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TWO-LAYERED NUMBERS

H. BEHZADIPOUR

Abstract. In this paper, first, I introduce two-layered numbers. Two-layered
numbers are positive integers that their positive divisors except 1 can be par-
titioned into two disjoint subsets. Similarly, I defined a half-layered number
as a positive integer n that its proper positive divisors excluding 1 can be
partitioned into two disjoint subsets. I also investigate the properties of two-
layered and half-layered numbers and their relation with practical numbers
and Zumkeller numbers.

0. Introduction

A perfect number is a positive integer n that equals the sum of its proper positive
divisors. Generalizing the concept of perfect numbers, Zumkeller in [1] published a
sequence of integers that their divisors can be partitioned into two disjoint subsets
with equal sum. Clark et al. in [2] called such integers Zumkeller numbers and
investigated some of their properties, and also suggested some conjectures about
them. Peng and Bhaskara Rao in [3] introduced half-Zumkeller numbers and pro-
vided interesting results about Zumkeller numbers.

In the present paper, I define two-layered numbers based on the concept of perfect
numbers and Zumkeller numbers. A two-layered number is a positive integer n that
its positive divisors excluding 1 can be partitioned into two disjoint subsets of an
equal sum. A partition {A,B} of the set of positive divisors of n except 1 is a
two-layered partition if each of A and B has the same sum.

In the first section, I investigate the properties of two-layered numbers. For a
two-layered number n, that sum of its divisors is σ(n), the following statements
hold (See Proposition 1.4):

Let σ(n) be the sum of all positive divisors of n. If n is a two-layered number,
then

(1) σ(n) is odd.
(2) Powers of all odd prime factors of n should be even.
(3) σ(n) ≥ 2n+ 1, so n is abundant.

After that, In theorem 1.5, I prove that The integer n is a two-layered number if

and only if σ(n)−1
2 −n is a sum of distinct proper positive divisors of n excluding 1.

I also introduce two methods of generating new two-layered numbers from known
two-layered numbers. Suppose that n is a two-layered number and p is a prime
number with (n, p) = 1, then npα is a two-layered number for any even positive
integer α (See Theorem 1.7). We can also generate two-layered numbers in another
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way. Let n be a two-layered number and pk1
1 pk2

2 . . . pkm

m be the prime factorization
of n. Then for any nonnegative integers α1, . . . αm, the integer

p
k1+α1(k1+1)
1 p

k2+α2(k2+1)
2 . . . pkm+αm(km+1)

m

is a two-layered number (See Theorem 1.8).
In the second section of the present paper, I generalize the concept of practical

numbers and define semi-practical numbers. A practical number is a positive integer
n that every positive integer less than n can be represented as a sum of distinct
positive divisors of n [5]. A positive integer n is a semi-practical number if every
positive integer x where 1 < x < n can be represented as a sum of distinct positive
divisors of n excluding 1 (See Definition 2.2).

I investigate some properties of semi-practical numbers and their relations with
two-layered numbers. For example, every semi-practical number is divisible by 12
(See Proposition 2.3). I also proved that a positive integer n is is a semi-practical
number if and only if every positive integer x where 1 < x < σ(n), is a sum of
distinct positive divisors of n excluding 1 (See Theorem 2.4). The most important
relation between semi-practical numbers and two-layered numbers is that a semi-
practical number n is two-layered if and only if σ(n) is odd (See Proposition 2.5).

In section 3, I define a half-layered number. A positive integer n is said to
be a half-layered number if the proper positive divisors of n excluding 1 can be
partitioned into two disjoint non-empty subsets of an equal sum (See Definition
3.5). A half-layered partition for a half-layered number n is a partition {A,B} of
the set of proper positive divisors of n excluding 1 so that each of A and B sums
to the same value (See Definition 3.2).

After these definitions, I investigate the properties of half-layered numbers. For

example, A positive integer n is half-layered if and only if σ(n)−n−1
2 is the sum of

some distinct positive proper positive divisors of n (See Proposition 3.3). A positive

even integer n is half-layered if and only if σ(n)−2n−1
2 is the sum (possibly empty

sum) of some distinct positive divisors of n excluding n, n
2 , and 1 (See Theorem

3.5). If n is an odd half-layered number, then at least one of the powers of prime
factors of n should be even (See Proposition 3.7).

