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COUNTING SUBRINGS OF Zn OF NON-ZERO

CO-RANK

SARTHAK CHIMNI AND RAMIN TAKLOO-BIGHASH

Abstract. In this paper we study subrings of Zn+k of co-rank k.

1. Introduction

Let Zn be the set of n-tuples (x1, . . . , xn) of integers. This set comes
with a natural addition and multiplication given by

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

and

(x1, . . . , xn) · (y1, . . . , yn) = (x1 · y1, . . . , xn · yn).

Under these operations Zn is a ring. As is well-known the ring Zn has
a simple additive group structure, but when it comes to its multiplica-
tive structure there are some very easy-to-state basic questions that we
do not know how to answer. For example, let fn(r) be the number of
subrings R of Zn with an identity such that, as an additive subgroup,
R has index r in Zn. Necessarily then, R is a free Z-module of rank n.
Liu [4] investigated the function fn(r) and proved a number of interest-
ing theorems. He also found a formula for Fn(s) :=

∑∞
r=1 fn(r)r

−s for
n ≤ 4 expressing it as an Euler product of rational function of p−s for
various primes p. Using different methods Nakagawa [5] had previously
studied the more general problem of understanding the distribution of
orders in quartic algebras, a particular case of which was the compu-
tation of the generating series F4(s). For n > 4 the situation is con-
siderably more complicated. Kaplan, Marcinek, and Takloo-Bighash
[3], by using the methods of p-adic integration, obtained results for
the location and order of the largest pole of F5(s) without explicitly
computing the series. They also obtained estimates for the location of
the largest pole of Fn(s) for n > 5. One of the reasons to study the
analytic properties of the generating series Fn(s) is to find asymptotic
formulae for Nn(B) =

∑

r≤B fn(r). The theory of p-adic integration
[2] shows that Nn(B) grows like a non-zero constant Cn multiplied by
Bα(n)(logB)b(n)−1 for α(n) ∈ Q and b(n) ∈ N. The current state of
knowledge about the behavior of Nn(B) is the following result:

Theorem 1. If n ≤ 5 there is a constant Cn such that

Nn(B) ∼ CnB(logB)(
n

2)−1

1
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as B → ∞. If n ≥ 6, for any ǫ > 0 we have

B(logB)(
n

2)−1 ≪ Nn(B) ≪ǫ B
n
2
− 7

6
+ǫ.

As mentioned above fn(r) counts full rank Z-submodules of Zn that
are of a fixed index r. A natural question to ask is whether one can
quantify the distribution of subrings of Zn which as Z-submodules are
not of rank n. Let us make this precise. Let φn(r) be the number of
sublattices of Zn which are closed under the multiplication of Zn. It’s a
well-known fact (e.g., Proposition 2.3 of [4]) that for each n ≥ 2, r ≥ 1
we have fn(r) = φn−1(r). It turns out that for many purposes the
function φn(r) is a more convenient function to work with—and in fact
the theory developed in [2] deals with the function φn(r).

We now define an analogue of the function φn(r) for lattices of non-
zero co-rank. For 0 ≤ k ≤ n, define φn,k(r) be the number of sublattices
L of Zn which have the following properties:

• The lattice L is closed under multiplication;
• as a Z-submodule, L is of co-rank k in Zn;
• the size of the torsion subgroup of Zn/L is equal to r.

Clearly, φn,0(r) = φn(r). It turns out that the function φn,k(r) and
φn(r) have a simple relationship. The following theorem is our main
result.

Theorem 2. For all n, k, r we have

φn+k,k(r) =

{
n + k + 1

n+ 1

}

· φn(r).

Here, for natural numbers u, v,
{

u

v

}
is the Stirling number of second

kind.

This theorem is the combination of Theorem 21 and Theorem 22.
The main step in the proof of this theorem is a rigidity result (Theo-
rem 6) which determines exactly what types of lattices contribute to
the counting function φn+k,k(r). The rest of the proof consists of a
combinatorial argument counting these lattices. The Stirling numbers
in the statement of the theorem appear in a fairly round-about way. It
would be desirable to have an explanation for the appearance of these
Stirling numbers.

