DISSECTIONS OF STRANGE q-SERIES

SCOTT AHLGREN, BYUNGCHAN KIM, AND JEREMY LOVEJOY
Dedicated to George E. Andrews on his 80 th birthday

Abstract

In a study of congruences for the Fishburn numbers, Andrews and Sellers observed empirically that certain polynomials appearing in the dissections of the partial sums of the Kontsevich-Zagier series are divisible by a certain q-factorial. This was proved by the first two authors. In this paper we extend this strong divisibility property to two generic families of q-hypergeometric series which, like the Kontsevich-Zagier series, agree asymptotically with partial theta functions.

1. Introduction

Recall the usual q-series notation

$$
\begin{equation*}
(a ; q)_{n}:=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) \tag{1.1}
\end{equation*}
$$

and let $\mathcal{F}(q)$ denote the Kontsevich-Zagier "strange" function [13, 14],

$$
\mathcal{F}(q):=\sum_{n \geq 0}(q ; q)_{n} .
$$

This series does not converge on any open subset of \mathbb{C}, but it is well-defined both at roots of unity and as a power series when q is replaced by $1-q$. The coefficients $\xi(n)$ of

$$
\mathcal{F}(1-q)=1+q+2 q^{2}+5 q^{3}+15 q^{4}+53 q^{5}+\cdots
$$

are called the Fishburn numbers, and they count a number of different combinatorial objects (see [11] for references).

Andrews and Sellers [4] discovered and proved a wealth of congruences for $\xi(n)$ modulo primes p. For example, we have

$$
\begin{align*}
\xi(5 n+4) \equiv \xi(5 n+3) & \equiv 0 \quad(\bmod 5) \\
\xi(7 n+6) & \equiv 0 \quad(\bmod 7) \tag{1.2}
\end{align*}
$$

In subsequent work of the first two authors, Garvan, and Straub [1, 6, 12], similar congruences were obtained for prime powers and for generalized Fishburn numbers.

Taking a different approach, Guerzhoy, Kent, and Rolen [7] interpreted the coefficients in the asymptotic expansions of functions $P_{a, b, \chi}^{(1)}\left(e^{-t}\right)$ defined in (1.8) below in terms of special values of L-functions, and proved congruences for these coefficients using divisibility

[^0]properties of binomial coefficients. These congruences are inherited by any function whose expansion at $q=1$ agrees with one of these expansions; these include the function $\mathcal{F}(q)$ and, more generally, the Kontsevich-Zagier functions described in Section 5 below. See [7] for details.

Although the congruences (1.2) bear a passing resemblance to Ramanujan's congruences for the partition function $p(n)$, it turns out that they arise from a divisibility property of the partial sums of $\mathcal{F}(q)$. For positive integers N and s consider the partial sums

$$
\mathcal{F}(q ; N):=\sum_{n=0}^{N}(q ; q)_{n}
$$

and the s-dissection

$$
\mathcal{F}(q ; N)=\sum_{i=0}^{s-1} q^{i} A_{s}\left(N, i, q^{s}\right)
$$

Let $S(s) \subseteq\{0,1, \ldots s-1\}$ denote the set of reductions modulo s of the set of pentagonal numbers $m(3 m+1) / 2$, where $m \in \mathbb{Z}$. The key step in the proof of Andrews and Sellers is to show that if p is prime and $i \notin S(p)$ then we have

$$
\begin{equation*}
(1-q)^{n} \mid A_{p}(p n-1, i, q) \tag{1.3}
\end{equation*}
$$

This divisibility property is also important for the proof of the congruences in [6, 12]. Andrews and Sellers [4] observed empirically that $(1-q)^{n}$ can be strengthened to $(q ; q)_{n}$ in (1.3). The first two authors showed that this divisibility property holds for any s. To be precise, define

$$
\begin{equation*}
\lambda(N, s)=\left\lfloor\frac{N+1}{s}\right\rfloor . \tag{1.4}
\end{equation*}
$$

Then we have
Theorem 1.1 ([1). Suppose that s and N are positive integers and that $i \notin S(s)$. Then

$$
\begin{equation*}
(q ; q)_{\lambda(N, s)} \mid A_{s}(N, i, q) \tag{1.5}
\end{equation*}
$$

The proof of (1.5) relies on the fact that the Kontsevich-Zagier function satisfies the "strange identity"

$$
\mathcal{F}(q) "="-\frac{1}{2} \sum_{n \geq 1} n\left(\frac{12}{n}\right) q^{\left(n^{2}-1\right) / 24}
$$

Here the symbol " = " means that the two sides agree to all orders at every root of unity (this is explained fully in Sections 2 and 5 of [13]). In this paper we show that a analogue of Theorem 1.1 holds for a wide class of "strange" q-hypergeometric series-that is, q-series which agree asymptotically with partial theta functions.

To state our result, let F and G be functions of the form

$$
\begin{align*}
& F(q)=\sum_{n=0}^{\infty}(q ; q)_{n} f_{n}(q), \tag{1.6}\\
& G(q)=\sum_{n=0}^{\infty}\left(q ; q^{2}\right)_{n} g_{n}(q), \tag{1.7}
\end{align*}
$$

where $f_{n}(q)$ and $g_{n}(q)$ are polynomials. (Functions of the form (1.6) are said to lie in the Habiro ring [8].) Note that $F(q)$ is not necessarily well-defined as a power series in q, but
it has a power series expansion at every root of unity ζ. In other words $F\left(\zeta e^{-t}\right)$ has a meaningful definition as a formal power series in t whose coefficients are expressed in the usual way as the "derivatives" of $F\left(\zeta e^{-t}\right)$ at $t=0$. This is explained in detail in the next section. Likewise, $G(q)$ has a power series expansion at every odd-order root of unity.

