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We present a hypothesis for the universal properties of operators evolving under Hamiltonian
dynamics in many-body systems. The hypothesis states that successive Lanczos coefficients in the
continued fraction expansion of the Green’s functions grow linearly with rate α in generic systems.
The rate α — an experimental observable — governs the exponential growth of operator complexity
in a sense we make precise. This exponential growth even prevails beyond semiclassical or large-N
limits. Moreover, α upper bounds a large class of operator complexity measures, including the out-
of-time-order correlator. As a result, we conjecture a sharp bound on Lyapunov exponents λL ≤ 2α,
which generalizes the known universal low-temperature bound λL ≤ 2πT . We illustrate our results
in paradigmatic examples such as non-integrable spin chains, the Sachdev-Ye-Kitaev model, and
classical models. Finally we use the hypothesis in conjunction with the recursion method to develop
a technique for computing diffusion constants.

I. INTRODUCTION

The emergence of ergodic behavior in quantum systems
is an old puzzle. Quantum mechanical time-evolution is
local and unitary, but many quantum systems are effec-
tively described by irreversible hydrodynamics, involving
familiar quantities such as electrical conductivity. Under-
standing this emergent thermal behavior at both a con-
ceptual and computational level is a central goal of theo-
retical research on quantum dynamics, of which a corner-
stone is the eigenstate thermalization hypothesis [1–5].

Recent work has shifted focus from states to operator
growth in many-body systems [6–11]. Under Heisenberg-
picture evolution, simple operators generically decay into
an infinite “bath” of increasingly non-local operators.
The emergence of this dissipative behavior from unitary
dynamics is believed to be at the origin of thermaliza-
tion, the decay of dynamical correlation functions, and
the accuracy of hydrodynamics at large scales. This pic-
ture was recently confirmed in random unitary models
of quantum dynamics [6, 7], and extended to increas-
ingly realistic systems involving conservation laws [8, 9],
Floquet dynamics [11], and even interacting integrable
models [10].

While random unitary models are valuable proxies for
studying operator growth, one would like to confirm this
picture in genuine Hamiltonian systems. In semiclassical
systems, a quantitative measure is provided by the out-
of-time-order correlation function (OTOC). The classical
butterfly effect gives rise to an exponential growth of the
OTOC, characterized by the Lyapunov exponent, which
may be computed in a variety of models. It is conjec-
tured that the Lyapunov exponent is bounded [12] and
this bound is achieved in certain large-N strongly in-
teracting models with a classical gravity dual, such as
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the Sachdev-Ye-Kitaev (SYK) model [13–15]. Unfortu-
nately, the OTOC does not necessarily exhibit exponen-
tial growth outside of semiclassical or large-N limits, ren-
dering the Lyapunov exponent ill-defined [9, 16–18]. A
general theory of operator growth under generic, non-
integrable Hamiltonian dynamics is, therefore, still lack-
ing.

The amount of information required to describe a
growing operator increases exponentially in time. Com-
putationally, this bars the exact calculation of operators
at long times. Yet, the exponential size of the problem
has a positive aspect: it acts as a thermodynamic bath,
so a statistical description should emerge and become
nigh-exact. This idea indicates operator growth should
be governed by some form of universality. In this work
we present a hypothesis specifying universal properties of
growing operators in non-integrable quantum systems in
any dimension.

II. SYNOPSIS

Our hypothesis has a simple formulation in the frame-
work of the continued fraction expansion or recursion
method, which we review in Section III. This is a well-
understood technique, dating back to the 1980s [19],
and has recently been used to compute conductivities
in strongly-interacting systems [20–22]. It is surveyed
in great detail in Ref. [23]. Essentially, it converts any
linear-response calculation to a 1d quantum mechanics
problem parameterized by the Lanczos coefficients. Sec-
tion IV presents our hypothesis: operators in generic,
non-integrable systems have Lanczos coefficients with
asymptotically linear growth. The linear growth rate,
denoted α, is the central quantity of this work. Although
we are unable to prove the hypothesis rigorously, we shall
support it with extensive numerical evidence, calcula-
tions in SYK models, and general physical arguments
in Section IV. In particular, the hypothesis is equivalent
to the exponential decay of the spectral function at high
frequency, which can be (and has been) observed exper-

ar
X

iv
:1

81
2.

08
65

7v
3 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

7 
Ja

n 
20

19

mailto:daniel_parker@berkeley.edu
mailto:xiangyu.cao@berkeley.edu
mailto:thomas.scaffidi@berkeley.edu
mailto:ehud.altman@berkeley.edu


2

imentally [24–26].
We explore several consequences of the hypothesis. In

Section V, we develop a precise picture of the universal
growth of operators. We show that under the hypothe-
sis, the 1d quantum mechanics, governed by the Lanczos
coefficients bn ∼ αn, captures the irreversible process of
simple operators into complex ones. Furthermore, the
1d wavefunction delocalizes exponentially fast on the n
axis, at a rate exactly given by α. Asymptotically, the
expected position of the 1d wavefunction satisfies

(n)t ∼ e2αt . (1)

The expectation value (n)t has a succinct interpretation
as an upper bound for a large class of operator complexity
measures called “q-complexities”, which we define in sec-
tion V B. Crucially, this class includes out-of-time-order
correlators. This allows us to establish a quantitative
connection between α and the Lyapunov exponent, which
will be the subject of Section VI. We conjecture that the
growth rate gives an upper bound for the Lyapunov ex-
ponent whenever the latter is well-defined:

λL ≤ 2α . (2)

This bound is equivalent to the universal one λL ≤
2πkBT/~ [12] in low temperature quantum systems, and
remains non-trivial beyond this regime. We prove (2)
partially, and confirm it in two examples: the SYK model
and a classical tops model. The bound turns out to be
tight in both cases.

A further application of the hypothesis, discussed in
Section VII, is a semi-analytical technique to compute
diffusion coefficients of conserved quantities. We leverage
the hypothesis to extend classical methods of the con-
tinued fraction expansion to directly compute the pole
structure of the Green’s function, thus revealing the dis-
persion relation of the dynamics. We conclude in Sec-
tion VIII by discussing conceptual implications of our
results and perspectives for future work.

III. PRELIMINARIES: THE RECURSION
METHOD

We briefly review the recursion method in order to
state the hypothesis. A comprehensive treatment may
be found in [23]. Consider a local Hamiltonian H and
fix a Hermitian operator O. We regard the operator as
a state |O) in the Hilbert space of operators, endowed
with the infinite-temperature inner product (O1|O2) :=

Tr[O†1O2]/Tr[1]. We write ||O|| :=
√

(O|O) for the
norm. We will focus on systems in the thermodynamic
limit.

Just as states evolve under the Hamiltonian opera-
tor, operators evolve under the Liouvillian superopera-
tor L := [H, ·]. Our central object is the autocorrelation
function

C(t) = Tr[O(0)O(t)]/Tr[1] = (O| exp (iLt) |O) , (3)

where the second equality follows from Baker-Campbell-
Hausdorff. One is interested in the long-time behavior of
C(t), and also its frequency dependence (encoded in the
spectral function).

Computing C(t) is inherently difficult. Suppose O(t =
0) is a relatively simple operator that can be written as
the sum of a few basis vectors in any local basis [27]. As
the spatial support of O(t) grows, the number of non-
zero coefficients of O(t) in any local basis can blow up
exponentially. To make progress, one must compress this
information. Intuitively, there are so many basis vectors
at a given spatial size or “complexity” that we can think
of them as a thermodynamic bath; no single basis vector
has much individual relevance, only their statistical prop-
erties are important. In this interpretation, the operator
flows though a series of “operator baths” of increasing
size. The dynamics of an operator is then reduced to
how the baths are connected — a much simpler prob-
lem. In particular, the second law then dictates that an
operator eventually flows to the largest possible baths,
running irreversibly away from small operators. This is
shown schematically in Fig. 1.

O

simple complex

ϕn

ne2αt

ϕ0 ϕ1 ϕ2 ϕ3

b1 b2 b3 bn∼αn

FIG. 1. Artist’s impression of the space of operators and
its relation to the 1d chain defined by the Lanczos algorithm
starting from a simple operator O. The region of complex op-
erators corresponds to that of large n on the 1d chain. Under
our hypothesis, the hopping amplitudes bn on the chain grow
linearly asymptotically in generic thermalizing systems. This
implies an exponential spreading (n)t ∼ e2αt of the wavefunc-
tion ϕn on the 1d chain, which reflects the exponential growth
of operator complexity under Heisenberg evolution, in a sense
we make precise in Section V. The form of the wavefunction
ϕn is only a sketch; see Fig. 4 for a realistic picture.

We now quantify this idea precisely. This is done by
applying the Lanczos algorithm, which iteratively com-
putes a tridiagonal representation of a matrix. The
idea is to find the sequence {Ln |O)}, and then apply
Gram-Schmidt to orthogonalize. Explicitly, start with
a normalized vector |O0) := |O). As a base case, let
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|O1) := b−11 L |O0) where b1 := (O0L|LO0)
1/2

. Then in-
ductively define

|An) := L |On−1)− bn−1 |On−2) ,

bn := (An|An)
1/2

,

|On) := b−1n |An) .

(4)

The output of the algorithm is a sequence of positive
numbers, {bn}, called the Lanczos coefficients, and an
orthonormal sequence of operators, {|On)}, called the
Krylov basis. (This is a bit of a misnomer, as the Krylov
basis spans an operator space containing O(t) for any t,
but does not usually span the full space of operators).
The Liouvillian is tridiagonal in this basis:

Lnm := (On|L|Om) =


0 b1 0 0 · · ·
b1 0 b2 0 · · ·
0 b2 0 b3 · · ·
0 0 b3 0

. . .
...

...
...

. . .
. . .

 . (5)

We make four remarks. First, if the operator Hilbert
space is d-dimensional with d finite (or if the subspace
spanned by |O0) , |O1) , |O2) , . . . is so), the algorithm will
halt at n = d + 1: in this work, we work always in the
thermodynamic limit and discard this trivial situation.
Second, the Lanczos algorithm presented here is adapted
to operator dynamics. Generally, a tridiagonal matrix
will have non-zero diagonal entries, but they vanish in
(5). This is because one can inductively show that inOn
is Hermitian for all n, hence (On|L|On) = 0. Third, the
knowledge of the Lanczos coefficients b1, . . . , bn is equiv-
alent to that of the moments µ2, µ4, . . . , µ2n, defined as

µ2n :=
(
O|L2n|O

)
, k = 0, 1, 2, . . . . (6)

The non-trivial transformation between them is reviewed
in Appendix A. Fourth, the Lanczos coefficients have
units of energy.

In the Krylov basis, the correlation function C(t) is:

C(t) =
(
eiLt

)
00
. (7)

Hence the autocorrelation depends only on the Lanc-
zos coefficients, and not on the Krylov basis. One way
to interpret the Lanczos coefficients, which we will em-
ploy extensively below, is as the hopping amplitudes
of a semi-infinite tight-binding model — see Fig. 1.
The wavefunction on the semi-infinite chain is defined
as ϕn(t) := i−n (On|O(t)). Heisenberg evolution of O(t)
becomes a discrete Schrödinger equation:

∂tϕn = −bn+1ϕn+1 + bnϕn−1, ϕn(0) = δn0. (8)

where b0 = ϕ−1 = 0 by convention. The autocorrelation
is simply C(t) = ϕ0(t).

Intuitively, we can think of the Krylov basis as strati-
fying operators by their ‘complexity’ (with respect to the

initial operator O). In terms of the bath picture above,
the “occupation number” of the nth bath is |ϕn|2, and
the bn’s describe the connections between adjacent baths.
The goal of this work is to study aspects of operator
growth that can be reduced to the quantum mechanics
on this semi-infinite chain.