Using the definition of half-Zumkeller numbers, we can derive some of the in-
teresting properties of half-layered numbers. A positive integer n is said to be a
half-Zumkeller number if the proper positive divisors of n can be partitioned into
two disjoint non-empty subsets of an equal sum. A half-Zumkeller partition for a
half-Zumkeller number n is a partition {A,B} of the set of proper positive divisors
of n so that each of A and B sums to the same value (Definition 3 in [3]). Based on
these definition, I prove that if m and n are half-layered numbers with (m,n) = 1,
then mn is half-layered (See Proposition 3.9).

After that, I investigate some relations between half-layered and two-layered
numbers. For example, let n be even. Then n is half-layered if and only if n admits
a two-layered partition such that n and n

2 are in distinct subsets. Therefore, if n
is an even half-layered number then n is two-layered (See Proposition 3.10). It is
also proved that if n is an even two-layered number and If σ(n) < 3n, then n is
half-layered (See Theorem 3.11). Let n be even. Then, n is two-layered if and only

if either n is half-layered or σ(n)−3n−1
2 is a sum (possibly an empty sum) of some

positive divisors of n excluding n, n
2 , and 1 (See Proposition 3.12).
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If 6 divides n, n is two-layered, and σ(n) < 10n
3 , then n is half-layered (See

Proposition 3.13). If n is two-layered, then 2n is half-layered (See Proposition
3.14). Let n be an even half-layered number and p be a prime with (n, p) = 1.
Then npℓ is half- layered for any positive integer ℓ (See Proposition 3.16). Let n

be an even half-layered number and the prime factorization of n be pk1
1 pk2

2 /dotspkm

m

Then for nonnegative integers ℓ1, . . . , ℓm, the integer

p
k1+ℓ1(k1+1)
1 p

k2+ℓ2(k2+1)
2 . . . pkm+ℓm(km+1)

m

is half-layered (See Theorem 3.18).

1. two-layered numbers

Definition 1.1. A positive integer n is a two-layered number if the positive divisors
of n excluding 1 can be partitioned into two disjoint subsets of an equal sum.

Definition 1.2. A two-layered partition for a two-layered number n is a partition
{A,B} of the set of positive divisors of n excluding 1 so that each of A and B sums
to the same value.

Example 1.3. The number 36 is a two-layered number and its two-layered par-
tition is {A,B}, where A = {2, 3, 4, 36} and B = {6, 9, 12, 18}. You can check
that each of A and B has the sum of 45. The numbers 72, 144, and 200 are also
two-layered. You can find the sequence of two-layered numbers in [4].

Proposition 1.4. Let σ(n) be the sum of all positive divisors of n. If n is a
two-layered number, then

(1) σ(n) is odd.
(2) Powers of all odd prime factors of n should be even.
(3) σ(n) ≥ 2n+ 1, so n is abundant.

Proof. (1) : If σ(n) is even, then σ(n)− 1 is odd, so it is impossible to partition the
positive divisors of n into two subset of equal sum.

(2) : using (1), the number of odd positive divisors of n is odd. Suppose that the

prime factorization of n is 2k0pk1
1 pk2

2 . . . pkm

m . The number of odd positive divisors
of n is (k1 + 1)(k2 + 1) . . . (km + 1). All of ki should be even in order to make the
product (k1 + 1)(k2 + 1) . . . (km + 1) odd.

(3) : Let n be a two-layered number with two-layered partition {A,B}. Without
loss of generality we may assume that n ∈ A, so the sum in A is at least n and we
can conclude σ(n)− 1 ≥ 2n. �

Theorem 1.5. The integer n is a two-layered number if and only if σ(n)−1
2 − n is

a sum of distinct proper positive divisors of n excluding 1.

Proof. Let n be a two-layered number and its two-layered partition is {A,B}. With-
out loss of generality we assume that n ∈ A, so the sum of the remaining elements

of A is σ(n)−1
2 − n.