We will consider partial theta functions

$$
\begin{equation*}
P_{a, b, \chi}^{(\nu)}(q):=\sum_{n \geq 0} n^{\nu} \chi(n) q^{\frac{n^{2}-a}{b}} \tag{1.8}
\end{equation*}
$$

where $\nu \in\{0,1\}, a \geq 0$ and $b>0$ are integers, and $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ is a function satisfying the following properties:

$$
\begin{equation*}
\chi(n) \neq 0 \quad \text { only if } \quad \frac{n^{2}-a}{b} \in \mathbb{Z} \tag{1.9}
\end{equation*}
$$

and for each root of unity ζ,

$$
\begin{equation*}
\text { the function } n \mapsto \zeta^{\frac{n^{2}-a}{b}} \chi(n) \text { is periodic and has mean value zero. } \tag{1.10}
\end{equation*}
$$

These assumptions are enough to ensure that for each root of unity ζ, the function $P_{a, b, \chi}^{(\nu)}\left(\zeta e^{-t}\right)$ has an asymptotic expansion as $t \rightarrow 0^{+}$(see Section 3 below). We note that (1.10) is satisfied by any odd periodic function. To see this, suppose that χ is odd with period T, and let ζ be a k th root of unity. Set $M=\operatorname{lcm}(T, b k)$. Then we have

$$
\zeta^{\frac{(M-n)^{2}-a}{b}} \chi(M-n)=-\zeta^{\frac{n^{2}-a}{b}} \chi(n),
$$

and so

$$
\sum_{n=0}^{M-1} \zeta^{\frac{n^{2}-a}{b}} \chi(n)=0
$$

For positive integers s and N, consider the partial sum

$$
\begin{equation*}
F(q ; N):=\sum_{n=0}^{N} f_{n}(q)(q ; q)_{n} \tag{1.11}
\end{equation*}
$$

and its s-dissection

$$
F(q ; N)=\sum_{i=0}^{s-1} q^{i} A_{F, s}\left(N, i, q^{s}\right)
$$

Define $S_{a, b, \chi}(s) \subseteq\{0,1, \ldots, s-1\}$ by

$$
S_{a, b, \chi}(s):=\left\{\frac{n^{2}-a}{b} \quad(\bmod s) \quad: \quad \chi(n) \neq 0\right\}
$$

Our first main result is the following.
Theorem 1.2. Suppose that F is a function as in (1.6) and that $P_{a, b, \chi}^{(\nu)}$ is a function as in (1.8). Suppose that for each root of unity ζ we have the asymptotic expansion

$$
\begin{equation*}
P_{a, b, \chi}^{(\nu)}\left(\zeta e^{-t}\right) \sim F\left(\zeta e^{-t}\right) \quad \text { as } \quad t \rightarrow 0^{+} \tag{1.12}
\end{equation*}
$$

Suppose that s and N are positive integers and that $i \notin S_{a, b, \chi}(s)$. Then we have

$$
(q ; q)_{\lambda(N, s)} \mid A_{F, s}(N, i, q) .
$$

Analogously, for positive integers s and N with s odd, consider the partial sum

$$
\begin{equation*}
G(q ; N):=\sum_{n=0}^{N} g_{n}(q)\left(q ; q^{2}\right)_{n} \tag{1.13}
\end{equation*}
$$

and its s-dissection

$$
G(q ; N)=\sum_{i=0}^{s-1} q^{i} A_{G, s}\left(N, i, q^{s}\right)
$$

Then the $A_{G, s}\left(N, i, q^{s}\right)$ also enjoy strong divisibility properties. Define

$$
\begin{equation*}
\mu(N, k, s)=\left\lfloor\frac{N}{s(2 k-1)}+\frac{1}{2}\right\rfloor . \tag{1.14}
\end{equation*}
$$

Theorem 1.3. Suppose that G is a function as in (1.7) and that $P_{a, b, \chi}^{(\nu)}$ is a function as in (1.8). Suppose that for each root of unity ζ of odd order we have

$$
P_{a, b, \chi}^{(\nu)}\left(\zeta e^{-t}\right) \sim G\left(\zeta e^{-t}\right) \quad \text { as } t \rightarrow 0^{+}
$$

Suppose that s and N are positive integers with sodd and that $i \notin S_{a, b, \chi}(s)$. Then we have

$$
\left(q ; q^{2}\right)_{\mu(N, 1, s)} \mid A_{G, s}(N, i, q)
$$

We illustrate Theorem 1.3 with an example from Ramanujan's lost notebook. Consider the q-series

$$
\mathcal{G}(q)=\sum_{n \geq 0}\left(q ; q^{2}\right)_{n} q^{n}
$$

From [3, Entry 9.5.2] we have the identity

$$
\sum_{n \geq 0}\left(q ; q^{2}\right)_{n} q^{n}=\sum_{n \geq 0}(-1)^{n} q^{3 n^{2}+2 n}\left(1+q^{2 n+1}\right)
$$

which may be written as

$$
\sum_{n \geq 0}\left(q ; q^{2}\right)_{n} q^{n}=\sum_{n \geq 0} \chi_{6}(n) q^{\left(n^{2}-1\right) / 3}
$$

where

$$
\chi_{6}(n):= \begin{cases}1, & \text { if } n \equiv 1,2 \quad(\bmod 6) \\ -1, & \text { if } n \equiv 4,5 \quad(\bmod 6) \\ 0, & \text { otherwise }\end{cases}
$$

Therefore, for each odd-order root of unity ζ we find that

$$
P_{1,3, \chi_{6}}^{(0)}\left(\zeta e^{-t}\right) \sim \mathcal{G}\left(\zeta e^{-t}\right) \quad \text { as } t \rightarrow 0^{+}
$$

Since χ_{6} is odd, it satisfies conditions (1.9) and (1.10). Thus, from Theorem 1.3, we find that for $i \notin S_{1,3, \chi_{6}}(s)$ we have

$$
\begin{equation*}
\left.\left(q ; q^{2}\right)_{\left\lfloor\frac{N}{s}+\frac{1}{2}\right\rfloor} \right\rvert\, A_{\mathcal{G}, s}(N, i, q) \tag{1.15}
\end{equation*}
$$