IV. THE HYPOTHESIS

We now state the hypothesis. Suppose that H de-
scribes an infinite, non-integrable [28], many-body sys-
tem and O is a local operator having zero overlap with
any conserved quantity (in particular, (O|H) = 0). Then
the Lanczos coefficients are asymptotically linear:

bn = αn+ γ + o(1), (9)

for some real constants α > 0 and γ. This linear growth
is an example of universality. We will refer to α as the
growth rate, and it will play a multitude of roles. In fact,
it quantitatively captures the growth of “operator com-
plexity” in a precise sense (Section V B). On the other
hand, it is observable by standard linear response mea-
sures (Section IV C).

Before presenting the evidence for the hypothesis, we
note that the idea of classifying operator dynamics by
Lanczos coefficients asymptotics is as old as the recur-
sion method itself. Many examples have been explored,
resulting in a broad zoology, as surveyed in [23]. In par-
ticular, it is known that non-interacting models (such
as lattice free fermions) give rise to a bounded sequence
bn ∼ O(1). If we start with a two-body operator O in
such free models, all On’s will remain two-body. In this
sense, the operator dynamics is simple. Models with ob-
structions to thermalization lead to more involved behav-
ior. For example, a square root behavior bn ∼

√
n has

been found in certain integrable models [23, 29]. To our
knowledge, the ubiquity of asymptotically linear growth
and its consequences have not been systematically stud-
ied in quantum systems.

A. Numerical Evidence: Spin Models

Fig. 2(a) shows the Lanczos coefficients for a variety of
spin models in the thermodynamic limit. (Numerical de-
tails are given in Appendix C.) One can clearly see that
the asymptotic behavior is linear in all non-integrable
cases. There is often an onset period before the uni-
versal behavior sets in; the first few Lanczos coefficients
are highly model-dependent. We have observed that the
more strongly-interacting the system, the sooner univer-
sal behavior appears [30]. Fig. 2(b) shows the robustness
of this linear behavior. The pure transverse field Ising
model may be mapped to free fermions so, as expected,
the Lanczos coefficients are bounded. But as soon as a
small integrability-breaking interaction is added, the co-
efficients become asymptotically linear, and the linearity
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FIG. 2. (a) Lanczos coefficients in a variety of strongly in-
teracting spin-half chains: H1 =

∑
iXiXi+1 + 0.709Zi +

0.9045Xi, H2 = H1 +
∑
i 0.2Yi, H3 = H1 +

∑
i 0.2ZiZi+1,

and the SYK model (10) with q = 4 and J = 1. The initial
operator O =

√
2γ1 for SYK; otherwise it is the energy den-

sity wave with momentum q = 0.1. (b) Cross-over to linear
growth as interactions are added to a free model. Here H =∑
iXiXi+1 − 1.05Zi + hXXi, and O ∝∑

i 1.05XiXi+1 + Zi.
bn is bounded when hX = 0 but asymptotically linear for any
hX 6= 0. Numerical details are given in Appendix C.

sets in at smaller n as the strength of the interaction
increases. This is reminiscent of the crossover from Pois-
son to GOE distributed level statistics as integrability is
broken [31, 32]. We have also checked a variety of other
models believed to have chaotic behavior, and a number
of operators in each. The hypothesis appears to hold in
all cases. We may therefore conclude that the hypothesis
is at least plausible.

B. Analytical Evidence: The SYK Model

It is an ironic point that the hypothesis (9) fails in
virtually all exactly solvable models, as those are often
integrable, even non-interacting. This explains why, to
the best of our knowledge, the linear growth was not rec-
ognized in any of the extensive literature on the recursion
method as a universal behavior (except for certain clas-
sical systems [33]). However, there is one solvable model
where we can compute the linear behavior analytically:
the SYK model (see, e.g. [13–15]). Its Hamiltonian is

H
(q)
SYK = iq/2

∑
1≤i1<i2<···<iq≤N

Ji1...iqγi1γi2 · · · γiq (10)

where the γi’s, with 1 ≤ i ≤ N , are Majorana fermions
with anti-commutators {γi, γj} = δij , and the Ji1...iq ’s
are disordered couplings drawn from a Gaussian distri-
bution with mean zero and variance (q−1)!J2/Nq−1. We

study the dynamics of a single Majorana O =
√

2γ1 [34].
To leverage the SYK solvability, we shall compute the
moments µ2n =

(
O|L2n|O

)
, averaged over disorder in

the large-N limit. For any finite q, the moments can be

computed efficiently, thanks to the well-known large-N
Schwinger-Dyson type equations satisfied by the correla-
tion functions. The self-averaging properties of the SYK
model allows the typical Lanczos coefficients to be com-
puted from the averaged moments via a general numer-
ical procedure [23]. This is described in detail in Ap-
pendix B.

We find that the Lanczos coefficients follow the uni-
versal form (9) quite closely, as shown in Fig. 2(a). In
the large-q limit, there is a closed form expression for the
coefficients, computed in Appendix B:

bSYK
n =

{
J
√

2/q + O(1/q) n = 1

J
√
n(n− 1) + O(1/q) n > 1 ,

(11)

where J =
√
q 2(1−q)/2J . Therefore in the large-q

limit, the SYK model follows the universal form (9) with
α = −2γ = J . We may conclude that our hypothesis is
obeyed in a canonical model of quantum chaos.

C. Spectral Functions

Now that we have observed that the hypothesis holds
in various models, we present a general argument sup-
porting it. We consider here the hypothesis in light of the
relation between the Lanczos coefficients and the spectral
function.

Recall that the spectral function is the Fourier trans-
form of the autocorrelation:

Φ(ω) =

∫ ∞
−∞

dtC(t)e−iωt . (12)

In interacting many-body systems, the spectral function
has a tail extending to arbitrarily high frequencies. The
asymptotic behavior of the tail is directly related to the
Lanczos coefficients, with faster growth of Lanczos coeffi-
cients corresponding to slower decay of Φ(ω). The precise
asymptotic behavior is [35, 36]

bn ∼ nδ ⇐⇒ Φ(ω) ∼ exp(−|ω/ω0|1/δ) (13)

for any δ > 0 and some constant ω0. In particular, δ = 1
corresponds to asymptotically linear Lanczos coefficients
and an exponentially decaying spectral function.

The decay of the spectral function is constrained by
a powerful bound. A rigorous and general result of
Refs [37, 38] (see also [39, 40]) is that, given an r-local
lattice Hamiltonian H =

∑
i hi in any dimension,

Φ(ω) ≤ Ce−κ|ω|, κ =
1

2eGr||hi||
(14)

for some C > 0 and a known O(1) geometrical factor Gr.
We may conclude δ ≤ 1 in (13), so the Lanczos coeffi-
cients grow at most linearly. We provide a direct proof
of this fact in Appendix F. In this sense, the hypothesis
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ω

Φ(ω)

e−
π|ω|
2α

iπ
2α

− iπ
2α

C(t) analytic

t ∈ C

FIG. 3. Illustration of the spectral function and the analytical
structure of C(t), t ∈ C. When the Lanczos coefficients have

linear growth rate α, Φ(ω) has exponential tails ∼ e−|ω|/ω0

with ω0 = 2α/π; C(t) is analytical in a strip of half-width
1/ω0 and the singularities closest to the origin are at t =
±i/ω0. See Appendix A 2 for further discussion.

says that Lanzcos coefficients grow as fast as possible in
non-integrable systems.

When the hypothesis is satisfied, the growth rate α is
quantitatively related to the exponential decay rate in
the spectral function. In fact, Appendix A shows the
following asymptotics are equivalent (see Fig. 3):

bn = αn+ O(1) , (15a)

Φ(ω) = e−
|ω|
ω0

+o(ω), ω0 =
2

π
α, (15b)

We stress that this is a purely mathematical equiva-
lence, which holds independently of physical considera-
tions such as the dimension, the temperature, or even
if the system is quantum or classical. However, this
equivalence has a key physical consequence: it implies
that α is observable in linear response measurements. In
fact, high-frequency power spectra for quantum spin sys-
tems can be measured with nuclear magnetic resonance,
and exponential decays were reported for CaF2 [24–26].
This experimental technique therefore provides a practi-
cal way of measuring α.

Additionally, comparing (14) and (15) shows that α ≤
π/2κ, so the growth rate is limited by the local band-
width of the model and the geometry. This inequality is
a consequence of the natural energy scale for the Lanczos
coefficients being set by the local bandwidth. However,
we shall see that α itself is not merely the bandwidth,
but contains a great deal of physical information about
the system.

We find it useful to dispel a possible misconception.
The hypothesis governs the high-frequency behavior of

the spectral function Φ(ω). On dimensional grounds it
is tempting — though ultimately erroneous — to inter-
pret this as a statement about the short-time behavior
of C(t). To see why this is wrong, notice that the short-
time behavior is captured by the first moment alone, as
C(t) = 1−µ2 t

2/2 +O(t4). The high-frequency informa-
tion instead governs the asymptotics of moments µ2n as
n → ∞ (which involve increasingly large operators) and
the analytical structure of C(t) on the imaginary-t axis,
as shown in Fig. 3. In particular, the exponential decay
rate sets the location of the closest pole to the origin on
the imaginary axis. The high-frequency information also
does not control the large time limit t → +∞; we will
come back to this point in Section VII B below. In brief,
the hypothesis governs large ω behavior of Φ(ω) and, cor-
respondingly, the behavior of C(t) on the imaginary axis.

To close this section, let us reiterate that the evidence
presented constitutes no definitive proof that the hypoth-
esis holds in all non-integrable systems. It is only certain
that no faster growth is physically possible. Appendix F
discusses the difficulty of showing the hypothesis from a
microscopic point of view, and gives some partial results.
It may be possible to put the hypothesis on a more solid
footing using a type of random matrix model, a possi-
bility we discuss in Section VIII. Nevertheless, we find
the empirical evidence for the hypothesis compelling and
expect it to be true.

V. EXPONENTIAL GROWTH OF
COMPLEXITIES

Now that we have presented evidence in favor of the hy-
pothesis, we shall turn to the analysis of its consequences.
In this section we study the universal behavior of oper-
ators obeying the hypothesis. This is done in two steps.
First, by studying the quantum mechanics problem (8)
on the semi-infinite chain, we show that α measures the
rate of exponential growth in operator complexity, in a
sense we shall make precise below. Second, we prove
that α gives an upper bound on a large class of operator
complexity measures.

We remark that our notion of complexity is a priori
distinct from other notions bearing the same name, such
as circuit complexity (see the reviews [41, 42] and refer-
ences therein). Indeed, a satisfactory definition of opera-
tor complexity of any sort is an unresolved problem, and
may not have a unique answer.

A. Exponential Growth in the Semi-infinite Chain

Recall that the Lanczos algorithm reduces the operator
dynamics to a discrete Schrödinger equation (8),

∂tϕn = −bn+1ϕn+1 + bnϕn−1, ϕn(0) = δn0 .
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FIG. 4. The exact solution wavefunction (17) in the semi-
infinite chain at various times. The wavefunction is defined
only at n = 0, 1, 2 . . . , but has been extrapolated to interme-
diate values for display.

We shall analyze this quantum mechanics problem when
the hypothesis is satisfied.

As a first step, we take the continuum limit, by lin-
earizing around momenta 0 and π. This yields a Dirac
equation ∂tϕ = ±2αx∂xϕ, whose characteristic curves
x ∝ e±2αt show the wavefunction spreads exponentially
fast to the right in the semi-infinite chain with rate 2α.
We remark that among all power-law Lanzcos coefficient
asymptotics bn ∼ nδ, the linear growth δ = 1 is the
only one which results in exponential spreading. When
δ > 1, the characteristic curves reach x = ∞ at finite
time [43]. When δ < 1, the spreading follows a power
law x ∼ t1/(1−δ).

To undertake a more careful analysis of the wavefunc-
tion on the semi-infinite chain, we employ a family of
exact solutions. Suppose

b̃n := α
√
n(n− 1 + η)

n�1−−−→ αn+ γ, (16)

where η = 2γ/α+1. For any system when the hypothesis

is satisfied, the bn’s will approach the b̃n’s asymptotically,

so the properties of the exact solution using the b̃n’s are
universal properties at large n. It is shown in Appendix D
that the full wavefunction for the operator evolving under

the b̃n’s is

|O(t)) =

∞∑
n=0

√
(η)n
n!

tanh(αt)n sech(αt)ηin |On) (17)

where (η)n = η(η + 1) · · · (η + n− 1) is the Pochhammer
symbol and |On) is the nth Krylov basis vector. Note
that this example is not artificial but arises naturally in
the SYK model, studied in Section VI B below.