Conversely, if we have a set of proper divisors of n excluding 1 that its sum is
σ(n)−1

2 − n, we can augment this set with n to construct a set of positive divisors

of n summing to σ(n)−1
2 . The complementary set of positive divisors of n sums to

the same value, and so these two sets form a two-layered partition for n. �

With the help of the next two theorems, we can generate some new two-layered
numbers by knowing a two-layered number.
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Definition 1.6 (Definition 1 in [3]). A positive integer n is said to be a Zumkeller
number if the positive divisors of n can be partitioned into two disjoint subsets of
equal sum. A Zumkeller partition for a Zumkeller number n is a partition {A,B}
of the set of positive divisors of n so that each of A and B sums to the same value.

Theorem 1.7. Let n be a two-layered number and p be a prime number with
(n, p) = 1, then npα is a two-layered number for any even positive integer α.

Proof. Suppose that {A,B} is a Zumkeller partition of n. Then {(A\{1})∪ (pA)∪
(p2A)∪· · ·∪ (pαA), (B \{1})∪ (pB)∪ (p2B)∪· · ·∪ (pαB)} is a two-layered partition
of npα. �

Theorem 1.8. Suppose that n is a two-layered number and pk1
1 pk2

2 . . . pkm

m is the
prime factorization of n. Then for any nonnegative even integers α1, . . . αm, the
integer

p
k1+α1(k1+1)
1 p

k2+α2(k2+1)
2 . . . pkm+αm(km+1)

m

is a two-layered number.

Proof. If we show that p
k1+α1(k−1+1)
1 pk2

2 . . . pkm

m the proof will be completed. Sup-
pose that {A,B} is a Zumkeller partition of n. If D is the set of positive divisors

of n, then (D \ {1}) ∪ (pk1+1
1 D) ∪ (p

2(k1+1)
1 D) ∪ · · · ∪ (p

α1(k1+1)
1 D)) is the set of

positive divisors of p
k1+α1(k−1+1)
1 pk2

2 . . . pkm

m excluding 1. Therefore a two-layered

partition for p
k1+α1(k−1+1)
1 pk2

2 . . . pkm

m is {A \ {1} ∪ (pk1+1
1 A) ∪ (p

2(k1+1)
1 A) ∪ · · · ∪

(p
α1(k1+1)
1 A), B \ {1} ∪ (pk1+1

1 B) ∪ (p
2(k1+1)
1 B) ∪ · · · ∪ (p

α1(k1+1)
1 B)} and the proof

is complete. �

2. semi-practical numbers and two-layered numbers

Practical numbers have been introduced by Srinivasan in 1948 as what follows:

Definition 2.1. A positive integer n is a practical number if every positive integer
less than n can be represented as a sum of distinct positive divisors of n.[5]

Because of the structure of two-layered number, if we change the definition of
practical numbers and call them semi-practical numbers, we can drive some useful
relation between them and two-layered numbers, so I define semi-practical numbers
as what follows:

Definition 2.2. A positive integer n is practical if every positive integer x where
1 < x < n can be represented as a sum of distinct positive divisors of n excluding
1.

Proposition 2.3. Every semi-practical number is divisible by 12.

Proof. Since we can not write 2, 3, and 4 as sums of more than one positive integer
greater than 1, they should be divisors of our semi-practical number. �

Theorem 2.4. A positive integer n is is a semi-practical number if and only if
every positive integer x where 1 < x < σ(n), is a sum of distinct positive divisors
of n excluding 1.

Proof. Suppose that n is a semi-practical number. I introduce an algorithm for
writing all positive integer x between n and σ(n) as sum of distinct positive divisors
of n excluding 1.
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First, let x be n+ 1. Since n is semi-practical, by Propositin 2.3, it is divisible
by n/2 and n/3. Hence, n+ 1 = n/2 + n/3 + r, where r is a positive integer. By
Proposition 2.3, n > 6, so n+ 1− n/2− n/3 < n/3. On the other hand, since n is
a semi-practical number and r < n/3 < n, r is equal to some of distinct divisors of
n which are less than n/3 and greater than 1.

