of A(N, s) and note that since

q—Ckq

(¢:q)n = i—H(I)k L% (4.2)
and )
Rt
we have
(@3 Qav,s) = = H Dy ()N NE),

Therefore, Theorem will follow once we show for each ¢ > 0 that
AN, G) =0 for N> (0+1)ks—1,
since this implies that @, (¢)*™*) | Ap (N, i,q) for 1 <k < A(N, s).
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From the definition we find that
k-1
AF,S(Na i> q) = Z quF,ks(Na Z + jS, qk)

J=0

If i & Sapy(s), then i + js & S, p(ks). It is therefore enough to show that for all s, k, and
¢, and for i & S, (ks), we have

AN, 1) =0 for N> (0+1)ks — 1.

After replacing ks by s, it is enough to show that for all s and ¢, and for ¢ € S, (s), we
have

AP(Ni, 1) =0 for N> (0+1)s— L. (4.3)

We prove (4.3) by induction on ¢. For the base case ¢ = 0, assume that N > s — 1. Using
(A1) with ¢ = 1 gives

Aps(N,i, 1) Zg TR
By (II2), (1), Lemma 2] and Proposition B:l] we find that
Aps(N,i,1) = ch (¢))-

By (1) and orthogonality (recalling that i & Sa7b7x(s)) we find that Aps(N,i,1) =0.
For the induction step, suppose that N > (¢ + 1)s — 1, that i &€ S, (), and that (£3)
holds with ¢ replaced by j for 1 < j < /¢—1. By (@) and the induction hypothesis we have

¢
Cg,i,g(s)AFsN,z,l Zg”( ) (q;N)\ngg-

Using Proposition B ([2.2)), (BI]), and orthogonality, we find as above that
Crio(t) AR (N,i,1) = 0.
This establishes ([3) since Cy;4(s) > 0. Theorem [L2 follows. O

Proof of Theorem[1.3. Suppose that s and k are positive integers with s odd, that i ¢
Saby(8) and that (ox—; is a (2k — 1)th root of unity. Recall the definition (LI4]) of u(N, &, s).
In analogy with (4.2), we have

@) =+ H Dor—1(q) 2(527@ 11))+2J
and as above we obtain
(@ @) uva) = £ H Dopoy ()N,

Therefore, Theorem follows once we show for each ¢ > 0 that

Ag?s(N7i7C2k—l) =0 for 2N > (20+1)(2k = 1)s.
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The rest of the proof is similar to that of Theorem (we require s to be odd because
G(q) has a series expansion only at odd-order roots of unity). Arguing as above, we show
that for each odd s we have

AL (N, 1) =0 for 2N > (20+1)s,
and the result follows. O

5. EXAMPLES

In this section we illustrate Theorems and with two families of examples.

5.1. The generalized Kontsevich-Zagier functions. In a study of quantum modular
forms related to torus knots and the Andrews-Gordon identities, Hikami [9] defined the
functions

m—1
(@) () . kS tk2, o Rati otk Kit1 Kot +1
X9 = > (G@k.d" iHhas ' H { n } { Pl ERCRY
k1 7]92 ----- kaO 1=1
i#a
where m is a positive integer and a € {0,1,...,m — 1}. Here we have used the usual

g-binomial coefficient (or Gaussian polynomial)

(:9)n .
m = m — ) Goons H0Sk<m,
K k q 0, otherwise.

The simplest example
0
X{2g) = (g 0)n
n>0
is the Kontsevich-Zagier function. From (&.]) we can write
X9 = > (600 [12(a),
km>0

with polynomials fliz) (q).
Hikami’s identity [9, eqn (70)] implies that for each root of unity ¢ we have

1) —ty  yla) (o —t
P(2m—2a—1)2,8(2m+1)ng(;(:,3+4(Ce )~ X (Ge™)

as t — 07, where X&H(n) is defined by

—1/2, ifn=2m—2a—1or 6m+2a+5 (mod 8m +4),
X§?3+4(n) =<1/2, ifn=2m+2a+3orbm—2a+1 (mod8m+4), (5.2)
0, otherwise.

@)

The function Xém +4(n) satisfies condition (L9). For (II0) we record a short lemma.

Lemma 5.1. Suppose that Xéf,2+4(n) is as defined in (5.2) and that ¢ is a root of unity of
order M. Define

7L27(2m72a71)2 (O!)

P(n) =¢  SCDT xgn 4 (n).
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Then
M (8m+4)

> () =0

n=1
Proof. Note that 1 is supported on odd integers, so we assume in what follows that n is odd.
From the definition, we have
Xsmsa(n+ M(dm +2)) = (=1)"x35) 4 (n). (5.3)

The exponent in the ratio of the corresponding powers of ¢ is mM? + w So the ratio

of these powers of ( is
M24Mn
2

M+n

If M is odd then this becomes CM( ) = 1, while if M is even then this becomes C%zc%” =
—1 (since M is the order of ¢ and n is odd). Therefore the ratio in either case is (—1)™1L.
Combining this with (5.3)) gives

Y(n+ M(4m +2)) = —(n),

from which the lemma follows. ]

Therefore X\ )(q) satisfies the conditions of Theorem [[[2 and we obtain the following.