The exact solution (17) benefits from a detailed anal-
ysis. Recall that the component of the wavefunction at
some fixed site n is ϕn(t) = (−i)n (On|O0(t)). For each
n, ϕn(t) is a purely real function which starts at 0 (for
n > 1), increases monotonically until reaching a maxi-
mum at t ∼ log n, then decreases as ∼ e−αηt. The fact

that exponential decay, reminiscent of dissipative dynam-
ics, emerges under unitary evolution is quite remarkable,
and is only possible in an infinite chain [44]. Physically,
the wavefunction is decaying by “escaping” off to n→∞,
which serves as a bath. Note, however, that the hypoth-
esis is not sufficient to show that ϕn(t) decays exponen-
tially with time for small n, a fact whose consequences
are studied in VII B below.

We now come to a central consequence of the lin-
ear growth hypothesis: the exponential spreading of the
wavefunction. At any fixed time and large n, the wave-
function (17) has the form |ϕn(t)|2 ∼ e−n/ξ(t), where ξ(t)
is a “delocalization length” that grows exponentially in
time: ξ(t) ∼ e2αt for αt� 1. This exponential spreading
is reflected in the the expected position of the operator
wavefunction (17) on the semi-infinite chain

(n)t := (O(t)|n|O(t)) = η sinh(αt)2 ∼ e2αt , (18)

More generally,
(
nk
)
t
∼ e2kαt for k ≥ 1. This result

agrees, of course, with the one obtained in the simple
continuum-limit above. We believe that the asymptotic
growth in (18) holds whenever the Lanczos coefficients
grow linearly. Although we have not proven this asser-
tion, we have checked that it holds for many cases, such
as artificially generated sequences of Lanczos coefficients
bn = αn+ γn with various kinds of bounded “impurity”
terms γn ∼ O(1). We will consider (18) as a fact that
follows directly from the hypothesis: the position of an
operator in the abstract Krylov space grows exponen-
tially in time.

We may interpret this exponential growth as a quan-
titative measure of the irreversible tendency of quantum
operators to run away towards higher “complexity” [45].
Indeed, we identify the position on the semi-infinite chain
(n)t as a notion of operator complexity. We refer to
(n)t as the “Krylov-complexity” (or “K-complexity” for
short) of an operator

After all, as n increases, the operators On be-
comes more “complex”, in the following sense: in the
Heisenberg-picture, the equations of motions for On’s
form a hierarchy:

−iȮ0(t) = b1O1(t) ,

−iȮ1(t) = b1O0(t) + b2O2(t) ,

−iȮ2(t) = b2O1(t) + b3O3(t) ,

...

(19)

that is, the dynamics of On(t) depends on On+1(t). This
is analogous to the BBGKY hierarchy in statistical me-
chanics, in which the evolution of the n-particle distribu-
tion depends on the (n+ 1)-particle one. Similarly, as n
increases, the On’s becomes less local in real space, in-
volve more basis vectors in any local basis, and are more
difficult to compute. We remark that K-complexity is a
distinct notion from precise terms such as circuit com-
plexity and no relation should be inferred between the
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two. Closer precedents are the ideas of f-complexity and
s-complexity [46].

We know from Section IV C that linearly growing
Lanczos coefficients are the maximal rate so, in turn, the
wavefunction may not spread faster than exponentially.
Thus the hypothesis implies that non-integrable systems
have maximal growth of K-complexity: exponential, with
rate 2α.

B. A bound on complexity growth

The physical meaning of K-complexity is far from
transparent. After all, it depends on the rather abstract
Krylov basis, the initial operator, and the choice of dy-
namics. To help pin down the idea of K-complexity,
we study its relation to more familiar quantities. We
shall consider a class of observables, “q-complexities” (q
stands for quelconque), that includes familiar notions like
out-of-time-order correlators and operator size. We will
show that the growth of any q-complexity is bounded
above by K-complexity.

We now define the q-complexity. Suppose Q is a su-
peroperator that satisfies two properties:

1. Q is positive semidefinite. We denote its eigenbasis
as |qa), indexed by a, so that

Q =
∑
a

qa |qa) (qa| , qa ≥ 0 . (20a)

2. There is a constant d > 0 such that

(qb|L|qa) = 0 if |qa − qb| > d , (20b)

(qa|O) = 0 if |qa| > d . (20c)

Then q-complexity is defined to be the expectation value

(Q)t := (O(t)|Q|O(t)) , (21)

where O(t) is evolved under the Liouvillian dynamics of
L. A q-complexity is, in principle, an observable, and
requires Hamiltonian (or Liouvillian) dynamics. The ra-
tionale for the conditions is as follows: (20a) ensures
the q-complexity is always non-negative, (20b) guaran-
tees it cannot change too much under one application of
the Liouvillian, and (20c) assigns a low complexity to the
initial operator. To illustrate this concept, we now con-
sider three examples: K-complexity, operator size, and
out-of-time-order correlators.

Example 1: K-complexity.The K-complexity is al-
ways a q-complexity, with Q = n. The basis |qa) is
just the Krylov basis |On) and the conditions (20b) and
(20c) are satisfied by construction of the Krylov basis
with d = 1.

Example 2: operator size. A second example of a
q-complexity is provided by operator size [34]. For con-
creteness, we work in the framework of a spin-1/2 model

(though Majorana fermions or higher spins work equally
well). Consider the basis of Pauli strings, e.g. strings
IXY ZII · · · with finitely many non-identity operators.
Define Q to be diagonal in this basis, where the action of
Q on a Pauli string is the number of non-identity Pauli’s.
So, for instance, Q |IXY ZI · · · ) = 3 |IXY ZI · · · ). The
eigenvectors of Q have non-negative eigenvalues, so Q is
positive semi-definite.

Any choice of dynamics with at most d-body inter-
actions (even long-ranged ones) will satisfy (20b), while
(20c) requires simple that O is d-local. So, under these
conditions, the q-complexity (Q)t becomes the average
size of Pauli strings contained in O(t):

(Q)t =
∑

π∈Pauli strings
size(π) |(π|O(t))|2 . (22)

Example 3: OTOCs. Our third — and most interest-
ing — example of q-complexity is out-of-time-order com-
mutators (OTOCs). Given O(t), there is an OTOC for
each choice of a local operator V as ([V,O(t)] | [V,O(t)]).
For simplicity, we work with a many-body lattice model,
and consider an on-site operator Vi. We then define the
OTOC superoperator by

Q :=
∑
i

Qi, (A|Qi|B) :=
(

[Vi, A]
∣∣∣ [Vi, B]

)
, (23)

where the sum runs over all lattice sites i. Provided the
Hamiltonian and initial operator are r-local, and that the
dimension D of the on-site Hilbert space is finite, (23) is
a q-complexity.

To see this, let us work in the eigenbasis of Q. For
each site i, there is a basis Qi |qi,a) = qi,a |qi,a) with
1 ≤ a ≤ D2. We take |qi,0) to be the identity operator
with eigenvalue 0, and note that 0 ≤ qi,a ≤ Q for some
finite Q. Since [Qi,Qj ] = δij , the eigenbasis for the full
operator space is the tensor product of the on-site bases.
So for any sequence a = {ai}, |qa) := ⊗i |qi,ai) is an
eigenvector satisfying

Q |qa) = qa |qa) , qa =
∑
i

qi,ai ≥ 0. (24)

For the eigenvalue to be finite, ai must be zero for all but
a finite number of i’s and all eigenvalues are non-negative,
so Q is positive semidefinite. Since the Hamiltonian is r-
local, the matrix element (qa|L|qb) 6= 0 only if a and
b differ on at most r sites. So by (24), we may bound
the difference |qa − qb| ≤ d = rQ. Similarly, any r-local
operator satisfies (20c). Having verified all the properties
(20), we may conclude that OTOCs of this form are a q-
complexity.

OTOCs are known to be closely related to the oper-
ator size [12, 34]. It is usually possible to bound either
quantity from the other, and to choose Vi such that the
OTOC reduces to the operator size.

We have now seen three examples of q-complexities,
two of which are quantities that have been studied in
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recent times to understand the complexity of operators.
A few remarks are in order. The q-complexities (includ-
ing K-complexity) are quadratic in O(t) and not linear
response quantities, although the growth rate α is, via
the spectral function. The definition (20) is rather rigid
and may be only sensible at infinite temperature; at fi-
nite temperatures it may be advisable to relax (20b), for
instance. We will see in Section VI C that q-complexities
may also be applied to classical systems, though they
work somewhat differently there.

A rigorous argument in Appendix E proves that, for
any q-complexity,

(Q)t ≤ C (n)t , C = 2d . (25)

The following section will focus on the application of this
general bound in the specific case of OTOCs.

VI. GROWTH RATE AS A BOUND ON CHAOS

We showed in the preceding section that K-complexity
provides an upper bound for any q-complexity whatso-
ever, which includes certain types of OTOCs. Combining
(25) and (18), we see that q-complexities grow at most ex-
ponentially in time. If that is the case, with (Q)t ∼ eλQt,
then the exponent is bounded above by 2α:

λQ ≤ 2α . (26)

In the rest of this section we focus on the case where
the q-complexity is an OTOC. When the OTOC grows
exponentially at late times,(

QOTOC
)
t
∼ eλLt , (27)

its growth rate λL is called the Lyapunov exponent, since
in the classical limit it reduces to the Lyapunov exponent
characterizing the butterfly effect in classical determinis-
tic chaos [47]. The bound (25) then suggests the following
conjectural bound on the Lyapunov exponent:

λL ≤ 2α. (28)

We insist on calling Eq. (28) a conjecture because we
shall boldly extrapolate (28) beyond where (25) and the
arguments of the previous section apply directly; we have
essentially proven (28) in quantum systems at infinite
temperature already. Remarkably, (28) appears to be
widely valid — at any temperature and in either classical
or quantum systems.

A. Equivalence with the universal bound

We first examine finite temperature and show that
our conjectural bound (28) is equivalent to the univer-
sal bound on the Lyapunov exponent of Ref. [12]. The

universal bound was derived for quantum field theories
at finite temperature T = β−1, and reads as follows

λL ≤ 2πT, (29)

in the natural units ~ = kB = 1.
To compare (29) with our bound, we must adapt our

formalism to finite temperature, which we discuss briefly
here. The key novelty at finite temperature is that one
must make a physical choice of operator norm from the
infinity of mathematically-valid options. Any positive,
even function g(λ) on the thermal circle defines a valid
norm [23]:

(A|B)g :=
1

Z

∫ β

0

g(λ) Tr[yβ−λA†yλB] dλ

=

∫ β

0

g(λ)〈A†(iλ)B〉β dλ ,
(30)

where y := e−H and Z := Tr[yβ ] [48]. Various choices of
g(λ) have been made in the literature. For instance, lin-
ear response calculations have often dealt with the Kubo
inner product g(λ) = 1; a simpler choice is afforded by

g(λ) = β
2 [δ(λ) + δ(β − λ)]. At infinite temperature they

all reduce to the one (A|B) = Tr[A†B]/Tr[1] standard in
this work.

Here, we shall choose g(λ) = βδ(λ−β/2), which gives:

(A|B)β :=
1

Z
Tr[yβ/2A†yβ/2B] . (31)

This choice corresponds to inserting the operators A and
B in the thermal circle [0, β) with even spacing, which
is the same regularization scheme used for four-point
OTOCs in [12] to argue for the universal bound.

The autocorrelation function is modified accordingly

Cβ(t) := (O|O(t))β . (32)

In field theories, Cβ(t) is generally analytic in the strip
|Im(t)| < β/2, and has contact singularities at t = ±iβ/2.
This analytic structure determines the exponential decay
rate of the spectral function Φβ(ω) ∼ e−|ω|/ω0 to be ω0 =
2T , which implies

2α = 2πT (33)

by the relation (15).
Equation (33) implies the equivalence of the two

bounds (28) and (29) at low temperature. However, (28)
has a wider realm of validity. For instance, at infinite
temperature or in classical systems, the universal bound
becomes irrelevant, yet our conjecture remains nontrivial.

