TWO-LAYERED NUMBERS

H. BEHZADIPOUR

Abstract

In this paper, first, I introduce two-layered numbers. Two-layered numbers are positive integers that their positive divisors except 1 can be partitioned into two disjoint subsets. Similarly, I defined a half-layered number as a positive integer n that its proper positive divisors excluding 1 can be partitioned into two disjoint subsets. I also investigate the properties of twolayered and half-layered numbers and their relation with practical numbers and Zumkeller numbers.

0. Introduction

A perfect number is a positive integer n that equals the sum of its proper positive divisors. Generalizing the concept of perfect numbers, Zumkeller in [1] published a sequence of integers that their divisors can be partitioned into two disjoint subsets with equal sum. Clark et al. in [2] called such integers Zumkeller numbers and investigated some of their properties, and also suggested some conjectures about them. Peng and Bhaskara Rao in [3] introduced half-Zumkeller numbers and provided interesting results about Zumkeller numbers.

In the present paper, I define two-layered numbers based on the concept of perfect numbers and Zumkeller numbers. A two-layered number is a positive integer n that its positive divisors excluding 1 can be partitioned into two disjoint subsets of an equal sum. A partition $\{A, B\}$ of the set of positive divisors of n except 1 is a two-layered partition if each of A and B has the same sum.

In the first section, I investigate the properties of two-layered numbers. For a two-layered number n, that sum of its divisors is $\sigma(n)$, the following statements hold (See Proposition (1.4):

Let $\sigma(n)$ be the sum of all positive divisors of n. If n is a two-layered number, then
(1) $\sigma(n)$ is odd.
(2) Powers of all odd prime factors of n should be even.
(3) $\sigma(n) \geq 2 n+1$, so n is abundant.

After that, In theorem 1.5 I prove that The integer n is a two-layered number if and only if $\frac{\sigma(n)-1}{2}-n$ is a sum of distinct proper positive divisors of n excluding 1 . I also introduce two methods of generating new two-layered numbers from known two-layered numbers. Suppose that n is a two-layered number and p is a prime number with $(n, p)=1$, then $n p^{\alpha}$ is a two-layered number for any even positive integer α (See Theorem 1.7). We can also generate two-layered numbers in another

[^0]way. Let n be a two-layered number and $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ be the prime factorization of n. Then for any nonnegative integers $\alpha_{1}, \ldots \alpha_{m}$, the integer
$$
p_{1}^{k_{1}+\alpha_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}+\alpha_{2}\left(k_{2}+1\right)} \ldots p_{m}^{k_{m}+\alpha_{m}\left(k_{m}+1\right)}
$$
is a two-layered number (See Theorem 1.8).
In the second section of the present paper, I generalize the concept of practical numbers and define semi-practical numbers. A practical number is a positive integer n that every positive integer less than n can be represented as a sum of distinct positive divisors of n [5]. A positive integer n is a semi-practical number if every positive integer x where $1<x<n$ can be represented as a sum of distinct positive divisors of n excluding 1 (See Definition 2.2).

I investigate some properties of semi-practical numbers and their relations with two-layered numbers. For example, every semi-practical number is divisible by 12 (See Proposition 2.3). I also proved that a positive integer n is is a semi-practical number if and only if every positive integer x where $1<x<\sigma(n)$, is a sum of distinct positive divisors of n excluding 1 (See Theorem 2.4). The most important relation between semi-practical numbers and two-layered numbers is that a semipractical number n is two-layered if and only if $\sigma(n)$ is odd (See Proposition 2.5).

In section 3, I define a half-layered number. A positive integer n is said to be a half-layered number if the proper positive divisors of n excluding 1 can be partitioned into two disjoint non-empty subsets of an equal sum (See Definition 3.5). A half-layered partition for a half-layered number n is a partition $\{A, B\}$ of the set of proper positive divisors of n excluding 1 so that each of A and B sums to the same value (See Definition 3.2).

After these definitions, I investigate the properties of half-layered numbers. For example, A positive integer n is half-layered if and only if $\frac{\sigma(n)-n-1}{2}$ is the sum of some distinct positive proper positive divisors of n (See Proposition 3.3). A positive even integer n is half-layered if and only if $\frac{\sigma(n)-2 n-1}{2}$ is the sum (possibly empty sum) of some distinct positive divisors of n excluding $n, \frac{n}{2}$, and 1 (See Theorem 3.5). If n is an odd half-layered number, then at least one of the powers of prime factors of n should be even (See Proposition 3.7).

Using the definition of half-Zumkeller numbers, we can derive some of the interesting properties of half-layered numbers. A positive integer n is said to be a half-Zumkeller number if the proper positive divisors of n can be partitioned into two disjoint non-empty subsets of an equal sum. A half-Zumkeller partition for a half-Zumkeller number n is a partition $\{A, B\}$ of the set of proper positive divisors of n so that each of A and B sums to the same value (Definition 3 in [3]). Based on these definition, I prove that if m and n are half-layered numbers with $(m, n)=1$, then $m n$ is half-layered (See Proposition 3.9).

