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MIXED RESTRICTED STIRLING NUMBERS

SOMAYEH BARATI, BEÁTA BÉNYI, ABBAS JAFARZADEH, AND DANIEL YAQUBI

Abstract. In this note we investigate mixed partitions with extra condition on the sizes of

the blocks. We give a general formula and the generating function. We consider in more

details a special case, determining the generating functions, some recurrences and a connection

to r-Stirling numbers. To obtain our results, we use pure combinatorial arguments, classical

manipulations of generating functions and to derive the generating functions we apply the

symbolic method.

1. Introduction

Set partitions are fundamental and well studied combinatorial objects. Partitions of the set
[n] = {1, 2, · · · , n} into k non-empty unlaballed blocks are enumerated by the Stirling numbers
of the second kind, also called sometimes set partition numbers, denoted by

{

n
k

}

. Stirling
numbers of the second kind are sometimes introduced by the fundamental recurrence relation:

{

n

k

}

=

{

n− 1

k − 1

}

+ k

{

n− 1

k

}

,

with the initial values
{

0
0

}

= 1 and
{

n
0

}

=
{

0
n

}

= 0. The explicit formula

{

n

k

}

=
1

k!

k
∑

m=0

(−1)k−m

(

k

m

)

mn

can be found in the introductory combinatorics books (for instance in [1]) as a classical example
for the inclusion-exclusion principle. The exponential generating function is a nice example for
the use of symbolic method [14]:

∞
∑

n=0

{

n

k

}

xn

n!
=

(ex − 1)k

k!
.

Howard [16] proved the following formula:
{

n

k

}

=
n!

k!

∑

i1+i2+···+ik=n

1

i1!i2! · · · ik!
.

The Bell numbers Bn count partitions of a set with n distinct elements into disjoint non-empty
sets, thus

Bn =

n
∑

k=1

{

n

k

}

. (1.1)
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The following classical problem was considered in [23]:

⋆ Consider b1 + b2 + . . .+ bn balls with b1 balls labeled by 1, b2 balls labeled by 2, . . ., bn
balls labeled by n and c1+ c2+ . . .+ ck cells with c1 cells labeled by 1, c2 cells labeled by
2, . . ., ck cells labeled by k. Evaluate the number of ways to partition the set of these
balls into cells of these types.

In the recent paper, we investigate how extra conditions on the sizes of the cells modify this
original problem. We recall some notation and necessary definitions. A multiset A with the
multiplicity mapping m is a collection of not necessarily different objects such that for each
a ∈ A the number m(a) is the multiplicity of the occupants of a in A. If A is a multiset, we
denote the set of members of A by S(A) and we call it the background set of A. Let A = [n] be
the background set of a multiset and m(i) = bi (i = 1, 2, . . . , n) its multiplicity mapping. We
denote the multiset (A,m) by A(b1, . . . , bn). Using this notation, the classical problem ⋆ is the
determination of the number of partitions of the multiset B = A(b1, . . . , bn) into multiblocks
C = A(c1, . . . , ck). Following [23], we refer to these numbers as mixed partition numbers and let
{

B

C

}

denote them. Further, for the number of mixed partitions that may contain empty blocks

we use the notation
{

B

C

}

0
. Clearly,

{

B

C

}

0

=
∑

16i6k,06ji6ci

{

B

J

}

,

where J = A(j1, . . . , jk).
Note that if b1 = b2 = . . . = bn = 1 and c1 = k, c2 = . . . = ck = 0 then

{

B

C

}

=
{

n
k

}

and
{

B

C

}

0
=
∑k

i=1

{

n
i

}

. Moreover, if b1 = b2 = . . . = bn = 1 and c1 = n, c2 = . . . = ck = 0 then
{

B

C

}

0
= Bn. For b1 = b2 = . . . = bn = 1 and c1 = 1 = c2 = . . . = ck = 1 we have

{

B

C

}

= k!
{

n
k

}

.
The authors in [23] derived some interesting results about the special case b1 = b2 = . . . =

bn = 1 and c1 = r, c2 = . . . = ck = 1 where n, k and r are positive integers. For the number of
partitions of this type,

{

B

C

}

was introduced in [23] the shorter notation S(n, k, r), that we also
use in this paper. We call these numbers mixed Stirling numbers of the second kind. Similarly,
we use B0(n, r) for

{

B

C

}

0
and call them mixed Bell numbers.