B. SYK Model

The clearest evidence for the conjecture (28) comes
from the SYK model (10), where it holds at both infinite
and low temperatures.
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At low temperatures T = 1/β � J , it is well-known
that λL = 2πT [14] saturates the universal quantum
bound (29). The finite-T autocorrelation function (32)

with O =
√

2γ1 may be computed exactly by conformal
invariance [13]:

C(t) ∝ sech (tπT )
2/q

. (34)

This is the autocorrelation function of the exact solu-
tion (17), and corresponds to Lanczos coefficients bn =

πT
√
n(n− 1 + η) with η = 2/q and α = πT , in agree-

ment with (33). Therefore the low-temperature SYK
model saturates our bound (28).

At finite temperatures, using analytic results in the
large-q limit [13], it is not hard to check (see Appendix B)
that our bound is also saturated, whereas the universal
bound (29) is not.

Returning to infinite temperature, no analytic formula
for the Lyapunov exponent is available, but it has been
computed numerically in, e.g. [13, 34]. Table I shows
that not only does (28) hold for the whole range of q-
SYK models, but α is almost equal to λL/2, with exact
agreement in the limit q → ∞ [49]. These results show
that the bound λL ≤ 2α is tight: the prefactor cannot be
improved in general. Moreover, in the large q limit, the
probability distribution |ϕn(t)|2 on the semi-infinite line
is identical to the operator size distribution of γ1(t) [34].
(See (B17) in Appendix B for the precise statement.) So
the large-q SYK model is an instance where the quan-
tum mechanics problem on the semi-infinite chain can be
concretely interpreted.

We remark that in models with all-to-all interactions
like SYK and its variants may be the only circumstances
where the bound (28) can be nearly saturated. For spa-
tially extended quantum systems with finitely many lo-
cal degrees of freedom, Lieb-Robinson bounds [50] and its
long-range generalizations [51] guarantee that the OTOC
has slower-than-exponential growth in most physical sys-
tems at infinite temperature [52].

Such a difference can be understood as follows. Due
to the lack of spatial structure in the SYK model, we ex-
pect operator complexity (by any reasonable definition)
is almost completely captured by operator size which, in
turn, is directly probed by OTOCs. In finite-dimensional
systems, complexity should be a distinct concept from
operator size. For instance, long Pauli strings generated
in the non-interacting Ising models have nonetheless low
complexity, since they can be transformed to simple few-
body operators under the Jordan-Wigner transform. In
non-integrable systems, by contrast, operator size growth
is limited by Lieb-Robinson, while complexity can grow
exponentially in the bulk of an operator’s support.

C. Classical Chaos

We now transition to the classical setting. After briefly
explaining how the recursion method carries over almost

q 2 3 4 7 10 ∞
α/J 0 0.461 0.623 0.800 0.863 1

λL/(2J ) 0 0.454 0.620 0.799 0.863 1

TABLE I. The growth rate α versus half the OTOC-Lyapunov
exponent λL/2 in the q-SYK model (10) in units of J =√
q2(1−q)/2J . Here α is obtained by exact numerical methods

discussed in Appendix B, while λL is taken from the Appendix
of [34]. The q-SYK is physical only for even integers q, large-
N methods allow an extrapolation to any q ≥ 2.

verbatim to classical systems, we shall examine the classi-
cal form of the conjecture (28). However, the arguments
of Section V B do not carry over in full, and we are only
able to prove a weaker bound. We close with a numerical
case-study that suggests the stronger conjectural bound
may well be true (and tight).

1. A (Weaker) Bound on Classical Chaos

The recursion method applies to classical and quantum
systems in exactly the same manner [23]. Classically, op-
erator space is the (Hilbert) space of functions on classical
phase space and the Liouvillian L = i{H , ·} is defined
by the Poisson bracket against the classical Hamiltonian
H (we take ~ = 1). The appropriate classical inner prod-
uct at infinite temperature is (f |g) =

∫
f∗g dΩ, where dΩ

is the symplectic volume form on the phase space [53].
The Liouvillian L is a self-adjoint operator, and the en-
tire framework of the Lanczos coefficients carries over
wholesale.

Indeed, the Lanczos coefficients have been studied
more in the classical context. It is known [23, 33] that
linear growth of the Lanczos coefficients appears in gen-
eral finite-dimensional, non-linear systems, to which we
restrict ourselves [54]. The growth rate α is well-defined
in such systems, as is the (classical) Lyapunov exponent
λL, and the conjecture (28) takes on the same form as
before: λL ≤ 2α. In short, the similarity of classical and
quantum Liouvillian evolution means that the recursion
method — and its consequences — carry over unchanged.

There is, however, one important caveat: a classical
OTOC does not generally qualify as a q-complexity. We
will demonstrate this through an explicit, and instruc-
tive, example. Let us consider a single classical SU(2)
spin. Its classical phase space is the two-sphere, and clas-
sical operator space is spanned by the basis of spherical
harmonics |Y m` ), ` = 0, 1, 2 . . . , m = −`, . . . , `.

A typical Hamiltonian is a polynomial of the clas-
sical spin operators S x,S y,S z with Poisson bracket
{S a,S b} = −εabcS c. We consider the simple non-
linear example

H = JS zS z + hxS
x. (35)

Using Clebsch-Gordon coefficients one can show that the
classical Liouvillian is quite sparse, and only the following
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matrix elements are non-zero:(
Y `±1m |L |Y `m

)
6= 0 ,

(
Y `m±1|L |Y `m

)
6= 0, (36)

whenever the states in question exist.
We now examine the classical OTOC for the local op-

erator S z, given by matrix elements of a super-operator
Qz. This operator is diagonal in the basis of spherical
harmonics(

Y kn |Qz|Y `m
)

:= ({S z, Y nk }|{S z, Y ml })
=m2δnmδk`,

(37)

and we may immediately read off the eigenvalues as m2.
When m changes by 1 upon application of the Liouvil-
lian, the eigenvalue m2 changes by 1 ± 2m, which can
be arbitrarily large. Hence the condition (20b) cannot
be satisfied for any finite constant d. It is helpful to re-
call that Section V B showed the quantum OTOC is a
q-complexity whenever the on-site Hilbert space is finite-
dimensional. This fails in the case of a spin s, whose
on-site dimension 2s + 1, in the classical limit s → ∞.
We have therefore seen that classical OTOCs are not q-
complexities and, hence, the conjectural bound (28) does
not follow from the reasoning of Section V B in the clas-
sical case.

Nonetheless, for any Hamiltonian and initial operators
that are polynomials of the spin variables S a, we can
show the following general bound

λL ≤ 4α , (38)

which is weaker than the conjecture (28), λL ≤ 2α.
To show (38), observe that by (37), the superopera-

tor Rz := Q
1
2
z satisfies (20b), since its has eigenvalue

m for Y `m, which can change only by δ upon one Liou-
villian application, where δ is the polynomial degree of
the Hamiltonian. Other conditions in (20) are satisfied
straightforwardly. We then have

eλLt ∼ (Qz)t =
(
R2
z

)
t
≤ C2

(
n2
)
t
∼ e4αt , (39)

which implies (38). Here the first ∼ is by definition, the
the inequality is a straightforward generalization of the
bound on q-complexity, Eq. (E8) of Appendix E, and
the last ∼ is a generalization of (18) (see below that
equation).

This argument carries over to the OTOC with spin
variable of any direction by spherical symmetry, and
applies almost verbatim to systems with a few spins,
S x,y,z
i , i = 1, . . . , N . A Lyapunov exponent associated

with a finite sum such as

N∑
i=1

∑
a=x,y,z

(
{S a

i ,O(t)}
∣∣∣{S a

i ,O(t)}
)

(40)

satisfies the same bound since every term does so. In
summary, (38) is established in general classical few-spin
models. We expect it is possible to show (38) rigorously.

An interesting corollary of (38) is a relation between
chaos and the decay rate of the spectral function. Recall
from Section IV C that the hypothesis is equivalent to
the exponential decay of the spectral function Φ(ω) ∼
exp(−|ω|/ω0) at high frequency, where ω0 = 2

πα. Then
(38) is equivalent to

λL ≤ 2πω0 . (41)

(The conjectured bound would instead imply λL ≤ πω0.)
In numerous classical systems, the power spectrum decay
of time series has been used as an empirical probe of de-
terministic chaos [55–61]. To the best of our knowledge,
the bound (41) provides the first quantitative justifica-
tion for this usage.

We mention that the relation between chaos and long-
time decay of correlation functions has also been studied:
long-time relaxation to equilibrium was shown to be con-
trolled by Ruelle resonances in specific chaotic models
[62, 63]. However, the long-time and high-frequency be-
haviors are a priori unrelated, as we discuss further in
Section VII.

We stress that the growth rate is an upper bound on
chaos, but not a diagnostic of it. Indeed, our bound is
correct but not tight for most classical integrable sys-
tems which, generically, have non-zero growth rate but
no chaos [33].

Unfortunately, we are not able to improve the argu-
ment and prove the stronger conjectured bound. In-
stead, we resort to testing the validity of the conjectured
bound (28) in a canonical example of classical chaos.

2. Numerical study

The Feingold-Peres model of coupled tops [64] is a well-
studied model of few-body chaos, both classically and
at the quantum level [65, 66]. The quantum model is a
system of two spin-s particles, 1 and 2, with Hamiltonian

HFP = (1 + c) [Sz1 + Sz2 ] + 4s−1(1− c)Sx1Sx2 (42)

where c ∈ [−1, 1] is a parameter and Sαi satisfy the

SU(2) algebra [Sαi , S
β
j ] = i~δijεαβγSγi and act on a spin-

s Hilbert space. This is non-interacting when c = ±1
and chaotic in the intermediate region. Correspondingly,
the Lanczos coefficients are asymptotic to a constant at
c = ±1 and increase linearly in intermediate regions.
However, since the operator space dimension is finite
(equal to (2s+ 1)4), the sequence of Lanczos coefficients
is finite; in fact, the Lanczos coefficients saturate. The
classical limit is obtained by taking s to infinity. There
the Hamiltonian becomes

HFP,cl = (1 + c) [S z
1 + S z

2 ] + 4(1− c)S x
1 S x

2 (43)

where S α
i , i = 1, 2 are two sets of classical SU(2) spins.

As an SU(2) representation, the classical operator space
contains all integer spins, whereas the quantum operator
space has only integer spins up to 2s.
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FIG. 5. (a) The growth rate α versus the classical Lyapunov
exponent λL/2 in the classical Feingold-Peres model of cou-
pled tops, (43). α ≥ λL/2 in general, with equality around
the c = 0 where the model is the most chaotic. The growth
rate appears to be discontinuous at the non-interacting points
c = ±1, similarly to Fig. 2-(b). (b) The first 40 Lanczos co-
efficients of quantum s = 2, . . . , 32 and classical (s = ∞) FP
model, with c = 0.

We compute the classical Lanczos coefficients for the
operator O ∝ Sz1S

z
2 (S z

1 S z
2 in the classical case). As

shown in Fig. 5(b), the quantum Lanczos coefficients con-
verge to the classical ones as s → ∞, as expected, and
they increase linearly near c = 0. We have checked that
α does not depend on the choice of initial operator O, so
long as O does not overlap with any conserved quantity.

To test the conjectured bound (28), we compare the
growth rate α with the classical Lyapunov exponent
(λL/2 in our notation), which can be calculated by the
standard variational equation method [67]. Remarkably,
the data shown in Fig. 5(a) corroborates the conjectured
bound α ≥ λL/2 in the parameter region explored, with
equality up to numerical accuracy in the regime c ≈ 0,
where the model is known to be maximally chaotic, with
almost no regular orbits [64, 65]. Enlarging the param-
eter space, for instance by adding terms such as S z

i to
the Hamiltonian, give further results consistent with the
bound. It is thus possible that the conjectured bound
is valid in classical systems and becomes tight in highly
chaotic ones.