For n + 1 < x < σ(n), let the positive divisors of n which are greater than
1 be written in increasing order as m1 < m2 < · · · < mk. Now we can write

x =
∑k

i=ℓ mi + r where 1 ≤ ℓ ≤ k and 0 ≤ r < mℓ−1. If r = 0 then x is a sum of
distinct divisors of n. If 1 < r < mℓ−1, since n is semi-practical and r < n, then
we can write r as a sum of distinct divisors of n which are less than mℓ−1, so x is

a sum of distinct divisors of n. If r = 1, then we can write x =
∑k

i=ℓ+1 +r1 where
1 < r1 < mℓ. since n is semi-practical and r < n, then r1 is sum of distinct divisors
of n which are less than mℓ, so x is a sum of distinct divisors of n.

Conversely, if every positive integer less than σ(n) excluding 1, is a some of
distinct positive divisors of n excluding 1, it is clear that n is semi-practical.

�

Proposition 2.5. A semi-practical number n is two-layered if and only if σ(n) is
odd.

Proof. If n is two-layered number, then σ(n) is odd by Proposition 1.4. Conversely,

if σ(n) is odd, then σ(n)−1
2 is a positive integer smaller than σ(n). Since n is a

semi-practical number, using Proposition 2.4. �

Theorem 2.6. Let n be a positive integer and p be a prime with (n, p) = 1. Let
D be the set of all positive divisors of n including 1. The following conditions are
equivalent:

(1) np is two-layered.
(2) There exist two partitions {D1, D2} and {D3, D4} of D \ {1} such that

p(
∑

d∈D1

d−
∑

d∈D2

d) = (
∑

d∈D3

d−
∑

d∈D4

d).

(3) There exists a partition {D1, D2} of D \ {1} and subsets A1 ⊆ D1 and
A2 ⊆ D2 such that

p+ 1

2
(
∑

d∈D1

d−
∑

d∈D2

d) = (
∑

d∈A1

d−
∑

d∈A2

d).

Proof. It is clear that (pD) ∪ (D \ {1}) is the set of all positive divisors of np
excluding 1.

(1) ⇒ (2). Suppose that np is two-layered. Hence, there is a two-layered partition
{A,B} of (pD) ∪ (D \ {1}). Let D1 = 1

p
(A ∩ (pD)), D2 = 1

p
(B ∩ (pD)), D3 =

B ∩ (D \ {1}), A ∩ (D \ {1}), then

p
∑

d∈D1

d+
∑

d∈D4

d = p
∑

d∈D2

d+
∑

d∈D3

d.

and the proof is complete.
(2) ⇒ (3). Let A1 = D1 ∩D3 and A2 = D2 ∩D4. We have
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p+ 1

2
(
∑

d∈D1

d−
∑

d∈D2

d) =
1

2
[p(

∑

d∈D1

d−
∑

d∈D2

d) + (
∑

d∈D1

d−
∑

d∈D2

d)]

=
1

2
[
∑

d∈D3

d−
∑

d∈D4

d+
∑

d∈D1

d−
∑

d∈D2

d]

=
1

2
[2(

∑

d∈D1∩D3

d)− 2(
∑

d∈D2∩D4

d)]

=
∑

d∈A1

d−
∑

d∈A2

d.

(3) ⇒ (1). We can rewrite the equation in (3) as follows:

p

2

∑

d∈D1

d+
1

2

∑

d∈A2

+
1

2

∑

D1\A1

d =
p

2

∑

d∈D2

d+
1

2

∑

d∈A1

d+
1

2

∑

d∈D2\A2

d.

By multiplying this by 2, we obtain the two-layered partition {(pD1)∪A2 ∪ (D1 −
A1), (pD2) ∪ A1 ∪ (D2 −A2)} for np, so np is a two-layered number. �

Proposition 2.7. Let the positive divisors of n excluding 1 be written in increasing
order as follows: a1 < a2 < · · · < ak = n. If ai+1 < 2ai for all 1 ≤ i < k and σ(n)
is odd, then n is two-layered.