In Table 1 we give S(n, k, r) for some small values. Special settings arise in different combina-
torial problems. For instance, S(k+1, k, 2) is the number of hamiltonian circuits in a complete
simple graph, or the order of the alternating group An (A001710 in [21]) ; S(k + 2, k, 3) is
the number of decreasing 3-cycles in the decompositions of permutations as product of disjoint
cycles (A001715 in [21]); S(r+2, 2, r) and S(r+3, 2, r) are the Kekulé numbers of certain ben-
zeonid (A002411 and A108650 in [21]); S(r + 3, 3, r) is the second leg of Pythagorean triangle
with smallest side a cube (A083374 in [21]).

2. Mixed restricted partition numbers

In this section we consider mixed partitions with an upper bound on the sizes of the blocks.
Partitions containing blocks of restricted block sizes were investigated by several authors [18,
5, 9, 11, 17]. We recall the definition and some relevant results. For n,m, k positive integers,
the number of partitions of the set [n] into k non-empty blocks such that each block contains
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n/k
r=2

1 2 3 4 5

2 1
3 3 3
4 7 18 12
5 15 75 120 60
6 31 270 780 900 360

n/k
r=3

1 2 3 4 5

3 1
4 6 4
5 25 40 20
6 90 260 300 120
7 301 1400 2800 2520 840

n/r
k=2

1 2 3 4 5

2 2
3 6 3
4 14 18 4
5 30 75 40 5
6 62 270 260 75 6

n/r
k=3

1 2 3 4 5

3 6
4 36 12
5 150 120 20
6 540 780 300 30
7 1806 4200 2800 630 42

Table 1. Some values of S(n, k, r)

at most m elements is called the restricted Stirling numbers of the second kind and is denoted
by
{

n
k

}

≤m
. Komatsu et al. [17] derived the following recurrence relation.

Theorem 2.1. [17] Let n,m and k be positive integers. The
{

n
k

}

≤m
is given by

{

n

k

}

≤m

=

m−1
∑

i=0

(

n

i

){

n− i

k − i

}

≤m

.

with initial conditions
{

0
0

}

≤m
= 1 and

{

n
0

}

≤m
= 0, for n ≥ 1.

Similarly, the authors in [19] defined restricted Bell numbers as

Bn,≤m =
n
∑

k=0

{

n

k

}

≤m

.

It is clear, that Bn,≤m enumerates partitions of n elements into blocks, such that each block

contains at most m elements. In accordance with our notation, we denote
∑k

i=1

{

n
i

}

≤m
by

{

n
k

}

0,≤m
.

Now we turn our attention to mixed partitions.

Definition 2.2. Let B = A(b1, . . . , bn) and C = A(c1, . . . , ck). For a positive integer m, the
number of ways to partition B balls into C non-empty cells such that each block contains at
most m elements is called the mixed restricted partition numbers and is denoted by

{

B

C

}

≤m
.

First, we give the formula for the case b1 = . . . = bn = 1 and c1, . . . , ck ∈ N, based on the
results of [23].

Theorem 2.3. Let b1 = . . . = bn = 1, c1, . . . , ck ∈ N,B = A(b1, . . . , bn) and C = A(c1, . . . , ck).
We have

{

B

C

}

≤m

=
∑

ℓ1+···+ℓk=n
ℓ1,...,ℓk≤m

(

n

ℓ1, ℓ2, . . . , ℓk

){

ℓ1

c1

}

≤m

{

ℓ2

c2

}

≤m

· · ·

{

ℓk

ck

}

≤m

,
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where
(

n
ℓ1,...,ℓk

)

is the multinomial coefficient defined by n!
ℓ1!...ℓk!

with ℓ1 + · · ·+ ℓk = n.