After that, I investigate some relations between half-layered and two-layered numbers. For example, let n be even. Then n is half-layered if and only if n admits a two-layered partition such that n and $\frac{n}{2}$ are in distinct subsets. Therefore, if n is an even half-layered number then n is two-layered (See Proposition 3.10). It is also proved that if n is an even two-layered number and If $\sigma(n)<3 n$, then n is half-layered (See Theorem 3.11). Let n be even. Then, n is two-layered if and only if either n is half-layered or $\frac{\sigma(n)-3 n-1}{2}$ is a sum (possibly an empty sum) of some positive divisors of n excluding $n, \frac{n}{2}$, and 1 (See Proposition 3.12).

If 6 divides n, n is two-layered, and $\sigma(n)<\frac{10 n}{3}$, then n is half-layered (See Proposition 3.13). If n is two-layered, then $2 n$ is half-layered (See Proposition 3.14). Let n be an even half-layered number and p be a prime with (n, p) $=1$. Then $n p^{\ell}$ is half- layered for any positive integer ℓ (See Proposition 3.16). Let n be an even half-layered number and the prime factorization of n be $p_{1}^{k_{1}} p_{2}^{k_{2}} / \operatorname{dot} s p_{m}^{k_{m}}$ Then for nonnegative integers $\ell_{1}, \ldots, \ell_{m}$, the integer

$$
p_{1}^{k_{1}+\ell_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}+\ell_{2}\left(k_{2}+1\right)} \ldots p_{m}^{k_{m}+\ell_{m}\left(k_{m}+1\right)}
$$

is half-layered (See Theorem 3.18).

1. TWO-LAYERED NUMBERS

Definition 1.1. A positive integer n is a two-layered number if the positive divisors of n excluding 1 can be partitioned into two disjoint subsets of an equal sum.

Definition 1.2. A two-layered partition for a two-layered number n is a partition $\{A, B\}$ of the set of positive divisors of n excluding 1 so that each of A and B sums to the same value.

Example 1.3. The number 36 is a two-layered number and its two-layered partition is $\{A, B\}$, where $A=\{2,3,4,36\}$ and $B=\{6,9,12,18\}$. You can check that each of A and B has the sum of 45 . The numbers 72,144 , and 200 are also two-layered. You can find the sequence of two-layered numbers in [4].
Proposition 1.4. Let $\sigma(n)$ be the sum of all positive divisors of n. If n is a two-layered number, then
(1) $\sigma(n)$ is odd.
(2) Powers of all odd prime factors of n should be even.
(3) $\sigma(n) \geq 2 n+1$, so n is abundant.

Proof. (1) : If $\sigma(n)$ is even, then $\sigma(n)-1$ is odd, so it is impossible to partition the positive divisors of n into two subset of equal sum.
(2) : using (1), the number of odd positive divisors of n is odd. Suppose that the prime factorization of n is $2^{k_{0}} p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$. The number of odd positive divisors of n is $\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{m}+1\right)$. All of k_{i} should be even in order to make the product $\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{m}+1\right)$ odd.
(3) : Let n be a two-layered number with two-layered partition $\{A, B\}$. Without loss of generality we may assume that $n \in A$, so the sum in A is at least n and we can conclude $\sigma(n)-1 \geq 2 n$.
Theorem 1.5. The integer n is a two-layered number if and only if $\frac{\sigma(n)-1}{2}-n$ is a sum of distinct proper positive divisors of n excluding 1 .
Proof. Let n be a two-layered number and its two-layered partition is $\{A, B\}$. Without loss of generality we assume that $n \in A$, so the sum of the remaining elements of A is $\frac{\sigma(n)-1}{2}-n$.

Conversely, if we have a set of proper divisors of n excluding 1 that its sum is $\frac{\sigma(n)-1}{2}-n$, we can augment this set with n to construct a set of positive divisors of n summing to $\frac{\sigma(n)-1}{2}$. The complementary set of positive divisors of n sums to the same value, and so these two sets form a two-layered partition for n.

With the help of the next two theorems, we can generate some new two-layered numbers by knowing a two-layered number.

Definition 1.6 (Definition 1 in [3]). A positive integer n is said to be a Zumkeller number if the positive divisors of n can be partitioned into two disjoint subsets of equal sum. A Zumkeller partition for a Zumkeller number n is a partition $\{A, B\}$ of the set of positive divisors of n so that each of A and B sums to the same value.

Theorem 1.7. Let n be a two-layered number and p be a prime number with $(n, p)=1$, then $n p^{\alpha}$ is a two-layered number for any even positive integer α.