VII. APPLICATION TO HYDRODYNAMICS

Structural information about quantum systems can en-
able numerical algorithms. As an example, the success
of the density matrix renormalization group algorithm

is a consequence of the area law of entanglement en-
tropy [68, 69]. We now apply the hypothesis to develop
a semi-analytical technique to calculate decay rates and
autocorrelation functions of operators and, in particular,
compute diffusion coefficients of conserved charges. The
key idea is to use the hypothesis to make a meromorphic
approximation to the Green’s function. This section in-
troduces the continued fraction expansion of the Green’s
function, describes the zoology of operator decay, and
finally presents the semi-analytical method.

A. Continued Fraction Expansion: Brief review

We briefly review the continued fraction expansion of
the Green’s function [23]. The Green’s function is defined
as the expectation value

G(z) :=

(
O
∣∣∣∣ 1

z − L

∣∣∣∣O) =

∞∑
n=0

µ2n

z2n+1
, (44)

and is related to the autocorrelation C(t) by the following
transform:

G(z) = i

∫ ∞
0

C(t)e−iztdt , C(t) =

∮
G(z)eizt

dz

2πi
, (45)

where the integration contour is taken to be the shifted
real axis shifted down by −iε for some small ε > 0. Since
C(t) is bounded on the real axis, G(z) is analytic in the
lower half-plane, but may contain singularities on the
upper half plane. We shall refer to (45) as the Laplace
transform, despite the fact that it differs from the usual
definition by a factor of i.

In the Krylov basis, G(z) = [z − L]
−1
00 corresponds to

all paths that start on the first site, propagate through
the chain, and return. We can divide all paths into those
that stay on the first site, and those that first hop to the
second site, propagate on sites n ≥ 2, and then return.
More formally, for each n ≥ 0, let L(n) := Lp≥n,q≥n be
the hopping matrix on the semi-infinite chain restricted

to sites n and above, and let G(n)(z) :=
[
z − L(n)

]−1
nn

be

the corresponding Green function. (Note that G(0)(z) =
G(z).) We then have the following recursion relation —
hence the name “recursion method” —

G(n)(z) =
1

z − b2n+1G
(n+1)(z)

, n ≥ 0 . (46)

(For a quick derivation [22], consider the polynomial
Pn(z) := det(z − L(n)). By Cramer’s rule we have
G(n)(z) = Pn+1(z)/Pn(z); a cofactor expansion gives
Pn(z) = zPn+1(z)−b2n+1Pn+2(z). Then (46) follows from
the two preceding equations.)

Applying Eq. (46) recursively yields the continued
fraction expansion:

G(z) =
1

z − b21

z − b22

z − . . .

. (47)
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To save space, we denote the recursion 46 by G(n) =
Mn+1 ◦G(n+1), where Mn is the Möbius transform w 7→
1/(z − b2nw) and “◦” denotes function composition. It
is crucial that the convergence of the continued fraction
expansions is quite subtle and quite different from the
convergence of, say, Taylor series. Practically speaking,
one can compute only a finite number of the bn’s in most
situations. Truncating the expansion by taking the rest
of the bn’s to be zero (or any constant) rarely provides a
good approximation to the whole function [23].

B. Hydrodynamical Phenomenology

Long-time and large-wavelength properties of correla-
tion functions are governed by emergent hydrodynamics.
For each conserved charge (e.g. energy, spin), the density
field should relax to equilibrium in a manner prescribed
by a classical partial differential equation. Often this is a
diffusion equation, though more exotic possibilities such
as anomalous diffusion and ballistic transport (infinite
conductivity) can also appear.

A numerical (and sometimes experimental) protocol
to probe the emergent hydrodynamics is to study the
autocorrelation function of the density wave operator
Oq =

∑
x e

iqxQx (here Qx is the operator of the con-
served charge at x) at a range of momenta q. The be-
havior at large time is of especial interest, and can, in
turn, be read off from the singularity structure of the
Green’s function. Let us give a few examples. If the
closest pole to the origin is at z = iγ, then the autocor-
relation function will decay exponentially as e−γt, while
if the location of the closest pole varies quadratically as
z = iDq2/2, then the dynamics are diffusive. However,
the presence of non-linear terms in addition to the linear
diffusive ones can give rise to exotic behavior where the
diffusion constant itself becomes a function of frequency.

An example of this is G(z) =
[
z − iD(z)q2/2

]−1
, where

D(z) = D0 + D1
√
z. At any fixed q, G(z) has a branch

cut in addition the diffusive pole, so although the dif-
fusion constant D0 is still well-defined, autocorrelation
functions decay as a power law in time [70][71]. Regard-
less, the full singularity structure of the Green’s function
determines the long-time behavior.

Of course, computing the singularity structure of the
Green’s function is a demanding task. Even in integrable
models, determining if the correct hydrodynamics is, say,
diffusion or anomalous diffusion is non-trivial — let alone
computing diffusion coefficients (see Refs [72–74] for re-
cent developments). Indeed, accurately computing dif-
fusion coefficients has been the goal of much recent nu-
merical work [75–77]. This difficulty is reflected in the
continued fraction expansion (47): the location of the
poles change with each new fraction, so the full analytic
structure of G(z) depends on all of the bn’s.

Knowing that the coefficients obey the universal form
(9) is not enough, because even though the wavefunction
is spreading out into the semi-infinite chain exponentially

fast, we are given no guarantee about the wavefunction
at the origin n = 0. For instance, the correlation func-

tions C1(t) = sech(αt) and C2(t) =
(
1 + t2

)−γ
[23] both

correspond to Lanczos coefficients that obey the hypoth-
esis But C1(t) decays exponentially while C2(t) decays as
a power law, so clearly the hypothesis alone is insufficient
to establish long-time behavior. The power law decay is
nonetheless reflected in the Lanczos coefficients for C2(t),
which have an alterating subleading tail. Precisely, they
have the form bn = αn + γ + (−1)nfn where the fn’s
are positive and decay to zero. Therefore determining
the long-time tail of C(t) probably requires additional
information about the subleading corrections to the hy-
pothesis.

C. Numerical Diffusion Coefficients

Despite the complex behavior of autocorrelation func-
tions in the time domain, there are situations where the
hypothesis alone suffices to compute diffusion coefficients.
In the case where the bn’s approach the universal form
(9) especially quickly and regularly [78], we are able to
make a meromorphic approximation to G(z). The idea
is as follows. In the semi-infinite chain picture, we may
hope to calculate the first few Lanczos coefficients ex-
actly, so we may describe behavior near the origin n = 0
exactly. For large n, on the other hand, the hypothesis
gives the coefficients almost exactly, so we can describes
the dynamics by some exact solution. By stitching the
dynamics at large and small n together, we can hope to
find the dynamics on the whole chain. This allows us
to recover a diffusive dispersion relation and numerically
extract the diffusion constant in specific models.

We remark that there are a number of existent ex-
trapolation schemes to determine the Green’s function
from the first few Lanczos coefficients [22, 23]. The new
ingredient here is the hypothesis, which controls the ap-
proximation.

To make this idea into a precise numerical technique,
we need three ingredients: a way to compute the Lanc-
zos coefficients at small n, an exact solution at large n,
and a robust way to meld them together. For a 1D spin
chain in the thermodynamic limit of large system size, it
is straightforward to compute the first few dozen Lanczos
coefficients exactly through repeated matrix multiplica-
tion. Details are given in Appendix C.

To find the large n-behavior, we employ an exact so-
lution for the quantum mechanics problem on the semi-
infinite chain. If the hypothesis is obeyed, then the bn’s
also asymptotically approach the form

b̃n = α
√
n(n− 1 + η)

n�1−−−→ αn+ γ, (48)

where η = 2γ/α+ 1. The agreement is better, of course,

at large n. The coefficients b̃n have the virtue that the
quantum mechanics problem they describe on the semi-
infinite chain is exactly solvable. Appendix D applies
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the theory of Meixner orthogonal polynomials of the sec-
ond kind to determine the autocorrelation analytically:
C(t) = sech(αt)η. (This is the same exact solution used
in Section V above.) By Laplace transform, the corre-
sponding Green’s function is

G̃α,γ(iz) =
1

α
H(z/α; η), (49a)

H(z; η) =
2η

z + η
1F2(η,

z + η

2
,
z + η

2
+ 1;−1), (49b)

G̃(n)(z) = M̃n

−1 ◦ · · · ◦ M̃1

−1 ◦ G̃(z) (49c)

Here 1F2 is the hypergeometric function and M̃k depends

on b̃k. It is crucial that G̃(n)(z) is known analytically,
so that (49) provides the asymptotically exact large n-
behavior.

Now we stitch the small and large n information to-
gether. The true Green’s function G(N)(z) only depends
on the coefficients bn with n ≥ N . So for sufficiently
large N , where the bn’s are approximately the same as

the b̃n’s, we may approximate

G(z) = M1 ◦ · · · ◦MN ◦G(N)(z)

≈M1 ◦ · · · ◦MN ◦ G̃(N)
α,γ (z),

(50)

an approximation that becomes better at large N . Equa-
tion (50) is our semi-analytical approximation to the
Green’s function. One can check that this is a mero-
morphic approximation for G(z), whose poles lie only in
the upper half plane.

In practice, one must calculate the bn’s until the uni-
versal behavior appears and fit α and η. Then the ap-
proximate G(z) can be calculated from (49) and a se-
quence of two-by-two matrix multiplications. One can
then find the location of the first pole on the imag-
inary axis for a range of wavevectors q and fit z =
iDq2/2+O(q4) to extract the diffusion coefficient D. The
diffusion constant for the chaotic Ising model is shown in
Fig. 6 as a proof of concept. Almost all the compu-
tational effort goes into in computing the first few bn’s
exactly.

In short, the hypothesis is sometimes sufficient to de-
scribe the emergent hydrodynamic behavior of operators.
We reiterate that the hypothesis governs the leading or-
der asymptotics of the Lanzcos coefficients only, while the
autocorrelation depends on further corrections, so there
is no a priori reason it should be computable just from
the hypothesis. Subsequent work will provide further ex-
amples of this algorithm and discuss its theoretical and
practical accuracy.

VIII. CONCLUSIONS

A. Discussion

We have presented a hypothesis on the universal
growth of operators: the Lanczos coefficients follow the
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FIG. 6. Numerical computation of the diffusion coefficient
for the energy density operator O = Eq in H =

∑
iXiXi+1 −

1.05Zi + 0.5Xi. (a) The Lanczos coefficients for q = 0.15 are
fit to (48) with α = 0.35 and η = 1.74. We found it actually

better not to approximate G(N)(z) by G̃(N)(z), but instead

by G̃(N+δ)(z) for some integer offset δ so that η ≈ 1 (in the
example shown, δ = 12). Large η or negative values lead to
numerical pathologies. (b) The approximate Green’s function
(50) at q = 0.15. The arrow shows the “leading” pole that
governs diffusion. (c) The locations of the leading poles for a
range of q. One can clearly see the diffusive dispersion relation
z = iDq2/2 + O(q4). Fitting yields a diffusion coefficient
D = 3.3(5).

asymptotically linear form bn = αn + γ + o(1) in non-
integrable systems. We have seen copious evidence that
the hypothesis is satisfied in a wide variety of non-
integrable models. Over the course of this work, the
growth rate α has emerged as a quantity of prime impor-
tance, tying a diverse array of seemingly-disparate ideas
together. Let us recount them now:

• α > 0 is the slope of asymptotically linear growth
of the Lanczos coefficients.

• 2
πα = ω0 is the exponential decay rate of the spec-

tral function Φ(ω) ∼ e−|ω|/ω0 , which can be (and
has been) measured experimentally [24–26].

• ±iπ/(2α) are the locations of singularities closest
to the origin in the (analytic continuation) of the
autocorrelation C(t), see Appendix A.

• 2α is the exponential growth rate of Krylov-
complexity.