Proof. To constitute a partition of the set [n] into C such that c1, . . . , ck ∈ N and each block
has at most m elements, we proceed as follows. First, choose ℓ1 ≤ m elements in

(

n
ℓ1

)

ways

(label them 1) and partition into c1 blocks in
{

ℓ1
c1

}

≤m
ways. Next, choose ℓ2 ≤ m elements out

of the remaining n − ℓ1 in
(

n−ℓ1
ℓ2

)

ways and partition these elements into c2 blocks in
{

ℓ1
c1

}

≤m

ways. By continuing the process we obtain the theorem. �

We investigate a special setting for c1, . . . , ck as follows.

Definition 2.4. Let n, k and r be positive integers, b1 = b2 = . . . = bn = 1, and c1 = r, c2 =
. . . = ck = 1, respectively. For a positive integer m, we denote

{

B

C

}

≤m
by S≤m(n, k, r) and call

these numbers mixed restricted Stirling numbers of the second kind.

We illustrate this definition by an example.

Example 2.5. We evaluate S≤2(3, 2, 2). Suppose that the cells are ( ), ( ) and [ ]. The partitions
of the set [3] such that each cell contains at most 2 elements are listed below.

(1) (2) [3], (1, 2) ( ) [3], (1, 3) ( ) [2],

(2, 3) ( ) [1], (1) (3) [2], (2) (3) [1],

(1) ( ) [2, 3], (2) ( ) [1, 3], (3) ( ) [1, 2],

Thus S≤2(3, 2, 2) = 9.

Remark 2.6. S(n, k, r) counts a pair of partitions (OPk−1,Pr), where OP is an ordered
partition into k−1 non-empty blocks and P is a partition into r blocks, such that each element
of [n] appear exactly once.

It is clear that S≤m(n, 1, r) =
{

n
r

}

≤m
and S≤m(n, k, 0) = (k − 1)!

{

n
k−1

}

≤m
, S≤m(n, k, 1) =

k!
{

n
k

}

≤m
. We derive a fundamental recurrence for S≤m(n, k, r) using the restricted Stirling

numbers.

Theorem 2.7. For positive integers n, k and r, S≤m(n, k, r) is given by

S≤m(n, k, r) =

n
∑

i=r

(

n

i

){

i

r

}

≤m

{

n− i

k − 1

}

≤m

(k − 1)!.

Proof. Choose first i elements in
(

n
i

)

ways to create the r non-empty cells in
{

n
r

}

≤m
ways. Next,

fill the k − 1 labeled cells with the remaining n − i elements, such that the each cell contains
at most m elements. This can be done in (k − 1)!

{

n−i
k−1

}

≤m
ways. Note that we should have

k − 1 6 n− i. �

We give next another closed form.

Theorem 2.8. For positive integers n, k and r, we have

S≤m(n, k, r) = (k − 1)!

(

k + r − 1

k − 1

){

n

k + r − 1

}

≤m

.
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Proof. Take a partition of n elements into k+ r− 1 non-empty blocks. Choose now from these
k+ r−1 blocks k−1, and permute them, creating this way the k−1 blocks labeled by 2, . . . , k.
The remaining blocks get the label 1. �

The following theorem gives a recurrence that involves only the mixed restricted Stirling
numbers.

Theorem 2.9. For positive integers n,m, k, r the following identity holds

S≤m(n, k, r) =

m−1
∑

i=0

(

n− 1

i

)

(

(k − 1)S≤m(n− i− 1, k − 1, r) + S≤m(n− i− 1, k, r − 1)
)

.

Proof. Consider the element n, it is included in a cell labeled by 1 (one of the r cells) or in one
of the cells labeled by 2, . . . , k. Let i denote the number of elements, that join the cell of n.
Choose these i elements out of the n − 1 elements in

(

n−1
i

)

ways. If this cell is labeled by 1,
the remaining elements have to be partitioned into r− 1 cells all labeled by 1 and further k− 1
labeled cells. This can be done in S≤m(n− i− 1, k, r − 1) ways. On the other hand, if the cell
of n has a label different from 1, choose a label first for this cell in k − 1 ways. The remaining
elements creates a mixed partitions with c1 = r and k− 2 further labeled cells. The number of
such mixed partitions is S≤m(n− i− 1, k − 1, r). �

Similar arguments lead to the next recurrence.