The rigidity result mentioned above is the statement that matrices
corresponding to multiplicative sublattices will be of very special shape.
The upshot of this result is that multiplicative sublattices of non-zero
co-rank in Zn are all obtained from full rank multiplicative sublattices
in various Zm’s for m < n in very specific ways. Let us illustrate the re-
sults we are about to prove using co-rank two multiplicative sublattices
in Z4.
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Define four maps Z2 → Z4 by the following formulae:

f1(x, y) = (x, y, 0, 0),

f2(x, y) = (x, y, y, 0),

f3(x, y) = (x, y, y, y),

f4(x, y) = (x, x, y, y).

We can make more maps Z2 → Z4 by considering maps of the form
τ◦fj◦σ for σ ∈ S2, τ ∈ S4—we call these maps acceptable. For example,
the map that sends (x, y) to (y, x, 0, x) is acceptable. A consequence of
our rigidity result is that if L is a multiplicative sublattice of co-rank
two in Z4, then there is a multiplicative sublattice L′ of full rank in Z2

such that L = f(L′) for some acceptable map f . Furthermore, the size
of the torsion subgroup of Z4/L is equal to the index of L′ in Z2. We
will see that the scenario described here is completely general.

Theorem 22 was discovered thanks to the Online Encyclopedia of
Integer Sequences (OEIS). Originally we had only discovered Theorem
21. We computed a few values of the function σ(n, k) by hand and then
a search through OEIS revealed the connection to the Stirling Numbers
of the Second Kind. These numbers appear under sequence A008277
in the Encyclopedia [6].

The second author wishes to thank the Simons Foundation for par-
tial support of his work through a Collaboration Grant. The authors
also wish to thank Nathan Kaplan and Gautam Chinta for helpful
conversations.

This paper is organized as follows. In §2 we review basic definitions
and prove the rigidity theorem. We present the proof of the main
theorem in §3. Finally in the appendix we collect some basic results
on Stirling numbers of the second kind that are used in §3.3.

2. Rigidity Theorem

A lattice is a Z-submodule of some Zn. When referring to a specific
Zn we usually speak of a sublattice. We call a sublattice L of Zn

a multiplicative sublattice if for every u, v ∈ L we have u · v ∈ L.
A multiplicative sublattice L is a subring if it contains the identity
element (1, . . . , 1). We refer the reader to Liu [4] for basic properties
of multiplicative lattices of full rank in Zn.

Let L be a lattice of rank m in Zn. We define the co-rank of L to be
the integer n−m. The following lemma is an easy consequence of row
operations.
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Lemma 3. Given a lattice L in Zn of co-rank k there is an (n−k)×n
integral matrix M = (xij) such that xij = 0 whenever j − i > k, and
with the property that the rows of M generate L.

Note that the matrix M as in the lemma is not unique. In fact,
if A is any (n − k) × (n − k) lower triangular integral matrix with
determinant 1, then AM is another matrix that satisfies the conditions
of the lemma.

Let M be the matrix corresponding to the lattice L of co-rank k as
in Lemma 3. Then L is multiplicative if and only if for every two rows
v, w of M , v · w ∈ L.

Proposition 4. Let L be a multiplicative sublattice of Zn of co-rank
1. Then L has a basis which forms the rows of a (n − 1) × n matrix
M such that Mij = 0 if i < j − 1 and M has a column of zeros or two
columns of M are identical.

Proof. We prove this using induction on n. If n = 1 then there is no
sublattice of co-rank 1 so the result is vacuously true. So we consider
the case n = 2. Any multiplicative sublattice L of co-rank 1 has rank
1 and therefore is generated by a non-zero row vector of length 2,

M =
[
x11 x12

]
.

As L is multiplicative, M.M should be a scalar multiple of M . Hence
we get the following equations:

x2
11 = λx11 (1a)

x2
12 = λx12 (1b)

Note that both x11 and x12 can’t simultaneously be zero. If either of
them are zero we get a zero column as desired and if both are non-zero
we get that x11 = λ = x12 and in that case both columns are identical.

Now we assume that the result holds for n = k and show that it is
true for n = k + 1 Let L be a multiplicative sublattice of Zk+1 of co-
rank 1. Then L has a basis which forms the rows of a matrix M = (xij)
such that xij = 0 for i < j − 1. Now M can be written as

M =

[
M ′ 0
v xk,k+1

]

.

