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Abstract

For a prime p, we call a positive integer n a Frobenius p-number if there exists a finite group

with exactly n subgroups of order pa for some a ≥ 0. Extending previous results on Sylow’s

theorem, we prove in this paper that every Frobenius p-number n ≡ 1 (mod p2) is a Sylow

p-number, i. e., the number of Sylow p-subgroups of some finite group. As a consequence,

we verify that 46 is a pseudo Frobenius 3-number, that is, no finite group has exactly 46
subgroups of order 3a for any a ≥ 0.
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AMS classification: 20D20

1 Introduction

Motivated by Sylow’s famous theorem in finite group theory, we investigated pseudo Sylow p-
numbers in a previous paper [17]. These are positive integers n ≡ 1 (mod p), where p is a prime,
such that no finite group has exactly n Sylow p-subgroups. It is known that such numbers exist
whenever p is odd and we gave an elementary argument for p = 17 and n = 35.

The present paper is based on Frobenius’ extension [5] of Sylow’s theorem:

Theorem 1 (Frobenius). Let p be a prime and a ≥ 0 such that pa divides the order of a finite
group G. Then the number of subgroups of order pa of G is congruent to 1 modulo p.

An elementary proof of Theorem 1 has been given by Robinson [16]. It is a natural question
to ask if every positive integer n ≡ 1 (mod p) is a Frobenius p-number, i. e., there exists a
finite group with exactly n subgroups of order pa for some a ≥ 0. The following refinement of
Frobenius’ theorem, proved by Kulakoff [10] for p-groups and extended to arbitrary finite groups
by P. Hall [8], shows that most pseudo Sylow p-numbers cannot be Frobenius p-numbers.

Theorem 2 (Kulakoff–Hall). Let p be a prime and a ≥ 0 such that pa+1 divides the order
of a finite group G. Then the number of subgroups of order pa of G is congruent to 1 or to 1+ p
modulo p2.
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The proof of Theorem 2 uses only elementary group theory, but it lies somewhat deeper than
Theorem 1 (Kulakoff [11] pointed out some errors in an earlier proof attempt by Miller [12]).

In view of Theorem 2, we call n a pseudo Frobenius p-number if n is congruent to 1 or 1 + p
modulo p2 and no finite group has exactly n subgroups of order pa for any a ≥ 0. Obviously, every
pseudo Frobenius p-number is a pseudo Sylow p-number. Since we know from [17] that every odd
number is a Sylow 2-number, it is clear that there are no pseudo Frobenius 2-numbers.

Our aim in this paper is to establish the existence of a pseudo Frobenius number. The first choices
are n = 1+p and n = 1+p2. However, it can be seen that the general linear group G = GL2(p

a)
has exactly 1 + pa Sylow p-subgroups for any a ≥ 1 (the upper unitriangular matrices form a
Sylow p-subgroup of G and the corresponding normalizer is the Borel subgroup consisting of all
upper triangular matrices). The next candidate is n = 1+p+p2, but this is clearly the number of
subgroups of order p in the elementary abelian group G of order p3 (every nontrivial element of G
generates a subgroup of order p and two distinct subgroups intersect trivially). Now for p = 3 we
might consider n = 1+2 ·32 = 19. However, 19 is a prime and we know already from [17] that for
any prime n ≡ 1 (mod p) there exist (solvable affine) groups with exactly n Sylow p-subgroups.
Finally, we have mentioned in [17] (proved by M. Hall [7]) that n = 1+3+2 ·32 = 22 is a pseudo
Sylow 3-number. On the other hand, the number of subgroups of order 9 in the abelian group
C9 ×C3 ×C3 is 22 and therefore, 22 is not a pseudo Frobenius number. (In general, the number
of subgroups of a given isomorphism type in an abelian p-group is given by a Hall polynomial.)

Our first theorem in this paper deals with the case n ≡ 1 (mod p2).

Theorem A. Every Frobenius p-number n ≡ 1 (mod p2) is a Sylow p-number.

While our proof is elementary, it relies implicitly on the complicated classification of the finite
simple groups (CFSG for short in the following). As an application we obtain our first pseudo
Frobenius number.