Theorem 2.10. For positive integers n,m, k, r we have

S≤m(n, k, r) = S≤m(n− 1, k, r − 1) + (k − 1)S≤m(n− 1, k − 1, r) + (k + r − 1)S≤m(n− 1, k, r)

−
(

(

n− 1

m

)

S≤m(n−m− 1, k, r − 1)− (k − 1)

(

n− 1

m

)

S≤m(n−m− 1, k − 1, r)
)

.

Proof. Consider the element n. There are three cases:

Case I. Assume that n is singleton and the cell is labeled by 1. Therefore, the number
of mixed partitions of the set A′ = {1, 2, · · · , n − 1} into k blocks such that r − 1 are
labeled by 1 is S≤m(n− 1, k, r − 1).
Case II. Assume now that n is singleton and the cell is not labeled by 1. Choose one
label in k − 1 ways and partition the remaining elements in S≤m(n− 1, k − 1, r) ways.
Case III. Assume now that the element n is not a singleton. We put the element n

into a cell after partitioning the set A = {1, 2, · · · , n − 1} into C = A(c1, . . . , ck) cells,
where c1 = r, c2 = . . . = ck = 1 and each block has size at most m. This can be done in
(k + r − 1)S≤m(n− 1, k, r) ways. But if we put n into a block of size m, we exceed the
restriction on the size of the blocks. How many times did we receive ”bad” partitions?
If it is a block labeled by 1 there are

(

n−1
m

)

(S≤m(n−m−1, k, r−1)) such partitions and

if it is a block labeled by 2, . . . k, then there are (k − 1)
(

n−1
m

)

S≤m(n −m − 1, k − 1, r)
such partitions. We need to reduce the sum with these numbers.

�

Next we determine a convolution formula.
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Theorem 2.11. For positive integers n, k,m and r ≥ s, we have

S(n, k, r) =

n−s
∑

j=k+r+1−s

(

n

j

){

n− j

s

}

S(j, k, r − s), and

S≤m(n, k, r) =
n−s
∑

j=k+r+1−s

(

n

j

){

n− j

s

}

≤m

S≤m(j, k, r − s).

Proof. Begin with creating s blocks labeled by 1. Let j be the number of the remaining elements,
that are partitioned in r− s blocks with label 1 and other k− 1 distinct non-empty blocks. �

For the special value s = 1 the Theorem 2.11 gives

S(n, k, r) =

n−1
∑

j=k+r

(

n

j

)

S(j, k, r − 1), and

S≤m(n, k, r) =

n−1
∑

j=k+r

(

n

j

)

S≤m(j, k, r − 1),

while the special setting s = r leads to 2.7. We obtain, using similar arguments, the following
identities.

Theorem 2.12. For positive integers n, k,m and k > s, we have

S(n, k, r) =

n−s
∑

j=k+r+1−s

(

n

j

)(

k − 1

s

)

s!

{

n− j

s

}

S(j, k − s, r), and

S≤m(n, k, r) =

n−s
∑

j=k+r+1−s

(

n

j

)(

k − 1

s

)

s!

{

n− j

s

}

≤m

S≤m(j, k − s, r).

Proof. Begin with creating s labeled blocks. Let j be the number of the remaining elements
that are partitioned into r blocks with label 1 and other k − 1 − s distinct labeled non-empty
blocks. �

Here, the special case s = 1 gives:

S(n, k, r) =
n−1
∑

j=k+r

(

n

j

)

(k − 1)S(j, k − 1, r), and

S≤m(n, k, r) =

n−1
∑

j=k+r

(

n

j

)

(k − 1)S≤m(j, k − 1, r).
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Theorem 2.13. For positive integers n, k,m, the following identities hold

rS≤m(n, k, r) =

min(m,n+2−k−r)
∑

j=1

(

n

j

)

S≤m(n, k, r − 1), (2.1)

nS≤m(n, k, r) =

min(m,n+2−k−r)
∑

j=1

j

(

n

j

)

[S≤m(n, k, r − 1) + (k − 1)S≤m(n, k − 1, r)] . (2.2)

Proof. The left hand side of the identity (2.1) counts the restricted mixed partitions such that
one of the blocks labeled by 1 is colored. Assume that the colored block contains j elements,
choose this set in

(

n
j

)

ways and partition the remaining elements into k− 1 ordered blocks and
r − 1 blocks, which will obtain the label 1.