If xk,k+1 = 0 then we have a column of zeros and we have nothing to
prove. So from here on we assume that xk,k+1 6= 0. We claim that M ′

represents a multiplicative sublattice of Zk. Consider the dot product
of the ith and jth rows Ri and Rj where i, j < k but are not necessarily
distinct,

Ri · Rj =
m=k∑

m=1

λmRm.
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Then the equation corresponding to the last columns is 0 = λkxk,k+1.
Since xk,k+1 6= 0, λk = 0. So Ri ·Rj is a linear combination of the first
k-1 rows and therefore M ′ represents a multiplicative lattice. Then by
the induction hypothesis M ′ has a column of zeros or a pair of identical
columns.

Case 1 : M ′ has a column of zeros.

Suppose the jth column of M ′ is 0. If xk,j = 0 we are done. So we
assume that xk,j 6= 0. Now consider the dot product of the kth row Rk

of M with itself. Then

R2
k =

m=k∑

m=1

λmRm

So we have the following equations.

x2
k,k+1 = λkxk,k+1 (2a)

x2
k,j = λkxk,j (2b)

As xi,j = 0 for i 6= k. Since both xk,k+1 and xk,j are non-zero we have
xk,j = λk = xk,k+1 which implies that the jth and (k+1)st columns are
identical as all other entries are 0.

Case 2 : M ′ has a pair of identical columns.

Let the ith and jth columns of M ′ be equal. We can assume that
these are non-zero columns as the first case already deals with zero
columns. Therefore there is l < k such that xl,i = xl,j 6= 0. Now

Rl · Rk =

m=k∑

m=1

γmRm

So we have

xk,ixl,i =
m=k∑

m=1

γmxm,i (3a)

xk,jxl,j =

m=k∑

m=1

γmxm,j (3b)

0 = γkxk,k+1 (3c)

γk = 0 as xk,k+1 6= 0. This and the fact that xm,i = xm,j for m < k
gives us that each term in the summations in (3a) and (3b) are equal
which implies that the sums are equal. Therefore we have that in fact
xk,ixl,i = xk,jxl,j. Since xl,i = xl,j 6= 0 we have xk,i = xk,j. So that the
ith and jth columns of M are identical.

�
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Corollary 5. Any basis of a multiplicative lattice L of co-rank 1 will
form the rows of an (n− 1)× n matrix M with n− 1 distinct non-zero
columns.

Proof. The property of having a column of zeros or two identical columns
is invariant under elementary row operations. This means that any ma-
trix whose rows are the basis of a multiplicative sublattice of co-rank
1 of Zn will have this property. �

Theorem 6 (Rigidity). Let L be a multiplicative sublattice of Zn of
co-rank k, then every basis of L forms the rows of a (n− k)×n matrix
M with exactly n− k distinct non-zero columns.

Proof. We use induction on the ordered pair (n, k) where L is a multi-
plicative sublattice of co-rank k in Zn. Proposition 4 takes care of the
k = 1 case for all n. There is nothing to prove in the case that n = 1.
That establishes the base case. Suppose the result holds for all ordered
pairs (k, l) such that k + l < n + m + 2. Consider a sublattice L of
Zn+1 of co-rank m+ 1. Then L has a basis which forms the rows of a
matrix M such that Mij = 0 when i < j −m− 1.

Case 1 : The (n + 1)st column Cn+1 = 0.

In this case the first n columns of M represent a multiplicative lat-
tice L′ of co-rank m in Zn. By induction hypothesis there are n −m
distinct non-zero columns amongst the first n columns of M . So that
M also has n−m distinct non-zero columns.

Case 2 : xn−m,n+1 6= 0.

Now M can be written as

M =

[
M ′ 0
v xn−m,n+1

]

.

where M ′ corresponds to a multiplicative sublattice of Zn.

Lemma 7. If the jth column of M ′, C ′
j = 0 then either the correspond-

ing column of M is 0 or equal to the (n + 1)st column of M .

Lemma 8. If two columns C ′
i = C ′

j of M ′ are equal then the corre-
sponding columns of M are identical.

The proofs of Lemmas 7 and 8 are identical to the arguments in
Cases 1 and 2 of Proposition 4.