Corollary B. The integer 46 is a pseudo Frobenius 3-number.

With the examples mentioned above, it can be seen that 46 is in fact the smallest pseudo
Frobenius number. We do not know if there are any pseudo Frobenius p-numbers congruent to
1 + p modulo p2. There are no such numbers below 100 as one can check with the computer
algebra system GAP [6] for instance.

2 Proofs

In this section, G always denotes a finite group with identity 1 and p is a prime number. The
proof of Theorem A relies on the following more precise version of Theorem 2 for odd primes
(see [8, Lemma 4.61 and Theorem 4.6]).

Proposition 3. Let P be a Sylow p-subgroup of G for some p > 2. Then for 1 < pa < |P |, the
number of subgroups of order pa in G is congruent to 1 modulo p2 if and only if P is cyclic.

Proposition 3 does not hold for p = 2. For instance, the dihedral group of order 8 (i. e., the
symmetry group of the square) has 5 ≡ 1 (mod 4) subgroups of order 2 (generated by the four
reflections and the rotation of degree π). A precise version for p = 2 can be found in Murai [13,
Theorem D].

Our second ingredient is a consequence of the CFSG by Blau [1].
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Proposition 4 (Blau). If the simple group G has a cyclic Sylow p-subgroup, then every two
distinct Sylow p-subgroups of G intersect trivially.

Proof of Theorem A. We may assume that p is odd. Let n ≡ 1 (mod p2) be a minimal coun-
terexample. Then there exists a group G of minimal order such that the number of subgroups
of order pa for some a ≥ 0 is n. Since obviously n > 1, we have a ≥ 1. Moreover, since n is
not a Sylow p-number, it follows that pa+1 divides |G|. By Proposition 3, G has a cyclic Sylow
p-subgroup P . Since every Sylow p-subgroup contains exactly one subgroup of order pa, the sub-
groups Q = Q1, . . . , Qn ≤ G of order pa form a conjugacy class in G. Furthermore, the number
of Sylow p-subgroups must be greater than n and this implies that some Qi is contained in two
distinct Sylow p-subgroups. Hence by Proposition 4, G is not simple.

Thus, let N be a nontrivial proper normal subgroup of G. Let n1 be the number of subgroups of
order pa in QN (note that this number does not depend on the choice of Q, since every QiN is
conjugate to QN). Since PN/N is a cyclic Sylow p-subgroup of G/N , every subgroup of order
|QN/N | in G/N is of the form QiN/N for some i. We denote the number of these subgroups by
n2 and conclude that n = n1n2. By construction, n1 and n2 are Frobenius p-numbers.

Suppose that ni 6≡ 1 (mod p2) for some i ∈ {1, 2}. Then n1 6≡ 1 6≡ n2 (mod p2), since n1n2 =
n ≡ 1 (mod p2). By Proposition 3, Q must be a Sylow p-subgroup of QN , that is

|QN : Q| 6≡ 0 (mod p). (2.1)

Similarly, QN/N ∈ Sylp(G/N) or QN/N = 1 according to Proposition 3. In the latter case, N
contains Q1, . . . , Qn since they are all conjugate to Q. However, this contradicts the minimality
of G. Hence, QN/N is a Sylow p-subgroup of G/N and |G : QN | = |G/N : QN/N | 6≡ 0 (mod p).
In combination with (2.1), we obtain

|G : Q| = |G : QN ||QN : Q| 6≡ 0 (mod p).

But this contradicts the observation that pa+1 divides |G|.

Consequently, n1 ≡ n2 ≡ 1 (mod p2). The minimal choice of G yields n2 < n. Similarly, n1 = n
implies G = QN . In this case, P = QN ∩P = Q(N ∩P ) (modular law) and since P is cyclic we
even have Q ⊆ N ∩ P ⊆ N and G = QN = N , another contradiction. Thus, n1 < n. Since n is
a minimal counterexample to our theorem, n1 and n2 must be Sylow p-numbers, since they are
Frobenius p-numbers. Let Hi be a finite group with exactly ni Sylow p-subgroups for i = 1, 2.
Then

Sylp(H1 ×H2) = {S1 × S2 : Si ∈ Sylp(Hi)}

and n = n1n2 is a Sylow p-number (of H1×H2). This final contradiction completes the proof.