The left hand side of (2.2) counts the restricted mixed partitions with a single colored element.
Assume that the colored element is contained in a block of size j. There are i

(

n
i

)

ways to
choose the set with j elements and mark one of the elements. If it is a block labeled by one,
the remaining elements can be partitioned in S≤m(n, k, r−1) ways, while if it is a block labeled
by another number, there are (k − 1)S≤m(n, k, r − 1) possibilities, since we need to choose the
label for the block also. �

3. Mixed associated partition numbers

Comtet [11] introduced the associated Stirling numbers of the second kind,
{

n
k

}

≥ℓ
, as the

number of partitions of the set [n] into k non-empty blocks such that each block contains at least
ℓ elements. Associated Stirling numbers received a lot of attention recently [5, 8, 10, 13, 17, 22].

For instance, Komatsu et al. [17] proved the following basic recurrence relation.

Theorem 3.1. [17] Let n, ℓ and k be positive integers. Then
{

n
k

}

≥ℓ
given by

{

n

k

}

≥ℓ

=
n−1
∑

i=ℓ

(

n− 1

i

){

n− i− 1

k − 1

}

≥ℓ

.

We introduce the analogue mixed partition numbers and derive the relevant results.

Definition 3.2. Let B = A(b1, . . . , bn) and C = A(c1, . . . , ck). For positive integer ℓ, the
number of ways to partition B balls into C non-empty cells such that each cell contains at
least ℓ element is denoted by

{

B

C

}

≥ℓ
. These numbers are called the mixed associated partition

numbers.

First, we give the analogue version of the theorem given in [17].

Theorem 3.3. Let b1 = . . . = bn = 1, c1, . . . , ck ∈ N,B = A(b1, . . . , bn) and C = A(c1, . . . , ck).
Then we have

{

B

C

}

≥ℓ

=
∑

i1+···+ik=n
i1,...,ik≥ℓ

(

n

i1, i2, . . . , ik

){

i1

c1

}

≥ℓ

{

i2

c2

}

≥ℓ

· · ·

{

ik

ck

}

≥ℓ

.
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Proof. The modification of the proof of Theorem 2.3 is straightforward and left to the reader.
�

Definition 3.4. For positive integer ℓ, let n, k and r be positive integers, b1 = b2 = . . . = bn = 1
and c1 = r, c2 = . . . = ck = 1. Then we denote

{

B

C

}

≥ℓ
by S≥ℓ(n, k, r) and call these numbers

mixed associated Stirling numbers of the second kind.

Next, we list the analogue results of the Theorems 2.7, 2.9, 2.10. We omit the proofs which
are similar to the restricted case. The proof of the Theorem 3.7 contains some specific ideas,
hence we give it in detail.

Theorem 3.5. Let A = {1, 2, · · · , n}. For positive integers k and r; S≥ℓ(n, k, r) is given by

S≥ℓ(n, k, r) =
n
∑

i=r

(

n

i

){

i

r

}

≥ℓ

{

n− i

k − 1

}

≥ℓ

(k − 1)!.

Theorem 3.6. Let n, k, r and ℓ be positive integers. S≥ℓ(n, k, r) is given by

S≥ℓ(n, k, r) =
n−1
∑

i=ℓ−1

(

n− 1

i

)

(

S≥ℓ(n− i− 1, k − 1, r) + S≥ℓ(n− i− 1, k, r − 1)
)

.