Now M ′ corresponds to a multiplicative sublattice of co-rank m+ 1 in
Zn. By induction hypothesis M ′ has n− (m+ 1) = n−m− 1 distinct
non-zero columns. Lemma 8 implies that the n−m−1 distinct non-zero
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columns of M ′ correspond to n−m−1 distinct non-zero columns of M .
Lemma 7 says that the (n+1)st column of M is the only other distinct
non-zero column. Therefore M has n−m− 1 + 1 = (n+ 1)− (m+ 1)
distinct non-zero columns. The number of distinct non-zero columns
is invariant under row operations and hence we get the result. �

3. Sublattice correspondence

3.1. Acceptable maps. Here we look at maps

f : Zn → Zn+k

such that if we write f(x1, . . . , xn) = (y1, y2, . . . , yn+k), then each yj is
either some xi or 0. We call a map like this acceptable if it is injective.
We call an acceptable map simple if it is of the form

(x1, x2, . . . , xn) 7→ (
λ1

︷ ︸︸ ︷
x1, . . . , x1,

λ2
︷ ︸︸ ︷
x2, . . . , x2, . . . ,

λn
︷ ︸︸ ︷
xn, . . . , xn,

λn+1

︷ ︸︸ ︷

0, . . . , 0)

with
1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

For a map defined this way, we call λ = (λ1, . . . , λn+1) the signature of
f and denote it by sign(f). For a signature λ, we define Aut(λ) to be
the group of τ ∈ Sn such that τ(λ1, . . . , λn) = (λ1, . . . , λn). In general,
there are numbers 1 ≤ η1 < · · · < ηr and multiplicities n1, . . . , nr such
that

(λ1, . . . , λn) = (

n1
︷ ︸︸ ︷
η1, . . . , η1,

n2
︷ ︸︸ ︷
η2, . . . , η2, . . . ,

nr
︷ ︸︸ ︷
ηr, . . . , ηr).

Then Aut(λ) = Sn1
× Sn2

× · · · × Snr
, and

#Aut(λ) = n1!n2! . . . nr!.

Here is a simple lemma:

Lemma 9. Any acceptable map g can be written as a composite

g = σ ◦ f ◦ τ

with f simple, τ ∈ Sn, and σ ∈ Sn+k.

We define sign(g) = sign(f).

3.2. Images of sublattices under acceptable maps. In this sub-
section we study the behavior of general lattices in Zn under acceptable
maps Zn → Zn+k.

The group Sn acts on Zn by permuting the coordinates. For any
sublattice L of Zn, let [L] denote the orbit of L under the action of Sn

and let Aut(L) denote the stabilizer, i.e., Aut(L) = {σ ∈ Sn | σ(L) =
L}. Then clearly,

|[L]| =
n!

|Aut(L)|
. (4)
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Now observe that if L ∼ L′ then
⋃

g

g(L) =
⋃

g

g(L′)

where the union is over all acceptable maps g : Zn → Zn+k. This follows
from the fact that if L′ = τ(L) for some τ ∈ Sn, then σ(f(α(L)) =
σf(α(τ−1(L′))).

Lemma 10. Let f be a simple map of signature λ. Then f induces
an injective homomorphism f̄ : Sn → Hom(f(Zn), f(Zn)) where α →
αf = f ◦ α ◦ f−1. Furthermore, αf ∈ Sn+k if and only if α ∈ Aut(λ).

Lemma 11. For lattices L, L′, if σ(f(τ(L))) = σ′(f ′(τ ′(L′))) with f, f ′

simple, then

• f = f ′;
• σ′−1 ◦ σ ∈ Sλ1

× · · · × Sλn+1
× f̄(Aut(λ));

• L ∼ L′.

Proof. Let σ′−1 ◦ σ = γ. Then we have that γ(f(τ(L)) = f ′(τ ′(L′)). If
the signature of f ′ is λ′ then this is a partition of the coordinates of
f ′(τ ′(L′)), thus also a partition of the coordinates of γ(f(τ(L)). Since
a permutation doesn’t alter the partition, this implies that sign(f) =
sign(f ′), therefore f = f ′. So we have that γ(f(τ(L)) = f(τ ′(L′)).
Let sign(f) = λ. Note that γ preserves f i.e the first λ1 coordinates of
both sides are equal, the next λ2 coordinates are equal and so on. This
forces γ to be either be a composition of permutations of groups of
λj coordinates and permutations that swap two groups of coordinates
λi, λj where λi = λj . That is γ is in the subgroup of Sn+k generated by
Sλ1