As in the previous paper [17], we make use of the first principles of group actions. Recall that an
action of G on a finite nonempty set Ω is a map G×Ω → Ω, (g, ω) 7→ gω such that 1ω = ω and
g(hω) = ghω for g, h ∈ G and ω ∈ Ω. Every action gives rise to a homomorphism G → Sym(Ω)
into the symmetric group on Ω, and the action is called faithful whenever this homomorphism
is injective. In this case G is a permutation group of degree |Ω|. The orbit of ω ∈ Ω under G is
the subset Gω := {gω : g ∈ G} ⊆ Ω. The orbit-stabilizer theorem states that

|Gω| = |G : Gω|

where Gω := {g ∈ G : gω = ω} is the stabilizer of ω ∈ Ω. We say that G acts transitively on
Ω if there is only one orbit, i. e., Ω = Gω for any ω ∈ Ω. A subset ∆ ⊆ Ω is called a block if
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g∆∩∆ ∈ {∆,∅} for every g ∈ G. A transitive action is called primitive if there are no blocks ∆
with 1 < |∆| < |Ω|. This happens if and only if Gω is a maximal subgroup of G for any ω ∈ Ω.
Finally, a transitive action is 2-transitive if Gω acts transitively on Ω \{ω} for any ω ∈ Ω. In the
following we are mainly interested in the transitive conjugation action of G on Sylp(G). Here the
stabilizer of P ∈ Sylp(G) is the normalizer NG(P ) := {g ∈ G : gP = Pg}.

In the proof of Corollary B we apply two further results. The first appeared in Wielandt [18] and
was reproduced in Cameron’s book [3, Theorem 3.25].

Proposition 5 (Wielandt). Let G be a primitive permutation group of degree 2p. Then G is
2-transitive or 2p − 1 is a square.

It is another consequence (which we do not need) of the CFSG that the second alternative in
Proposition 5 only occurs for p = 5.

The second tool for Corollary B is a consequence of Brauer’s theory of p-blocks of defect 1 [2] and
can be extracted from Navarro’s book [14, Theorem 11.1]. Here, Irr(G) is the set of irreducible
complex characters of G and the trivial character is denoted by 1G.

Proposition 6 (Brauer). Suppose that G has a Sylow p-subgroup P of order p such that
CG(P ) = P and e := |NG(P )/P |. Then there exists a set of irreducible characters

B = {1G = χ1, . . . , χe, ψ1, . . . , ψ(p−1)/e} ⊆ Irr(G)

and signs ǫ1, . . . , ǫe ∈ {±1} such that

χi(1) ≡ ǫi (mod p) (1 ≤ i ≤ e),

ψj(1) =
∣

∣

∣

e
∑

i=1

ǫiχi(1)
∣

∣

∣

(1 ≤ j ≤ (p − 1)/e),

µ(1) ≡ 0 (mod p) (∀µ ∈ Irr(G) \B).

The special case e = 1 in Proposition 6 leads to 1 = 1G(1) = χ1(1) = ψ1(1) = . . . = ψp−1(1)
and |G : G′| = p where G′ is the commutator subgroup of G (see [9, Problem 15.6]). In general,
Proposition 6 provides information on |G|, because it is known that the irreducible character
degrees divide the group order (see [9, Problem 28.12]).

Recall that every action of G on Ω gives rise to a permutation character π which counts the
number of fixed points, that is, π(g) := |{ω ∈ Ω : gω = ω}| for g ∈ G (see [3, Section 2.5]). The
action is 2-transitive if and only if π = 1G + χ for some χ ∈ Irr(G) \ {1G}.