Proof. Let bi = ai or ai for each i. I will explain how to chose the sign of bi
precisely. Then I show that

∑k

i=1 bk = 0. Hence, it will imply that σ(n)− 1 can be
partitioned into two equal-summed subsets.

Let bk = ak = n and let bk1 = ak1. Note that 0 < bk+bk1 < ak1 since ak < 2ak1.
Since the current sum bk + bk1 is positive, we assign the negative sign to bk2. Then
bk2 < bk+bk1+bk2 < ak1ak2 < ak2 since ak1 < 2ak2. If bk+bk1+bk2 ≥ 0, we assign
the negative sign to bk3; Otherwise, we assign the positive sign to bk3. Let si be∑k

j=1 bj . In general, the sign assigned to bi1 is the opposite of the sign of si . Let

us show inductively that |si| < ai for 1 ≤ i ≤ k. It is true for i = k. Assume that
|si+1| < ai+1. Since the sign of bi is opposite of the sign of si+1, |si| = ||si+1|ai|.
Note that ai < |si+1|ai < ai+1ai < ai since ai+1 < 2ai . Therefore |si| < ai. So
|s1| < a1 = 1. Since σ(n) − 1 is even, s1, which is obtained by assigning a positive
or negative sign to each of the terms in σ(n) − 1 is even as well. So s1 = 0. This
implies that σ(n)− 1 can be partitioned into two equal-summed subsets. Hence it
is two-layered. �

Proposition 2.8 (Proposition 1 in [3]). Let the prime factorization of n be
∏m

i=1 p
ki

i .
Then

σ(n) =
m∏

i=1

pki+1
i − 1

pi − 1

and

σ(n)

n
=

m∏

i=1

pki+1
i − 1

pki

i (pi − 1)
<

m∏

i=1

pi
pi − 1
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Proposition 2.9. Let the prime factorization of an odd number n be pk1p
k
2 . . . p

km

m ,
where 3 ≤ p1 < p2 < · · · < pm. If n is two-layered, then

m∏

i=1

pi
pi − 1

> 2,

and m is at least 3. In particular:

(1) If m ≤ 6, then p1 = 3, p2 = 5, 7 or 11.
(2) If m ≤ 4, then p1 = 3, p2 = 5 or 7.
(3) If m = 3, then p1 = 3, p2 = 5, and p3 = 7 or 11 or 13.

Proof. If n is two-layered, then by Propositions 1.4 and 2.8,

2pk1
1 pk2

2 . . . pkm

m = 2n < σ(n) =
m∏

i=1

(

ki∑

j=0

pji ).

Dividing both sides by pk1
1 pk2

2 . . . pkm

m , we get

2 <

m∏

i=1

(

ki∑

j=0

pj−ki

i ) <

m∏

i=1

pi
pi − 1

.

If m ≤ 2, then
m∏

i=1

pi
pi − 1

≤
3

2
×

5

4
< 2

Thereforem ≥ 3. The parts of 1−3 follows by verifying the condition
∏m

i=1
pi

pi−1 > 2

directly as given below.
1. Let m ≤ 6. If p1 6= 3, then p1 ≥ 5 and

m∏

i=1

pi
pi − 1

≤
5

4
×

7

6
×

11

10
×

13

12
×

17

16
×

19

18
< 2.

Therefore, p1 = 3. If p2 > 11, then p2 ≥ 13 and
m∏

i=1

pi
pi − 1

≤
3

2
×

13

12
×

17

16
×

19

18
×

23

22
×

29

28
< 2.

Hence, p2 ≤ 11. This implies that p2 = 5, 7 or 11.
2. Let m ≤ 4. By 1, p1 = 3. If p2 > 7, then p2 ≥ 11, so

m∏

i=1

pi
pi − 1

≤
3

2
×

11

10
×

13

12
×

17

16
< 2.

Therefore, p2 ≤ 7. This implies that p2 = 5 or 7.
3. Let m = 3. By 1, p1 = 3. If p2 6= 5, then p2 ≥ 7 and p3 ≥ 11. So

3∏

i=1

pi
pi − 1

≤
3

2
×

7

6
×

11

10
< 2.