Theorem 3.7. Let n, k, r and ℓ be positive integers. Then we have

S≥ℓ(n, k, r) = (k + r − 1)S≥ℓ(n− 1, k, r)

+

(

n− 1

ℓ− 1

)

(

(k − 1)S≥ℓ(n− ℓ, k − 1, r) + S≥ℓ(n− ℓ, k, r − 1)
)

.

Proof. Let us consider the element n. First, take a mixed partition of A′ = {1, 2, . . . , n − 1}
and put n into any of the k+ r−1 blocks. This can be done in (k+ r−1)S≥ℓ(n−1, k, r) ways.
But this way we do not obtain the partitions where n is contained in a block of size exactly ℓ.
This block is labeled by 1, or by another label. If it belongs to one of the r blocks labeled by 1
which contains exactly ℓ elements, we have

(

n−1
ℓ−1

)

ways to choose the remaining (ℓ−1) elements

and the number of partitions of the (n− ℓ) remaining elements into k labeled blocks such that
each block has at least ℓ elements and the number of the blocks labeled by 1 is r−1 is equal to
S≥ℓ(n− ℓ, k, r − 1). On the other hand, if n comes into a block labeled by j, 2 ≤ j ≤ k which
contains exactly ℓ elements, we have

(

n−1
ℓ−1

)

ways to choose the other (ℓ − 1) elements for this
block and (k − 1) ways to choose the label. The number of partitions of the (n− ℓ) remaining
elements into k − 1 blocks is S≥ℓ(n− ℓ, k − 1, r). �

4. Generating functions of mixed Stirling numbers of the second kind

We devote this section to derive the generating functions of mixed Stirling numbers using
the symbolic method [14].

First, we determine the generating function
{

B

C

}

for b1 = b2 = · · · = bn = 1 and general C.
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Theorem 4.1. The exponential generating function of
{

B

C

}

with b1 = . . . = bn = 1, c1, . . . , ck ∈
N,B = A(b1, . . . , bn) and C = A(c1, . . . , ck) is given as follows.

∑

n≥0

{

B

C

}

xn

n!
=

(ex − 1)c1+c2···+ck

c1!c2! · · · ck!
.

Proof. The construction for such partitions is

SETc1(SET≥1(X ))× SETc2(SET≥1(X ))× · · · × SETck(SET≥1(X )),

where we used the usual notation of the symbolic method for the atomic class X , the construc-
tion of a k-element set SETk, and the construction of non-empty set (with at least one element)
SET≥1. This construction turns immediately to

∑

n≥0

{

B

C

}

xn

n!
=

(ex − 1)c1

c1!

(ex − 1)c2

c2!
· · ·

(ex − 1)ck

ck!
.

After simplification we get the formula in the theorem. �

Hence, the generating function for the special case S(n, k, r) is:

∑

n≥0

S(n, k, r)
zn

n!
=

(ez − 1)r+(k−1)

r!
.

Flajolet et al. [14] presents a theorem concerning the class of set partitions that can be used
directly for deriving generating functions for the number of partitions, respectively mixed par-
titions satisfying different conditions.

Theorem 4.2. [14] The class S(A,B) of set partitions with block sizes in A ⊆ Z≥1 and with a

number of blocks that belongs to B has exponential generating function:

S(A,B)(x) = β(α(x)), where α(x) =
∑

a∈A

xa

a!
, β(x) =

∑

b∈B

xb

b!
. (2)

Theorem 4.2 gives immediately the exponential generating functions of restricted and asso-
ciated Stirling numbers [17]:

mk
∑

n=k

{

n

k

}

≤m

xn

n!
=

1

k!
(

m
∑

j=1

xj

j!
)k,

∞
∑

n=ℓk

{

n

k

}

≥ℓ

xn

n!
=

1

k!
(ex −

m−1
∑

j=0

xj

j!
)k.

We use now this theorem to obtain a recurrence relation for the number of partitions of the set
[n] into k blocks such that each block have at most m elements and at least ℓ elements.

Definition 4.3. Let
{

n
k

}≥ℓ

≤m
be the number of partitions of the set A = {1, 2, · · · , n} into k

blocks such that each block have at most m elements and at least ℓ elements.
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We show how to use directly Theorem 4.2 to get the generating function for
{

n
k

}≥ℓ

≤m
and then

using classical methods to derive a recurrence.