• 2α is an upper bound for the growth of all q-
complexities.

• 2α is an upper bound for the Lyapunov exponent
(whenever the latter is well-defined), since quantum
OTOCs are an example of q-complexities.

We have, of course, put aside the precise conditions and
qualifiers of each statement. In light of these results, α
plays a central role in operator growth and dynamics of
complex systems.
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Complexity — especially the Krylov-complexity —
arose as a key concept in this work. We would like to
highlight its temporal nature which, as we now argue,
makes it a more general notion than chaos. Chaos essen-
tially tracks the development of structures at ever-smaller
scales in phase space. In classical systems, of course,
this may proceed indefinitely, while in quantum systems,
features smaller than ~ are ruled out and the process
saturates. Chaos therefore cannot carry over straightfor-
wardly to systems deep in the quantum regime, where
the phase space volume is comparable to ~ and satu-
ration occurs almost immediately. The K-complexity, in
sharp contrast, measures structures at ever-smaller scales
in the time domain. We believe this is a fundamental dif-
ference; as we have seen, the K-complexity can grow ex-
ponentially in quantum systems beyond semiclassical or
large-N limits. Operator complexity may well supersede
the notion of chaos in quantum dynamics.

B. Outlook

We would like to understand how our hypothesis can
be affected by obstructions to thermalization. In free
and integrable models, there are an extensive number of
conserved local or quasi-local quantities. The behavior
of the Lanczos coefficients in integrable models is likely
non-universal, and depends strongly on the model and
operator in question [23]. In the integrable case, it may
be appropriate to modify the Lanczos algorithm to pro-
mote the semi-infinite line to a lattice where the perpen-
dicular direction is generated by commutators against
quasi-local conserved charges. Another exceptional case
is quantum scar states [79–81], isolated states that fail to
thermalize in otherwise chaotic systems, possibly due to
emergent or approximately conserved charges. It would
be revealing to see how scars are reflected in the Lanczos
coefficients. Finally it would be of great interest to un-
derstand the interplay of the hypothesis with many-body
localized systems (see [82] and references therein) where
thermalization fails.

An open question is how the hypothesis may be ex-
tended to general finite-temperature systems. The key
physical question is what operator norm (30) to choose.
Should the linear growth prevail when T <∞, the value
of α would depend on the choice of norm. This opens
the possibility that different norms should be chosen for
different questions. For instance, the choice (31) for com-
paring with the universal bound on Lyapunov exponent
may not be appropriate when calculating dynamical re-
sponse with the Kubo formula. Any choice of norm at
finite temperature presents a numerical challenge due to
the presence of the thermal density matrix [22, 83, 84].
Quantum Monte Carlo seems promising for this problem,

as the Lanczos coefficients can be computed without an-
alytic continuation. In low dimensions, DMRG can be
also useful: matrix product operators can be used to ap-
proximate the thermal state, and the operators in the
Lanczos algorithm.

One would like to put the hypothesis on more solid
mathematical footing. We speculate that this may
be achieved within an extended random matrix theory.
Standard proofs of the Wigner semicircle law exploit the
connections between the moments of a distribution, the
combinatorics of Dyck paths, Catalan numbers, and the
Stieltjes transform of a distribution [85]. These are di-
rectly analogous to the moments µ2n, the combinatorics
of Motzkin paths, secant numbers, and the continued
fraction expansion for G(z) — all of which arose in the
calculation of our exact wavefunction in Appendix D).
The non-trivial appearance of the same type of objects
in both contexts suggests a strong analogy. We thus con-
jecture that the hypothesis can be derived analytically
by introducing new type of random matrix ensemble that
incorporates locality and translation invariance. (This is
similar to the framework of [86].) In this case, a Hamil-
tonian such as H =

∑
i hi,i+1, where hi,i+1 is a random

matrix, should obey the hypothesis (9) in expectation.
Therefore generic, 2-local Hamiltonians would also be ex-
pected to obey the hypothesis by concentration of mea-
sure. It may well be that showing the hypothesis holds
for a specific Hamiltonian is of comparable difficulty to
showing the ergodic hypothesis applies to specific classi-
cal systems.

To close, we wish to point out that the territory of q-
complexities beyond K-complexity and OTOCs is com-
pletely unexplored. In generic many-body systems (i.e.
not semiclassical) at infinite temperature, these two ex-
amples represent two extremes, showing maximal and
non-existent exponential growth rates, respectively. The
significant gap between them should be filled with po-
tentially more meaningful measures of complexity. These
complexities could be entirely new concepts or disguised
forms of existing notions such as entanglement or cir-
cuit complexity. Hopefully, charting this terra incognita
will continue to shed new light on the complex nature of
many-body quantum dynamics.
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Appendix A: Brief review of Recursion method

In this Appendix we review the relation between the
Lanczos coefficients bn and the moments µ2n. The latter
are the Taylor expansion coefficients of autocorrelation
around t = 0:

C(−it) :=

∞∑
n=0

µ2n
t2n

(2n)!
, µ2n :=

(
O|L2n|O

)
, (A1)

where the odd terms vanish provided O is Hermitian.
The moments and Lanczos coefficients are completely
equivalent, and one is completely determined by the
other. We discuss how to perform this translation both
explicitly and asymptotically.

1. From moments to Lanczos coefficients

Cumulative products of the first n Lanczos coefficients
are given by determinants of the Hankel matrix of mo-
ments [23]

b21 . . . b
2
n = det (µi+j)0≤i,j≤n . (A2)

If the moments are known, the determinant can be com-
puted efficiently by transforming the Hankel matrix into
diagonal form. Doing this iteratively for k ∈ [1, n] pro-
vides a fast algorithm that computes b1, . . . , bn from
µ2, µ4, . . . , µ2n. The algorithm may be expressed con-
cisely as a recursion relation (see Eq. 3.33 of Ref. [23])
as follows:

bn =

√
M

(n)
2n ,

M
(0)
2k =

M
(m−1)
2k

b2m−1
− M

(m−2)
2k−2
b2m−2

, k = m, . . . , n ,

M
(0)
2k = µ2k , b−1 = b0 := 1 , M

(−1)
2k := 0 . (A3)

If an analytic expression for C(t) is known, then an ar-
bitrary number of the Lanczos coefficients may be com-
puted numerically via (A3).
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2. From Lanczos coefficients to moments

It follows from the tridiagonal form of L that the mo-
ments may be expressed in terms of the Lanczos coeffi-
cients as

µ2n =
(
O|L2n|O

)
= (L2n)00. (A4)

If the Lanczos coefficients are known, this is a completely
combinatorial object. In particular, the moments are
given by a sum over Dyck paths. Formally, a Dyck path
of length 2n can be defined as a sequence (h0, h1, . . . , h2n)
such that: h0 = h2n = 1/2; hk ≥ 1

2 and |hk − hk+1| = 1
for any k. These are often visualized as paths starting
at height zero where each segment either increases or de-
creases the height by one unit, with the constraint that
the height is always non-negative and returns to zero at
the end. Denoting the set of such paths by Dn, we have

µ2n =
∑

{hk}∈Dn

2n∏
k=1

b(hk+hk−1)/2 . (A5)

For example, µ2 = b21 and µ4 = b41 + b21b
2
2. The number of

Dyck paths of length 2n is given by the Catalan numbers

Cn = (2n)!
(n+1)!n! . A consequence of (A5) is the following

lower bound:

µ2n ≥ b21 . . . b2n . (A6)

If bn is increasing, we have also an upper bound
µ2n ≤ b21 . . . b

2
nCn. Since Cn ∼ O(4nn−3/2) grows expo-

nentially, the two bounds imply that the moments and
the cumulative products of Lanczos coefficients

∏n
k=1 b

2
k

have growth rates that differ at most by an exponential
in n.

Let us consider the asymptotic relations more carefully.
Applying the upper and lower bounds, linear growth of
the Lanczos coefficients bn corresponds to the following
growth rate of moments:

µ2n = exp(2n lnn+ O(n)) . (A7)

This equation is a useful reformulation of the linear
growth hypothesis. If the growth rate is known as well,
bn = αn+ O(1), it is possible to refine the asymptotic by
specifying the next order exponential term:

µ2n =

(
4nα

eπ

)2n

eo(n) . (A8)

Combining this equation with the Stirling formula, the
correlation function C(t) =

∑
n µ2n(it)2n/(2n)! has con-

vergence radius r = π/(2α), due to singularities at
t = ±ir; in fact, C(t) is analytical in the strip −r <
Im(t) < r, see Fig. 3. Therefore, the Fourier transform
of C(t), which is the spectral density Φ(ω), has a expo-
nential decay

|Φ(ω)| = e−|ω|/ω0+o(ω) , ω0 = r−1 = 2α/π . (A9)

We illustrate the above results by a simple example:
when bn = αn, then C(t) = sech(αt) and Φ(ω) =
α
π sech

(
πω
2α

)
. The moments µ2n = 1, 1, 5, 61, 1385, . . . are

known as Euler or secant numbers and have the asymp-

totic behavior µ2n = 4
√

4n
π

(
4n
πe

)2n
(1 + o(1)) [88]. We

checked that (A9) and (A8) hold in all analytic exam-
ples we are aware of in the literature and believe them to
hold in general.

Appendix B: Moments and Lanczos Coefficients in
the SYK Model

In this section we compute the moments µ2n in the
large-N SYK model at infinite temperature with the ini-
tial operator O =

√
2γ1. For convenience, we recall the

SYK Hamiltonian and disorder normalization:

H
(q)
SYK = iq/2

∑
1≤i1<i2<···<iq≤N

Ji1...iqγi1 · · · γiq , (B1)

J2
i1...iq

= 0, (B2)

J2
i1...iq

2
=

(q − 1)!

Nq−1 J2, (B3)

where the line denote disorder averages. We shall extend
Ji1...iq to all i1, . . . , iq by anti-symmetry. As discussed
in the main text, disorder-averaging will be assumed
throughout. We first work with arbitrary q = 4, 6, 8, . . . ,
and then discuss the large-q limit.

Since the moments are closely related to the Green
function, they can be calculated by the diagrammatic
technique commonly used in the SYK literature. Indeed,
µ2n can be represented as a sum over diagrams G dia-
grams with 2n vertices:

µ2n = J2n2(2−q)n
∑
G

CG , (B4)

where CG is the combinatorial factor of the diagram,
which counts the number of labellings of the vertices by
1, . . . , 2n such that the labels are increasing from left to
right.

Let us illustrate the diagrams with some examples with
q = 4 and n = 1, 2. Direct calculation yields:

Lγ1 = −
∑
j<k<l

J1jklγjγkγl ,

L2γ1 = 22−q
∑
j<k<l

J2
1jklγ1

+
∑
j<k<l

J1jkl
∑
r<s<t

Jjrstγkγlγrγsγt

+
∑
j<k<l

J1jkl
∑
r<s<t

Jkrstγjγlγrγsγt

+
∑
j<k<l

J1jkl
∑
r<s<t

Jlrstγjγkγrγsγt .

(B5)
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The first two moments µ2 and µ4 are (twice) the norm
squared of the Lγ1 and L2γ1, respectively. Under dis-
order averaging, the terms on the right-hand side are
orthogonal, and each corresponds to a different diagram:

µ2 = J22(2−q) = ,

µ4 = J422(2−q)q =

+

+

+ .

(B6)

The combinatorial factor is trivial for each of the above
graphs. CG = 1. The first non-trivial combinatorial fac-

tor CG = 6 for the diagram , which contributes

to µ6. The six vertex orderings are 1
2 3

4 5
6, 1

4 5

2 3
6,

1
2 4

3 5
6, 1

3 4

2 5
6, 1

2 5

3 4
6, and 1

3 5

2 4
6.