Hence p2 = 5.
If p3 ≥ 17, then

3∏

i=1

pi
pi − 1

≤
3

2
×

5

4
×

17

16
< 2.

Hence, p3 < 17 and consequently p3 = 7, 11 or 13. �
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3. half-layered numbers

Definition 3.1. A positive integer n is said to be a half-layered number if the
proper positive divisors of n excluding 1 can be partitioned into two disjoint non-
empty subsets of equal sum.

Definition 3.2. A half-layered partition for a half-layered number n is a partition
{A,B} of the set of proper positive divisors of n excluding 1 so that each of A and
B sums to the same value.

Proposition 3.3. A positive integer n is half-layered if and only if σ(n)−n−1
2 is the

sum of some distinct positive proper positive divisors of n.

Example 3.4. In Example 1.3, we saw that 36 was a two-layered number. It
is also a half-layered number and its half-layered partition is {A,B}, where A =
{2, 3, 4, 18} and B = {6, 9, 12}. You can check that each of A and B has the sum of
27. The numbers 72, 105, and 144 are also half-layered. You can find the sequence
of half-layered numbers in [6].

Theorem 3.5. A positive even integer n is half-layered if and only if σ(n)−2n−1
2 is

the sum (possibly empty sum) of some distinct positive divisors of n excluding n,
n
2 , and 1.

Proof. An even number n is half-layered if and only if there exists a which is the
sum (possibly empty sum) of some positive divisors of n excluding n, n

2 , and 1 such
that

n

2
+ a =

σ(n)− n− 1

2
.

Therefore, a = σ(n)−2n−1
2 . �

Example 3.6. The number 34 × 24 is a half-layered number, since

σ(34 × 24)− 2(34 × 24)− 1

2
= 579 = 432 + 108 + 36 + 3

is a sum of positive divisors of 34 × 24 excluding 34 × 24 , 34 × 23, and 1. Hence,
by Theorem 3.5, it is a half-layered number.

Proposition 3.7. If n is an odd half-layered number, then at least one of the
powers of prime factors of n should be even.

Proof. If n is odd and half-layered, then σ(n)n− 1 must be even and σ(n) must be

even. Let the prime factorization of n be
∏m

i=1 p
ki

i . Then σ(n) =
∏m

i=1(
∑ki

j=0 p
j
i ).

If σ(n) is odd, then there exists one k − i which is odd. �

Definition 3.8 (Definition 3 in [3]). A positive integer n is said to be a half-
Zumkeller number if the proper positive divisors of n can be partitioned into two
disjoint non-empty subsets of an equal sum. A half-Zumkeller partition for a half-
Zumkeller number n is a partition {A,B} of the set of proper positive divisors of n
so that each of A and B sums to the same value.

Proposition 3.9. If m and n are half-layered numbers with (m,n) = 1, then mn
is half-layered.
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Proof. Let M be the set of proper positive divisors of m and let {M1,M2} be
a half-Zumkeller partition for m. Let Nbe the set of proper positive divisors of
n and let {N1, N2} be a half-Zumkeller partition for n. Since (m,n) = 1, then
the set of proper positive divisors of mn is (MN) ∪ (nM) ∪ (mN). Observe that
{(M1N \ {1}) ∪ (mN1) ∪ (nM1), (M2N \ {1}) ∪ (mN2) ∪ (nM2)} is a half-layered
partition for mn. Therefore mn is half-layered. �

Proposition 3.10. Let n be even. Then n is half-layered if and only if n admits
a two-layered partition such that n and n

2 are in distinct subsets. Therefore, if n is
an even half-layered number then n is two-layered.

Proof. Let n be even. Let D be the set of all positive divisors of n excluding 1.
The number n is half-layered if and only if there exists A ⊂ D \ {n, n2 } such that

n

2
+

∑

a∈A

a =
∑

b∈D,b6∈{n,n2 }∪A

b.