For example, when $s=5$ we have $S_{1,3, \chi_{6}}(5)=\{0,1,3\}$. For $N=8$ we have

$$
A_{\mathcal{G}, 5}(8,2, q)=q^{2}\left(q ; q^{2}\right)_{2}\left(1+q^{2}-q^{3}+2 q^{4}-q^{5}+2 q^{6}+q^{8}\right)
$$

and

$$
A_{\mathcal{G}, 5}(8,4, q)=-q\left(q ; q^{2}\right)_{2}\left(1-q+q^{2}\right)\left(1+q+q^{2}+q^{4}+q^{6}\right),
$$

as predicted by (1.15), while the factorizations of $A_{\mathcal{G}, 5}(8, i, q)$ into irreducible factors for $i \in\{0,1,3\}$ are

$$
\begin{aligned}
& A_{\mathcal{G}, 5}(8,0, q)=(1-q)\left(1+q^{4}-2 q^{5}+q^{6}-2 q^{7}+2 q^{8}-3 q^{9}+q^{10}-2 q^{11}+q^{12}\right) \\
& A_{\mathcal{G}, 5}(8,1, q)=1+2 q^{3}-q^{4}+2 q^{5}-3 q^{6}+5 q^{7}-5 q^{8}+4 q^{9}-5 q^{10}+4 q^{11}-2 q^{12}+q^{13}-q^{14} \\
& A_{\mathcal{G}, 5}(8,3, q)=q\left(-1+q^{2}-2 q^{3}+2 q^{4}-5 q^{5}+5 q^{6}-4 q^{7}+5 q^{8}-4 q^{9}+3 q^{10}-2 q^{11}+q^{12}\right)
\end{aligned}
$$

The rest of the paper is organized as follows. In the next section we discuss power series expansions of F and G at roots of unity, and in Section 3 we discuss the asymptotic expansions of partial theta functions. In Section 4 we prove the main theorems. In Section 5 we give two further examples - one generalizing (1.5) and one generalizing (1.15). We close with some remarks on congruences for the coefficients of $F(1-q)$ and $G(1-q)$.

2. Power series expansions of F and G

Let $F(q)$ be a function as in (1.6) and $G(q)$ be a function as in (1.7). Here we collect some facts which allow us to meaningfully define $F\left(\zeta e^{-t}\right)$ and $G\left(\zeta e^{-t}\right)$ as formal power series.

Lemma 2.1. Let $F(q ; N)$ be as in (1.11), and let $G(q ; N)$ be as in (1.13). Suppose that ζ is a kth root of unity.
(1) The values $\left.\left(q \frac{d}{d q}\right)^{\ell} F(q ; N)\right|_{q=\zeta}$ are stable for $N \geq(\ell+1) k-1$.
(2) If k is odd then the values $\left.\left(q \frac{d}{d q}\right)^{\ell} G(q ; N)\right|_{q=\zeta}$ are stable for $2 N \geq(2 \ell+1) k$.

Proof. For each positive integer k we have

$$
\begin{aligned}
\left(1-q^{k}\right)^{\ell+1} \mid(q ; q)_{N} & \text { for } \quad N \geq(\ell+1) k \\
\left(1-q^{2 k-1}\right)^{\ell+1} \mid\left(q ; q^{2}\right)_{N} & \text { for }
\end{aligned} \quad 2 N \geq(2 \ell+1)(2 k-1)+1 .
$$

It follows that for $0 \leq j \leq \ell$ we have

$$
\begin{aligned}
& \left.\left(\frac{d}{d q}\right)^{j}(q ; q)_{N}\right|_{q=\zeta}=0 \quad \text { for } \quad N \geq(\ell+1) k, \\
& \left.\left(\frac{d}{d q}\right)^{j}\left(q ; q^{2}\right)_{N}\right|_{q=\zeta}=0 \quad \text { for odd } k \text { and } \quad 2 N \geq(2 \ell+1) k+1 .
\end{aligned}
$$

The lemma follows since for any polynomial $f(q)$, the polynomial $\left(q \frac{d}{d q}\right)^{\ell} f(q)$ is a linear combination (with polynomial coefficients) of $\left(\frac{q}{d q}\right)^{j} f(q)$ with $0 \leq j \leq \ell$ (see for example [4, Lemma 2.2]).

For any polynomial $f(q)$, any ζ and any $\ell \geq 0$ we have [4, Lemma 2.3]

$$
\begin{equation*}
\left.\left(\frac{d}{d t}\right)^{\ell} f\left(\zeta e^{-t}\right)\right|_{t=0}=\left.(-1)^{\ell}\left(q \frac{d}{d q}\right)^{\ell} f(q)\right|_{q=\zeta} \tag{2.1}
\end{equation*}
$$

Let $F(q)$ be as in (1.6) and let ζ be a k th root of unity. The last fact together with Lemma 2.1 allows us to define

$$
\left.\left(\frac{d}{d t}\right)^{\ell} F\left(\zeta e^{-t}\right)\right|_{t=0}:=\left.\left(\frac{d}{d t}\right)^{\ell} F\left(\zeta e^{-t} ; N\right)\right|_{t=0} \quad \text { for any } N \geq k(\ell+1)-1
$$

We therefore have a formal series expansion

$$
\begin{equation*}
F\left(\zeta e^{-t}\right)=\sum_{\ell=0}^{\infty} \frac{\left.\left(\frac{d}{d t}\right)^{\ell} F\left(\zeta e^{-t}\right)\right|_{t=0}}{\ell!} t^{\ell} \tag{2.2}
\end{equation*}
$$