The SYK diagrams encode the Schwinger-Dyson equa-
tions governing the autocorrelation and Green’s function
which are, up to trivial transformations, the exponen-
tial and ordinary generating functions of the moments,
respectively:

zG(z) = 1 + J222−qG(z)Σ̃(z), (B7a)

Σ(t) = C(t)q−1, (B7b)

Σ̃(z) = i

∫ ∞
0

Σ(t)e−itzdt, (B7c)

that is, Σ̃(z) and Σ(t) are related by (non-standard)
Laplace transform (45) just as G(z) and C(t) are. Equa-
tion (B7) can be represented diagrammatically (here for
the case q = 4) by

= + . (B8)

The dot represents a general SYK diagram (a fully-
dressed Green’s function). This is the sum of the bare
Green’s function, or the time-domain product of (q − 1)
dressed Green’s functions. Note that both exponential
and ordinary generating functions are needed to take the
combinatorial factors into account: a serial (respectively,

parallel) composition of diagrams correspond to product
of ordinary (resp. exponential) generating function.

Equation (B7) has no closed form solution for general
q. However, working with the power series representa-
tions, it enables the numerical calculation of µ2, . . . , µ2n

in polynomial time and space complexity in n. Con-
cretely, the following iteration algorithm can be easily
implemented in a computer algebra system:

1. Set g0(z) := z−1, and let j = 0.

2. Compute cj(t) from gj(z) by replacing z−2n−1 with
(it)2n/(2n)!.

3. Set σj(t) := cj(t)
q−1 up to order tj .

4. Compute σ̃j(z) from σj(t) by replacing (it)2n with
z−2n−1(2n)!.

5. Set gj+1(z) := (1+J222−qg(z)σ̃j(z))/z up to order
tj+1.

6. Increment j by 1 and repeat from step 2.

When the above procedure is stopped at j = n, the result
gn(z) will be a polynomial truncation of the Green func-
tion: gn(z) =

∑n
j=0 µ2jz

−2j−1, which contains the cor-
rect moments up to µ2n. They can be then used to com-
pute Lanczos coefficients b21, . . . , b

2
n by the recipe (A3).

Arbitrary-precision rational number arithmetic is neces-
sary for n ∼ 102, since the moments grow very fast. We
calculated bn for a few different values of q up to n = 100,
and extracted the linear slope by a linear fit. The results
are reported in Table I and Fig. 2 (a).

In the large-q limit, (B7) can be solved analytically. It
is convenient to define the coupling constant [13, 34]

J 2 := 21−q q J2 . (B9)

It is then known [13, 34] that C(t) admits a 1/q expansion

C(t) = 1 +
1

q
C(t) + O(1/q2) , (B10)

where the leading non-trivial term satisfies the following
differential equation:

C′′(t) = −2J 2eC(t) , C(0) = C′(0) = 0 , (B11)

whose solution is

C(t) = 1 +
2

q
ln sech(J t) + O(1/q2) . (B12)

The corresponding moments

µ2n =
2

q
J 2nTn−1 + O(1/q2) , n > 0 , (B13)

where (Tn)∞n=0 = (1, 2, 16, 272, 7936, . . . ) are the tangent
numbers [89]. The generating function of Tn admits a
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continued fraction expansion [89]:

∞∑
n=0

Tnx
n =

1

1− 1× 2x

1− 2× 3x

1− 3× 4x

1− . . .

(B14)

Using this, one can obtain the following Lanczos coeffi-
cients for the large-q SYK model

bSYK
n =

{
J
√

2/q + O(1/q) n = 1

J
√
n(n− 1) + O(1/q) n > 1 .

(B15)

It is not hard to check (using (8) that the wavefunction
on the semi-infinite chain is

ϕn(t) =


1 +

2

q
ln sech(J t) + O(1/q2) n = 0

tanh(J t)
√

2

nq
+ O(1/q2) n > 0 .

(B16)

The corresponding probability distribution is identical to
the operator size distribution (see Eq. (5.11) of Ref. [34]):

Ps(t) = |ϕn(t)|2 , s = 1 + n(q − 2) . (B17)

The large-q SYK model admits an analytical solution
at any finite temperature [13]. The temperature T is
parametrized by v ∈ (0, 1) via

T

J =
cos πv2
πv

. (B18)

The limits T → ∞ and T → 0 correspond to v → 0 and
v → 1, respectively. The Lyapunov exponent is then

λL = 2vπT , (B19)

and the autocorrelation (as defined by (32)) is

Cβ(t) = 1 +
2

q
ln sech (vtπT ) + O(1/q2) . (B20)

Comparing to (B12), we see immediately that

bn =

{
vπT

√
2/q + O(1/q) n = 1

vπT
√
n(n− 1) + O(1/q) n > 1 .

(B21)

We can read off the growth rate as α = vπT at any
temperature. Thus, the bound λL ≤ 2α is saturated at
all temperature in the SYK model, whereas the bound
λL ≤ 2πT is only so in the zero-temperature limit.

Appendix C: Numerical Details

This section discusses the numerical details involved
in computing the Lanczos coefficients and Krylov basis

vectors in 1D spin chains. We work directly in the ther-
modynamic limit of a chain with N →∞ sites. However,
bookkeeping will reduce this to finite-dimensional matrix
multiplication.

Suppose we have a translation-invariant k-local Hamil-
tonian H =

∑
n hn and an `-local operator O =

∑
nOn.

Here hn and Om are operators starting on sites n or
m respectively. (For instance, we might have O2 =
· · ·⊗I1⊗X2⊗Z3⊗I4⊗· · · .) We normalize the operators
so that (hn|hn) = 1 = (Om|Om). At minor additional
computational cost, we can work with an operator at a
finite wavevector q:

Oq =
∑
n

Oneiqn. (C1)

The crucial point is that applying the Liouvillian to Oq
is another operator at wavevector q by using translation-
invariance to re-index the sum at the cost of phase fac-
tors. Explicitly,

[H,Oq] =
∑
m,n

[hn,Om]eiqm =
∑
m

O′meiqm (C2)

where

O′m =

m−`+1∑
n=m−k+1

eiqsnm [hn+snm
,Om+snm

] (C3)

where the shift is snm is the index of the first non-identity
site of [hn,Om] minus m, which is needed to keep track
of how much the support of the operator shifted due to
the commutator. One can check that O′m starts on site
m.

Therefore we only need to keep track of operators start-
ing on a single site, say site 0. We adopt the basis of Pauli
strings and, following, e.g. [90], we adopt a representa-
tion which minimizes the computational cost of taking
commutators. Since iY = ZX, we may adopt a repre-
sentation

iδ(−1)εZv11 Xw1
1 ⊗ · · · ⊗ Zvnn Xwn

n (C4)

where δ, ε, vk, wk ∈ {0, 1}, i.e. a Pauli string of length
n may be represented by two binary vectors v and
w of length n and two binary digits. So if τ1 =
iδ1(−1)ε1Zv1Xw2 and τ2 = iδ2(−1)ε2Zv2Xw2 , then their
commutator is a string τ ′ = [τ1, τ2] with

δ′ = δ1 + δ2,

ε′ = ε1 + ε2 + δ1δ2 + w1 · v2,

v′ = v1 + v2,

w′ = w1 + w2.

(C5)

All additions are performed over Z2.
With this setup, the Lanczos coefficients can be com-

puted in a similar way to matrix-free exact diagonal-
ization codes. A translation-invariant operator can be
stored as a hash map of Pauli strings starting on site



20

1 2 3 4 5 6 7 8 9 10 11 12 13
Pauli String Size s

0.00

0.25

0.50

0.75

1.00
P
s

O0

O5

O10

O15

O20

O25

O30

0 10 20 30
On

0.0

2.5

5.0

7.5

A
v
er

a
g
e

S
iz

e

FIG. 7. The size distribution of the Pauli strings in the Krylov
vectors On for the Hamiltonian H1 with parameters and ini-
tial operator as in Fig. 2. Though the distribution drops
quickly after its peak, Pn(s) is supported on [0, bn/2c+ 2].

and complex coefficients. The Liouvillian is applied by
combining (C2), (C3), and (C5). Of course, it is not nec-
essary to take O to be translation invariant. One could
equally well take a small single-site operator and apply
the same technique without the sum over all sites. We
note that Lanczos algorithm (4) only requires the storage
of three operators at any time. In practice the method
described here allows a few dozen Lanczos coefficients to
be computed in a few minutes on a modern laptop and
is generally memory-limited by the exponential increase
in the number of Pauli strings required.

Once the Lanczos coefficients and Krylov vectors have
been computed, it is possible to understand how the op-
erators On grow in physical space. One way to character-
ize this is in terms of the distribution of string lengths in
each On. If On =

∑
a caσ

a, where the sum runs over
all Pauli string a, then the distribution is defined by
Pn(s) =

∑
a:|a|=s |ca|

2
. This distribution is shown for

the Hamiltonian H1 with the parameters given in Fig.
2. The mean and variance of the distribution grow with
n. We have observed that the distribution Pn(s) appears
to be highly model-dependent. This makes it difficult
to translate information about the exponential spread-
ing of the wavefunction in the semi-infinite chain back to
physical space.

Appendix D: A Family of Exact Solution with
Linear Growth

This section will provide a derivation for the exact so-
lution (17) of the 1d quantum mechanics problem with
Lanczos coefficients

bn = α
√
n(n− 1 + η) . (D1)

To solve this problem, notice that our infinite, tri-
diagonal matrix is actually quite a familiar setup. If
instead we had bn =

√
n, then L would be the matrix

representing the Hamiltonian for the quantum harmonic
oscillator in the basis of raising and lowering operators.
So really this is just a 1d quantum mechanics problem,
albeit not a standard one. In particular, it is known that
system described by L has very high symmetry, due to
an infinite-dimensional representation of the Lie algebra
su(1, 1), enabling us to find an exact solution [91, 92].
Indeed, there is a rich mathematical literature on the
close connections between representations of su(1, 1), the
combinatorics of Motzkin paths, and Meixner orthogo-
nal polynomials[93, 94]. Our solution will be a simple
application of these mathematical results.

We start with some generalities on orthogonal poly-
nomials. Define L(n) = L0≤i<n,0≤j<n to be the n × n
matrix in the upper-left block of L. For example,

L(3) =

 0 b1 0

b1 0 b2
0 b2 0

 . (D2)

We then define polynomials for each n via

Qn(z;α, η) = det
(
z − L(n)

)
. (D3)

By performing a cofactor expansion for the determinant
on the nth row, the Q’s admit a three-term recursion
relation

Qn+1(z) = zQn(z)− b2nQn−1(z), (D4)

together with initial conditions Q0(z) = 1 and Q−1(z) =
0. Eq. (D4) should be compared with

Len = bn+1en+1 + bnen−1 , (D5)

where {en} is the natural orthonormal basis of L. In fact,
(D4) and (D5) are equivalent, under the identification:

Qn(z) =

[
n∏
k=1

bk

]
en , z

n = Lne0 . (D6)

Therefore, the polynomialsQn(z) are orthogonal, but not
normalized. Instead they are monic, i.e., the highest or-
der coefficient is 1: Qn(z) = zn + O(zn−1).

By construction, both {Qk(z)} and {zn} are a basis of
C[z] and can be related by a triangular linear transform
with matrix elements µn,k:

zn =

n∑
k=0

µn,kQk(z) . (D7)

Combined with (D6), and by orthonormality of {en}, we
have

(ed|Ln|e0) = µn,d

d∏
k=1

bk , (D8)

and therefore(
ed|eiLt|e0

)
=

d∏
k=1

bk

∞∑
n=0

(it)n

n!
µn,d . (D9)
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The statements so far are general and apply to any set
of Lanczos coefficients.

In the specific case bn =
√
n(n− 1 + η); the extra

overall factor α in (D1) can be later recovered by a sim-
ple time rescaling;, one may recognize from the recursion
relation (D4) that Qn’s are a special case of the Meixner
polynomials of the second kind [95]. They are a non-
classical family of orthogonal polynomials defined by the
following three-term recursion: [96, 97]

Mn+1(z; δ, η) = (z − λn)Mn(z; δ, η)− b2nMn−1(z),

λn = (2n+ η)δ, (D10)

b2n =
(
δ2 + 1

)
n(n− 1 + η).

In particular, Qn(z) = Mn(z; δ = 0, η). For these polyno-
mials, the matrix elements µn,d have been exactly calcu-
lated, in terms of the following generating function [94]:

∞∑
n=0

n∑
d=0

µn,dw
d τ

n

n!