Proof. Suppose that $\{A, B\}$ is a Zumkeller partition of n. Then $\{(A \backslash\{1\}) \cup(p A) \cup$ $\left.\left(p^{2} A\right) \cup \cdots \cup\left(p^{\alpha} A\right),(B \backslash\{1\}) \cup(p B) \cup\left(p^{2} B\right) \cup \cdots \cup\left(p^{\alpha} B\right)\right\}$ is a two-layered partition of $n p^{\alpha}$.
Theorem 1.8. Suppose that n is a two-layered number and $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ is the prime factorization of n. Then for any nonnegative even integers $\alpha_{1}, \ldots \alpha_{m}$, the integer

$$
p_{1}^{k_{1}+\alpha_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}+\alpha_{2}\left(k_{2}+1\right)} \ldots p_{m}^{k_{m}+\alpha_{m}\left(k_{m}+1\right)}
$$

is a two-layered number.
Proof. If we show that $p_{1}^{k_{1}+\alpha_{1}(k-1+1)} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ the proof will be completed. Suppose that $\{A, B\}$ is a Zumkeller partition of n. If D is the set of positive divisors of n, then $\left.(D \backslash\{1\}) \cup\left(p_{1}^{k_{1}+1} D\right) \cup\left(p_{1}^{2\left(k_{1}+1\right)} D\right) \cup \cdots \cup\left(p_{1}^{\alpha_{1}\left(k_{1}+1\right)} D\right)\right)$ is the set of positive divisors of $p_{1}^{k_{1}+\alpha_{1}(k-1+1)} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ excluding 1. Therefore a two-layered partition for $p_{1}^{k_{1}+\alpha_{1}(k-1+1)} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ is $\left\{A \backslash\{1\} \cup\left(p_{1}^{k_{1}+1} A\right) \cup\left(p_{1}^{2\left(k_{1}+1\right)} A\right) \cup \cdots \cup\right.$ $\left.\left(p_{1}^{\alpha_{1}\left(k_{1}+1\right)} A\right), B \backslash\{1\} \cup\left(p_{1}^{k_{1}+1} B\right) \cup\left(p_{1}^{2\left(k_{1}+1\right)} B\right) \cup \cdots \cup\left(p_{1}^{\alpha_{1}\left(k_{1}+1\right)} B\right)\right\}$ and the proof is complete.

2. SEMI-PRACTICAL NUMBERS AND TWO-LAYERED NUMBERS

Practical numbers have been introduced by Srinivasan in 1948 as what follows:
Definition 2.1. A positive integer n is a practical number if every positive integer less than n can be represented as a sum of distinct positive divisors of n. [5]

Because of the structure of two-layered number, if we change the definition of practical numbers and call them semi-practical numbers, we can drive some useful relation between them and two-layered numbers, so I define semi-practical numbers as what follows:

Definition 2.2. A positive integer n is practical if every positive integer x where $1<x<n$ can be represented as a sum of distinct positive divisors of n excluding 1.

Proposition 2.3. Every semi-practical number is divisible by 12.
Proof. Since we can not write 2,3 , and 4 as sums of more than one positive integer greater than 1, they should be divisors of our semi-practical number.

Theorem 2.4. A positive integer n is is a semi-practical number if and only if every positive integer x where $1<x<\sigma(n)$, is a sum of distinct positive divisors of n excluding 1.
Proof. Suppose that n is a semi-practical number. I introduce an algorithm for writing all positive integer x between n and $\sigma(n)$ as sum of distinct positive divisors of n excluding 1 .

First, let x be $n+1$. Since n is semi-practical, by Propositin 2.3, it is divisible by $n / 2$ and $n / 3$. Hence, $n+1=n / 2+n / 3+r$, where r is a positive integer. By Proposition 2.3 $n>6$, so $n+1-n / 2-n / 3<n / 3$. On the other hand, since n is a semi-practical number and $r<n / 3<n, r$ is equal to some of distinct divisors of n which are less than $n / 3$ and greater than 1 .

For $n+1<x<\sigma(n)$, let the positive divisors of n which are greater than 1 be written in increasing order as $m_{1}<m_{2}<\cdots<m_{k}$. Now we can write $x=\sum_{i=\ell}^{k} m_{i}+r$ where $1 \leq \ell \leq k$ and $0 \leq r<m_{\ell-1}$. If $r=0$ then x is a sum of distinct divisors of n. If $1<r<m_{\ell-1}$, since n is semi-practical and $r<n$, then we can write r as a sum of distinct divisors of n which are less than $m_{\ell-1}$, so x is a sum of distinct divisors of n. If $r=1$, then we can write $x=\sum_{i=\ell+1}^{k}+r_{1}$ where $1<r_{1}<m_{\ell}$. since n is semi-practical and $r<n$, then r_{1} is sum of distinct divisors of n which are less than m_{ℓ}, so x is a sum of distinct divisors of n.

Conversely, if every positive integer less than $\sigma(n)$ excluding 1 , is a some of distinct positive divisors of n excluding 1 , it is clear that n is semi-practical.

Proposition 2.5. A semi-practical number n is two-layered if and only if $\sigma(n)$ is odd.