Theorem 4.4. For positive integers n, k and ℓ ≤ m we have

mk
∑

n=kℓ

{

n

k

}≥ℓ

≤m

=
1

k!

(

m
∑

j=ℓ

xj

j!

)k

.

According of the Theorem 4.2, in the current situation we are looking for partitions such
that the number of blocks is between m and ℓ. We can write

A = {ℓ, ℓ+ 1, . . . , m} and α(x) =
m
∑

j=ℓ

xj

j!
.

Since the number of blocks is k, we have

B = {k} and β(x) =
xk

k!
.

Hence, the generating function is:

β(α(x)) =
1

k!

(

m
∑

j=ℓ

xj

j!

)k

.

Theorem 4.5. For positive integers n, k and ℓ ≤ m the following identity holds
{

n+ 1

k

}≥ℓ

≤m

=
m−1
∑

i=ℓ−1

(

n

i

){

n− i

k − 1

}

.

Proof. By differentiating the generating function of
{

n
k

}≥ℓ

≤m
, we obtain:

1

(k − 1)!

(

m
∑

j=ℓ

xj

j!

)k−1 m−1
∑

i=ℓ−1

xi

i!
.

By extracting coefficients, we have:
{

n+ 1

k

}≥ℓ

≤m

= n![xn]
m−1
∑

i=ℓ−1

xi

i!

1

(k − 1)!

(

m
∑

j=ℓ

xj

j!

)k−1

= n!

m−1
∑

i=ℓ−1

1

i!
[xn−i]

1

(k − 1)!

(

m
∑

j=ℓ

xj

j!

)k−1

= n!
m−1
∑

i=ℓ−1

1

i!

1

(n− i)!

{

n− i

k − 1

}≥ℓ

≤m

=

m−1
∑

i=ℓ−1

(

n

i

){

n− i

k − 1

}≥ℓ

≤m

.

�
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For the sake of completness, we also give explicitely the generating functions for the mixed
Stirling numbers of the second kind and associated Stirling numbers of the second kind.

∑

n≥0

S≤m(n, k, r)
xn

n!
=

(
∑m

j=1
xj

j!
)r+k−1

r!
,

∑

n≥0

S≥ℓ(n, k, r)
xn

n!
=

(ex −
∑m

j=0
xj

j!
)r+k−1

r!
.

5. Connection between r−Stirling numbers and mixed Stirling numbers

The r-Stirling numbers were introduced by Border [6] as the number of partitions of an n-
element set into k non-empty subsets such that the first r elements are in distinct subsets. A
different approach is described in [7].

In [23] (Theorem 4.1) the authors present a bijection between r-Stirling numbers of the
second kind and mixed Stirling numbers. Here, we give the correct version of this theorem.

Theorem 5.1. For positive integers n, k and r with r ≤ k ≤ n, we have

{

n

k

}

r

=
k
∑

i=0

(

r

i

)

S(n− r, i+ 1, k − r).

Proof. To constitute a partition of the set [n] into k blocks such that the first r elements are in
distinct blocks, we put {1, 2, . . . , r} in r different blocks. Now, we partition the n−r remaining
elements into k − r unlabeled blocks and r labeled blocks allowing for the r labeled blocks to
be empty. Let i be the number of the labeled blocks of such a partition, that are not empty.
There are S(n−r, i+1, k−r) possibilities to create a partition with i non-empty labeled blocks
and

(

r
i

)

ways to choose the labels for these blocks. The theorem follows. �

6. Suggestions for further studies

We considered in this note one special setting of mixed partitions. One could investigate
other special settings, not only for C, but also for B. It would be also interesting to consider
similar generalization of Stirling numbers of the first kind, respectively Lah numbers. Though
these investigations on partitions are very general, there are probably several combinatorial
problems, where these special mixed partitions arise. It would be very interesting to find such
applications.

Acknowledgements. The authors would like to thank the anonymous referee for some useful
comments.
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