@ (8), then

Corollary 5.2. If s is a positive integer and i ¢ S(2m—2a—1)2,8(2m+1),x8m+4

(q7 Q))\(N,s) ‘AX$)7S(N7 2 Q)>

where A (N,i,q) are the coefficients in the s-dissection of the partial sums (in k) of
X (a).
For example, when s = 3 we have S, |/ (3) ={0,1} and S, ,, 1) (3) = {0,2}. For N =8
»2U,X20 1,40,x5¢
we have
Ao 48.2,0) = (¢ @)s(1+ )1+ g+ ¢) (L — g+ —¢* +¢%)
and
A8, 1,0) = (¢ 0s(1+ )1 — g+ )L+ g+ )L+ 2+ — ¢ +g7),

as predicted by Corollary [5.2], while
Ay 48,0,0) =(1—q+¢*)(9+9+ - +¢" + "),
Ago 4(8,1,q) = =8 = Tg+ - +¢* —¢”,
Agw 4(8,0,q) =9 —Tq+ - +2¢" + ¢,

and

A (8,2,q) = —T+3¢% — -+ ¢ — ¢*

x{M3

are not divisible by (¢; q)s.
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5.2. An example with v = 0. For k£ > 1 let Gi(q) denote the g-series
_ np+2n2  4+2n,_1+--+2n2+2n L2 Ny L no
gk(Q) — Z q k k—1 k—1 1 1(q7q )nk [nk_l] |:7’L1:| .
nE>ng 1> >n1>0 7 ¢
Then we have the identity
gk(Q) _ Z(_1>nq(2k+l)n2+2kn(1 + q2n+1>’ (5.4>
n>0

which follows from Andrews’ generalization [2] of the Watson-Whipple transformation

N

Z(l B aq2m> (a7 blvch . '7bkvck7q_N)m ( aqu+N )m

(1 - a) (q7 aq/b17 CLQ/Cl, R aq/bk7 aq/ckv an+1)m blcl e bkck

_ (a'qa CLQ/bka)N Z (bku Ck)nk,l e (b27 C2)n1
(QQ/bka a'q/ck)N N>ng_1>>n1>0 (Q; Q)nk,l—nk,g e (Q; Q)nz—ru (q; Q)nl

m=0

(aq/bk—1Cr—1)ny_1—ny_s - (aq/b2¢2)ny—ny (aq/b1c1)n,
(aq/bk—1,0q/Ck—1)n,_, - - (aq/br,aq/c1)n,
(¢ i (ag)™s 2

(becrq™N/a)n, , (be—1cp—1)"™ 2 -+ (bacg)™

Here we have extended the notation in (L.I]) to

(a17 A2, ... 7ak)n = (al; Q)n(CLZ; Q)n to (CLM Q>n-

To deduce (5.4, we set ¢ = ¢*,a = ¢*, b, = ¢, and ¢;, = ¢* and then let N — co along with
all other b;, ¢;.
The identity (B.4) may be written as

n2 k2

Gr(q) = Z Xag+2(n)q 251,

n>0

where
1, ifn=kk+1 (mod4k+2),
Xak2(n) == =1, ifn=—k —k—1 (mod 4k + 2),
0, otherwise.

This implies that for each odd-order root of unity {, we have
0 _ _
Pt (CET) ~ Gi(Ce™) ast— 0.

The function yux+2(n) satisfies conditions (IL9) and (LI0) (see the remark following (LI0)),
so Theorem gives

Corollary 5.3. Suppose that k and N are positive integers, that s is a positive odd integer,
and that i & Sz oj41,x4,,.(5). Then

(0:0) 241y | Ag,s(N 4, q).
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6. REMARKS ON CONGRUENCES

Congruences for the coefficients of the functions F'(¢) and G(q) in Theorems[[2land [[3 can
be deduced from the results of [7]. In closing we mention another approach. Theorems
and guarantee that many of the coefficients in the s-dissection are divisible by high
powers of 1 — ¢, and the congruences follow from this fact when s = p" together with an
argument as in [Il, Section 3.

For example, let Gi, be the function defined in the last section and define &g, (n) by

gkl_q Zggk

n>0
Consider the expansions
Gi(l—q) =) & (n)q" =1+ q+2¢° +6¢° + 25¢* + 135¢° + - - - ,
n>0
Go(1—q) = > €a,(n)q" = 1 +2q + 6¢° + 284" + 189¢" + 1680¢° + - - - .
n>0
Then we have such congruences as
€6,(5n —1)=0 (mod 5"),
£6,(T'n—1) =0 (mod 7"),
6,(13m—8) =0 (mod 13)
for § € {1,2,3,4}, and
€6,(Tn —1)=0  (mod 77),
£6,(11"n —1) =0 (mod 117).
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