Proof of Corollary B. By Theorem A, it suffices to show that 46 is a pseudo Sylow 3-number,
because 46 ≡ 1 (mod 9). Let G be a minimal counterexample such that |Syl3(G)| = 46. By
Sylow’s theorem, G acts transitively on Syl3(G). If K E G is the kernel of this action, then it
is easy to see that G/K has the same number of Sylow 3-subgroups (see [17, Step 1 of proof
of Theorem A]). Thus, by minimality K = 1 and G acts faithfully on Syl3(G). In particular,
we can and will regard G as a subgroup of the symmetric group S46. Then, every Sylow 3-
subgroup lies in the alternating group A46 and minimality implies G ≤ A46. For P ∈ Syl3(G) let
NG(P ) < M ≤ G. Then P ∈ Syl3(M) and

|Syl3(M)| = |M : NM (P )| = |M : NG(P )| ∈ {2, 23, 46}
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by Lagrange’s theorem. Since 2 and 23 are not congruent to 1 modulo 3, we must have M = G.
Hence, NG(P ) is a maximal subgroup of G and therefore G acts primitively on Syl3(G).

[At this point we could refer to the database of primitive permutation groups of small degree
(see for instance Dixon–Mortimer [4, Appendix B] or [6, 15]). However, this database is based
on the Aschbacher–O’Nan–Scott theorem and relies ultimately on the CFSG. We prefer to give
a classification-free argument along the lines of M. Hall’s paper [7].]

Since 45 is not a square, Proposition 5 implies that G acts 2-transitively on Syl3(G), i. e., NG(P )
acts transitively on Syl3(G) \ {P}. Hence, for Q ∈ Syl3(G) \ {P}, the 2-point stabilizer NG(P )∩
NG(Q) has index 45 in NG(P ) by the orbit-stabilizer theorem. Since NP (Q) is a Sylow 3-subgroup
of NG(P ) ∩NG(Q), the orbit PQ of P has size

|PQ| = |P : NP (Q)| = 9.

For g ∈ NG(P ) we have
g(PQ) = gPQ = PgQ = P (gQ).

Since the orbits of P are disjoint, PQ is a block of NG(P ). Since NG(P ) is transitive on Syl3(G)\
{P}, the distinct conjugates of PQ form a partition of Syl3(G) \ {P} into five blocks with nine
points each. Moreover, NG(P ) permutes these blocks. Suppose that there exists an element x ∈
NG(P ) of order 11. Then x must fix each of the five blocks. On the other hand, x cannot permute
nine points nontrivially. Hence, x cannot exist and by Cauchy’s theorem, |G| = 46|NG(P )| is not
divisible by 11. Similarly, |NG(P )| is not divisible by 23.

Now let S ∈ Syl23(G). Then |S| = 23 and S is generated by a product of two disjoint 23-cycles,
since |NG(P )| is not divisible by 23. It follows that CG(S) ≤ CA46

(S) = S (see [17, Lemma 5]).
Moreover, |NG(S)/S| divides 22 (see [17, Lemma 6]). By Lagrange’s theorem, |NG(S)| is not
divisible by 11 and therefore |NG(S)/S| ∈ {1, 2}. In the first case, |G : G′| = 23 by the remark
after Proposition 6. However, this contradicts the minimal choice of G, since every Sylow 3-
subgroup of G lies in G′. Hence, |NG(S)/S| = 2.

The permutation character of our 2-transitive group G has the form 1G+χ where χ ∈ Irr(G) has
degree 45 (see [3, Section 2.5]). With the notation of Proposition 6 for p = 23, we have ψj(1) ≡ ±2
(mod 23) for j = 1, . . . , 11 and it follows that χ = χ2, ǫ2 = −1 and ψ1(1) = |1 − 45| = 44.
However, the degree of every irreducible character divides the group order, but |G| is not divisible
by 44 = 4 · 11. Contradiction.

It is possible to prove Corollary B directly without appealing to Theorem A or Proposition 4.
To do so, one has to study the conjugation action on the set of 46 subgroups of a fixed 3-power
order which is still (2-)transitive by Proposition 3.

Using the database of primitive permutation groups mentioned in the proof, it is easy to show
that 51 is a pseudo Frobenius 5-number.
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