, Sλ2
, . . . Sλn

and f̄(Aut(λ)). Note that these subgroups are pairwise
disjoint and that they commute with each other. So we have that
γ ∈ Sλ1

× · · · × Sλn+1
× f̄(Aut(λ)). In fact we can write γ = γ1 ◦ γ2

where γ1 ∈ f̄(Aut(λ)) and γ2 ∈ Sλ1
× · · · × Sλn+1

. Observe that γ2
preserves f(τ(L) so that γ(f(τ(L)) = γ1(f(τ(L)). But γ1 = αf for
some α ∈ Aut(λ) so that f(α(L)) = γ(f(τ(L)) = f(τ ′(L′)). The
function f is injective so that τ ′−1(α(L)) = L′. �

Lemma 12. For any sublattice of full rank L in Zn, and f : Zn → Zn+k

simple of signature λ, we have

Aut(f(τ(L)) = Sλ1
× · · · × Sλn+1

× f̄((Aut(τ(L)) ∩Aut(λ)).

Proof. Suppose σ(f(τ(L)) = f(τ(L)) then we have from Lemma 11
that σ ∈ Sλ1

×· · ·×Sλn+1
× f̄(Aut(λ)). We can write σ = σ1 ◦σ2 where

σ1 ∈ Aut(λ) and σ2 ∈ Sλ1
× · · · × Sλn+1

. Clearly σ2 ∈ Aut(f(τ(L)) so
that we have σ(f(τ(L)) = σ1(f(τ(L)) = f(τ(L)). Now σ1 = αf where
α ∈ Aut(λ) so that σ1(f(τ(L)) = f(α(τ(L))) = f(τ(L)). f is injective
so that α(τ(L)) = τ(L) and therefore α ∈ Aut(L) ∩Aut(λ). �

Corollary 13. |[f(τ(L)]| = 1
|Aut(λ)∩Aut(L)|

(
n+k

λ1,λ2,...,λn+1

)
.
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Proof. This is immediate from Lemma 12 and Equation (4). �

Corollary 14. Let g, g′ be acceptable maps and L, L′ be full rank sub-
lattices of Zn then if [g(L)] = [g′(L′)] then [L] = [L′].

Corollary 15.
⋃

g acceptable g([L]) =
⋃

g acceptable[g(L)].

Lemma 16. Suppose τ(L) 6= τ ′(L), then [f(τ(L))] = [f(τ ′(L))] if and
only if τ ′ ◦ τ−1 ∈ (Aut(λ)).

Proof. If α = τ ′ ◦ τ−1 ∈ Aut(λ) then αf ∈ Sn+k and αf(f(τ(L))) =
f(τ ′(L)). Conversely suppose σ(f(τ(L))) = f(τ ′(L)). Now observe
that (τ ′ ◦ τ−1)f(f(τ(L))) = f(τ ′(L). So that σ−1◦τ ′◦τ−1 ∈ Aut(f(τ(L))).
Since Aut(f(τ(L))) = Sλ1

× · · · × Sλn+1
× f̄((Aut(τ(L)) ∩ Aut(λ))) ⊂

Sn+k, we have that (τ ′ ◦ τ−1)f ∈ Sn+k and by Lemma 10 we have that
τ ′ ◦ τ−1 ∈ Aut(λ). �

Corollary 17. There are n!
|Aut(L)|

. |Aut(λ)∩Aut(L)|
|Aut(λ)|

orbits corresponding to

a fixed simple map f.

Proposition 18. If L is a full rank sublattice of Zn, we have

|
⋃

g acceptable

g([L]| =
∑

λ signature

1

#Aut(λ)

(
n + k

λ1, λ2, . . . , λn+1

)

.

Proof. This follows from Corollary 13 and Corollary 17. �

3.3. Multiplicative sublattices. Everything we said in the last sub-
section applies to multiplicative sublattices. In fact, if L is a multiplica-
tive sublattice in Zn and τ ∈ Sn, τ(L) is a multiplicative sublattice in
Zn of the same rank as L. Also, if f : Zn → Zn+k is an acceptable
map, then f(L) is a multiplicative sublattice in Zn+k whenever L is a
multiplicative sublattice in Zn.

Theorem 6 can be formulated as follows:

Theorem 19. Any multiplicative sublattice of co-rank k in Zn+k is of
the form g(L) where g : Zn → Zn+k is an acceptable map and L is a
multiplicative sublattice of full rank in Zn.