That is,

n+
∑

a∈A

a =
n

2
+

∑

b∈D,b6∈{n,n2 }∪A

b.

This is equivalent to saying that n admits a two-layered partition such that n
and n

2 are in distinct subsets.
�

Theorem 3.11. Let n be an even two-layered number. If σ(n) < 3n, then n is
half-layered.

Proof. Since n and n
2 together sum to more than σ(n)

2 , they must be in different
subsets in any two-layered partition for n. Therefore, by Proposition 3.10, n is
half-layered. �

Proposition 3.12. Let n be even. Then, n is two-layered if and only if either

n is half-layered or σ(n)−3n−1
2 is a sum (possibly an empty sum) of some positive

divisors of n excluding n, n
2 , and 1.

Proof. Let n be even. If n is two-layered but not half-layered, then by Proposition
3.10, any two-layered partition of the positive divisors of n must have n and n

2 in
the same subsets. In other words, there exists a which is a sum (possibly an empty
sum) of some positive divisors of n excluding n, n

2 , and 1 such that

2(n+
n

2
+ a) = σ(n)− 1

So, a = σ(n)−3n−1
2 . Therefore, the number σ(n)−3n−1

2 is a sum (possibly an empty
sum) of some positive divisors of n excluding n, n

2 , and 1.

If n is half-layered, then n is two-layered by Proposition 3.10. If σ(n)−3n−1
2 is a

sum (possibly an empty sum) of some positive divisors of n excluding n, n
2 , and 1,

then
σ(n) − 2n− 1

2
=

σ(n)− 3n− 1

2
+

n

2
is a sum of some positive divisors of n excluding n, and 1. By Theorem 1.5, the
number n is two-layered. �
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Proposition 3.13. If 6 divides n, n is two-layered, and σ(n) < 10n
3 , then n is

half-layered.

Proof. If n is not half-layered, by Proposition 3.12, σ(n)−3n−1
2 is a sum (might be

an empty sum) of some positive divisors of n excluding n, n
2 , and 1. Then,

σ(n) − 2n− 1

2
=

σ(n)− 3n− 1

2
+

n

3
+

n

6
.

Since σ(n)/n < 10
3 we have that σ(n)−3n−1

2 < n
6 . Hence

σ(n)−2n−1
2 is a sum of some

positive divisors of n excluding n, n
2 , and 1. By Proposition 3.3, n is half layered.

This is a contradiction. �

Proposition 3.14. If n is two-layered, then 2n is half-layered.

Proof. Let n = 2kL with k a nonnegative integer and L an odd number, be a two-
layered number. Then all positive divisors of n excluding 1 can be partitioned into
two disjoint equal-summed subsets D1 and D2. Observe that every positive divisor
of 2n which is not a positive divisor of n can be written as 2k+1ℓ where ℓ is a positive
divisor of L. Observe that 2kℓ is either in D1 or D2. Without loss of generality,
assume that 2kℓ is in D1. In this case, we move 2kℓ to D2 and add 2k+1ℓ to D1.
Perform this procedure to all positive divisors of 2n which are not positive divisors
of n except 2n itself. This procedure will yield an equal-summed partition of all
positive divisors of 2n except 2n itself. This shows that 2n is half-Zumkeller. �

Corollary 3.15. Let n be even and the prime factorization of n be 2kpk1
1 . . . pkm

m .

If n is two-layered but not half- layered, then 2ipk1
1 . . . pkm

m is not two-layered for

any i ≤ k − 1, and 2ipk1
1 . . . pkm

m is half-layered for any i ≥ k + 1.

Proposition 3.16. Let n be an even half-layered number and p be a prime with
(n, p) = 1. Then npℓ is half- layered for any positive integer ℓ.