Similarly, if $G(q)$ is a function as in (1.7) and ζ is a k th root of unity with odd k, then we can define

$$
\begin{equation*}
\left.\left(\frac{d}{d t}\right)^{\ell} G\left(\zeta e^{-t}\right)\right|_{t=0}:=\left.\left(\frac{d}{d t}\right)^{\ell} G\left(\zeta e^{-t} ; N\right)\right|_{t=0} \quad \text { for any } 2 N \geq k(2 \ell+1) \tag{2.3}
\end{equation*}
$$

using (2.1) and Lemma 2.1. Thus, we have a formal series expansion

$$
\begin{equation*}
G\left(\zeta e^{-t}\right)=\sum_{\ell=0}^{\infty} \frac{\left.\left(\frac{d}{d t}\right)^{\ell} G\left(\zeta e^{-t}\right)\right|_{t=0}}{\ell!} t^{\ell} \tag{2.4}
\end{equation*}
$$

3. The asymptotics of $P_{a, b, \chi}^{(\nu)}$

In this section we discuss the asymptotic expansion of the partial theta functions $P_{a, b, \chi}^{(\nu)}(q)$ defined in (1.8). Recall that

$$
P_{a, b, \chi}^{(\nu)}(q):=\sum_{n \geq 0} n^{\nu} \chi(n) q^{\frac{n^{2}-a}{b}}
$$

where $\nu \in\{0,1\}, a \geq 0$ and $b>0$ are integers, and $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ is a function satisfying properties (1.9) and (1.10).

The properties which we describe in the next proposition are more or less standard (see for example [10, p. 98]). For convenience and completeness we sketch a proof of the following:

Proposition 3.1. Suppose that $P_{a, b, \chi}^{(\nu)}(q)$ is as in (1.8). Let ζ be a root of unity and let N be a period of the function $n \mapsto \zeta^{\frac{n^{2}-a}{b}} \chi(n)$. Then we have the asymptotic expansion

$$
P_{a, b, \chi}^{(\nu)}\left(\zeta e^{-t}\right) \sim \sum_{n=0}^{\infty} \gamma_{n}(\zeta) t^{n}, \quad t \rightarrow 0^{+}
$$

where

$$
\begin{equation*}
\gamma_{n}(\zeta)=\sum_{\substack{1 \leq m \leq N \\ \chi(m) \neq 0}} a(m, n, N) \zeta^{\frac{m^{2}-a}{b}} \tag{3.1}
\end{equation*}
$$

with certain complex numbers $a(m, n, N)$.
We begin with a lemma. For $n \geq 0$ let $B_{n}(x)$ denote the nth Bernoulli polynomial. In the rest of this section we use s for a complex variable since there can be no confusion with the parameter s used above.

Lemma 3.2. Let $C: \mathbb{Z} \rightarrow \mathbb{C}$ be a function with period N and mean value zero, and let

$$
L(s, C):=\sum_{n=1}^{\infty} \frac{C(n)}{n^{s}}, \quad \operatorname{Re}(s)>0
$$

Then $L(s, C)$ has an analytic continuation to \mathbb{C}, and we have

$$
\begin{equation*}
L(-n, C)=\frac{-N^{n}}{n+1} \sum_{m=1}^{N} C(m) B_{n+1}\left(\frac{m}{N}\right) \quad \text { for } n \geq 0 \tag{3.2}
\end{equation*}
$$

Proof. Let $\zeta(s, \alpha)$ denote the Hurwitz zeta function, whose properties are described for example in [5, Chapter 12]. We have

$$
\begin{equation*}
L(s, C)=N^{-s} \sum_{m=1}^{N} C(m) \zeta\left(s, \frac{m}{N}\right) . \tag{3.3}
\end{equation*}
$$

The lemma follows using the fact that each Hurwitz zeta function has only a simple pole with residue 1 at $s=1$ and the formula for the value of each function at $s=-n$ [5, Thm. 12.13].

Proof of Proposition 3.1. It is enough to prove the proposition for the function

$$
f(t):=e^{-\frac{a t}{b}} P_{a, b, \chi}^{(\nu)}\left(\zeta e^{-t}\right)=\sum_{n \geq 1} n^{\nu} \chi(n) \zeta^{\frac{n^{2}-a}{b}} e^{-\frac{n^{2} t}{b}}, \quad t>0 .
$$

Setting

$$
\begin{equation*}
C(n):=\zeta^{\frac{n^{2}-a}{b}} \chi(n), \tag{3.4}
\end{equation*}
$$

we have the Mellin transform

$$
\int_{0}^{\infty} f(t) t^{s-1} d t=b^{s} \Gamma(s) L(2 s-\nu, C), \quad \operatorname{Re}(s)>\frac{1}{2}
$$

Inverting, we find that

$$
f(t)=\frac{1}{2 \pi i} \int_{x=c} b^{s} \Gamma(s) L(2 s-\nu, C) t^{-s} d s
$$

for $c>\frac{1}{2}$, where we write $s=x+i y$. Using (3.3), the functional equation for the Hurwitz zeta functions, and the asymptotics of the Gamma function, we find that, for fixed x, the function $L(s, C)$ has at most polynomial growth in $|y|$ as $|y| \rightarrow \infty$. Shifting the contour to the line $x=-R-\frac{1}{2}$ we find that for each $R \geq 0$ we have

$$
f(t)=\sum_{n=0}^{R} \frac{(-1)^{n}}{b^{n} n!} L(-2 n-\nu, C) t^{n}+O\left(t^{R+\frac{1}{2}}\right)
$$

from which

$$
f(t) \sim \sum_{n=0}^{\infty} \frac{(-1)^{n}}{b^{n} n!} L(-2 n-\nu, C) t^{n}
$$

The proposition follows from (3.4) and (3.2).

4. Proof of Theorems 1.2 and 1.3

We begin with a lemma. The first assertion is proved in [4, Lemma 2.4], and the second, which is basically equation (2.4) in [1], follows by extracting an arithmetic progression using orthogonality. (We note that there is an error in the published version of [1] which is corrected below; in that version the operators $\frac{d}{d q}$ and $q \frac{d}{d q}$ are conflated in the statement of (2.3) and (2.4). This does not affect the truth of the rest of the results.)