=
sec(τ)η

(1− δ tan(τ))η
exp

(
w

tan(τ)

1− δ tan(τ)

)
. (D11)

As a side note, we mention that the above generating
function, referred to as that of the “inverse polynomi-
als” in the theory of orthogonal polynomial, is closely re-
lated to the generating function of Meixner polynomials
themselves. The latter has also a closed form expression,
known to be of Sheffer type [93, 96]:

∑
n≥0

Mn(z; δ, η)
τn

n!
(D12)

=
[
(1 + τδ)2 + τ2

]−η/2
exp

(
z arctan

(
τ

1 + τδ

))
.

Now, taking δ = 0 and the series coefficient of wd in
(D11), we have

∞∑
n=0

µn,d
τn

n!
=

1

d!
sec(τ)η tan(τ)d .

Applying this to (D9), and recalling bn =
√
n(n− 1 + η),

we obtain the wavefunction solution

(
en|eiLt|e0

)
= in

√
(η)n
n!

tanh(t)n sech(t)η, (D13)

where (η)n = η(η + 1) · · · (η + n− 1) is the Pochhammer

symbol. The general solution for bn = α
√
n(n− 1 + η)

can be obtained by a simple rescaling t 7→ αt, and is
precisely Eq. (17) of the main text where, of course,(
On|eiLt|O0

)
=
(
en|eiLt|e0

)
. The special case η = 1 of

this family of solutions is well-known [23, 29]. To the
best of our knowledge, the general solution (D13) has
not been applied to the recursion method.

Appendix E: Derivation of the q-Complexity Bound

This Appendix will derive Eq. (25), (Q)t ≤ C (n)t for
C = 2d. The main idea of is that the definition of Q
guarantees that the eigenbasis of Q is dilated by a factor
of at most C compared to the Krylov basis.

We first show that the Krylov basis vectors have a
bounded number of components in the Q basis due to the
dilation property. For any operator Φ where there is an
M > 0 such that (qa|Φ) = 0 for qa > M , the hypothesis
(20b) implies that (qa|L|Φ) = 0 for qa > M + d. Using
(20c), as a base case for induction, we have (qa|Ln|O) = 0
for qa > d(n+ 1) and, in particular, for qa > Cn. By the
construction of the Krylov basis,

(qa|On) = 0 if qa > Cn. (E1)

We claim that (E1) implies

(Φ|Q|Φ) ≤ C (Φ|n|Φ) (E2)

for any operator wavefunction Φ; taking Φ = O(t), we
obtain (25).

To show (E2), we introduce projectors to large spectral
values in the Krylov and Q bases, respectively:

PKn =
∑
m≥n
|Om) (Om| , PQq =

∑
a : qa≥q

|qa) (qa| . (E3)

Then, we have for n = q/C,

PQq (1− PKn=q/c) =
∑

a : qa≥q

∑
m<n

|qa) (qa|Om) (Om| = 0,

because m < n = q/C ≤ qa/C, (qa|Om) = 0 by (E1).
Equivalently,

PQq PKq/c = PQq . (E4)

Applying this equation and its Hermitian conjugate,
we have (

Φ|PQq |Φ
)

=
(

Φ|PQq PKq/C |Φ
)

=
(

Φ|PKq/CPQq PKq/C |Φ
)

≤
(

Φ|PKq/CPKq/C |Φ
)

=
(

Φ|PKq/C |Φ
)
.

(E5)

where the inequality follows from the fact that PQq is a
projector. Finally we need a standard integration-by-
parts identity that converts the expectation value to an
integral over the projectors:

(
Φ|Qk|Φ

)
=

∫ ∞
0

dq kqk−1
(
Φ|PQq |Φ

)
,

(
Φ|nk|Φ

)
=

∫ ∞
0

dn knk−1
(
Φ|PKn |Φ

) (E6)
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for any k = 1, 2, 3, . . . . Combining the case k = 1 and
(E5), we obtain

(Φ|Q|Φ) =

∫ ∞
0

dq
(
Φ|PQq |Φ

)
≤
∫ ∞
0

dq
(

Φ|PKq/C |Φ
)

= C (Φ|n|Φ) ,

(E7)

which finishes the proof. More generally, for any k, we
have (

Qk
)
t
≤ Ck

(
nk
)
t
. (E8)

This is useful as a bound on the growth rate of higher
moments of the q-complexity super-operator. See Sec-
tion VI C for an application.

Appendix F: Microscopic Origin of the Hypothesis

While the evidence presented in Section IV suffices
alone to support the hypothesis, we find it instructive
to discuss its microscopic origin. We will first re-iterate
why linear growth is maximal, comment on the impor-
tance of interference, and finally show how our hypothesis
can be understood as an assumption on the form of the
spectral function which arises in ETH. Though our argu-
ments here will not be truly rigorous, we aspire to higher
precision in this section.

To this end, we consider the specific setting of a
translation-invariant spin chain. The restriction to a sin-
gle dimension is a wholly artificial one to simplify nota-
tion. The arguments in this section extend to any di-
mension at the cost of greater book-keeping. Suppose we
have an r-local Hamiltonian H =

∑
x hx and an r-local

operator O. The Liouvillian becomes a sum of terms
L =

∑
x `x with `x = [hx, ·] and we note that Ok is

r + k(r − 1)-local. Finally, we suppose that the local
bandwidth ||hx|| ≤ E is finite.

The main tool in our analysis will be the growth of
the moments µ2n =

(
O|L2n|O

)
= ||LnO||2. Moments

and Lanczos coefficients are equivalent, and Appendix
A details how to translate between them. At the level
of asymptotics, linear growth of the Lanczos coefficients,
bn = αn+O(1), corresponds to

µ2n = (n!)2
(

4α

eπ

)2n

eo(n) ∼ n2neO(n). (F1)

Hence linearly increasing Lanczos coefficients are equiv-
alent to factorial-squared growth of the moments. Ex-
ponential corrections to the moments amount, therefore,
to a change in the value of α, but are negligible when
checking if the hypothesis holds.

We have already seen through two indirect arguments
that (9) is the fastest possible growth rate of the Lanczos
coefficients. Now we show this fact directly using the

moments (this is essentially the same method used in
[37, 38]). The moment µ2n is the norm-squared of the
sum

LnO =
∑

x1,x2,...,xn

`xn
· · · `x2

`x1
O. (F2)

This sum is highly constrained by the spatial structure
of the spin chain. The operator O is supported only on
a few sites, and each application of the Liouvillian grows
that support at the edges. Each term in (F2) can be
visualized as a discrete quantum circuit, where each gate
`xk+1

must act on at least one site that is already in the
support of `xk

· · · `x1O — otherwise the term vanishes
due to the commutator. This condition is satisfied by at
most r + k(r − 1) positions xk, so the total number of
non-zero terms in (F2) is at most n!rn for large n. The
value of each non-zero term is itself bounded due to the
finite bandwidth E , so ||`xn · · · `x1O||2 ≤ (2E)2n. By the
triangle inequality,

µ2n = ||LnO||2 ≤ (n!)2r2n(2E)2n. (F3)

Hence the moments grow no faster than (F1), so we have
(again) shown that (9) is the maximal growth rate.

It remains to be seen why linear growth (9) is achieved
in generic non-integrable systems. It is important to keep
the quantum nature of the problem in mind; each term in
(F2) has both a value and a complex phase, so terms in-
terfere either constructively or destructively. This inter-
ference is paramount to achieving linear growth. To see
why, let us examine a fallacious hypothetical: each term
in the sum (F2) is uncorrelated with the rest and their
phases are random and independent. In this case, a sim-
ple estimate shows µ2n ∼ n! and, hence, bn ∼

√
n. How-

ever, this assumption is mistaken, because large classes
of terms interfere constructively. For instance, whenever
`xk

and `xk+1
are separated by more than a distance

r they commute and thus `xn · · · `xk+1
`xk
· · · `x1O =

`xn
· · · `xk

`xk+1
· · · `x1

O. Such identical terms are com-
monplace and occur whenever two of the `x’s are outside
each other’s “lightcone”. The presence of such classes
amounts to a conspiracy of correlations in the sum (F2),
which enables the moments to exceed the uncorrelated
estimate n! qualitatively. Indeed, even if the value of
the sum is reduced exponentially by destructive interfer-
ence, the moments will realize factorial-squared growth
µ2n ∼ (n!)2. (This also depends on having sufficiently
many non-zero terms in the sum, an assumption that
breaks down in generic non-integrable systems.) In other
words, any small bias in favor of constructive rather than
destructive interference is sufficient to realize the hypoth-
esis.

While it is not easy to precisely estimate the small bias,
we know that it is reflected in the extensiveness of energy
in short-range systems. To see explicitly how extensive-
ness is related to the hypothesis, let us “derive” it again,
assuming the off-diagonal eigenstate thermalization hy-
pothesis (ETH) [3–5]. We stress that our hypothesis
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does not require ETH, nor is it implied by ETH alone;
what follows is equivalent to saying the exponential decay
of the spectral function implies the hypothesis as (15).

Fix a large n and consider a finite subsystem S of size
O(n), large enough to contain the support of each Ok
for 0 ≤ k ≤ n. We work in the basis of energy eigen-
states of H (restricted to S), |Ea〉 for 1 ≤ a ≤ D, where
D ∼ exp(O(n)) is the Hilbert space dimension. The Li-
ouvillian has normalized energy eigenoperators

Oab = D1/2 |Ea〉 〈Eb| (F4)

with eigenvalue Ea − Eb. The off-diagonal ETH states
that we can write the local operator O as

(Oab|O) = D−1/2 〈Eb|O|Ea〉 = D−1f(E,ω)Rab, a 6= b
(F5)

where Rab are independent random variables with mean
zero and unit variance, E = (Ea + Eb)/2, ω = Ea − Eb,
and f(E,ω) is the ETH spectral function. The spectral
function is a smooth function of its arguments and is
exponentially suppressed at large |ω|: |f |2 ∼ e−|ω|/ω0 . In

fact, |f(E = 0, ω)|2 is equal to the spectral function Φ(ω)
defined in Eq. (12).

In the energy eigenbasis, applying the Liouvillian is
easy, so

Ln |O) =

D∑
a,b=1

(Eb − Ea)n|Oab) (Oab|O) . (F6)

Combining (F6) with (F5) and averaging over random

variables gives the moments

µ2n = ||LnO||2 =
1

D2

d∑
a,b=1

(Eb−Ea)2n |f(E,ω)|2 . (F7)

We wish to show this has factorial-squared (n2n) depen-
dence. The extensiveness of energy says that Ea−Eb ∝ n
for some proportion of the eigenstates, so it is sufficient
to show those contributions to the sum are suppressed
no more than exponentially by the other terms.

Since n is large, we may approximate the sum by an

integral 1
D

∑D
a=1 →

∫
dE ρ(E) where ρ(E) is the (nor-

malized) density of states. The factor (Eb−Ea)2n means
it is appropriate to work in the large-|ω| limit, so we may
also approximate the spectral function. So

µ2n ∼
∫
dE dE′ ρ(E)ρ(E′)(E − E′)2ne−|E−E′|/ω0 .

(F8)
We now transform to intensive variables. The thermo-
dynamic equation of state allows us to write ρ(E) ∼
exp(ns(ε)) where ε = E/n is the energy density and s(ε)
is the thermodynamic entropy. Hence

µ2n ∼ n2n
∫
dε dε′ e−nS(ε,ε

′) (F9)

where S(ε, ε′) = −s(ε)− s(ε′)− 2 ln |ε− ε′|+ |ε− ε′| /ω0.
The integral may be carried out in the saddle-point ap-
proximation to find µ2n ∼ n2ne−nSmin = n2neO(n), in
agreement with (F1). Note that due to the logarithmic
term, the saddle point must be away from the diagonal
ε = ε′. In other words, the dominant contribution to the
linear growth of the bn’s comes from matrix elements Oab
with extensive energy differences Ea − Eb ∝ n.
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