Proof. Since n is an even half-layered number, the set of all positive divisors of n,
excluding 1, denoted by D0 can be partitioned into two disjoint subsets A0 and B0

so that the sums of the two subsets are equal and n and n
2 are in distinct subsets

(by Proposition 3.10).
Group the positive divisors of npℓ except 1 into ℓ + 1 groups D0, D1, . . . Dℓ

according to how many positive divisors of p they admit, i.e., Di consists of all
positive divisors of npℓ admitting i positive divisors of p. Then each Di can be
partitioned into two disjoint subsets so that the sums of the two subsets are equal

and npi and npi

2 are in distinct subsets according to the two-layered partition of

the set D0. Therefore all positive divisors of npℓ excluding 1 can be partitioned
into two disjoint subsets so that the sum of these two subsets equal and npℓ and
npℓ

2 are in distinct subsets. By Proposition 3.10, npℓ is half- layered. �

Corollary 3.17. If n is an even half-layered number and m is a positive integer
with (n,m) = 1, then nm is half-layered.

Theorem 3.18. Let n be an even half-layered number and the prime factorization
of n be pk1

1 pk2
2 /dotspkm

m Then for nonnegative integers ℓ1, . . . , ℓm, the integer

p
k1+ℓ1(k1+1)
1 p

k2+ℓ2(k2+1)
2 . . . pkm+ℓm(km+1)

m

is half-layered.
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Proof. It is sufficient to show that p
k1+ℓ1(k1+1)
1 pk2

2 . . . pkm

m is half-layered if pk1
1 pk2

2 . . . pkm

m

is an even half-layered number. Assume that pk1
1 pk2

2 . . . pkm

m is even and half-layered,
then the set of all positive divisors of n excluding 1, denoted by D0 can be par-
titioned into two disjoint subsets A0 and B0 so that the sums of the two subsets
are equal and n and n

2 are in distinct subsets (by Proposition 3.10). Note that

the positive divisors of p
k1+ℓ1(k1+1)
1 pk2

2 . . . pkm

m excluding 1 can be partitioned into
ℓ1 + 1 disjoint groups Di, 0 ≤ i ≤ ℓ1, where elements in Di are obtained by mul-

tiplying p
i(k1+1)
1 with elements in D0. Using the partition A0, B0 of D0 we can

partition every Di into two disjoint subsets Ai and Bi so that the sums of the

corresponding subsets are equal and np
i(k1)+1
1 and

np
i(k1)+1
1

2 are in distinct subsets.

Therefore, the set of all positive divisors of p
k1+ℓ1(k1+1)
1 pk2

2 . . . pkm

m excluding 1 can be

partitioned into two disjoint equal-summed subsets and p
k1+ℓ1(k1+1)
1 pk2

2 . . . pkm

m and
p
k1+ℓ1(k1+1)
1 p

k2
2 ...pkm

m

2 are in distinct subsets. By Proposition 3.10, p
k1+ℓ1(k1+1)
1 pk2

2 . . . pkm

m

is half-layered. �

Theorem 3.19. Let n be an even integer and p be a prime with (n, p) = 1. Let
D be the set of all positive divisors of n excluding 1. Then the following conditions
are equivalent:

(1) np is half-layered.
(2) There exist two partitions {D1, D2} and {D3, D4} of D such that n is in

D1,
n
2 is in D2 and

p(
∑

d∈D1

d−
∑

d∈D2

d) =
∑

d∈D3

d−
∑

d∈D4

d.

(3) There exists a partition {D1, D2} of D and subsets A1 ⊆ D1and A2 ⊆ D2

such that n is in D1,
n
2 is in D2 and

p+ 1

2
(
∑

d∈D1

d−
∑

d∈D2

d) =
∑

d∈A1

d−
∑

d∈A2

d.

Proof. By Proposition 3.10, np is half-layered if and only if there is a two-layered
partition {A,B} of (pD) ∪ Dsuch that n ∈ A and n

2 ∈ B. The rest of the proof
follows along the lines of the proof of Theorem 2.6. �

Proposition 3.20. If a1 < a2 < · · · < ak = n are all positive divisors of an
even number n excluding 1 with ai+1 < 2ai for all i and σ(n) is odd, then n is
half-layered.

Proof. Note that in the proof of Proposition 2.7, bk = n and bk1 = −n
2 have

different signs. So we get a two-layered partition of n such that n and n
2 are in

distinct subsets. By Proposition 3.10, n is half-layered. �
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