Proof. If n is two-layered number, then $\sigma(n)$ is odd by Proposition 1.4 Conversely, if $\sigma(n)$ is odd, then $\frac{\sigma(n)-1}{2}$ is a positive integer smaller than $\sigma(n)$. Since n is a semi-practical number, using Proposition 2.4

Theorem 2.6. Let n be a positive integer and p be a prime with $(n, p)=1$. Let D be the set of all positive divisors of n including 1. The following conditions are equivalent:
(1) $n p$ is two-layered.
(2) There exist two partitions $\left\{D_{1}, D_{2}\right\}$ and $\left\{D_{3}, D_{4}\right\}$ of $D \backslash\{1\}$ such that

$$
p\left(\sum_{d \in D_{1}} d-\sum_{d \in D_{2}} d\right)=\left(\sum_{d \in D_{3}} d-\sum_{d \in D_{4}} d\right)
$$

(3) There exists a partition $\left\{D_{1}, D_{2}\right\}$ of $D \backslash\{1\}$ and subsets $A_{1} \subseteq D_{1}$ and $A_{2} \subseteq D_{2}$ such that

$$
\frac{p+1}{2}\left(\sum_{d \in D_{1}} d-\sum_{d \in D_{2}} d\right)=\left(\sum_{d \in A_{1}} d-\sum_{d \in A_{2}} d\right) .
$$

Proof. It is clear that $(p D) \cup(D \backslash\{1\})$ is the set of all positive divisors of $n p$ excluding 1.
$(1) \Rightarrow(2)$. Suppose that $n p$ is two-layered. Hence, there is a two-layered partition $\{A, B\}$ of $(p D) \cup(D \backslash\{1\})$. Let $D_{1}=\frac{1}{p}(A \cap(p D)), D_{2}=\frac{1}{p}(B \cap(p D)), D_{3}=$ $B \cap(D \backslash\{1\}), A \cap(D \backslash\{1\})$, then

$$
p \sum_{d \in D_{1}} d+\sum_{d \in D_{4}} d=p \sum_{d \in D_{2}} d+\sum_{d \in D_{3}} d
$$

and the proof is complete.
$(2) \Rightarrow(3)$. Let $A_{1}=D_{1} \cap D_{3}$ and $A_{2}=D_{2} \cap D_{4}$. We have

$$
\begin{aligned}
\frac{p+1}{2}\left(\sum_{d \in D_{1}} d-\sum_{d \in D_{2}} d\right) & =\frac{1}{2}\left[p\left(\sum_{d \in D_{1}} d-\sum_{d \in D_{2}} d\right)+\left(\sum_{d \in D_{1}} d-\sum_{d \in D_{2}} d\right)\right] \\
& =\frac{1}{2}\left[\sum_{d \in D_{3}} d-\sum_{d \in D_{4}} d+\sum_{d \in D_{1}} d-\sum_{d \in D_{2}} d\right] \\
& =\frac{1}{2}\left[2\left(\sum_{d \in D_{1} \cap D_{3}} d\right)-2\left(\sum_{d \in D_{2} \cap D_{4}} d\right)\right] \\
& =\sum_{d \in A_{1}} d-\sum_{d \in A_{2}} d .
\end{aligned}
$$

$(3) \Rightarrow(1)$. We can rewrite the equation in (3) as follows:

$$
\frac{p}{2} \sum_{d \in D_{1}} d+\frac{1}{2} \sum_{d \in A_{2}}+\frac{1}{2} \sum_{D_{1} \backslash A_{1}} d=\frac{p}{2} \sum_{d \in D_{2}} d+\frac{1}{2} \sum_{d \in A_{1}} d+\frac{1}{2} \sum_{d \in D_{2} \backslash A_{2}} d .
$$

By multiplying this by 2, we obtain the two-layered partition $\left\{\left(p D_{1}\right) \cup A_{2} \cup\left(D_{1}-\right.\right.$ $\left.\left.A_{1}\right),\left(p D_{2}\right) \cup A_{1} \cup\left(D_{2}-A_{2}\right)\right\}$ for $n p$, so $n p$ is a two-layered number.

Proposition 2.7. Let the positive divisors of n excluding 1 be written in increasing order as follows: $a_{1}<a_{2}<\cdots<a_{k}=n$. If $a_{i+1}<2 a_{i}$ for all $1 \leq i<k$ and $\sigma(n)$ is odd, then n is two-layered.

Proof. Let $b_{i}=a_{i}$ or a_{i} for each i. I will explain how to chose the sign of b_{i} precisely. Then I show that $\sum_{i=1}^{k} b_{k}=0$. Hence, it will imply that $\sigma(n)-1$ can be partitioned into two equal-summed subsets.