Let $C_{\ell, i, j}(s)$ be the array of integers defined recursively as follows:
(1) $C_{0,0,0}(s)=1$,
(2) $C_{\ell, i, 0}(s)=i^{\ell}$ and $C_{\ell, i, j}(s)=0$ for $j \geq \ell+1$ or $j<0$,
(3) $C_{\ell+1, i, j}(s)=(i+j s) C_{\ell, i, j}(s)+s C_{\ell, i, j-1}(s)$ for $1 \leq j \leq \ell$.

Lemma 4.1. Suppose that s is a positive integer and that

$$
h(q)=\sum_{i=0}^{s-1} q^{i} A_{s}\left(i, q^{s}\right)
$$

with polynomials $A_{s}(i, q)$. Then the following are true:
(1) For all $\ell \geq 0$ we have

$$
\left(q \frac{d}{d q}\right)^{\ell} h(q)=\sum_{j=0}^{\ell} \sum_{i=0}^{s-1} C_{\ell, i, j}(s) q^{i+j s} A_{s}^{(j)}\left(i, q^{s}\right)
$$

(2) Let ζ_{s} be a primitive sth root of unity. Then for $\ell \geq 0$ and $i_{0} \in\{0, \ldots, s-1\}$ we have

$$
\begin{equation*}
\sum_{j=0}^{\ell} C_{\ell, i_{0}, j}(s) q^{i_{0}+j s} A_{s}^{(j)}\left(i_{0}, q^{s}\right)=\left.\frac{1}{s} \sum_{k=0}^{s-1} \zeta_{s}^{-k i_{0}}\left(\left(q \frac{d}{d q}\right)^{\ell} h(q)\right)\right|_{q \rightarrow \zeta_{s}^{k} q} \tag{4.1}
\end{equation*}
$$

Proof of Theorem 1.2. Suppose that $F(q)$ and $P_{a, b, \chi}(q)$ are as in the statement of the theorem. Suppose that s and k are positive integers, that $i \notin S_{a, b, \chi}(s)$ and that ζ_{k} is a primitive k th root of unity. Let $\Phi_{k}(q)$ be the k th cyclotomic polynomial. Recall the definition (1.4) of $\lambda(N, s)$ and note that since

$$
\begin{equation*}
(q ; q)_{n}= \pm \prod_{k=1}^{n} \Phi_{k}(q)^{\left\lfloor\frac{n}{k}\right\rfloor} \tag{4.2}
\end{equation*}
$$

and

$$
\left\lfloor\frac{\left\lfloor\frac{x}{s}\right\rfloor}{k}\right\rfloor=\left\lfloor\frac{x}{k s}\right\rfloor,
$$

we have

$$
(q ; q)_{\lambda(N, s)}= \pm \prod_{k=1}^{\lambda(N, s)} \Phi_{k}(q)^{\lambda(N, k s)}
$$

Therefore, Theorem 1.2 will follow once we show for each $\ell \geq 0$ that

$$
A_{F, s}^{(\ell)}\left(N, i, \zeta_{k}\right)=0 \quad \text { for } \quad N \geq(\ell+1) k s-1,
$$

since this implies that $\Phi_{k}(q)^{\lambda(N, k s)} \mid A_{F, s}(N, i, q)$ for $1 \leq k \leq \lambda(N, s)$.

From the definition we find that

$$
A_{F, s}(N, i, q)=\sum_{j=0}^{k-1} q^{j} A_{F, k s}\left(N, i+j s, q^{k}\right)
$$

If $i \notin S_{a, b, \chi}(s)$, then $i+j s \notin S_{a, b, \chi}(k s)$. It is therefore enough to show that for all s, k, and ℓ, and for $i \notin S_{a, b, \chi}(k s)$, we have

$$
A_{F, k s}^{(\ell)}(N, i, 1)=0 \quad \text { for } N \geq(\ell+1) k s-1
$$

After replacing $k s$ by s, it is enough to show that for all s and ℓ, and for $i \notin S_{a, b, \chi}(s)$, we have

$$
\begin{equation*}
A_{F, s}^{(\ell)}(N, i, 1)=0 \quad \text { for } N \geq(\ell+1) s-1 \tag{4.3}
\end{equation*}
$$

We prove (4.3) by induction on ℓ. For the base case $\ell=0$, assume that $N \geq s-1$. Using (4.1) with $q=1$ gives

$$
A_{F, s}(N, i, 1)=\frac{1}{s} \sum_{j=0}^{s-1} \zeta_{s}^{-j i} F\left(\zeta_{s}^{j} ; N\right)
$$

By (1.12), (2.1), Lemma 2.1, and Proposition 3.1 we find that

$$
A_{F, s}(N, i, 1)=\frac{1}{s} \sum_{j=1}^{s} \zeta_{s}^{-j i} \gamma_{0}\left(\zeta_{s}^{j}\right)
$$

By (3.1) and orthogonality (recalling that $i \notin S_{a, b, \chi}(s)$), we find that $A_{F, s}(N, i, 1)=0$.
For the induction step, suppose that $N \geq(\ell+1) s-1$, that $i \notin S_{a, b, \chi}(s)$, and that (4.3) holds with ℓ replaced by j for $1 \leq j \leq \ell-1$. By (4.1) and the induction hypothesis we have

$$
C_{\ell, i, \ell}(s) A_{F, s}^{(\ell)}(N, i, 1)=\left.\frac{1}{s} \sum_{j=1}^{s} \zeta_{s}^{-j i}\left(q \frac{d}{d q}\right)^{\ell} F(q ; N)\right|_{q=\zeta_{s}^{j}} .
$$