The next observation is the following simple but absolutely impor-
tant fact:

Lemma 20. For any acceptable map f and any sublattice L in Zn of
rank n, we have

#(Zn+k/f(L))tor = [Zn : L].

So let’s define three quantities:

φn+k,k(r) = #{L mult. sub-lat. in Zn+k | L co-rank k,#(Zn+k/L)tor = r};
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φn(r) = #{L mult. sub-lat. in Zn | [Zn : L] = r};

σ(n, k) =
∑

λ signature

1

#Aut(λ)

(
n+ k

λ1, λ2, . . . , λn+1

)

.

What we have said above gives the following theorem:

Theorem 21. For all n, k, r we have

φn+k,k(r) = σ(n, k) · φn(r).

Proof. This is a direct consequence of Lemma 20, Proposition 18, and
Theorem 19. �

We now express σ(n, k) in terms of Stirling numbers of the second
kind.

Theorem 22. We have

σ(n, k) =

{
n+ k + 1

n+ 1

}

,

where the quantity on the right hand side is the Stirling number of the
second kind.

Proof. Write
(

n+ k

λ1, λ2, . . . , λn+1

)

=

(
n + k

λn+1

)

·

(
n+ k − λn+1

λ1, λ2, . . . , λn

)

.

This means

σ(n, k) =

k∑

λn+1=0

(
n+ k

λn+1

)
∑

1≤λ1≤···≤λn∑
i λi=n+k−λn+1

1

#Aut(λ)

(
n+ k − λn+1

λ1, λ2, . . . , λn

)

=
n+k∑

j=n

(
n+ k

j

)
∑

1≤λ1≤···≤λn∑
i λi=j

1

#Aut(λ)

(
j

λ1, λ2, . . . , λn

)

.

By Lemma 23,

{
n + k + 1

n + 1

}

=
n+k∑

j=n

(
n + k

j

){
j

n

}

.

Consequently, in order to prove our theorem it suffices to prove that
for j ≥ n

∑

1≤λ1≤···≤λn∑
i λi=j

1

#Aut(λ)

(
j

λ1, λ2, . . . , λn

)

=

{
j

n

}

.
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We now proceed to prove this identity. Suppose there are a1 1’s, a2 2’s,
..., and am m’s among the λi’s. Then #Aut(λ) = a1!a2! . . . am!. This
means

1

#Aut(λ)

(
j

λ1, λ2, . . . , λn

)

=
j!

(1!)a1(2!)a2 · · · (m!)ama1!a2! . . . am!
.

The numbers a1, . . . , am will have to satisfy
{

a1 + 2a2 + · · ·+mam = j

a1 + a2 + · · ·+ am = n.

The result now follows from Corollary 25 in the Appendix. �

4. Appendix: Stirling Numbers of the Second Kind

In this appendix we collect some facts about Stirling numbers of the
second kind which are used in §3.3. Recall that for natural numbers
n, k, the Stirling number of the second kind

{
n

k

}
is defined to be the

number of equivalence relations on a set with n elements with k equiv-
alence classes. Alternatively,

{
n

k

}
is equal to the number partitions of

a set with n elements to k un-ordered non-empty subsets. Bogart [1],
especially Ch. 3, has a lot of good information on Stirling numbers.

Lemma 23. For any n, k we have
{
n+ 1

k + 1

}

=

n∑

j=k

(
n

j

){
j

k

}

.

Proof. Theorem 3.2, Ch. 2 of Bogart [1]. �

Lemma 24. The number of partitions of a set with j elements into a1
classes of size 1, a2 classes of size 2, up to am classes of size m is equal
to

j!

(1!)a1(2!)a2 · · · (m!)ama1!a2! . . . am!
.

provided that
∑

i iai = j.

Proof. Theorem 1.6, Ch. 2 of Bogart [1]. �

For j ≥ n let S(j, n) be the set of sequences (a1, . . . , am) of non-
negative numbers of some length m such that

{

a1 + 2a2 + · · ·+mam = j

a1 + a2 + · · ·+ am = n.

Corollary 25. For j ≥ n we have

∑

(a1,...,am)∈S(j,n)

j!

(1!)a1(2!)a2 · · · (m!)ama1!a2! . . . am!
=

{
j

n

}

.
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