Let $b_{k}=a_{k}=n$ and let $b_{k 1}=a_{k 1}$. Note that $0<b_{k}+b_{k 1}<a_{k 1}$ since $a_{k}<2 a_{k 1}$. Since the current sum $b_{k}+b_{k 1}$ is positive, we assign the negative sign to $b_{k 2}$. Then $b_{k 2}<b_{k}+b_{k 1}+b_{k 2}<a_{k 1} a_{k 2}<a_{k 2}$ since $a_{k 1}<2 a_{k 2}$. If $b_{k}+b_{k 1}+b_{k 2} \geq 0$, we assign the negative sign to $b_{k 3}$; Otherwise, we assign the positive sign to $b_{k 3}$. Let s_{i} be $\sum_{j=1}^{k} b_{j}$. In general, the sign assigned to $b_{i 1}$ is the opposite of the sign of s_{i}. Let us show inductively that $\left|s_{i}\right|<a_{i}$ for $1 \leq i \leq k$. It is true for $i=k$. Assume that $\left|s_{i+1}\right|<a_{i+1}$. Since the sign of b_{i} is opposite of the sign of $s_{i+1},\left|s_{i}\right|=\| s_{i+1}\left|a_{i}\right|$. Note that $a_{i}<\left|s_{i+1}\right| a_{i}<a_{i+1} a_{i}<a_{i}$ since $a_{i+1}<2 a_{i}$. Therefore $\left|s_{i}\right|<a_{i}$. So $\left|s_{1}\right|<a_{1}=1$. Since $\sigma(n)-1$ is even, s_{1}, which is obtained by assigning a positive or negative sign to each of the terms in $\sigma(n)-1$ is even as well. So $s_{1}=0$. This implies that $\sigma(n)-1$ can be partitioned into two equal-summed subsets. Hence it is two-layered.

Proposition 2.8 (Proposition 1 in [3]). Let the prime factorization of n be $\prod_{i=1}^{m} p_{i}^{k_{i}}$. Then

$$
\sigma(n)=\prod_{i=1}^{m} \frac{p_{i}^{k_{i}+1}-1}{p_{i}-1}
$$

and

$$
\frac{\sigma(n)}{n}=\prod_{i=1}^{m} \frac{p_{i}^{k_{i}+1}-1}{p_{i}^{k_{i}}\left(p_{i}-1\right)}<\prod_{i=1}^{m} \frac{p_{i}}{p_{i}-1}
$$

Proposition 2.9. Let the prime factorization of an odd number n be $p_{1}^{k} p_{2}^{k} \ldots p_{m}^{k_{m}}$, where $3 \leq p_{1}<p_{2}<\cdots<p_{m}$. If n is two-layered, then

$$
\prod_{i=1}^{m} \frac{p_{i}}{p_{i}-1}>2
$$

and m is at least 3. In particular:
(1) If $m \leq 6$, then $p_{1}=3, p_{2}=5,7$ or 11 .
(2) If $m \leq 4$, then $p_{1}=3, p_{2}=5$ or 7 .
(3) If $m=3$, then $p_{1}=3, p_{2}=5$, and $p_{3}=7$ or 11 or 13 .

Proof. If n is two-layered, then by Propositions 1.4 and 2.8 ,

$$
2 p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}=2 n<\sigma(n)=\prod_{i=1}^{m}\left(\sum_{j=0}^{k_{i}} p_{i}^{j}\right)
$$

Dividing both sides by $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$, we get

$$
2<\prod_{i=1}^{m}\left(\sum_{j=0}^{k_{i}} p_{i}^{j-k_{i}}\right)<\prod_{i=1}^{m} \frac{p_{i}}{p_{i}-1} .
$$

If $m \leq 2$, then

$$
\prod_{i=1}^{m} \frac{p_{i}}{p_{i}-1} \leq \frac{3}{2} \times \frac{5}{4}<2
$$

Therefore $m \geq 3$. The parts of $1-3$ follows by verifying the condition $\prod_{i=1}^{m} \frac{p_{i}}{p_{i}-1}>2$ directly as given below.

1. Let $m \leq 6$. If $p_{1} \neq 3$, then $p_{1} \geq 5$ and

$$
\prod_{i=1}^{m} \frac{p_{i}}{p_{i}-1} \leq \frac{5}{4} \times \frac{7}{6} \times \frac{11}{10} \times \frac{13}{12} \times \frac{17}{16} \times \frac{19}{18}<2
$$

Therefore, $p_{1}=3$. If $p_{2}>11$, then $p 2 \geq 13$ and

$$
\prod_{i=1}^{m} \frac{p_{i}}{p_{i}-1} \leq \frac{3}{2} \times \frac{13}{12} \times \frac{17}{16} \times \frac{19}{18} \times \frac{23}{22} \times \frac{29}{28}<2
$$

Hence, $p_{2} \leq 11$. This implies that $p_{2}=5,7$ or 11 .
2 . Let $m \leq 4$. By $1, p_{1}=3$. If $p_{2}>7$, then $p_{2} \geq 11$, so

$$
\prod_{i=1}^{m} \frac{p_{i}}{p_{i}-1} \leq \frac{3}{2} \times \frac{11}{10} \times \frac{13}{12} \times \frac{17}{16}<2
$$

Therefore, $p_{2} \leq 7$. This implies that $p_{2}=5$ or 7 .
3 . Let $m=3$. By $1, p_{1}=3$. If $p_{2} \neq 5$, then $p_{2} \geq 7$ and $p 3 \geq 11$. So

$$
\prod_{i=1}^{3} \frac{p_{i}}{p_{i}-1} \leq \frac{3}{2} \times \frac{7}{6} \times \frac{11}{10}<2
$$

Hence $p_{2}=5$.
If $p_{3} \geq 17$, then

$$
\prod_{i=1}^{3} \frac{p_{i}}{p_{i}-1} \leq \frac{3}{2} \times \frac{5}{4} \times \frac{17}{16}<2
$$

Hence, $p_{3}<17$ and consequently $p_{3}=7,11$ or 13 .