Using Proposition 3.1, (2.2), (3.1), and orthogonality, we find as above that

$$
C_{\ell, i, \ell}(t) A_{F, s}^{(\ell)}(N, i, 1)=0
$$

This establishes (4.3) since $C_{\ell, i, \ell}(s)>0$. Theorem 1.2 follows.
Proof of Theorem 1.3. Suppose that s and k are positive integers with s odd, that $i \notin$ $S_{a, b, \chi}(s)$ and that $\zeta_{2 k-1}$ is a $(2 k-1)$ th root of unity. Recall the definition (1.14) of $\mu(N, k, s)$. In analogy with (4.2), we have

$$
\left(q ; q^{2}\right)_{n}= \pm \prod_{k=1}^{n} \Phi_{2 k-1}(q)^{\left\lfloor\frac{(2 n-1)}{2(2 k-1)}+\frac{1}{2}\right\rfloor}
$$

and as above we obtain

$$
\left(q ; q^{2}\right)_{\mu(N, 1, s)}= \pm \prod_{k=1}^{\mu(N, 1, s)} \Phi_{2 k-1}(q)^{\mu(N, k, s)}
$$

Therefore, Theorem 1.3 follows once we show for each $\ell \geq 0$ that

$$
A_{G, s}^{(\ell)}\left(N, i, \zeta_{2 k-1}\right)=0 \quad \text { for } \quad 2 N \geq(2 \ell+1)(2 k-1) s
$$

The rest of the proof is similar to that of Theorem 1.2 (we require s to be odd because $G(q)$ has a series expansion only at odd-order roots of unity). Arguing as above, we show that for each odd s we have

$$
A_{G, s}^{(\ell)}(N, i, 1)=0 \quad \text { for } \quad 2 N \geq(2 \ell+1) s
$$

and the result follows.

5. Examples

In this section we illustrate Theorems 1.2 and 1.3 with two families of examples.
5.1. The generalized Kontsevich-Zagier functions. In a study of quantum modular forms related to torus knots and the Andrews-Gordon identities, Hikami 9 defined the functions

$$
X_{m}^{(\alpha)}(q):=\sum_{k_{1}, k_{2}, \ldots, k_{m} \geq 0}(q ; q)_{k_{m}} q^{k_{1}^{2}+\cdots+k_{m-1}^{2}+k_{\alpha+1}+\cdots+k_{m-1}}\left(\prod_{\substack{i=1 \tag{5.1}\\
i \neq \alpha}}^{m-1}\left[\begin{array}{c}
k_{i+1} \\
k_{i}
\end{array}\right]\right)\left[\begin{array}{c}
k_{\alpha+1}+1 \\
k_{\alpha}
\end{array}\right],
$$

where m is a positive integer and $\alpha \in\{0,1, \ldots, m-1\}$. Here we have used the usual q-binomial coefficient (or Gaussian polynomial)

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, & \text { if } 0 \leq k \leq n \\
0, & \text { otherwise }\end{cases}
$$

The simplest example

$$
X_{1}^{(0)}(q)=\sum_{n \geq 0}(q ; q)_{n}
$$

is the Kontsevich-Zagier function. From (5.1) we can write

$$
X_{m}^{(\alpha)}(q)=\sum_{k_{m} \geq 0}(q ; q)_{k_{m}} f_{k_{m}}^{(\alpha)}(q)
$$

with polynomials $f_{k_{m}}^{(\alpha)}(q)$.
Hikami's identity [9, eqn (70)] implies that for each root of unity ζ we have

$$
P_{(2 m-2 \alpha-1)^{2}, 8(2 m+1), \chi_{8 m+4}^{(\alpha)}}^{(1)}\left(\zeta e^{-t}\right) \sim X_{m}^{(\alpha)}\left(\zeta e^{-t}\right)
$$

as $t \rightarrow 0^{+}$, where $\chi_{8 m+4}^{(\alpha)}(n)$ is defined by

$$
\chi_{8 m+4}^{(\alpha)}(n)=\left\{\begin{array}{lll}
-1 / 2, & \text { if } n \equiv 2 m-2 \alpha-1 \text { or } 6 m+2 \alpha+5 & (\bmod 8 m+4) \tag{5.2}\\
1 / 2, & \text { if } n \equiv 2 m+2 \alpha+3 \text { or } 6 m-2 \alpha+1 & (\bmod 8 m+4) \\
0, & \text { otherwise }
\end{array}\right.
$$

The function $\chi_{8 m+4}^{(\alpha)}(n)$ satisfies condition (1.9). For (1.10) we record a short lemma.
Lemma 5.1. Suppose that $\chi_{8 m+4}^{(\alpha)}(n)$ is as defined in (5.2) and that ζ is a root of unity of order M. Define

$$
\psi(n)=\zeta^{\frac{n^{2}-(2 m-2 \alpha-1)^{2}}{8(2 m+1)}} \chi_{8 m+4}^{(\alpha)}(n)
$$

Then

$$
\sum_{n=1}^{M(8 m+4)} \psi(n)=0
$$

Proof. Note that ψ is supported on odd integers, so we assume in what follows that n is odd. From the definition, we have

$$
\begin{equation*}
\chi_{8 m+4}^{(\alpha)}(n+M(4 m+2))=(-1)^{M} \chi_{8 m+4}^{(\alpha)}(n) \tag{5.3}
\end{equation*}
$$

The exponent in the ratio of the corresponding powers of ζ is $m M^{2}+\frac{M^{2}+M n}{2}$. So the ratio of these powers of ζ is

$$
\zeta^{\frac{M^{2}+M n}{2}} .
$$

If M is odd then this becomes $\zeta^{M\left(\frac{M+n}{2}\right)}=1$, while if M is even then this becomes $\zeta^{\frac{M^{2}}{2}} \zeta^{\frac{M}{2} n}=$ -1 (since M is the order of ζ and n is odd). Therefore the ratio in either case is $(-1)^{M+1}$. Combining this with (5.3) gives

$$
\psi(n+M(4 m+2))=-\psi(n)
$$

from which the lemma follows.
Therefore $X_{m}^{(\alpha)}(q)$ satisfies the conditions of Theorem 1.2, and we obtain the following.
Corollary 5.2. If s is a positive integer and $i \notin S_{(2 m-2 \alpha-1)^{2}, 8(2 m+1), \chi_{8 m+4}^{(\alpha)}}(s)$, then

$$
(q ; q)_{\lambda(N, s)} \mid A_{X_{m}^{(\alpha)}, s}(N, i, q)
$$

where $A_{X_{m}^{(\alpha)}, s}(N, i, q)$ are the coefficients in the s-dissection of the partial sums (in k_{m}) of $X_{m}^{(\alpha)}(q)$.