3. HALF-LAYERED NUMBERS

Definition 3.1. A positive integer n is said to be a half-layered number if the proper positive divisors of n excluding 1 can be partitioned into two disjoint nonempty subsets of equal sum.

Definition 3.2. A half-layered partition for a half-layered number n is a partition $\{A, B\}$ of the set of proper positive divisors of n excluding 1 so that each of A and B sums to the same value.

Proposition 3.3. A positive integer n is half-layered if and only if $\frac{\sigma(n)-n-1}{2}$ is the sum of some distinct positive proper positive divisors of n.
Example 3.4. In Example 1.3, we saw that 36 was a two-layered number. It is also a half-layered number and its half-layered partition is $\{A, B\}$, where $A=$ $\{2,3,4,18\}$ and $B=\{6,9,12\}$. You can check that each of A and B has the sum of 27. The numbers 72,105 , and 144 are also half-layered. You can find the sequence of half-layered numbers in [6].
Theorem 3.5. A positive even integer n is half-layered if and only if $\frac{\sigma(n)-2 n-1}{2}$ is the sum (possibly empty sum) of some distinct positive divisors of n excluding n, $\frac{n}{2}$, and 1 .
Proof. An even number n is half-layered if and only if there exists a which is the sum (possibly empty sum) of some positive divisors of n excluding $n, \frac{n}{2}$, and 1 such that

$$
\frac{n}{2}+a=\frac{\sigma(n)-n-1}{2} .
$$

Therefore, $a=\frac{\sigma(n)-2 n-1}{2}$.
Example 3.6. The number $3^{4} \times 2^{4}$ is a half-layered number, since

$$
\frac{\sigma\left(3^{4} \times 2^{4}\right)-2\left(3^{4} \times 2^{4}\right)-1}{2}=579=432+108+36+3
$$

is a sum of positive divisors of $3^{4} \times 2^{4}$ excluding $3^{4} \times 2^{4}, 3^{4} \times 2^{3}$, and 1 . Hence, by Theorem 3.5 it is a half-layered number.

Proposition 3.7. If n is an odd half-layered number, then at least one of the powers of prime factors of n should be even.

Proof. If n is odd and half-layered, then $\sigma(n) n-1$ must be even and $\sigma(n)$ must be even. Let the prime factorization of n be $\prod_{i=1}^{m} p_{i}^{k_{i}}$. Then $\sigma(n)=\prod_{i=1}^{m}\left(\sum_{j=0}^{k_{i}} p_{i}^{j}\right)$. If $\sigma(n)$ is odd, then there exists one $k-i$ which is odd.

Definition 3.8 (Definition 3 in [3]). A positive integer n is said to be a halfZumkeller number if the proper positive divisors of n can be partitioned into two disjoint non-empty subsets of an equal sum. A half-Zumkeller partition for a halfZumkeller number n is a partition $\{A, B\}$ of the set of proper positive divisors of n so that each of A and B sums to the same value.

Proposition 3.9. If m and n are half-layered numbers with $(m, n)=1$, then $m n$ is half-layered.

Proof. Let M be the set of proper positive divisors of m and let $\left\{M_{1}, M_{2}\right\}$ be a half-Zumkeller partition for m. Let N be the set of proper positive divisors of n and let $\{N 1, N 2\}$ be a half-Zumkeller partition for n. Since $(m, n)=1$, then the set of proper positive divisors of $m n$ is $(M N) \cup(n M) \cup(m N)$. Observe that $\left\{\left(M_{1} N \backslash\{1\}\right) \cup\left(m N_{1}\right) \cup\left(n M_{1}\right),\left(M_{2} N \backslash\{1\}\right) \cup\left(m N_{2}\right) \cup\left(n M_{2}\right)\right\}$ is a half-layered partition for $m n$. Therefore $m n$ is half-layered.

Proposition 3.10. Let n be even. Then n is half-layered if and only if n admits a two-layered partition such that n and $\frac{n}{2}$ are in distinct subsets. Therefore, if n is an even half-layered number then n is two-layered.

Proof. Let n be even. Let D be the set of all positive divisors of n excluding 1. The number n is half-layered if and only if there exists $A \subset D \backslash\left\{n, \frac{n}{2}\right\}$ such that

$$
\frac{n}{2}+\sum_{a \in A} a=\sum_{b \in D, b \notin\left\{n, \frac{n}{2}\right\} \cup A} b
$$

That is,

$$
n+\sum_{a \in A} a=\frac{n}{2}+\sum_{b \in D, b \notin\left\{n, \frac{n}{2}\right\} \cup A} b .
$$

This is equivalent to saying that n admits a two-layered partition such that n and $\frac{n}{2}$ are in distinct subsets.

Theorem 3.11. Let n be an even two-layered number. If $\sigma(n)<3 n$, then n is half-layered.

Proof. Since n and $\frac{n}{2}$ together sum to more than $\frac{\sigma(n)}{2}$, they must be in different subsets in any two-layered partition for n. Therefore, by Proposition 3.10, n is half-layered.

Proposition 3.12. Let n be even. Then, n is two-layered if and only if either n is half-layered or $\frac{\sigma(n)-3 n-1}{2}$ is a sum (possibly an empty sum) of some positive divisors of n excluding $n, \frac{n}{2}$, and 1 .

Proof. Let n be even. If n is two-layered but not half-layered, then by Proposition 3.10, any two-layered partition of the positive divisors of n must have n and $\frac{n}{2}$ in the same subsets. In other words, there exists a which is a sum (possibly an empty sum) of some positive divisors of n excluding $n, \frac{n}{2}$, and 1 such that

$$
2\left(n+\frac{n}{2}+a\right)=\sigma(n)-1
$$

So, $a=\frac{\sigma(n)-3 n-1}{2}$. Therefore, the number $\frac{\sigma(n)-3 n-1}{2}$ is a sum (possibly an empty sum) of some positive divisors of n excluding $n, \frac{n}{2}$, and 1 .

If n is half-layered, then n is two-layered by Proposition 3.10. If $\frac{\sigma(n)-3 n-1}{2}$ is a sum (possibly an empty sum) of some positive divisors of n excluding $n, \frac{n}{2}$, and 1, then

$$
\frac{\sigma(n)-2 n-1}{2}=\frac{\sigma(n)-3 n-1}{2}+\frac{n}{2}
$$

is a sum of some positive divisors of n excluding n, and 1. By Theorem 1.5 the number n is two-layered.

Proposition 3.13. If 6 divides n, n is two-layered, and $\sigma(n)<\frac{10 n}{3}$, then n is half-layered.
Proof. If n is not half-layered, by Proposition 3.12, $\frac{\sigma(n)-3 n-1}{2}$ is a sum (might be an empty sum) of some positive divisors of n excluding $n, \frac{n}{2}$, and 1 . Then,

$$
\frac{\sigma(n)-2 n-1}{2}=\frac{\sigma(n)-3 n-1}{2}+\frac{n}{3}+\frac{n}{6}
$$

Since $\sigma(n) / n<\frac{10}{3}$ we have that $\frac{\sigma(n)-3 n-1}{2}<\frac{n}{6}$. Hence $\frac{\sigma(n)-2 n-1}{2}$ is a sum of some positive divisors of n excluding $n, \frac{n}{2}$, and 1. By Proposition 3.3, n is half layered. This is a contradiction.

Proposition 3.14. If n is two-layered, then $2 n$ is half-layered.
Proof. Let $n=2^{k} L$ with k a nonnegative integer and L an odd number, be a twolayered number. Then all positive divisors of n excluding 1 can be partitioned into two disjoint equal-summed subsets D_{1} and D_{2}. Observe that every positive divisor of $2 n$ which is not a positive divisor of n can be written as $2^{k+1} \ell$ where ℓ is a positive divisor of L. Observe that $2^{k} \ell$ is either in D_{1} or D_{2}. Without loss of generality, assume that $2^{k} \ell$ is in D_{1}. In this case, we move $2^{k} \ell$ to D_{2} and add $2^{k+1} \ell$ to D_{1}. Perform this procedure to all positive divisors of $2 n$ which are not positive divisors of n except $2 n$ itself. This procedure will yield an equal-summed partition of all positive divisors of $2 n$ except $2 n$ itself. This shows that $2 n$ is half-Zumkeller.

Corollary 3.15. Let n be even and the prime factorization of n be $2^{k} p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$. If n is two-layered but not half- layered, then $2^{i} p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$ is not two-layered for any $i \leq k-1$, and $2^{i} p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$ is half-layered for any $i \geq k+1$.
Proposition 3.16. Let n be an even half-layered number and p be a prime with $(n, p)=1$. Then $n p^{\ell}$ is half-layered for any positive integer ℓ.

Proof. Since n is an even half-layered number, the set of all positive divisors of n, excluding 1 , denoted by D_{0} can be partitioned into two disjoint subsets A_{0} and B_{0} so that the sums of the two subsets are equal and n and $\frac{n}{2}$ are in distinct subsets (by Proposition 3.10).

Group the positive divisors of $n p^{\ell}$ except 1 into $\ell+1$ groups $D_{0}, D_{1}, \ldots D_{\ell}$ according to how many positive divisors of p they admit, i.e., D_{i} consists of all positive divisors of $n p^{\ell}$ admitting i positive divisors of p. Then each D_{i} can be partitioned into two disjoint subsets so that the sums of the two subsets are equal and $n p^{i}$ and $\frac{n p^{i}}{2}$ are in distinct subsets according to the two-layered partition of the set D_{0}. Therefore all positive divisors of $n p^{\ell}$ excluding 1 can be partitioned into two disjoint subsets so that the sum of these two subsets equal and $n p^{\ell}$ and $\frac{n p^{\ell}}{2}$ are in distinct subsets. By Proposition 3.10, $n p^{\ell}$ is half- layered.