For example, when $s=3$ we have $S_{9,40, \chi_{20}^{(0)}}(3)=\{0,1\}$ and $S_{1,40, \chi_{20}^{(1)}}(3)=\{0,2\}$. For $N=8$ we have

$$
A_{X_{2}^{(0)}, 3}(8,2, q)=(q ; q)_{3}(1+q)\left(1+q+q^{2}\right)\left(1-q+\cdots-q^{25}+q^{26}\right)
$$

and

$$
A_{X_{2}^{(1)}, 3}(8,1, q)=(q ; q)_{3}(1+q)\left(1-q+q^{2}\right)\left(1+q+q^{2}\right)\left(1+2 q+\cdots-q^{26}+q^{27}\right)
$$

as predicted by Corollary 5.2, while

$$
\begin{aligned}
& A_{X_{2}^{(0)}, 3}(8,0, q)=\left(1-q+q^{2}\right)\left(9+9 q+\cdots+q^{33}+q^{34}\right) \\
& A_{X_{2}^{(0)}, 3}(8,1, q)=-8-7 q+\cdots+q^{34}-q^{35} \\
& A_{X_{2}^{(1)}, 3}(8,0, q)=9-7 q+\cdots+2 q^{36}+q^{39}
\end{aligned}
$$

and

$$
A_{X_{2}^{(1), 3}}(8,2, q)=-7+3 q^{3}-\cdots+q^{36}-q^{38}
$$

are not divisible by $(q ; q)_{3}$.
5.2. An example with $\nu=0$. For $k \geq 1$ let $\mathcal{G}_{k}(q)$ denote the q-series

$$
\mathcal{G}_{k}(q)=\sum_{n_{k} \geq n_{k-1} \geq \cdots \geq n_{1} \geq 0} q^{n_{k}+2 n_{k-1}^{2}+2 n_{k-1}+\cdots+2 n_{1}^{2}+2 n_{1}}\left(q ; q^{2}\right)_{n_{k}}\left[\begin{array}{c}
n_{k} \\
n_{k-1}
\end{array}\right]_{q^{2}} \ldots\left[\begin{array}{l}
n_{2} \\
n_{1}
\end{array}\right]_{q^{2}}
$$

Then we have the identity

$$
\begin{equation*}
\mathcal{G}_{k}(q)=\sum_{n \geq 0}(-1)^{n} q^{(2 k+1) n^{2}+2 k n}\left(1+q^{2 n+1}\right) \tag{5.4}
\end{equation*}
$$

which follows from Andrews' generalization [2] of the Watson-Whipple transformation

$$
\begin{array}{r}
\sum_{m=0}^{N} \frac{\left(1-a q^{2 m}\right)}{(1-a)} \frac{\left(a, b_{1}, c_{1}, \ldots, b_{k}, c_{k}, q^{-N}\right)_{m}}{\left(q, a q / b_{1}, a q / c_{1}, \ldots, a q / b_{k}, a q / c_{k}, a q^{N+1}\right)_{m}}\left(\frac{a^{k} q^{k+N}}{b_{1} c_{1} \cdots b_{k} c_{k}}\right)^{m} \\
=\frac{\left(a q, a q / b_{k} c_{k}\right)_{N}}{\left(a q / b_{k}, a q / c_{k}\right)_{N}} \sum_{N \geq n_{k-1} \geq \cdots \geq n_{1} \geq 0} \frac{\left(b_{k}, c_{k}\right)_{n_{k-1}} \cdots\left(b_{2}, c_{2}\right)_{n_{1}}}{(q ; q)_{n_{k-1}-n_{k-2}} \cdots(q ; q)_{n_{2}-n_{1}}(q ; q)_{n_{1}}} \\
\times \frac{\left(a q / b_{k-1} c_{k-1}\right)_{n_{k-1}-n_{k-2}} \cdots\left(a q / b_{2} c_{2}\right)_{n_{2}-n_{1}}\left(a q / b_{1} c_{1}\right)_{n_{1}}}{\left(a q / b_{k-1}, a q / c_{k-1}\right)_{n_{k-1} \cdots\left(a q / b_{1}, a q / c_{1}\right)_{n_{1}}}} \\
\times \frac{\left(q^{-N}\right)_{n_{k-1}}(a q)^{n_{k-2}+\cdots+n_{1}} q^{n_{k-1}}}{\left(b_{k} c_{k} q^{-N} / a\right)_{n_{k-1}}\left(b_{k-1} c_{k-1}\right)^{n_{k-2} \cdots\left(b_{2} c_{2}\right)^{n_{1}}}} .
\end{array}
$$

Here we have extended the notation in (1.1) to

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right)_{n}:=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{k} ; q\right)_{n}
$$

To deduce (5.4), we set $q=q^{2}, a=q^{2}, b_{k}=q$, and $c_{k}=q^{2}$ and then let $N \rightarrow \infty$ along with all other b_{i}, c_{i}.