Corollary 3.17. If n is an even half-layered number and m is a positive integer with $(n, m)=1$, then $n m$ is half-layered.

Theorem 3.18. Let n be an even half-layered number and the prime factorization of n be $p_{1}^{k_{1}} p_{2}^{k_{2}} /$ dotsp $p_{m}^{k_{m}}$ Then for nonnegative integers $\ell_{1}, \ldots, \ell_{m}$, the integer

$$
p_{1}^{k_{1}+\ell_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}+\ell_{2}\left(k_{2}+1\right)} \ldots p_{m}^{k_{m}+\ell_{m}\left(k_{m}+1\right)}
$$

is half-layered.

Proof. It is sufficient to show that $p_{1}^{k_{1}+\ell_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ is half-layered if $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ is an even half-layered number. Assume that $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ is even and half-layered, then the set of all positive divisors of n excluding 1 , denoted by D_{0} can be partitioned into two disjoint subsets A_{0} and B_{0} so that the sums of the two subsets are equal and n and $\frac{n}{2}$ are in distinct subsets (by Proposition 3.10). Note that the positive divisors of $p_{1}^{k_{1}+\ell_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ excluding 1 can be partitioned into $\ell_{1}+1$ disjoint groups $D_{i}, 0 \leq i \leq \ell_{1}$, where elements in D_{i} are obtained by multiplying $p_{1}^{i\left(k_{1}+1\right)}$ with elements in D_{0}. Using the partition A_{0}, B_{0} of $D 0$ we can partition every D_{i} into two disjoint subsets A_{i} and B_{i} so that the sums of the corresponding subsets are equal and $n p_{1}^{i\left(k_{1}\right)+1}$ and $\frac{n p_{1}^{i\left(k_{1}\right)+1}}{2}$ are in distinct subsets. Therefore, the set of all positive divisors of $p_{1}^{k_{1}+\ell_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ excluding 1 can be partitioned into two disjoint equal-summed subsets and $p_{1}^{k_{1}+\ell_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ and $\frac{p_{1}^{k_{1}+\ell_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}}{2}$ are in distinct subsets. By Proposition 3.10, $p_{1}^{k_{1}+\ell_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ is half-layered.

Theorem 3.19. Let n be an even integer and p be a prime with $(n, p)=1$. Let D be the set of all positive divisors of n excluding 1. Then the following conditions are equivalent:
(1) $n p$ is half-layered.
(2) There exist two partitions $\left\{D_{1}, D_{2}\right\}$ and $\left\{D_{3}, D_{4}\right\}$ of D such that n is in $D_{1}, \frac{n}{2}$ is in D_{2} and

$$
p\left(\sum_{d \in D_{1}} d-\sum_{d \in D_{2}} d\right)=\sum_{d \in D_{3}} d-\sum_{d \in D_{4}} d .
$$

(3) There exists a partition $\left\{D_{1}, D_{2}\right\}$ of D and subsets $A_{1} \subseteq D_{1}$ and $A_{2} \subseteq D_{2}$ such that n is in $D_{1}, \frac{n}{2}$ is in D_{2} and

$$
\frac{p+1}{2}\left(\sum_{d \in D_{1}} d-\sum_{d \in D_{2}} d\right)=\sum_{d \in A_{1}} d-\sum_{d \in A_{2}} d
$$

Proof. By Proposition 3.10, $n p$ is half-layered if and only if there is a two-layered partition $\{A, B\}$ of $(p D) \cup D$ such that $n \in A$ and $\frac{n}{2} \in B$. The rest of the proof follows along the lines of the proof of Theorem 2.6

Proposition 3.20. If $a_{1}<a_{2}<\cdots<a_{k}=n$ are all positive divisors of an even number n excluding 1 with $a_{i+1}<2 a_{i}$ for all i and $\sigma(n)$ is odd, then n is half-layered.

Proof. Note that in the proof of Proposition 2.7, $b_{k}=n$ and $b_{k 1}=-\frac{n}{2}$ have different signs. So we get a two-layered partition of n such that n and $\frac{n}{2}$ are in distinct subsets. By Proposition 3.10, n is half-layered.

References

[1] The online Encyclopedia of Integer Sequences, https://oeis.org/A083207/.
[2] S. Clark, J. Dalzell, J. Holliday, D. Leach, M. Liatti, M. Walsh, Zumkeller numbers, presented in the Mathematical Abundance Conference at Illinois State University on April 18th, 2008.
[3] K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller numbers, Journal of Number Theory 133, No. 4 (2013) 1135-1155
[4] The online Encyclopedia of Integer Sequences, https://oeis.org/A322657/.
[5] A.K. Srinivasan, Practical numbers, Current Sci. 17 (1948) 179180, MR0027799.

H. BEHZADIPOUR

[6] The online Encyclopedia of Integer Sequences, https://oeis.org/A322658/.
School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran

E-mail address: hussein.behzadipour@gmail.com, h.behzadi@ut.ac.ir

[^0]: 2010 Mathematics Subject Classification. 11R04.
 Key words and phrases. two-layered numbers, weak two-layered numbers, perfect numbers, Zumkeller numbers.