The identity (5.4) may be written as

$$
\mathcal{G}_{k}(q)=\sum_{n \geq 0} \chi_{4 k+2}(n) q^{\frac{n^{2}-k^{2}}{2 k+1}}
$$

where

$$
\chi_{4 k+2}(n):= \begin{cases}1, & \text { if } n \equiv k, k+1 \quad(\bmod 4 k+2) \\ -1, & \text { if } n \equiv-k,-k-1 \quad(\bmod 4 k+2) \\ 0, & \text { otherwise }\end{cases}
$$

This implies that for each odd-order root of unity ζ, we have

$$
P_{k^{2}, 2 k+1, \chi_{4 k+2}}^{(0)}\left(\zeta e^{-t}\right) \sim G_{k}\left(\zeta e^{-t}\right) \quad \text { as } t \rightarrow 0^{+}
$$

The function $\chi_{4 k+2}(n)$ satisfies conditions (1.9) and (1.10) (see the remark following (1.10)), so Theorem 1.3 gives

Corollary 5.3. Suppose that k and N are positive integers, that s is a positive odd integer, and that $i \notin S_{k^{2}, 2 k+1, \chi_{4 k+2}}(s)$. Then

$$
\left.\left(q ; q^{2}\right)_{\left\lfloor\frac{N}{s}+\frac{1}{2}\right\rfloor} \right\rvert\, A_{\mathcal{G}_{k}, s}(N, i, q) .
$$

6. Remarks on congruences

Congruences for the coefficients of the functions $F(q)$ and $G(q)$ in Theorems 1.2 and 1.3 can be deduced from the results of [7]. In closing we mention another approach. Theorems 1.2 and 1.3 guarantee that many of the coefficients in the s-dissection are divisible by high powers of $1-q$, and the congruences follow from this fact when $s=p^{r}$ together with an argument as in [1, Section 3].

For example, let \mathcal{G}_{k} be the function defined in the last section and define $\xi_{\mathcal{G}_{k}}(n)$ by

$$
\mathcal{G}_{k}(1-q)=\sum_{n \geq 0} \xi_{\mathcal{G}_{k}}(n) q^{n} .
$$

Consider the expansions

$$
\begin{aligned}
& \mathcal{G}_{1}(1-q)=\sum_{n \geq 0} \xi_{\mathcal{G}_{1}}(n) q^{n}=1+q+2 q^{2}+6 q^{3}+25 q^{4}+135 q^{5}+\cdots \\
& \mathcal{G}_{2}(1-q)=\sum_{n \geq 0} \xi_{\mathcal{G}_{2}}(n) q^{n}=1+2 q+6 q^{2}+28 q^{3}+189 q^{4}+1680 q^{5}+\cdots
\end{aligned}
$$

Then we have such congruences as

$$
\begin{aligned}
\xi_{\mathcal{G}_{1}}\left(5^{r} n-1\right) & \equiv 0 \quad\left(\bmod 5^{r}\right), \\
\xi_{\mathcal{G}_{1}}\left(7^{r} n-1\right) & \equiv 0 \quad\left(\bmod 7^{r}\right), \\
\xi_{\mathcal{G}_{1}}\left(13^{r} n-\beta\right) & \equiv 0 \quad\left(\bmod 13^{r}\right)
\end{aligned}
$$

for $\beta \in\{1,2,3,4\}$, and

$$
\begin{aligned}
\xi_{\mathcal{G}_{2}}\left(7^{r} n-1\right) & \equiv 0 \quad\left(\bmod 7^{r}\right) \\
\xi_{\mathcal{G}_{2}}\left(11^{r} n-1\right) & \equiv 0 \quad\left(\bmod 11^{r}\right)
\end{aligned}
$$

References

[1] S. Ahlgren and B. Kim, Dissections of a "strange" function, Int. J. Number Theory 11 (2015), 15571562.
[2] G.E. Andrews, Problems and prospects for basic hypergeometric series, in: R. Askey, Theory and Application of Special Functions, Academic Press, New York 1975, 191-224.
[3] G.E. Andrews and B.C. Berndt, Ramanujan's lost notebook. Part I, Springer, New York, 2005.
[4] G.E. Andrews and J. Sellers, Congruences for the Fishburn numbers, J. Number Theory 161 (2016), 298-310.
[5] T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.
[6] F. Garvan, Congruences and relations for r-Fishburn numbers, J. Combin. Theory Ser. A 134 (2015), 147-165.
[7] P. Guerzhoy, Z. Kent, and L. Rolen, Congruences for Taylor expansions of quantum modular forms, Res. Math. Sci. 1 (2014), Art. 17, 17 pp.
[8] K. Habiro, Cyclotomic completions of polynomial rings, Publ. Res. Inst. Math. Sci. 40 (2004) no. 4, 1127-1146.
[9] K. Hikami, q-series and L-functions related to half-derivatives of the Andrews-Gordon identity, Ramanujan J. 11 (2006), no. 2, 175-197.
[10] R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999), no. 1, 93-107. MR1701924
[11] The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2010, Sequence A022493.
[12] A. Straub, Congruences for Fishburn numbers modulo prime powers, Int. J. Number Theory 11 (2015), no. 5, 1679-1690.
[13] D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), 945-960.
[14] D. Zagier, Quantum modular forms, Quanta of Maths: Conference in honor of Alain Connes. Clay Mathematics Proceedings 11. AMS and Clay Mathematics Institute 2010, 659-675.

Department of Mathematics, University of Illinois, Urbana, IL 61801
E-mail address: sahlgren@illinois.edu
School of Liberal Arts, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowongu, Seoul, 01811, Republic of Korea

E-mail address: bkim4@seoultech.ac.kr
Current Address: Department of Mathematics, University of California, Berkeley, 970 Evans Hall \#3780, Berkeley, CA 94720-3840, USA

Permanent Address: CNRS, Université Denis Diderot - Paris 7, Case 7014, 75205 Paris Cedex 13, FRANCE

E-mail address: lovejoy@math.cnrs.fr

[^0]: Date: December 10, 2018.
 2010 Mathematics Subject Classification. Primary 33D15.
 Key words and phrases. Fishburn numbers, Kontsevich-Zagier strange function, q-series, partial theta functions, congruences.

 The first author was supported by a grant from the Simons Foundation (\#426145 to Scott Ahlgren). Byungchan Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09917344).

